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Abstract: This paper presents different prediction methods based on decision tree and ensemble
learning to suggest possible next assembly steps. The predictor is designed to be a component of a
sensor-based assembly assistance system whose goal is to provide support via adaptive instructions,
considering the assembly progress and, in the future, the estimation of user emotions during training.
The assembly assistance station supports inexperienced manufacturing workers, but it can be useful
in assisting experienced workers, too. The proposed predictors are evaluated on the data collected
in experiments involving both trainees and manufacturing workers, as well as on a mixed dataset,
and are compared with other existing predictors. The novelty of the paper is the decision tree-based
prediction of the assembly states, in contrast with the previous algorithms which are stochastic-based
or neural. The results show that ensemble learning with decision tree components is best suited for
adaptive assembly support systems.

Keywords: assembly assistance systems; training stations; decision support systems; decision tree;
ensemble learning

1. Introduction

Efficient production and a fast delivery of products assures a key advantage for com-
panies in the global competition with more demand for mass-customization and shorter
product life cycles. Despite automation progress, because of flexibility, complexity and dex-
terity requirements, manual work remains an important part of production in Europe [1,2]
and staff training is an important component of any company’s success. The progress in
information technology enabled the development of assistance systems for manual tasks,
that will play an important role [3] in an effective training that addresses current challenges
such as a high complexity of the products and processes, unskilled employees or a reduced
availability of workforce, thus maximizing the potential of manufacturing workers.

For more flexibility of the workers and lower production costs, many factories avoid
the full automation, machine-assisted human-centered manufacturing being the common
approach. Thus, without full automation, modern factories must adapt to the workers
profile for a cost-effective and resource-efficient production. The training stage of workers
can be efficient if assembly assistance systems are used [4], because such an assistance
allows to better structure, guide and control the manufacturing processes [5], improving
the overall performance and reducing the skill requirements of the human workers [6]. The
automation should be adaptive to mitigate unbalanced mental workload [7]. The possibility
to dynamically configure the level of automation is another necessity [8]. Assembly
assistance systems used in monotonous manufacturing tasks should not over-challenge or
under-challenge the workers; they must adapt to the constraints of the task [9] and to the
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needs of the human operator in real-time [10] and must take into account the skills and a
possible functional decrease of the human worker capabilities [11].

Thus, interactive and context-aware instructions for the guidance of the workers
become more and more important [12]. An important aspect of the assistance systems
is to suggest the next best suitable instruction adapted to the worker and to the actual
manufacturing state. For this, investigation of prediction algorithms that can be best de-
ployed to model the behavior of workers in manual operations is essential. In the previous
work [4], two-level context-based predictors have been studied for such a predictive as-
sembly modeling. In [13,14], Markov predictors were investigated, whereas in [15] the
Prediction by Partial Matching (PPM) algorithm was analyzed. In [16], a Long Short-Term
Memory (LSTM) was involved to predict the next assembly steps. All these predictors will
be further detailed in the next section.

In this paper, to predict the next step in the assembly sequence, an ensemble learning
approach is proposed, where the predictions of a group of weak learners are aggregated (i.e.,
decision trees in our case) to obtain better predictions compared with the best individual
predictor [17]. For this, several methods relying on decision trees are discussed in terms
of predicting the next step in an assembly process, mainly focusing on classification and
regression trees (CART), adaptive boosted decision trees (ABDT), random forest (RF)
and gradient boosted decision trees (GBDT). The predictors use as input information the
actual assembly state of the target product and some characteristics of the workers. The
models are trained to correlate the next assembly state with the above-mentioned input
information. For both the training and evaluation stages, the data from two experiments
was used: one with inexperienced trainees and the other one with experienced factory
workers. In both experiments the target product was a customizable modular tablet, whose
components could be assembled in any order. The two datasets were individually used, but
also combined in a mixed dataset. The predictor is designed for a sensor-based assembly
assistance system. The goal is to find the most performant next assembly step predictor
which would be able to model assembly processes, allowing fast adaptation to the workers.
The best predictor will be integrated into the final human-oriented assembly assistance
system. The novelty of this paper is the assembly state prediction method which in this
case is based on decision trees. The previously analyzed predictors were stochastic-based
or neural.

