
����������
�������

Citation: Gellert, A.; Sorostinean, R.;

Pirvu, B.-C. Robust Assembly

Assistance Using Informed Tree

Search with Markov Chains. Sensors

2022, 22, 495. https://doi.org/

10.3390/s22020495

Academic Editors: Alicia

García-Holgado and Brij B Gupta

Received: 9 December 2021

Accepted: 6 January 2022

Published: 10 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Robust Assembly Assistance Using Informed Tree Search with
Markov Chains
Arpad Gellert 1,* , Radu Sorostinean 1,2 and Bogdan-Constantin Pirvu 3

1 Computer Science and Electrical Engineering Department, Lucian Blaga University of Sibiu,
550025 Sibiu, Romania; radu.sorostinean@gmail.com

2 School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
3 Industrial Engineering and Management Department, Lucian Blaga University of Sibiu,

550025 Sibiu, Romania; bogdan.pirvu@ulbsibiu.ro
* Correspondence: arpad.gellert@ulbsibiu.ro

Abstract: Manual work accounts for one of the largest workgroups in the European manufacturing
sector, and improving the training capacity, quality, and speed brings significant competitive benefits
to companies. In this context, this paper presents an informed tree search on top of a Markov
chain that suggests possible next assembly steps as a key component of an innovative assembly
training station for manual operations. The goal of the next step suggestions is to provide support to
inexperienced workers or to assist experienced workers by providing choices for the next assembly
step in an automated manner without the involvement of a human trainer on site. Data stemming
from 179 experiment participants, 111 factory workers, and 68 students, were used to evaluate
different prediction methods. From our analysis, Markov chains fail in new scenarios and, therefore,
by using an informed tree search to predict the possible next assembly step in such situations, the
prediction capability of the hybrid algorithm increases significantly while providing robust solutions
to unseen scenarios. The proposed method proved to be the most efficient for next assembly step
prediction among all the evaluated predictors and, thus, the most suitable method for an adaptive
assembly support system such as for manual operations in industry.

Keywords: assembly assistance systems; training stations; smart manufacturing; Industry 4.0;
digital transformation; informed tree search; A* algorithm; Markov chains; prediction; artificial intelligence

1. Introduction

To compete successfully in the global market, in recent years, factories have turned
their attention to optimize all tasks, including the ones performed by humans, leveraging
the progress in information technology with the deployment of artificial intelligence [1,2]
and machine learning [3] in various application areas throughout the product life cycle.
Industry 4.0 [4] is the coined term used to describe this optimization involving interconnec-
tion and collaboration among the factory’s interactants (human and synthetic) towards a
human–automation symbiosis.

Nowadays, the adoption process in Industry 4.0 mainly focuses on assisting humans
with different technologies in order to ease their tasks and improve productivity, as envi-
sioned in the Operator 4.0 concept [5]. This is because full automation is costly and not
effective in all areas due to dexterity, flexibility, and complexity requirements. Thus, assis-
tance systems are required to facilitate interconnection and collaboration between humans
and synthetic systems, especially in the case of manual work. Recent assembly assistance
systems target multi-modal interaction with the user and are capable of providing adaptive
instructions (i.e., type, content, sequence) tailored for different user categories (e.g., expe-
rience, age, gender) that take into account the user’s basic emotion and/or mental state.
Smart anomaly detection and prediction can significantly reduce unexpected production

Sensors 2022, 22, 495. https://doi.org/10.3390/s22020495 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22020495
https://doi.org/10.3390/s22020495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5482-967X
https://orcid.org/0000-0002-7372-9404
https://orcid.org/0000-0003-3961-4539
https://doi.org/10.3390/s22020495
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22020495?type=check_update&version=1


Sensors 2022, 22, 495 2 of 17

interruptions [6]. Studies such as in [7] indicate that the impact of assembly assistance
systems increases in the case of complex products and untrained persons.

This paper proposes a novel way of tackling assembly assistance prediction problems
by improving the accuracy of commonly used Markov chain methods. One of the many
problems involved in assembly assistance systems is the spread of the data inside multiple
bins with a low amount of data in each bin. This confuses the Markov chain, causing low
probabilities of each move due to the spread of the data; it can also cause a low prediction
rate during testing when the algorithm meets new scenarios for which it was not trained.

