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Abstract: This paper presents a context-aware adaptive assembly assistance system meant to support
factory workers by embedding predictive capabilities. The research is focused on the predictor which
suggests the next assembly step. Hidden Markov models are analyzed for this purpose. Several
prediction methods have been previously evaluated and the prediction by partial matching, which
was the most efficient, is considered in this work as a component of a hybrid model together with
an optimally configured hidden Markov model. The experimental results show that the hidden
Markov model is a viable choice to predict the next assembly step, whereas the hybrid predictor is
even better, outperforming in some cases all the other models. Nevertheless, an assembly assistance
system meant to support factory workers needs to embed multiple models to exhibit valuable
predictive capabilities.

Keywords: assembly support systems; hidden Markov models; prediction by partial matching;
hybrid prediction
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1. Introduction

Industry 5.0 [1,2] in Europe and Society 5.0 [3] in Japan are visions of a future super
smart society in which human centricity and sustainability are key goals, going beyond
efficiency and productivity, as in, e.g., Industry 4.0. Despite progress in ITC and automation
technology, manual work is still an important part of European production, being the
second largest category within the manufacturing sector [4,5].

Enabling workers to train and improve their skills is an important aspect within
any factory. This is even more important in the context of mastering mass-customization
with lot size one production, shorter production life cycles and global competition as
well. Because automation is expensive, and due to flexibility and adaptivity requirements,
nowadays, modern factories tend more and more to provide support for their workers
through assistance systems. To execute the job correctly, these systems support the user
with the right information when it is necessary, and is transmitted in a proper way (e.g.,
audio, video, animation, etc.), as in the Operator 4.0 concept [6]. Such a real-time assembly
support system was developed and evaluated in our earlier works. The whole system was
described in detail in [7]. Thus, the description of the system itself is not the goal of this
paper, rather the focus being on its prediction component.

Several machine learning techniques have already been evaluated for their assembly
process modeling capabilities. Thus, two-level context-based predictors were presented
in [8]. The current assembly context taken from the first level’s left shift register is searched
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in the second level’s pattern history table. If it is found, the assembly state paired in the
table to the current pattern is returned as the predicted next assembly state. The difference
between the current state and the predicted next state gives the predicted next assembly
step. The model needs a training stage, after which it can be used to predict scenarios
learned before. The great disadvantage of this simple model is that it cannot keep more
than one state for a certain pattern and, thus, multiple prediction choices are not possible.
This drawback is eliminated by the Markov model presented in [9,10]. However, as Rabiner
states in [11], Markov models in which the states correspond to observable events can be too
restrictive in some applications. Therefore, the Markov model concept can be extended such
that the observation becomes the state’s probabilistic function. Such a doubly embedded
stochastic process is called the hidden Markov model (HMM). Another extension of the
Markov model is the prediction by partial matching (PPM), applied in [12], which combines
multiple Markov models of different orders.

The novelty of this work consists in analyzing the applicability of HMM and its hybrid
extensions for next assembly step prediction in manufacturing processes. The HMM ap-
plied with such assembly guidance purpose is an original contribution. The evaluations of
the proposed method, as well as its comparisons with existing methods, will be performed
on different datasets collected in experiments focused on assembling a customizable modu-
lar tablet, described in [7]. One of them consists of the data collected during an experiment
involving 68 students. The other one consists of the data collected within another experi-
ment which took place in the IFM factory and had 111 real factory workers as participants.
A mixed dataset which randomly combines the assembly sequences of the students with
those of the factory workers was also prepared. The HMM will be optimally configured
on all these datasets and then compared with previously developed methods. As metrics,
we will use the prediction rate, the coverage, and the prediction accuracy. The goal is to
identify the most performant prediction method which will be integrated into the final
assembly support system.

The rest of the paper is organized as follows. Section 2 reviews the latest developments
in engineering assembly assistance systems and synthesizes some techniques that can be
employed in this context. Section 3 presents the proposed HMM-based assembly step
prediction solution and Section 4 evaluates the model and discusses the results. Finally,
Section 5 concludes the paper and provides further work directions.