The rest of this paper is organized as follows: Section 2. presents the related work,
Section 3. describes the proposed methods, Section 4. discusses the results and, finally,
Section 5. concludes the paper and suggests possible future work.

2. Related Work
2.1. Assembly Assistance Systems

Sgarbossa et al. discussed in [18] the importance of assistance systems with individ-
ualized capabilities to cover employee skills and needs as part of smart and sustainable
anthropocentric systems, while Romero et al. presented in [19] a vision of the future factory
worker (i.e., Operator 4.0). Thus, not surprisingly there are several such solutions in the
literature, especially having Augmented Reality (AR) as one of the core technologies.

Ojer et al. presented in [20] a projection-based AR solution for assisting operators
to assemble correctly printed circuit boards (PCBs), indicating through the conducted
usability study that there is significant improvement of operator performance by using the
assistance system for new PCBs compared to the traditional system. Pilati et al. described
in [21] a real-time assistance system for industrial applications. It has a camera-based
markerless motion capture system to track worker movements and an AR application to
provide instructions for each consecutive assembly step. The evaluation of the system’s
performance indicated a 22% learning rate improvement and a 51% duration reduction
of the first assembly process with respect to the classical approach with paper-based
instructions. Lai et al. presented in [22] a customizable multi-modal AR-based smart
assistance system that includes deep learning features for tool detection enabling on-site
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instructions and obtained an improvement of approximately 30% in terms of time and
errors for assembly tasks compared to the printed manual. Vanneste et al. [23] conducted
a study involving 44 operators (i.e., 78% of them with motor or cognitive disabilities)
analyzing the effects of oral, paper- and AR-based instructions by setting-up an experiment
in which participants had to perform three assembly tasks (i.e., a light fixture, a quality
control and support wheel assembly). The authors revealed very good results for AR-based
instructions (i.e., a projector) compared to the paper-based approach, especially considering
the assembly quality, although AR does not always outperform the traditional method.
Even more, compared with audio instructions, AR-based instructions are considered to
have less complexity. Moreover, it was observed that the learning curve was improved
in case of AR-based instructions, due to lower stress (especially for novices) compared to
paper-based and audio instructions. More benefits are also identified in respect to a higher
degree of independence and a lower perceived complexity. Finally, the authors revealed that
the more assembly trainings are executed, the fewer are the AR advantages. Wang et al. [24]
studied what AR-instructions are adequate from a user cognition perspective and proposed
a new classification method for assembly processes. After executing a case-study with
23 university students, the authors concluded that the new assembly instructions, which
are based on the logical classification of parts, provide better results than conventional
assembly instructions, which are classified by means of geometric-level information.

Malik et al. described in [25] a Virtual Reality (VR) based assistance system. It explores
an approach for designing human-centered production systems in VR to reduce errors in
the design phase of developing human-robot collaboration (HRC) systems. This is done
with an initial prototype following a structured framework for using VR in the design of
HRC systems that includes a chatbot as virtual assistant. Another VR-based assistance
system, designed for the initial training professionals, is presented by Hirt et al. [26]. In
their experiment, 21 participants evaluated generally positive the systems on criteria such
as familiarity, usability as well as specific VR-metrics (i.e., simulator sickness perception
and feeling of presence).

In [27], the authors evaluated a mixed reality guided system in two case studies, one
focusing on the interaction technique and the other one on the correct assembly of the
motherboard. The mixed reality system scored low among inexperienced users at the
usability test while the solution indicated effectiveness compared to the printed manual.
How a Cross Reality (XR) assistance system in conjunction with the Industrial Internet
of Things (IIoT) can support training of manual operations executed by workers with
disabilities together with machines is discussed in [28]. Two user studies involving one
manager and ten workers were conducted, to evaluate the information sharing design as
well as the system’s usability. Although it is a promising approach, the results revealed
the limitations of XR technology applied into the industrial setting, such as the usability
difficulties of workers to use devices like Microsoft’s HoloLens.