The novelty of the proposed technique is the hybrid approach that combines an
informed tree search with a Markov model, as well as the usage of this hybrid method
in assembly assistance systems for next manufacturing step prediction. The scope of this
paper is to address the problem described above by using an informed tree search on top
of the Markov chain prediction to provide a plausible move for the next step when the
Markov chain fails its prediction due to insufficient training data or meeting a new scenario.
The predictions of the next move will always follow Markovian probability, and when all
the probabilities are 0 or the Markov chain does not return any prediction, the following
move will be chosen out of the plausible moves ranked by the heuristic function. The main
goals are to identify, produce, and test different techniques that improve the prediction
generated by Markov chains in scenarios that were not met during the training phase. This
paper also aims to produce valid algorithms that can be used in an assembly assistance
system, to evaluate the algorithm on the provided dataset and to prove its general usage,
and to define any further work that can be done to improve the algorithm.

The rest of this paper is organized as follows. Section 2 presents the related work,
Section 3 describes the proposed prediction method, Section 4 discusses the experimental
results, and Section 5 concludes the paper.

2. Related Work

A summary of the most recent articles in the field of assistance systems, both technology-
and impact-wise, is presented below. A comprehensive literature review (121 papers) on
worker assistance systems used in the shop floor (i.e., in-situ), including the state-of-the-art,
possible future directions, and the limitations of these systems, can be found in [8]. It
reveals that although in its infancy, the research field of worker assistance has gained more
attention with more industrial adoption, needing to develop more assistance applications
that can help operators at their workstations on the shop floor, with a focus on user interface
design and biomedical engineering as well. Methodologies for selecting the most suitable
assistance systems for various user groups are missing, as well as a structured suitability
evaluation of worker assistance in manufacturing. A further literature review (234 articles)
has been targeted by Miqueo et al. [9], focusing on the manual assembly process and
particularly targeting mass customization demand while considering the new technologies
within Industry 4.0, lean aspects, and the impact on operators as well. The article concludes
that “product clustering, modularization, delayed product differentiation, mixed-model
assembly, and reconfigurable assembly systems” are essential for competitive assembly
operation in mass customization and that augmented and virtual reality technologies are
the key enabling technologies for supporting the operator. Worker assistance systems are
analyzed in [10] from a manufacturing process perspective, covering more than 200 appli-
cations. The study revealed that most applications are for assembly processes, followed by
cutting, welding, disassembly, and coating from the liquid state manufacturing process.

In [11], Tocu et al. developed and evaluated a virtual reality assembly process simula-
tor. The experiments were performed on two groups of trainees. One group participated in
virtual reality training before real training. The other group attended only the real training
session. The results have shown that the additional training in a virtual reality environ-
ment significantly improved the efficiency of the workers in assembling a customizable
modular tablet. Due to the training stations, human trainers can be more effectively used.
A virtual reality training system for preparing operators to execute simple and infrequent
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maintenance tasks for Kuka robots is introduced in [12]. The solution relies on the HTC
Vive Pro ecosystem for the hardware, while for the virtual reality application, the Unity
game engine and SteamVR framework were used. The performance of the virtual reality
training system was evaluated in an experiment with 18 persons, indicating a training
performance similar to a standard one, although executed faster in virtual reality. Never-
theless, a higher cognitive load and greater frustration were observed in the case of the
virtual reality approach.