2. Related Work
2.1. Assembly Assistance Systems

The topic of assistance systems, from a research and application impact perspective,
is summarized below, considering some of the latest articles in this field. Mark et al. [13]
reviewed more than 100 papers about state-of-the-art and future directions concerning
worker assistance used in manufacturing (i.e., manual work) on the shop floor. Although
more industrial interest on this topic is revealed, the authors suggest that there is still a
need to develop more applications for the manufacturing workers considering especially
the user-interface design and biomedical aspects as well. The authors also indicate that
methodology to select and evaluate the most suitable assistance systems for different
worker groups is missing. Peron et al. [14] propose a decision support model to support
engineers and managers to choose a cost-effective solution with assistive technologies (i.e.,
collaborative robots, digital instructions) in assembly operations. Throughput, worker and
equipment costs, operation time and type were the variables considered by the decision
support model to find out which production scenario and which configuration are the most
cost effective (i.e., manual assembly, manual assembly with digital instructions, manual
assembly with cobots and manual assembly with both digital instructions and cobots).
The authors conclude that in order to achieve a high throughput, digital instructions
and/or cobots should be considered in the assembly system, whereas for a low throughput,
cobots might be considered only in high operation time situations. Reviewing more
than 200 applications of assistance systems from a manufacturing process perspective,
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Knoke et al. [15] conclude that most of the applications are applied for assembly processes.
Miqueo et al. [16] carried out a literature review on more than 200 papers looking at the
effects of mass customization for assembly operations in the context of digital technologies.
Whereas the key digital enabling technologies are Virtual Reality (VR) and Augmented
Reality (AR), a competitive manual assembly to fulfill lot size one requirements should
involve “product clustering, modularization, delayed product differentiation, mixed-model
assembly, and reconfigurable assembly systems”.

Assistance systems relying on AR-based technologies are the most widespread ap-
plications for assistance systems involving manual work. A real-time assistance system
is presented in [17]. It can capture user motion and provide assembly assistance via AR
instructions for each assembly step. Compared with paper-based instructions, the authors
reveal improvements in terms of learning rate and a significant timing reduction of the
first assembly procedure for the proposed assistance system. Microsoft HoloLens is a
key device in another AR-based assistance system for footwear industry operators [18],
deployed for an offline training of the inexperienced workers, having reduced expert
interventions and lower pressure during training among its main benefits. Nevertheless,
the authors reveal low usability for longer periods of using the system with Microsoft
HoloLens, leading to user errors. Fu et al. present in [19] a scene-aware AR-based system,
composed of a server for the image processing and a wearable Android device (i.e., AR
glasses), which can recognize on the fly the assembly state and provide visual support for
the operator. Deep learning was deployed with the YOLOv3 framework to recognize the
manual assembly process. The system was evaluated in a 20-person experiment, clustering
them into six groups executing the assembly task three times in order to find out: (a) the
assembly performance for unskilled personnel using paper-based instructions versus AR-
assistance, (b) the AR-device effect on skilled workers and (c) the learning time of unskilled
operators with manual operations vs. the proposed system. Their system improves the
assembly performance and the learning rate with respect to the paper-based approach in
the case of unskilled workers. On the other hand, using AR-glasses by skilled workers
reduces assembly performance. The authors also note that unskilled workers using the
AR-assistance have lower accuracy compared with the skilled ones without any support.
Lai et al. introduced in [20] a similar system for assisting the mechanical assembly from a
CNC machine, and after comparing it with a paper-based manual they achieve more than a
30% reduction in time and errors. Generation of AR-instructions automatically from CAD
models is demonstrated in [21], covering the assembly of mechanical assemblies (cables
and flexible parts are not supported). A review on AR in smart manufacturing can be found
in [22]. Covering more than 100 recent papers, the authors look at the devices implemented,
the manufacturing process for which they serve, what function they operate and give
insights to their intelligence source. The authors conclude that head-mounted displays are
the most commonly used devices. Maintenance followed by assembly/disassembly are the
operations where the solutions are deployed the most. Recognition and positioning are
the main functions deployed. Multiple sources of intelligence account for 41% of all AR
applications enclosed in the review.

VR-based assistance systems are also commonly deployed for operator assistance. De-
signed for the first training of workers, the virtual learning environment proposed by [23]
was evaluated in a lab setting by 13 people (academia staff and students) and eight profes-
sionals. The results showed that the simulator was intuitive without generating sickness,
making it suitable for initial and advanced training as well. Not surprising, more realistic
interaction was one of the main immediate improvement suggestions. Gorecky et al. [24]
presented a cost-effective and scalable hardware set-up with gamification features within
an assistance system for the automotive industry. It is capable of automated training by
loading the training scene, tools and products from existing product databases (e.g., CAD
models). Recognition of human motion and prediction of the motion behavior in real-time
simulation is key for human-machine collaborations, such as with robots in manual op-
erations. For this in [25], on a shop floor, spatial region-based activity identification with
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real-time simulation (Unity3D) and wearable human motion captures is presented. For
simple and less frequent maintenance tasks, Pratticò et al. [26] presented a VR simulator
developed in Unity, using HTC Vive Pro as the head-mounted display for the users. They
involved 18 people in an experiment to evaluate the training performance compared to
one done just in reality. Although the training execution was faster in VR, frustration and
more cognitive load were observed and improvements in the interaction with the tools and
equipment would help in this regard.