In [29], Petzoldt et al. compared 15 different assembly assistance systems (research and
commercial solutions) and presented the importance of individual adaptation especially
in respect of the incentive approach for individual assistance. The general implications
and dependencies are discussed regarding a case study which uses a pick-by-light and
gamification approach within the assistance system. In [30], Petzoldt et al. detailed a
first implementation for assembly assistance, with individual instructions also having a
motivational incentive approach.

Although Durlach in [31] indicated “sparse evidence” for assuming that adaptive
instruction systems have better outcomes than non-adaptive ones, Grafiler et al. compared
the learning effect of adaptive assistance systems (e.g., shortened instruction in the second
round) versus non-adaptive assistance (e.g., repetition of the same instructions in the
second round) and concluded in [32] that by using adaptive instructions users train faster
and do so with fewer errors. The benefit of adaptive instructions is revealed also in [33],
where a pilot study in a lab environment was conducted to evaluate an adaptive assistive
system that adjusts the assembly work steps according to the worker’s cognitive workload
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by using four types of biosensors. The authors concluded that a bio-sensor approach for
adaptive assistance systems can reduce stress and improve the productivity of operators.
Blasing et al. [34] present the benefits, challenges, and limitations for fusing cognitive
ergonomics data with physiological measured data necessary to reduce the cognitive load
in assembly systems.

2.2. Prediction Techniques

In recent years, decision trees and ensemble learning have become a standard approach
to tackle prediction. Problems such as photovoltaic output have been studied in [35] looking
for more accurate predictions to the output of solar farms for better grid integration. The
problem described by Wang et al. is similar in context to the one presented in this article
and further discussed in [14], where the input data is a sequence of events, such as time
series in [35] and a sequence of assembly steps in our case. The approach of Wang et al.
looks into using a short normalized feature vector in order to predict the energy that is
going to be generated by the photovoltaic system in the following days. Given the findings
of Wang et al. that GBDT predicts the outcome with the lowest error rate, the model was
considered in the present work, too. A similar approach is used by Yang et al. in [36] to
predict traffic using GBDT. In [37], Khaleghi et al. used GBDT and the ensemble process
to predict the state of health of batteries on electric vehicles and goes in depth into an
explanation of the algorithm. In [38], decision trees are used to forecast power line faults.

Decision trees were successfully used for prediction in medicine [39-41]. In [42],
decision trees were used to predict the pillar stability of underground mines. In [43],
Mahmood et al. proposed a decision tree-based model to assist the allocation of new
orders in manufacturing networks. In [44], a hybrid predictor based on decision trees
was considered for web prefetching. The decision tree uses as features the current link
and its type, as well as the predictions provided by Markov models of different orders.
The evaluation results have shown the efficiency of the decision tree in comparison with
other methods. A review of the decision tree models, with a focus on their performance in
prediction, is presented in [45].

Several prediction methods have been applied to provide next assembly step choices
within adaptive training stations or assembly assistance systems. The goal is to support
the inexperienced workers in their learning stage without a human trainer as well as to
assist experienced workers in the manufacturing process. First, a model is built up based
on past assembly processes of a certain product and then the model is used to determine
the most probable next assembly step, given the current assembly stage. In [4], a two-
level context-based predictor is presented, which maintains a left-shift assembly state
register in the first level used to select an entry from a pattern history table in the second
level containing the next assembly step. In other approaches, a Markov model tracks the
occurrence frequencies of multiple possible next states within the pattern history table and,
thus, it can provide multiple choices for the next assembly step [13,14]. The PPM algorithm
was also evaluated [15] as an assembly step predictor. It combines different order Markov
predictors. The PPM of order R first tries to predict with the Markov model of order R. If
the Markov model is able to predict, its prediction is returned by the PPM. Otherwise, in
the case where the current Markov model cannot predict, the order is decremented until
a prediction can be done or all the models were evaluated without success and, in that
case, the PPM itself cannot predict. In [16], Precup et al. predicted the next assembly step
with an optimally configured LSTM neural network. Among all of the above mentioned
assembly modelling techniques, the PPM [15] proved to be the most accurate.