Zheng et al. presented in [13] an augmented-reality-based assistant system for aircraft
cable assembly with a convolutional neural network for deep vision that provides rapid
guidance, reduces errors, and mitigates the dependency on hard copy documents. Another
deep learning visual assistant for assembly tasks in production, recognizing real-time tools
and worker assembly actions to reduce rework and waste, is presented in [1]. The proposed
solution relies on a generic description language that was developed to characterize the
actions within an assembly process. Another augmented-reality-based system for the high-
end footwear industry using the Microsoft HoloLens is detailed in [14]. The prototype’s use-
case is for the offline training of inexperienced workers for leather footwear assembly. The
preliminary evaluation involved two apprentices over three days of testing and indicated
benefits compared to the standard approach, such as the reduced number of interventions
from experts, more adaptive user content, and less pressure during training. The main
drawbacks were related to the low usability of the Microsoft HoloLens when using them
for prolonged periods and that users were unaware of the mistakes made during training.
This could be potentially improved with HoloLens 2. In [15], Vanneste et al. describe
an augmented reality system as well as an ongoing experiment about the effects (i.e.,
time, errors, perceived complexity, required assistance, well-being variables) of exposing
users to different instruction complexities for performing five main tasks. The experiment
targeted overall 100 participants; no conclusions are yet formulated because only data
from 23 persons were gathered. In [16], augmented-reality-based systems (HoloLens
and smartphone) were evaluated in an experiment involving 12 persons to identify their
training effectiveness compared with paper-based instructions. Fewer errors and improved
usability were observed in comparison with paper-based instructions. No statistically
relevant differences were identified from task completion time and overall workload
perspective when comparing them. An extensive literature review (52 articles) of current
extended-reality technologies (virtual reality, augmented reality, and mixed reality), their
application for training in manufacturing, and the benefits and limitations can be found
in [17].

A cognitive assistance system as a flexible and adaptive assistive assembly solution
(i.e., deskbound and deskless) that is suitable for a dynamic environment (e.g., a rework
area) is detailed in [18]. The system supports users regardless of their experience, providing
work instructions as gif-animations as well as process-related data. Moreover, the user can
interact with the system by having virtual buttons available. A limitation of the presented
solution consists of the fact that it is not suitable for a product with more recipes to assemble
or disassemble the product. The impact of task complexity and informational assistance
systems is focused on in [19]. Here, the main conclusion after analyzing the mental
workload via three physiological indicators (electrocardiography, heart rate variability, eye
movement assessment) is that content and structure of the instructions are most important,
while the type of assistance system or medium (i.e., paper, tablet, augmented reality device
display) is irrelevant (given that the solution used has appropriate usability). A strategy
for cognitive automation of Operator 4.0 can be found in [20].

An approach for designing better instructions, considering cognition, is tackled in [21],
where a novel framework for developing such systems is described. Rupp and Müller
presented in [22] a general approach and first implementation of a modular event-driven
architecture assistance system to support operators at their workplaces in prototype and
pre-series production. The instructions are generated directly from higher planning sys-
tems, while the assembly visualization is done in 3D, relying on the drawing database in
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conjunction with data from the product data management system. Approaches regarding
the automation of content creation for assembly instructions are described in [23].

In [24], Bertram et al. evaluated 10 assistance systems for assembly operations from
6 aspects relevant for intelligent working stations and concluded that none of the 10 systems
fully covers the automated generation of work plans, flexible integration in production, or
autonomous learning ability. The benefits of gamification (e.g., faster training, less errors)
versus a non-gamified approach were revealed in a study involving 50 participants by
Palmas et al. [25]. In [26], several heuristic-based approaches were used in order to optimize
picking orders in fulfillment warehouses. In particular, novel variants of column generation,
genetic algorithms, and artificial neural networks that use heuristic-based optimization
were applied to decrease the search domain and provide an optimal solution by decreasing
the makespan in fulfillment centers.

Next assembly step modeling, as a component of an adaptive assembly assistance
system, has been analyzed in several papers. In [27], two-level context-based prediction
has been proposed for the assembly process modeling of a customizable modular tablet.
In [28,29], Markov chains have been involved in predicting the next assembly step. Markov
chains have also been used in computational biology [30], web access mining [31], image
processing [32,33], and energy management systems [34]. Markov models are very efficient
for prediction in situations met before but inefficient in new situations. The Prediction by
Partial Matching with Neighboring (PPMN) algorithm combines different order Markov
models and has been used in [35]. In [36], a Long Short-Term Memory (LSTM) was applied.
LSTM is usable in unmet situations, with good coverage, but its drawback is the lower
accuracy. Until the current research, the Gradient Boosted Decision Tree (GBDT), evaluated
in [37], has proved to be the most performant in predicting and suggesting the next assembly
steps. In [37], there are several advantages to using GBDT, mainly maintaining a high
prediction rate of 100% and a coverage of 65%. The disadvantage of using GBDT comes
from the increased complexity of the algorithm, resulting in high implementation times
and high data levels used as it presents an increased risk of overfitting. Another approach
used in [38] is to compare different methods for assembly assistance and modeling based
on the time cycle between the moves of the human operator. While this approach was
considered, the time between assembly moves was not present in the data collected from
the experiment [5].