Turk et al. [27] compare the impact (time, errors, ergonomics) of a smart workstation
(e.g., digital instructions, pick-by-light, flexible mounting of parts and tools, etc.) versus
a traditional workstation (e.g., paper-based instructions, fixed position of parts and tools,
etc.) in an experiment with an unskilled worker that must perform the assembly of two
products. Fewer errors, less time and better ergonomics were achieved with the smart
workstation. The main drawbacks of the smart system are the lag of the software for
displaying instructions and user interaction implementation (information overflow when
first using the system, confusion on the current and next instruction). To achieve a worker-
friendly environment and ergonomics, a multi-criteria algorithm for the monitoring and
controlling of tools was further implemented by Turk et al. [28] considering worker aspects
(height, gender), product complexity (precise, normal, heavy) and typology (dimension,
components) and was evaluated in an experiment with 40 participants in which eight
different products had to be assembled. The experiment revealed shorter assembly times
and better ergonomics on the smart workstation with multi-criteria algorithm compared to
the traditional one (used as benchmark). The effects of different instructions (paper-based,
oral and AR-based) during the experiment on assembly operations performed by over 40
people, most of them with disabilities, is revealed by Vanneste et al. [29]. Although the
instructions medium does not play a statistical role in the total assembly time, it plays a
role in the number of errors made, because AR instructions generate the lowest number of
errors. Looking at the stress effects, although AR instructions’ score is the best, no statistical
relevant differentiation between the different mediums can be determined. When looking at
the perceived complexity of the task, AR-instructions deliver the best scores with statistical
relevance. No statistically relevant instruction medium effects can be observed either
considering the competence frustration or when looking at the perceived physical effort.

From an adaptivity perspective of the assistance system, there is strong evidence of
their positive effects on operators, such as the deploying and incentive approach [30,31],
adjusting the instruction length/complexity [32], adjusting the instructions in tune with
the user’s perceived cognitive load [33] with the help of biosensors or taking the user’s
experience into account for creating and presenting the instructions [34].

2.2. Prediction Techniques

HMMs, introduced in the 60s by Leonard Baum [35] and clearly described by Ra-
biner [11], are statistical models that are extensively used up to this day with applications
in many areas of science. In the last decades, multiple types of HMMs have emerged, in
examples such as first order HMM, second order HMM, superior order HMM, factorial
HMM, layered HMM, hierarchical HMM or autoregressive HMM.

Usually, HMMs are used to predict or forecast different events and processes in applica-
tions such as: parsing eye tracking gaze data [36], short term load forecasting [37], reliability
assessment [38] and energy consumption prediction in residential buildings [39]. HMMs
are used in the automotive industry for predictive maintenance of diesel engines [40] or
lane change recognition of surrounding vehicles [41]. Over the years, HMMs were also used
successfully in biology and bioinformatics [42]. Applications in this field include biological
sequence analysis [43–45], predict protein structure [46–48], antibiotics research [49] or to
identify bacterial toxins and other characteristics in short sequence reads [50]. In cancer
research, HMM models are used to predict the cell’s response to drugs [51]. Training HMM
models with only partially labeled data is also possible as demonstrated in [52] on both
synthetic and real-world data of protein sequence. In [53], an HMM is used for hand gesture
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recognition. For training the model, they use gestures from the Cambridge hand gesture
dataset, which has nine possible types of gestures. The first step in their approach is image
pre-processing using a Sobel operator followed by a feature extraction step that selects
relevant features that will be used to classify the gesture using HMM. In manufacturing,
HMMs are used for life prediction of the manufacturing systems [54], fault detection [55,56]
and task orchestration [57]. Authors of [58] applied a layered HMM for action recognition
of a human operator assembly for human-robot collaboration to improve their cooperation.
The input data is gathered using a Microsoft Kinect and two leap motion sensors and
consists of the users left- and right-hand information. Another approach to human-robot
collaboration for assembly is detailed in [59]. To be able to detect the operator intention
but also learn continuously, an evolving HMM is used. Their experimental setup consists
of a collaborative robot, different objects fitted with markers for easy pose estimation and
identification, two cameras and an operation station. The data used to train the HMM
model is based on the position of the building blocks, in contrast to other approaches that
use the movement of the operator’s hands.