3. Next Assembly Step Prediction through Decision Trees and Ensemble Learning

As found in the previous articles [4,13,14], the stochastic approaches (including
Markov chains) yield the best accuracy results while the coverage is limited due to the
number of scenarios in the training data. The stochastic approaches fail to cover states that
were not supplied in the training data, making them less robust when applied to real world
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usages where new scenarios can be met at any time. To prevent the problem and maximize
the prediction rate of the algorithms, a tree-based prediction approach was evaluated.

The algorithms described below were implemented via the help of the popular Python
machine learning library Sklearn. Several tree-based prediction algorithms such as CART,
ABDT, RF and GBDT were tested to find out which one would best suit the prediction
scenario. The novelty of this paper consists in the tree-based assembly state prediction,
since all the previously applied methods were stochastic- or neural-based. A comparison
with those methods will be presented in Section 4. The goal is to find out the most accurate
assembly modeling method to be integrated into the human-oriented assembly assistance
system for efficient guidance of the factory workers.

3.1. Assembly Assistance System

The assembly assistance system (Figure 1) is a functional prototype designed to show
users the correct way to manually assemble products without human guidance. From
a conceptual standpoint, it follows a human-centred design approach as defined in the
anthropocentric cyber-physical reference model defined in [46]. A key aspect targeted with
the assembly system is to expose the trainee to adaptive instructions with respect to type
(visual, vocal) and content (detailed, concise), thus customizing the training process to the
user’s needs for achieving a good learning result.

= = _ Object and hand
| | movement sensor

Eye tracking and
GSR biosensor

ﬂ Posture and facial

* ./1: expression sensor

Parts required to

L . |
. assemble the
]

product

Large touchscreen
embeddedin
tabletop

Frame with height
adjustment and
S flexible mounting

Figure 1. Assembly assistance system.

The instructions are adapted based on the performance in task execution, operator
profile and its current state. For the task performance, data from a 3D stereo camera is used,
which enables object and hand movement tracking; moreover, this is complemented by
the user interaction with the touchscreen to select the next instruction and thus count the
time for the step completion. To detect the operator’s profile (e.g., age, gender, etc.), a front
facing camera is used, whereas for the operator’s basic status detection (e.g., angry, happy,
sad, neutral, etc.) the images from the front facing camera are used; depending on the
experiment and required accuracy, additional data from sensors [47,48] (e.g., microphone
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embedded in the touchscreen) or biosensors worn by the user (e.g., GSR sensor, eye-
tracking glasses, EMG, EEG etc.) can be used to estimate the user’s current state for the
assembly instruction’s adaptation. Finally, to enable an ergonomic training, the table has
electric actuators for height adjustment. To cover the set-up for different experiments, the
mechanical structure enables flexible mounting alternatives throughout the frame.

As depicted in Figure 2, all components required for the manual assembly training are
situated on the right and left side. The visual instructions are the 3D animations which are
displayed in the central part of the large touchscreen. The second visual aid is represented
by the areas below each part, which blink when an instruction involving them is active.

Video
Components . . Components
instructions
storage area R storage area
display area

User
interaction
buttons

Figure 2. The user interface of the assembly assistance system.

Voice instructions explaining the goal of each task are correlated with the visual
instructions at each assembly step. The user has three interaction buttons: play / repeat
instruction, previous or next instruction. More details about the current assembly assistance
system’s implementation and its concept can be found in [15,49], respectively.

3.2. Algorithm Design

The prediction pipeline for the models can be seen in Figure 3, where the data is
pre-processed to form the feature vector. After the processing step, the data is split into 75%
training data and 25% testing data. While some algorithms like CART take the training
data and output a model, RE, ABDT and GBDT have further built in splitting and random
sampling that optimize the loss for the training data. The most notable one for this case is
GBDT which was used specifically for this feature as it tries to train more decision trees
on inputs with high loss where the previous models performed worst, thus making the
algorithm an ensemble process.
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Figure 3. Machine learning pipeline.

h.
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The feature extraction is done based on data collected by the different sensors during
the assembly process (see Figure 4). The data is filtered, so only correct assemblies remain in
order to train the predictors without incorrect assembly sequences. The qualitative data is
collected from the users after the assembly process and consist of whether they are wearing
glasses, their gender, height and sleep quality. During the assembly, several different
sensors track the user to follow each move taken; after each move the facial expression is
extracted in order to obtain the emotional status and the tablet state is recorded. Once the
final state is reached a feature vector is computed.