While the vast majority of the literature focuses on achieving the highest prediction
accuracy in next-step prediction, this paper approaches the problem using an informed
tree search, such as in [39], in order to increase the prediction rate to 100%, thus covering
all the possible scenarios. While a naïve heuristic predictor for the shortest path will not
yield good accuracy due to all steps being the same cost, this will help the overall system
by successfully dealing with unmet scenarios in the prediction phase, especially when
working with a low amount of data.

Tree search was analyzed in this paper because it offers the highest robustness in the
assembly process, being able to deal with wrong assemblies by following the heuristic score
when a prediction cannot be made by the Markov chain.

3. Next Assembly Step Prediction by Tree Search

To approach the prediction, several methods were considered. In this paper, a novel
hybrid predictor based on heuristic tree search with a Markov model is explored. The
approach focuses on achieving full coverage and being robust to recommend moves from
any given start state. The algorithm is built by combining a tree search with an A* heuristic
based on the Markov prediction implementation described in [4]. Section 3.1 covers
the problem context, goals, and data analysis. In Section 3.2, the algorithm design and
implementation are shown.
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3.1. Assembly Assistance System

The assembly assistance system is a flexible training prototype for manual opera-
tions that allows the deployment and evaluation of adaptive training effects in the case
of inexperienced operators without the support of an expert human trainer. Conceptu-
ally, it was designed to go beyond the classical approach of a cyber–physical system,
in which a human–machine interface is encapsulated within a device, by following the
anthropocentric cyber–physical system reference model approach [40] (see Figure 1). In
anthropocentric cyber–physical systems, the social dimension is an integral part within its
infinitesimal model and is essential for continuous adaptation between the physical, cyber,
and human components.
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From a hardware perspective, the prototype (Figure 2) is a flexible testbed due to its
mechanical structure, allowing a configuration with all the required devices (e.g., touch-
screen, cameras, sensors) in different training scenarios for the assembly of various small
and medium products.
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The assembly assistance system is composed out of five main components. The first
component is the aluminum profile frame designed for the easy positioning and installation
of the required devices. Electrical actuators are embedded in the frame to vertically adjust
the tabletop. The second component is a Sensytouch ST43 SLIM large touch screen. It
is used for displaying instructions and providing the hardware for running the training
application (see Table 1 for its specification). The third component is a set of biosensors, such
as Tobii Pro Glasses 2 and Shimmer GSR, which are worn by the user during the training.
If required, additional sensors, such as for electroencephalograms, electromyography, and
heart rate, can be added. The fourth component is a front-facing Microsoft Azure Kinect
sensor for posture and facial expression estimation. Finally, the fifth component is the
Zed 3D camera, positioned above the user and oriented towards the assembly table for
tracking hands and the relevant components for the assembly training.

Table 1. Characteristics of Sensytouch ST43 SLIM.

Component Specifications

Display 43-inch 4K touchscreen
Processor Intel i7-7700

Graphical Processor NVIDIA GeForce GTX 1060
Memory 16 GB
Storage 250 GB

Operating System Windows 10

From a software application perspective, the prototype offers flexibility because the
training scenario (e.g., time pressure, audio and/or video guidance) and the instructions
can be adapted (e.g., more/fewer detailed verbal instructions, more/less detailed video
animations) based on data from the sensors (front-facing camera) or biosensors worn by the
user (e.g., eye tracking, galvanic skin response, electromyography, heart rate). The assembly
assistance system has micro-services implemented to improve the user experience. All the
micro-services communicate via Google’s Remote Procedure Call framework. Additionally,
each micro-service has its own Health Check and Service Discovery mechanism. These
mechanisms allow the selection of the services that will collaborate at any given time.
Below are the microservices that impact the predictor or user assembly behavior:

• Height adjustment of the tabletop: the adjustment can be made manually by pressing
the physical buttons on the station or automatically from the software.