Hybrid or meta-algorithmic methods usually consist of a collection of multiple predic-
tion models that work together to give a single aggregated result. These models are not
necessarily of the same type and can be trained using different methods and algorithms.
One class of hybrid methods are ensemble methods that use an aggregation function to
choose the final prediction such as AdaBoost, bagging or random forest (RF). AdaBoost [60]
trains multiple weak classifier models on weighted input data. Weights are updated in
such a way that the classifiers are focused on the misclassified examples from the previous
training steps. Bagging [61] (or bootstrap aggregating) uses different subsets of the datasets
to train the models that will be used to aggregate the results. RF [62] can be considered
a variant of bagging where the models are trained on a trimmed-down dataset that only
has a subset of the features. Aggregation strategies include [63]: arithmetic methods such
as mean and median, social choice functions such as majority voting or meta-learning the
aggregation function such as combiner and arbiter. In [63], an extensive study regarding
aggregation strategies was made by evaluating 32 models on 46 datasets with the conclu-
sion that there is no aggregation method among the ones evaluated that works best in any
classification scenario. Depending on the stage where the aggregation is made, there can
be multiple types of aggregation [64]: information aggregation, model aggregation, and
hierarchical aggregation. Information aggregation can be applied when multiple sources
of data are combined and then only the relevant features are selected. Model aggregation
presumes multiple models are trained and then an aggregation is made on their results.
Hierarchical aggregation allows information and models to be combined in a hierarchical
way where the output of one model is the input for another model from a higher level in
the hierarchy. Another issue in this area of research is selecting the algorithm on a meta
level because usually algorithms can behave differently depending on the instance of the
problem [65].

Another type of hybrid control method is to create a Markov jump system (MJS). Such
systems experience large disruptive changes that makes them more efficiently described by
multiple models depending on its state or operating mode. In this case, a Markov chain
models the jumps between different states of the system, where each state is modeled by
a different model. MJSs have various applications, usually in the field of control systems.
In [66], a state-feedback controller is designed to improve stabilization of time delay MJSs
in the presence of polytopic uncertainties. Authors of [67] use MJS and deep reinforcement
learning to model and predict behaviors and patters in 5G networks when choosing the
next target links handoffs, whereas in [68], an asynchronous fault detection mechanism
is proposed for nonhomogeneous MJS. Regarding the synchronization problem of MJS,
in [69], a decentralized event-triggered scheme is proposed that can decide if a sensor
should communicate data at a given time to limit the used resources for a transmission.
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3. Next Assembly Step Prediction through Hidden Markov Models
3.1. Assembly Support System

The assistance system (Figure 1) is a prototype developed as a flexible testbed to
investigate various training scenarios involving the manual assembly work of products,
from simple ones (e.g., predefined instructions, fixed order of assembly, etc.) to complex
ones (e.g., instructions adapted to ongoing performance, user’s state, flexible assembly
recipe, etc.). In all scenarios, the modular aluminum frame with vertical adjustment of
the tabletop and the large touchscreen are being used, whereas the disassembled product
is placed on the tabletop. Within more complex use-cases, such as the one illustrated in
Figure 1, several devices or sensors can be added to the system, such as object- and hand-
tracking sensors (i.e., depth camera), posture and facial expression sensors and eye-tracking
and galvanic skin response (GSR) sensors, etc.
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Figure 1. Manual assembly assistance system. 1: Depth camera for object detection; 2: facial
expression and posture recognition sensor; 3: eye-tracking glasses; 4: GSR sensor; 5: height adjustable
frame; 6: different parts of the assembled object; 7: large touchscreen.

A layout of the table with the user interaction buttons is depicted in Figure 2. The
product’s components are always located in the upper left and right areas of the large
touchscreen before the training starts. The recommended assembly area is in the central
lower part to achieve an easy reach of components and their manipulation on one side,
and straightforward access to the interaction buttons on the other side. Concerning the
interaction buttons, the user can control each instruction set by playing it, going to the
previous or next one and even pausing it. In other use cases, the instructions can be
triggered by the training application, for example when the system observes that the
assembly step has been successfully completed. In the central upper side, there is the
video display area, the location where videos/animations related to the assembly step are
displayed. Moreover, audio instructions are played from the integrated speakers. Below
the relevant components, within a given training sequence, there are visual effects (i.e.,
flashing), so the user can quickly identify the required components.
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From a software perspective, the training application utilizes the large touchscreen’s
hardware (see specification in Table 1) and has micro-services to support the user with
adaptive instructions by changing the sequence or by modifying the content (e.g., no
audio, short audio hints or detailed audio guidance; enabling closed captions for audio
instructions; short animation or long detailed video instructions; time pressure enabled or
not, etc.).