After normalizing the individual user data, a feature vector of the form [current_state,
height, wears_glasses, gender, sleep_quality] was obtained. The feature vectors were fed
into a CART, ABDT, RF and GBDT, in order to obtain the next assembly sequence. All the
prediction models use the Gini impurity as criterion:

C

Gini=1-Y (p;)? @)
i=1

where c is the number of classes and p; is the probability of an item being chosen; this is
done in order to ensure that the class with lowest Gini score is chosen. This will result in
features with low Gini score (close to 0) being the most important and defining criteria
for the prediction, for example when wears_glasses = 1 the Gini score could be 0.01 and
predict that the next move will always be the assembly of the screen module.
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Figure 4. Feature extraction.

3.2.1. Classification and Regression Trees

CART is one of the most commonly used approach in machine learning, introduced
by Breiman in 1984. CART builds the predictions based on a binary split for each attribute
by using regression to find the dependent variable from the set of variables given in the
feature vector. The pseudocode for CART is presented in Figure 5, where a feature vector
is stored in the root node.

d=0, endtree=0,
Node (0)=1, Node(l)=0, Node(2)=0
while (endtree<l) {

if (Eﬁt;ﬁl Node(n)= 2-2%%1) endtree=1
else {
for (i=29-1,24,...,24*1-2){
if (Node (i) > -1)
SplitTree ()
else {
Node (2i+l) = -1
Node (2i+2) = -1
}
}
}
d = d+1

}
Figure 5. CART pseudocode.

Based on the Gini impurity, the node and its children are split until the leaf nodes reach
a Gini score of 0 or cannot be split anymore. CART has a time complexity of O(f n?-log n),
where f is the number of features and n is the number of samples.
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3.2.2. Random Forest

RF is part of the ensemble learning methods; particularly random forest trains many
decision trees by taking random samples from the data. This will result in several classifiers,
some with better accuracy and results than the others. The result for the prediction or
classification done by random forest will use the bagging procedure by averaging the
prediction of all the decision trees or by majority voting. The pseudocode for RF can be
seen in Figure 6.

In order to generate c classifiers:
for (i=1,...,c){
Sample training data randomly with D
Create root N containing data D
BuildTree (N)

}
BuildTree (N){

if (W is only one class) return
Randomly select splits in node N
Split feature with highest Gini impurity
Create child nodes based on split
for (i=1,...,f){
N =D
BuildTree (N)

}
Figure 6. RF pseudocode.

RF has a similar time complexity to CART, namely O(f n?-log n), as RF generates a
constant number of trees (given as a hyperparameter).

3.2.3. Gradient Boosting Decision Trees

Gradient boosting is a supervised ensemble learning method where several weak base
learners are trained and the prediction is done via bagging. GBDT focuses on improving
each prediction based on the pseudo residuals computed from the previous tree. Thus, the
model will fit new decision trees on the data where the previous tree performed badly and
the final prediction will be a weighted sum or a majority vote. The pseudocode for GBDT
can be seen in Figure 7, where M is the number of iterations, L(y, F(x)) is the loss function,
Jim is the number of leaves, Ry, is the disjoint region for each leaf at iteration m, Fy is the
loss reduction function, and « is the learning rate.

Initialize a model with constant wvalue:
Fo(x)=argmin Y, L(yyy)
for (m=1,..,M){
Compute pseudo-residuals:
_ al(yi P (%) s -
Tig= [_EE:EQ_J' i=1,..,n
Fit base learner on pseudo-residuals
Find optimal multiplier for each tree region:
ij:al‘gl’l’lin zxieij L(yirFm—l(Xi)_i_Y)
Update model:
Fin(0=Fuu-1(x)+ 2 Vim 1z, (%)
}

Figure 7. GBDT pseudocode.
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The time complexity of GBDT is similar to CART’s and RF’s, namely O(f n?-log n),
as the algorithm generates a set of decision trees (the number of trees being given as
a hyperparameter).