• Depth camera streaming: this service allows the clients to control the depth camera as
if they were connected to it. It exposes all the camera capabilities (e.g., RGB, depth,
point cloud).

• Object detection: this service detects the position of objects in each image.
• Object position: this service combines object detection and depth camera microservices

to establish the 3D position of objects relative to the camera. Additionally, it detects if
the objects have been inserted correctly in their slots. In case of a wrong step, it will
prompt the user to undo the action. This feature acts as a safeguard for the prediction
service since it cannot detect incorrect assemblies (nor should this be its responsibility).

• Emotion detection based on face mimics: this service detects the emotion of the user
based on a picture with his face.

• Human characteristics collector: this service collects human characteristics such as age
and gender. The mood can be identified with the aid of the “emotion detection based
on face mimics” microservice. These characteristics aid in the prediction process due
to factors or preferences representative of a segment of the population.

• Predictor: this service receives information collected from the other services through
an aggregator, and, based on its various algorithms, it should return the next rec-
ommended assembly step. Its role is to guide the trainees during their training
stage and, optionally, to assist experienced workers by providing choices for the next
assembly step.
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Before the training starts, the product’s components are placed disassembled in the
designated areas (i.e., upper left side and upper right side) on the tabletop, as in Figure 3.
The large touchscreen displays where the subcomponent’s initial location should be and
provides video animations and user interaction buttons (i.e., play/pause, backward and
forward), which enable the control of the training scenario.
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The product used in our evaluation is a customizable modular tablet (Figure 4) that can
be configured with one screen, one mainboard, and up to six modules of three types (i.e.,
flashlight, battery, speaker). The assembly process can start with any of the components
mentioned before, and it is not restricted to a single assembly recipe. More details about the
prototype’s concept and its subsystems and feature developments are detailed in [41–43].
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Using the assembly system described above, data were collected from 68 participants
(second-year BSc students) and 111 manufacturing workers. The data was processed in
order to describe the assembly process via a 7-bit representation, where the screen is the
least significant bit and the bottom-right corner module represents the most significant
bit. Each bit represents a slot on the mainboard, its value being 1 if the corresponding
component is mounted correctly.

The data were processed following the same scenario as the one outlined in [29] to
train the Markov model (described in that study). Mainly, quantitative and qualitative
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data were collected from each participant. The qualitative data were obtained through
a questionnaire containing general questions about height, age, gender, dominant hand,
highest level of education, and if the participants were eyeglass wearers. Some other
questions were for self-evaluation: “Were you hungry during the experiment?”, “Do you
have any prior experience in product assembly?”, “What was your stress level before
the experiment?”, “How would you describe the state you found yourself in during the
experiment (at the beginning, during, and at the end of the experiment)”, “Are you under
the influence of any drugs that might influence your level of concentration?”, and “How
would you describe the sleep quality of the previous night?” From the collected qualitative
data, we used height (tall or small), sleep quality (good or bad), gender (male or female),
and whether the participant was wearing glasses (true or false). The quantitative data was
the actual assembly of the tablet coded in bits. The mainboard was considered the reference
for the other components. If a component was assembled on the mainboard in its correct
slot, it was marked with “1”. If no component was assembled in a slot or the component
was in the wrong slot, it was marked with “0”. With seven slots on the mainboard, there
is a 7-bit code for the assembly state of the tablet. The assembly process of the tablet
is represented as a sequence of assembly state codes. The quantitative data were used
together with the qualitative data in training the algorithms. To mitigate the bias generated
by the factory workers, who tend to assemble the tablet in sequential order compared to
the students, the data was randomly mixed between the workers and the students. We
reserved 75% of the data for training, and we used the remaining 25% for testing.

3.2. Algorithm Design

Using the Markov implementation described in [28], a novel hybrid approach was
designed by adding A* informed tree search on top of the Markov predictor. We use the
notations presented in Table 2.

Table 2. Notations.