Table 1. Touchscreen hardware specifications.

Component Specifications

Display 43-inch 4K touchscreen
CPU Intel i7-7700
GPU NVIDIA GeForce GTX 1060
RAM 16 GB
SSD 250 GB

Operating System Windows 10

The microservices that impact the predictor and user experience are listed below:

• Tabletop height adjustment: performed manually by the user or automatically by
software using the front facing camera.

• Object detection: identifies the position of each object within each image during
the training.

• Depth camera streaming: provides control to the depth camera, exposing all of its
capabilities such as RGB, point cloud, depth.

• Object position: establishes the 3D position of objects relying on information from the
previous two services. It detects if the component was assembled correctly, and if not,
it prompts the user.

• Face mimics detection: detects emotions from pictures with the user’s face during training.
• Human characteristic detection: age and gender are identified from image processing

of the user’s picture during assembly. This service with the face mimicking service
can be utilized to detect the user’s state/mood.

• Predictor service: has the goal to assist the user throughout the training, providing
the next best-suitable instructions depending on the user’s previous and on-going
performance. This is done by collecting and aggregating information from the service
above with various algorithms.
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All services utilize Google’s Remote Procedure Call framework, have their own Service
Discovery and Health Check, mechanisms that allow them to collaborate at any given time.
Compared to the operator’s reaction speed, the system is orders of magnitude faster (real
time), minimizing the wait time for the operator between the time the current assembly task
is finished and the time the next assembly task instruction is provided. More information
about the concept of the prototype or other implementation details can be found in [70–72].

The product in our training use cases is a modular tablet (Figure 3), configurable in
different chromatic or functional instances. It consists of one screen, one mainboard and
three smaller types of modules that can be slotted in the mainboard: flashlight, speaker
and battery. Due to its design, flexible assembly recipes are possible to correctly assemble
the final product.
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Next, this section presents the models proposed in this work to be involved in the
prediction service.

3.2. The HMM-Based Prediction Algorithm

HMMs are doubly embedded stochastic processes composed of a hidden stochastic
process and a set of observable stochastic processes, each state from the hidden stochastic
process having associated an observable stochastic process (see Figure 4).
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There are three fundamental problems that an HMM should solve. These problems
were introduced by Rabiner in his work [11]. We denote the observation sequence with O
and the model with λ = (π, A, B), where π is the set of initial hidden state probabilities, A
is the set of transition probabilities between hidden states and B is the set of observable state
probabilities. The first problem that an HMM should solve is called the likelihood problem,
also known as the evaluation problem. It states that, given the HMM model λ = (π, A, B)
and the observation sequence O, the model should be able to determine the likelihood of
that observation sequence, P(O | λ) . The second problem, called the decoding problem,
states that given the model λ = (π, A, B) and observation sequence O, the model should be
able to tell what was the hidden state sequence that produced the observations. In the third
problem, the learning problem, given the model λ and the observation sequence O, the
model should adjust its parameters {A, B, π} such that P(O | λ) is maximized. According
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to Stamp [73], the third problem is used to train the model and the first problem is used to
score the likelihood for a given observation sequence.

For our application, we decided to use the HMM implementation from the Pomegranate
library. Pomegranate is a Python library developed by Jacob Schreiber that, among others,
offers good HMM implementation. The library offers us the possibility to train the model
based on assembly sequences. The assembly steps are wrapped in an ObservableState, a
wrapper class that contains information about the current assembly state and the worker’s
characteristics, such as the gender (0 for female, 1 for male), height (0 for short and 1 for
tall), eyeglass wearer or not (1 and 0, respectively), as well as sleep quality in the preceding
night (0 for bad and 1 for good). After the model is trained on the assembly sequences, it
can then be used to start predicting the next piece that the worker should mount.