3.2.4. Adaptive Boosted Decision Trees

ABDT, also known as AdaBoost, is one of the earliest boosting methods used in
machine learning. ABDT works on a simple premise: if several weak classifiers that have a
prediction power more than random (>50%) are combined, a single strong classifier can be
obtained. Each consequent weak classifier is based on a decision tree with a single split, also
known as decision tree stump, where ABDT adapts the weight of the stump for the final
decision in the ensemble process based on how hard the classification is. The pseudocode
for adaptive boosting can be seen in Figure 8, where T is the number of iterations, z; is the
normalization factor chosen so that all the weights sum to 1 and h¢(x) is the weak decision
tree classifier.

Initialize weight distribution D-l(i):i, i=1,.., N
for (t=1l;.;T)y |
Train a weak decision tree stump classifier = hy(x) using D;
Compute error for weak classifier =X (x)zyDi(xi)
Compute weight of the weak classifier o= %log(?)
t

if (instance i correctly classified) {

Update weights DtH(i):th—(i):e_“t
t
} else {
Update weights Dt+1(i):Dt—('):e“t

Zg
)
}

return strong classifier H(x)=sign(Zl,ah (X))

Figure 8. ABDT pseudocode.

The time complexity of AdaBoost is similar to the complexity of the other tree-based
algorithms presented: O(f-n?-log n); although the time complexity is the same, in practice,
AdaBoost trains faster as only the stump of the tree is generated instead of the whole
decision tree.

4. Evaluation

This section presents the experimental methodology and discusses the evaluation
of the next assembly step prediction methods proposed in Section 3. The analyzed pre-
dictors are then compared with other existing prediction techniques applied in assembly
assistance systems.

4.1. Experimental Methodology

Two different groups of participants were used to collect the data during the free assembly
of a customizable modular tablet (see Figure 9) which has eight components: a mainboard, a
screen, two battery modules, two speaker modules and two flashlight modules.
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Screen

Mainboard

Battery
module

Flashlight
module

Speaker
module

Figure 9. Customizable tablet example.

The first group was formed of 68 (2nd year BSc) students inexperienced in such
assembly processes and the second group was formed by 111 manufacturing workers with
prior experience in such work. The experiment involved a top-mounted camera recording
the manufacturing sequences and the assembly station showing on its screen two images
of the tablet. The assembly station had marked the initial positions of the components, thus
all participants started in identical conditions.

Each participant received an ID. For minimal interaction with the subjects, the experi-
ment was controlled from another room through a laptop connected to the camera. The
participants could only listen to a recorded voice message transmitting that “the tablet
should be assembled as indicated in the images and that they were required to use all the
components in the assembly process”. After the voice message, the participants could
start the assembly process. The subjects announced when they finished; the recording was
then stopped and they were taken to another room to fill in a questionnaire. The given
ID was used to link the answers to the recording. There were questions about human
characteristics such as height, age, gender, dominant hand, the highest level of education
and if they wear eyeglasses. These questions were followed by others for self-evaluation:
“were you hungry during the experiment?”, “do you have any prior experience in prod-
uct assembly?”, “what was your stress level before the experiment?”, “how would you
describe the state you found yourself in during the experiment (at the beginning, during
and at the end of the experiment)?”, “are you under the influence of any drugs that might
influence your level of concentration?”, and "how would you describe the sleep quality of
the previous night?”

After the experiment, all the assemblies were encoded and each assembly sequence
was ranked with a score reflecting the level of completeness. Additionally, for each as-
sembly the duration in seconds was also collected. The dataset collected from the first
group with the assembly assistance system [14] is further called “Trainees”, whereas the
dataset collected from the second group is called “Workers”. These two datasets were
also mixed and randomly sampled in a third dataset for the purpose of the experiment to
measure the generalization power of the models. The utilization of such a mixed dataset in
the evaluation process is a new evaluation approach in our research. The collected data
was processed as in [16] to maintain the same approach and obtain results that can be
compared between the algorithms. Following the testing procedures from [16], the results
were measured on the dataset that was split into 75% for training and 25% for testing, by
using the same metrics: the prediction rate, the coverage and the prediction accuracy. The
prediction rate is the percentage of predictions done out of all the assembly steps from the
testing set. The coverage is the percentage of correct predictions out of all the assembly
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steps from the testing set. The accuracy is the percentage of correct predictions out of the
predicted assembly steps from the testing set.