Notation Meaning

R The order of the Markov model
st The state of the Markov model at time t

H(q) Heuristic of the distance from state q to the final state
FSS(q) Final state score of (q)
D(q) The depth of the current state q
P(q) The probability of the current state q being the next state

The approach utilizes the predictions produced by the Markov chain at each prediction
step in order to assign a score to each node under the parent state based on its probability
of being the next move. A Markov chain can be defined as follows:

P[s t|st−1, . . . , s1 ]= P[s t|st−1, . . . , st−R ] (1)

A* is a graph traversal algorithm developed in 1968. The algorithm is used in several
fields in computer science to solve the shortest path problem due to its completeness,
optimality, and efficiency. The tree search is done using a heuristic function that is an
estimate of the distance left to the goal. The term optimality is used to describe algorithms
that, when used in tree search problems, are guaranteed to always return the best possible
solution. The second term, completeness, is used to describe that if a solution to the problem
exists, the given algorithm will always find it. The pseudocode for the implementation of
A* (Algorithm 1) can be found below.
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Algorithm 1. A*

queue = [root]
goal = goal_node
while (queue not empty && queue[0] not goal){

current_node = queue.pop()
children = current_node.generate_children()
queue.add(children)
queue.sort(by = path_cost + heuristic)

}
if (queue[0] is goal){

return optimal_path(queue[0])
} else {

return “failure”
}

An admissible heuristic that can predict the exact distance from the current state q to
the final state at each step was designed. The heuristic is

H(q) = FSS(q)−D(q)− P(q) (2)

where FSS(q) is the final state score, D(q) is the depth of the current state q, and P(q) is the
probability of state q being the next state.

Since, at each move, the probabilities change, FSS is calculated based on the proba-
bilities given by the Markov chain when predicting the next move from the parent node.
Therefore, FSS can be calculated as follows:

FSS(q) = SD(q) +
n

∑
k=1

P(k) (3)

where SD is the optimal solution depth. The final state score can be calculated in the context
given in [29], where a tablet is assembled in 7 steps, as the optimal solution depth is known.

The A* algorithm achieves an O(log H(x)) time complexity due to the optimal heuris-
tic and an O(b d) space complexity, where b is the branching factor and d is the solution
depth. An activity diagram of the algorithm can be seen in Figure 5. Once the Markov
chain is trained, a sequence depending on the Markov chain order is taken as input. Unless
the final state is reached, the next leaf node is taken based on the heuristic score. If the
Markov chain does not return a prediction for the component being picked in the next state,
such as only returning one of the six possible moves or none, the missing moves have a
score of 1, equal to the path cost, while the predicted moves have a score of 1 + P(q), where
P(q) is the probability of the q-th move being the next one. For example, if the Markov
chain does not return any probabilities, all the next possible moves will have a score of 1;
therefore, the next move will be the first item in the possible moves array.

By resetting the score of each move to 1 (the path cost) when the Markov chain does
not return a score for the respective path, the algorithm makes sure that the new prediction
is not overwritten by the previous results. This was a required addition to the algorithm as,
in the way the tablet assembly is done, it will decrease the number of predictions available
in the next step by one. So, for example, if the battery was assembled at the first step, and
the Markov predictor returned the biggest probability for the battery, if the score would
not be reset to 1, the algorithm would try to install the battery, given that there are two
battery modules. This would reflect a decrease in the accuracy as there is a probability
where the Markov chain did not see two consecutive battery installations and would try
to predict a new one. Another reason for resetting the score is to give all the next possible
paths an equal chance of being picked in the next step and to make sure that after the node
expansion, no score of the previous rounds is carried over as the calculation for the exact
distance of the optimal result can be done on the fly.
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4. Experimental Results

For the evaluation of the novel predictor and its comparison to other predictors in
the assembly assistance context of the project, the accuracy, coverage, and prediction rate
measurements were used to obtain comparable results and determine the best approach to
solve the problem. The accuracy is measured as correct predictions out of the predictions
made. The coverage is measured as correct predictions out of all the possible predictions,
and prediction rate is measured as the number of predictions generated out of all the
possible predictions. The simulation environment and the architecture of the algorithm
were designed using Python for ease of implementation. Several open-source libraries
were used, such as sklearn and numpy. The Markov implementation was done manually
in Python. The evaluations were done on an average laptop consisting of an i5-7300HQ
processor at 2.5 GHz and 8 GB memory.