To predict the next piece assembled by the worker, we need the history of assemblies
done on the product so far. If no piece is assembled, then the history will contain an
empty assembly (since the product has just begun being assembled) with the worker’s
characteristics. The algorithm then proceeds to identify all the steps left to be done in the
assembly sequence. After all the pieces left to be assembled have been identified, for each
piece, a shadow assembly sequence containing the current assembly sequence and the piece
that needs to be mounted is generated. Each shadow assembly sequence is then tested
against the model to find the maximum likelihood of a shadow assembly to occur. The
piece in the shadow assembly with the maximum likelihood is the one considered to be the
next piece that should be assembled. A graphic representation of this method can be seen
in Figure 5.
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Using this approach, of determining the maximum likelihood of an assembly sequence,
enables the use of this algorithm for modeling unknown (earlier unseen) assemblies. It can
be seen in Section 4, that this approach is the one that will make the HMM algorithm one
of the best models, compared to the other implementations.

3.3. Hybrid Prediction

Next, the question which needs an answer is: how to combine different prediction
components into a hybrid predictor? First, we summarize the PPM algorithm introduced
in [12] as a potential next assembly step predictor and, then, we analyze some possible
hybrid schemes composed of HMM and PPM variants.

3.3.1. Prediction by Partial Matching

The PPM algorithm combines multiple Markov models of different orders. A PPM of
a given order R tries to predict with the Markov model of order R and, if it cannot do that,
the order of the Markov predictor is iteratively decremented until a prediction is possible.
If the algorithm reaches the first order Markov model and it cannot provide a prediction,
then the PPM itself is not able to predict the next state. A flowchart of the inner operations
of the PPM algorithm presented in [12] can be found in Figure 6.
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Due to the good performance of the HMM presented in Section 4, we considered the
implementation of two hybrid predictors. Both these hybrid predictors internally use HMM
and PPM. One hybrid predictor prioritizes the PPM to the detriment of HMM, whereas
the other uses a reputation-based selection mechanism. Section 3.3.2 describes the hybrid
predictor with prioritization and Section 3.3.3 the one with reputation.

3.3.2. Hybrid Predictor with Prioritization

Because we observed promising results in performance from HMM (see Section 4),
we considered the implementation of a hybrid predictor. For this, we decided to pair the
versatility of the HMM with the learning capabilities of the PPM algorithm introduced
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in [12]. For the hybridization, we considered the third order of PPM. Priority was given to
the prediction of PPM whenever possible due to its higher accuracy, and in cases where
PPM is not able to provide any solution, the HMM will provide one. The flow of a prediction
using the hybrid predictor with prioritization is presented in Figure 7.
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3.3.3. Reputation-Based Hybrid Prediction

The hybrid approach, presented in the previous section, focuses on the PPM predictor,
which attributes too much trust in its predictions. Compared to the previous implemen-
tation, we introduced a reputation mechanism that dictates which algorithm’s prediction
would be used (see Figure 8).
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The reputation interval is in the range [−x, x], where x is the maximum reputation
score. The implementation of the reputation-based algorithm can be found below.

1. initialize predictors;
2. set reputation for each predictor to 0;
3. each predictor makes a prediction;
4. if only one predictor could predict, return that prediction;
5. else, select prediction based on maximum reputation;
6. receive feedback on prediction;
7. foreach predictor, if the prediction was correct, increase the reputation by 1, else

decrease it by 1;
8. clamp the reputation in the reputation interval.

4. Experimental Results

Two experiments involving participants from both the academic and industrial setting
were conducted, obtaining two datasets, one containing 68 assemblies from students and
the other one, 111 assemblies from factory workers. Both datasets test different capabilities
of the implemented algorithms. The students’ dataset, due to its diversity, is useful in
determining the ability of the algorithm to adapt to new scenarios, whereas the workers’
dataset can highlight the learning capabilities of each algorithm. A combined analysis of
the datasets will also be presented. All the participants had to assemble, without guidance,
a customizable modular tablet (see Figure 3) composed of a mainboard, a screen and three
types of modules (speaker, battery and flashlight).

Next, the HMM will be optimally configured on these datasets and then it will be
compared with previously developed methods. We used as evaluation metrics the pre-
diction rate, the coverage, and the prediction accuracy. The prediction rate indicates the
percentage of predictions. The coverage is the percentage of correct predictions from the
whole testing data. The prediction accuracy is the percentage of correct predictions from
the predictions done.