4.2. Experimental Results

For all the tree-based algorithms, a random grid search was performed to find the
optimal parameters for the models. After finding the optimal parameters, a further iteration
was done via grid search to obtain the best parameters for the scenario laid out in [14].

Feature importance [50] is calculated based on the Gini importance with the assump-
tion that the tree is balanced:

nj = WjCj — Wieg(j) Cleft(j) — Wright(j) Cright(j) 2)

where n; is the importance of node j, wj is the weighted number of samples that reach node
j from the feature vector, C;j is the impurity value of the node based on the criterion (Gini in
our case) and left(j) or right(j) are the child nodes of j to the left and right of the split. To
calculate the feature importance for all the nodes we use the following formula:

L0
j € split feature i

Yng

k € all nodes

L; 3)

For RF, ABDT and GBDT, where more trees are generated, the feature importance
is computed as the sum of the normalizations divided by the number of trees that were
generated. In general, the feature importance depicted for the different models in Figure 10,
shows that accuracy increases as the score of the additional features decreases. ABDT is
the only algorithm that does not follow the general rule, this is due to the fact that during
training it generates decision tree stumps instead of an entire decision tree, causing the
algorithm to have a higher bias towards the weights of the early states in the assembly
phase and ignore the states down the line, which can also be seen in Figure 10. The features
are as follows: current state, height (1 for equal or over 174 cm and 0 for under), wears
glasses or not, gender (0 for female, 1 for male), sleep quality (0 for sleep quality below
3 and 1 for above or equal). This shows that the main factor for prediction is the current
state, the other features having a very low impact on predicting the next move. Thus, as
presented in [14], the stochastic methods such as the Markov model, that use the state as
base information, have high accuracy.

@ Current state  # Height O Glasses ® Gender & Sleep quality

1 096 1.00
= 0.92

0.79
0.8 1 —

0.6 1

0.4

0.2 1

0

GBDT CART RF ABDT

Figure 10. Feature importance on the mixed dataset.

The first step that was taken in verifying the results produced by the models was
to check how they behave when they are trained and tested on the individual datasets.
Unsurprisingly, the results for the “Trainees” dataset have the lowest coverage and accuracy
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out of all the results (see Figure 11). This is because the “Trainees” dataset is composed of
68 students with no prior experience, thus the assembly process had a higher chance to be
different for each student as they were not approaching the assembly in a systematic way,
giving the data and the assemblies a higher variance compared to the “Workers” dataset.
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Figure 11. Evaluation of decision trees on the “Trainees” dataset.

When the models were examined on the “Workers” dataset, the algorithms started
to pick up the systematic way of assembling the tablet, specific to this dataset due to the
experience in assemblies, resulting in a peak coverage of 72.35% (see Figure 12).
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Figure 12. Evaluation of decision trees on the “Workers” dataset.

After examining both scenarios, it was decided to mix the available datasets to use both
characteristics of the datasets, namely, high variance from “Trainees” and the systematic
assembly from the “Workers” dataset.

As we can see in Figure 13, the model with the highest accuracy out of the ones
explored in this paper is GBDT, although unexpectedly CART outperforms RF and this
can be attributed to the fact that the data is sparse and RF will produce an invariant tree
when the subsample is selected. All the evaluated methods based on decision trees have a
prediction rate of 100%, as any input has an outcome. The ABDT model proved to be the
weakest tree-based prediction algorithm, its accuracy and coverage being half the accuracy
and coverage of the other decision tree models, due to the decision tree stumps used in
the process. Next, the GBDT is compared with the Markov model, the PPM algorithm and
the LSTM.
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Figure 13. Evaluation of decision trees on the mixed dataset.