Before observing the metrics, several important features of the novel hybrid algorithm
were discovered when checking the results. First, a new level of robustness is achieved
by the algorithm, which is essential during use inside assembly assistance stations in the
Industry 4.0 era. The algorithm has a prediction rate of 100%, meaning that for any input,
it will have an output; moreover, even if the Markov chain predictor would not return
any results, the hybrid algorithm will still propose a correct assembly sequence due to
the node expansion functionality built inside the A*. This is one of the most useful points
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of the algorithm as it can be used on any number of unseen assembly states from the
training stage.

The second important feature observed when gathering the results is the error detec-
tion capability and the ability to correct wrong assemblies; this is one of the most sought
out features in Industry 4.0. If the start would be a tablet that is wrongly assembled, by
using negative scores for the incorrectly assembled pieces, the A* algorithm would very
easily navigate its way back to a valid assembly sequence by recommending the removal
of the piece until it reaches a valid state, where the Markov chain would be able to predict
future valid assembly sequences.

The data composition is based on randomly sampled data from a mix of correct
assembly sequences from a 68-student cohort and the 111 manufacturing workers used
in [35] that assembled the tablet using the same methodology. A mixed dataset was
chosen to avoid the bias generated by the factory workers, who tended to assemble the
tablets in sequential order, whereas the students took other approaches. This resulted in
an increase in the generalization power of the predictor and avoided over-fitting. The
evaluations are done on the mixed dataset, as well as on the “Students” and “Workers”
datasets individually.

During the development process, several iterations of the heuristic were implemented,
starting from the naïve approach. The iterations and progress can be seen in the charts
below. The models always have a 100% prediction rate due to the tree search part of
the prediction; therefore, both coverage and accuracy will always be the same. The A*
algorithm was combined with Markov models of orders 1 ÷ 7, denoted as M1 ÷M7.

Figure 6 depicts how the underestimating heuristic underperforms the Markov chain
used in the prediction process due to the heuristic score being favored over the Markov
prediction score even in cases when the Markov prediction was predicting the correct result.
After making the heuristic always return the exact length to the final state, we can see from
Figure 7 a considerable increase in the amount of prediction power as the prediction will
follow the Markov prediction when available and follow the shortest path score when the
Markov prediction is missing. Another part of the heuristic obtaining a considerable score
is the ordering of the items in the queue as when no Markov score is present, the last item
will be the following child, with the lowest state score described in the methodology used
in [28].
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Figure 8 presents a comparison of heuristics on the mixed dataset. The best coverage
was provided by the informed tree search algorithm with a first-order Markov model and
perfect heuristic.
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Analyzing Figures 9 and 10, similar results to [37] were observed, namely, that for the
algorithm, it is easier to learn the behavior of the manufacturing workers, which, based
on their experience, are more conservative in their assembly patterns. The increase of 14%
in the prediction power can also be attributed to the narrower range of unique assemblies
available in the manufacturing dataset compared to the students’ dataset, where several
unique assemblies were met; whenever the algorithm predicted equal chances for both of
them, the first one added in the queue would be picked.
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The results of the best iterations can be found in Table 3, compared with other pre-
dictors used in the same context. The base predictor is a naïve heuristic model, where
each move has a score of 1, and the assembly prediction is always the same. The novel
A* algorithm applied on the top of a first-order Markov chain was also compared with a
first-order Markov chain used alone, the PPMN, GBDT, and LSTM models, respectively.

Table 3. Comparison between different predictors on the mixed dataset.

Algorithm Accuracy Coverage Prediction Rate

Markov order 1 67.92 51.8 76.26
A* with Markov order 1 67.63 67.63 100
Naïve heuristic predictor 16.91 16.91 100

PPMN order 2 67.19 61.87 92.09
GBDT 65.11 65.11 100
LSTM 48.2 48.2 100
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The evaluations show that the proposed A* algorithm, used together with a first-order
Markov model, outperforms all the other models in terms of coverage and prediction
rate, making it the most suitable algorithm to be used in the assembly station’s prediction
process. While the accuracy is comparable between the first-order Markov predictor and
the A* with the order 1 Markov model, the main metric that is used for comparison is the
coverage that also adds the prediction rate into the metric, rendering a more useful metric
for the Industry 4.0 era, where the prediction rate matters.