The initialization phase of the HMM is heavily influenced by the randomness factor.
To mitigate these influences, we decided to average the results of five randomly selected
seeds. Unless specified otherwise, the results of the HMM will be presented as an average
of the performance of the five seeds. There is only one parameter that can be used in the
hyperparameter tuning phase, the number of the hidden states the model uses. Figure 9
shows the correlation between accuracy and the number of hidden states.
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There is a high percentage of correct predictions when using three or four hidden
states, followed by a sharp drop in the prediction accuracy. The model continues to improve
its accuracy with an increased number of hidden states, but is not able to achieve the same
performance as using four hidden states. It performs better in the vicinity of 30 hidden
states, with the best performance obtained by using exactly 30 hidden states, averaging an
accuracy of 56.65%.

Table 2 presents the accuracy of each seed when the model is trained using 30 hidden
states. As previously pointed out, the random initialization of the model provides a
meaningful impact on the model’s accuracy. The first two seeds, 197,706 and 20,612, have a
low prediction accuracy compared to the average, with the model using the seed 197,706,
performing over 5%.

Table 2. The accuracy of each seed for 30 hidden states on the students’ dataset.

HMM Seed Prediction Rate [%] Accuracy [%] Coverage [%]

197,706 100 51.49 51.49
20,612 100 53.47 53.47

930,364 100 56.44 56.44
938,425 100 58.42 58.42
973,051 100 58.42 58.42
Average 100 55.64 55.64

To determine if there is a significant difference using this model, we need to compare it
to our previous works. In [10], we analyzed the usage of Markov predictors with different
orders in the assembly context. In the same work, the Markov predictors were extended to
use a padding mechanism, which significantly improved the output of the predictor. Based
on these predictors, in [12], we used Markov predictors of different orders to implement
a PPM mechanism. These predictors all have a problem: if a new unknown assembly
scenario is presented to the model, it is unable to provide recommendations. To mitigate
this issue, we extended the PPM prediction model to also investigate the neighboring
states (PPMN). In [74], we used long short-term memory neural networks (LSTM) to model
the assembly process, significantly improving the prediction rate compared to previous
approaches. Using dynamic Bayesian networks (DBN) in [75], we increased the prediction
accuracy. In [7], it was demonstrated that, through gradient boosted decision trees (GBDT),
the best coverage of the assembly sequences could be obtained. In [72], an informed tree
search supported by a Markov chain (A* algorithm with first order Markov model) was
studied. The proposed method outperformed the decision trees (DT).

Besides the standalone HMM predictor, this work introduced four hybrid approaches:
PPM supported by HMM (p_PPM_HMM), PPMN supported by HMM (p_PPMN_HMM),
and their reputation-based equivalents using HMM and PPM (r_PPM_HMM) or PMMN
(r_PPMN_HMM).

For the reputation-based predictor, we systematically varied the reputation interval. In
Table 3, the coverage for various confidence intervals is presented on all the three datasets.
The predictor was able to predict 100% of the time across all reputation intervals. Across all
the datasets, the performance is quite similar. Across all the three datasets, the reputation
interval that yielded the best results is [−1,1]. This will be the interval which we will use
further in our comparisons.

Table 3. Coverage for different reputation intervals on all three datasets.

Reputation Interval Students [%] Workers [%] Mixed [%]

[−1, 1] 55.45 76.45 63.32
[−2, 2] 55.64 76.09 62.67
[−3, 3] 55.25 76.69 62.45
[−4, 4] 55.64 76.69 62.24
[−5, 5] 55.45 76.69 62.31
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Next, we will compare the presented methods in contrast with the best configurations
of existing algorithms (the optimal order is 1 for the Markov model and 3 in the case of
PPM and PPMN). First, we present the results obtained on the students’ dataset.

In Figure 10, the prediction rate is compared, Figure 11 presents the coverage and
Figure 12 displays the accuracy. As it can be observed, most of the predictors that rely only
on previous experience, such as Markov, PPM or DBN, fail to provide any information
about the probable next step, whereas predictors that infer from previous experience are
able to predict 100% the time, such as HMM or its derivatives. The LSTM network is the
exception, because it has a confidence interval below which it will not make a prediction.

Because DT, A*, GBDT, HMM and HMM extensions predict 100% of the time, the
coverage of these models is the highest on the students’ dataset. Models such as Markov
chains, which have a low prediction rate also have a low coverage. If we look at the
accuracy of the models, the DBN, which has the lowest prediction rate and coverage, is
the one that has the highest accuracy in its predictions. The HMM models have a good
coverage and accuracy, with r_PPMN_HMM having a coverage and accuracy of 58.22%.