Analyzing Figures 14 and 15, it is obvious again for all the models that the experienced
factory workers are more predictable than the trainees. The differences in the prediction
performance of these two categories are high in the case of GBDT and the stochastic models
and lower in the case of the LSTM. Thus, the LSTM is not able to exploit the systematic
manufacturing style of the experienced factory workers.
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Figure 14. Comparison on the “Trainees” dataset.
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Figure 15. Comparison on the “Workers” dataset.
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In terms of accuracy (calculated based on the number of predictions done), the GBDT
outperforms the LSTM but it is inferior to the stochastic approaches taken in [13,14],
resulting in an accuracy score of 65.11% (see Figure 16).
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Figure 16. Comparison on the mixed dataset.

On the other hand, the stochastic methods [14,15] and even the LSTM [16] yield an
inferior prediction rate compared to the prediction techniques based on decision trees
explored in this paper, as the training data did not contain all the possible assembly
sequences, thus making those algorithms unsuitable in scenarios with new data. In contrast,
the methods based on decision trees have a prediction rate of 100% since for any input
they are able to produce an outcome. The coverage is the main metric that was used
when comparing the algorithms as it shows the number of correct predictions out of
all the assembly steps from the testing set. We can clearly see that GBDT outperforms
the stochastic method with the highest coverage, namely the PPM [15], by 3.24%, while
maintaining a prediction rate of 100%. The computational complexities of the analyzed
algorithms are not very different: the decision trees have a complexity of O(f -n?-log n),
the Markov and PPM models have O(n), whereas the LSTM has a complexity of O(n?).
The method with the highest possible coverage is preferred, because this metric reflects the
level of its usefulness in terms of next assembly step suggestions. Consequently, the GBDT
is the best suited algorithm for the prediction of the next assembly step.

5. Conclusions and Further Work

In this paper, a novel prediction method based on decision trees with ensemble
learning was proposed to provide suggestions for the next assembly step. The prediction
module is part of a complex sensor-based assembly assistant system whose goal is the
guidance of factory workers in the manufacturing process. The evaluation of the proposed
method was performed on a dataset collected during the assemblies of 68 trainees, and
another one consisting of the assembly processes of 111 experienced factory workers, as
well as on their mixture in which the assemblies of the trainees and workers were mixed
and randomly sampled. We evaluated the CART, RF, ABDT and GBDT algorithms in terms
of prediction accuracy, prediction rate and coverage. The results showed that the GBDT was
the best performing among all the evaluated tree-based methods. With a coverage of 65.11%
(which is the most important efficiency metric), the GBDT method also outperformed the
existing Markovian, PPM and LSTM models. Consequently, the GBDT proved to be a
powerful assembly modeling tool, which can be an appropriate prediction component of
the assembly assistance system. The utilization of decision tree-based prediction algorithms
for assembly process modeling is an original contribution, since the other existing methods
rely on stochastic or neural models.

There were several study limitations, mainly, data collection done via physical ex-
periments takes time to set up, namely, preparing the assembly station and restarting the
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experiment for each participant. The data collection process required several iterations to
achieve accurate results that could be used for machine learning purposes.

As future work, a web-based application can be designed to collect more data on the
assembly process. The interface would contain the tablet module, the assembly pieces and
the same audio and video guidance systems used in the assembly station. Although this
would limit the collected data to only assembly sequences, the data can be used to improve
the prediction power of the machine learning algorithms. The assembly station interface
can also be improved in future studies by using design motivations. In terms of algorithms,
we intend to investigate for the next assembly step prediction purpose Dynamic Bayesian
Networks, hybrid stochastic predictors, Hidden Markov Models, as well as a method based
on the A* algorithm. The predictor with the best assembly modelling capabilities will be
integrated into the assembly assistant system.

Finally, to provide an appealing multi-modal training experience tailored for each user
through our assembly assistance system, we plan to execute more longitudinal studies con-
sidering the predictor, to cover a broad spectrum of user typologies (e.g., age, handedness,
disabilities, etc.) and basic emotions or mental states, by conducting experiments involving
students from technical and professional high schools (i.e., the future factory operators).
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