Another observation can be made in terms of prediction rate, namely that tree-based
predictors as well as neural predictors managed to achieve a prediction rate of 100%,
which is desirable when implementing the algorithms in real-world uses. This outcome is
expected due to the way the algorithms are built, as they will always output a prediction
for any input even though the confidence for the prediction is low; therefore, the accuracy
is low (see LSTM accuracy metric in Table 3).

The Markovian-based predictors suffer from not having all the scenarios available
in the training data, resulting in a lower prediction rate but higher accuracy. This was
also observed in a previous study [37], where the feature importance metrics could be
observed from the algorithms. The main feature used for prediction was the state of the
tablet, with a representation of over 98% of the splits inside the predictor, at least for the
GBDT presented in the study. As can be seen in Table 3, the accuracy is similar to that
of the Markov-based predictors, with the added benefit of increased coverage due to the
tree-based prediction method.

5. Conclusions and Further Work

In this paper, a new method based on an informed tree search on top of Markov
chain prediction was applied to suggest a plausible move for the next assembly step.
The novelty of the method is the hybrid approach that combines an informed tree search
with a stochastic model, as well as the usage of this hybrid model for next assembly step
prediction. When the Markov chain fails in its prediction due to a new scenario, then
an informed tree search is performed. The proposed model is intended to be used as a
component of our assembly assistance system, which thus is able to guide factory workers
and trainees. The algorithm was configured by choosing the most efficient combination
in terms of prediction coverage: an informed tree search with a perfect heuristic relying
on the predictions generated by a first-order Markov chain. The comparisons with other
existing prediction models (e.g., Markov chains, PPMN, GBDT, LSTM) show that the
proposed method provides the best results in terms of coverage, which is the most important
evaluation metric as it reflects the percentage of correct assembly step predictions. The
coverage of this best model was 67.63%, outperforming by 15.83% the first-order Markov
chain, by 5.76% the second-order PPMN, by 2.52% the GBDT, and by 19.43% the LSTM.

There were several limitations present during the study; the main one was that data
collection was done in a physical manner by using the assembly station. By collecting data
in a physical manner, an increased amount of time was necessary to reset the experiment
after each use and for the participants to answer the questionnaire. Another impairment
was calibrating the sensors used by the machine as it took several iterations in the calibration
process to be able to gather accurate data that could be used for machine learning. Yet
another limitation was the COVID-19 pandemic situation, as the experiment involving the
factory workers was under pandemic conditions and specific special conditions had to
be assured for the safety of the participants. As a scheme limitation, we can mention the
necessity of training data.

The novel algorithm can be further improved by replacing the simple heuristic used
in the model with a hyper-heuristic that can gain more information from the environment,
e.g., instead of assigning a basic score to each component, we can assign a Euclidean score
based on how close the component is to the last performed move or a score based on the
assembly direction. Another approach would be to calculate the score based on the total
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remaining available pieces, making the system use alternative assembly pieces when two
or more pieces can be used for the same module, thus optimizing the module quantities.

As an outlook, we are targeting the development of a web application to gather
more data about assembly sequences to further extend the prediction capacity of the
machine learning algorithms. Besides this, we plan to execute further on-site studies
with technical and professional school students, considering a broader spectrum of user
typologies and basic emotion and mental states as well to cover the requirements from
future manufacturing operators. Considering the prediction algorithms, further ones will
be investigated, such as dynamic Bayesian networks, hybrid stochastic predictors, and
hidden Markov models.

In the longer term, from a software training application perspective, we want to
better integrate all the microservices within the training application to provide more robust
functionalities by supporting more devices and sensors so that the prototypes move from
TRL 3 (i.e., technology validated in the lab) to TRL 5 (i.e., technology validated in the
relevant environment), focusing on a real ongoing product manufactured by a regional
industrial company.
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