On the workers’ dataset we can observe in Figure 13 that all models are able to predict
over 75% the time. This indicates that there is little variation in the assemblies of the
industry workers. The coverage, presented in Figure 14, shows that the highest performing
methods are still DT, HMMs and A*. DTs have a coverage of 71.18%, A* 72.35% and all
HMM variants have over 75% coverage. The reputation-based hybrid using HMM and
PPMN (r_PPMN_HMM) has a coverage of 78.11%.
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Although DT, A*, HMM and the HMM extensions have the highest coverage, it is
surprising to observe in Figure 15 that the highest accuracy was obtained by the Markov,
PPM or DBN models. The Markov model has an accuracy of 83.09%, PPM 82.35% and
DBN 82.84%. In the cases these algorithms can predict, it is desired to use them instead
of others which predict all of the time. HMM and its hybrids can predict over 76% of the
cases correctly, a neglectable loss in accuracy compared to the other methods if we take into
consideration that it is usable 20% more often than the others.
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The mixed dataset represents a combination of both students’ and workers’ assemblies
randomly shuffled. As we can see in Figure 16, the prediction rate trend is the same
across this dataset as well. Coverage wise (see Figure 17), the best performing methods
are DT, HMM and its derivatives and A*. A* has a coverage of 67.63% whereas the best
performing HMM-based implementation is the reputation-based hybrid that uses PPMN
(r_PPMN_HMM). It has a coverage of 67.15%.

Accuracy wise, on the mixed dataset, we can observe in Figure 18 that again the
Markov, PPM and DBN models have the highest accuracies, with DBN having 71.21%. A*
67.63% and r_PPMN_HMM 67.15%.
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As it can be observed, there is no algorithm that performs the best in all situations.
For the students’ dataset, where more distinct assemblies are presented, GBDT is the
recommended method. For workers, where the data has more similarity, the HMM or one
of its hybrid extensions are the best choice. For a mixed scenario, A* seems to be the best
performing one. Thus, we can say that there is no approach where one algorithm fits all,
and the category of workers is important when choosing the algorithm to use.

From our experiments we determined some interesting facts. The students, on average,
took longer to assemble the product. Compared to the workers, there were more correct
assemblies. An interesting observation is that students, perhaps due to their age, are more
inclined to take alternate paths in achieving a goal, especially when assembling a product,
whereas most factory workers followed the same pattern of assembly. Among the workers,
there was a huge difference between those who had superior studies (bachelors, masters)
and those who just completed high school. The ones with superior studies used different
assembly patterns and made no mistakes when assembling the product, whereas the high
school workers did not pay much attention and made several mistakes.

5. Conclusions and Further Work

In this paper, we analyzed the possibility to use HMM to predict the next manufac-
turing step in an industrial working environment. After the model was configured, it was
compared with other existing models. Taking into account the good learning capabilities
of the PPM model and the ability of the HMM to predict in all scenarios, we proposed
different hybrid prediction mechanisms combining these two models. The evaluations of
the proposed method, as well as its comparisons with existing methods, were performed on
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different datasets collected in experiments focused on assembling a customizable modular
tablet. One of them consists of data from an experiment involving 68 students, whereas
the other one consists of data collected in a factory from 111 workers. In addition, a mixed
dataset, which randomly combines the assembly sequences of the students with those of
the real factory workers, has been explored. The experimental results have shown that the
HMM and its hybrid extensions are the best on the workers’ dataset, with a coverage of
over 75%, which is remarkable. The highest coverage was provided by the r_PPMN_HMM
model at 78.11%. This model has all the qualities to be physically embedded into our final
assembly support system.

There is a limitation of applying this work in industrial cases. As we previously
mentioned, the students have a more creative approach in assembling the product, whereas
factory workers do not pay much attention to the details and follow a predefined scheme.
We believe that the accommodation of the user with such a system could potentially have a
high psychological toll on them. An interesting research topic could be derived from this
work: the psychological impact of assembly systems on human workers. Another technical
aspect that should be considered is the nature of our modeled product. Our use case is a
relatively simple one. Even though the use case is simple, the involvement of industrial
partners will represent a critical point in successful adoption in the industrial context.

As a further work direction, we intend to design and evaluate other hybrid com-
binations as well as other selection mechanisms in hybrid prediction. For all of these,
extended datasets taken from real-life assembly scenarios will be required to provide
effective assistance.
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27. Turk, M.; Resman, M.; Herakovič, N. The Impact of Smart Technologies: A Case Study on the Efficiency of the Manual Assembly
Process. Procedia CIRP 2021, 97, 412–417. [CrossRef]
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