
Received 31 May 2022, accepted 18 June 2022, date of publication 23 June 2022, date of current version 1 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3185763

Estimation of Missing LiDAR Data for Accurate
AGV Localization
ARPAD GELLERT , DARIUS SARBU, STEFAN-ALEXANDRU PRECUP,
ALEXANDRU MATEI , (Graduate Student Member, IEEE), DRAGOS CIRCA,
AND CONSTANTIN-BALA ZAMFIRESCU
Computer Science and Electrical Engineering Department, Lucian Blaga University of Sibiu, 550025 Sibiu, Romania

Corresponding author: Constantin-Bala Zamfirescu (constantin.zamfirescu@ulbsibiu.ro)

This work was supported by the Hasso Plattner Excellence Research Grant financed by the Knowledge Transfer Center of the Lucian Blaga
University of Sibiu under Grant LBUS-HPI-ERG-2020-03.

ABSTRACT This article evaluates several machine learningmethods to substitute the missing light detection
and ranging data for better spatial localization of industrial automated guided vehicles. Decision trees and
ensemble of trees using bagging or boosting techniques have been considered. Also, the k-nearest neighbors
algorithm was analyzed. Most of the algorithms have been evaluated based on multiple criteria and hyper
parameter tuning. The analysis of the results was done in a comparative way, multiple regression evaluation
metrics being considered. The experiments have shown that the extreme gradient boosting algorithm provides
the best results in terms of performance, but with timing and resource allocation drawbacks. On the other
hand, a simple decision tree model seems to give good results if a tradeoff between performance and
prediction time must be made. The k-nearest neighbors algorithm is also performing pretty well, especially
because we are experimenting in a static environment.

INDEX TERMS Automated guided vehicle, digital twin, LiDAR, point cloud estimation.

I. INTRODUCTION
The backbone of autonomous vehicles is the ability to per-
ceive the environment, create or use an existing map to local-
ize itself and plan a path to the destination point. This is
done with the help of Simultaneous Localization and Map-
ping (SLAM) algorithms that use input data from different
type of sensors like Light Detection and Ranging (LiDAR)
or cameras. Map building and localization is a challenging
research area in robotics when the employment of a global
positioning system is unfeasible. While there are several
studies showing that more data contribute to increased accu-
racy and stability, the approach poses various difficulties for
achieving robust deployment in real world settings: high-
resolution maps are memory and computationally unfeasible
to be maintained on the hardware of Automated Guided Vehi-
cle (AGV), while dealing with high amounts of uncertainty
in sensors data presumes real-time estimation of predictive
uncertainties. Consequently, to our knowledge there are no
studies that explore the effects of low-cost LiDAR or cases
where LiDAR data is missing and how these issues can be

The associate editor coordinating the review of this manuscript and

approving it for publication was Rongbo Zhu .

solved for robust deployment of AGVs in indoor locations.
The problem presented in this paper is about missing LiDAR
data and such we will take a closer look into missing sensor
data imputation methods.

Missing data can be the effect of unreliable sensors, con-
nection errors or physical obstructions, the last one being the
case investigated in this paper. We focus on the estimation of
missing LiDAR data for better AGV localization and robust
deployment in factory settings. The LiDAR data consists
in the distances detected from the AGV to the surrounding
obstacles, which are missing in the directions of the wheels.
To substitute the missing distances, we applied methods
based on decision trees and ensemble trees. We included
the random forest, adaptive boosting and gradient boosting
algorithms, as well as the k-Nearest Neighbors (KNN) model
based on a simple search over the whole dataset, and a dis-
tance measurement.

The rest of this paper has the following structure: Section II
discusses the relevant related work, Section III presents the
workflow of our application and the involved machine learn-
ing algorithms, Section IV provides the experimental results
and, finally, Section V concludes the paper and presents fur-
ther work directions.

68416 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5482-967X
https://orcid.org/0000-0003-4299-1052
https://orcid.org/0000-0003-0128-2436
https://orcid.org/0000-0003-1620-0560


A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

II. RELATED WORK
Widely used state-of-the-art SLAMalgorithms in the robotics
field include LiDAR-based algorithms like GMapping [1],
HectorSLAM [2] or Cartogapher [3] and visual-based like
ORB-SLAM2 [4] that can use monocular, stereo and
RGB-depth cameras. One issue is that the SLAM algorithm
must be chosen and then customized for a specific robot,
according to its hardware and computational capabilities,
sensor constrains and finally the environment. The input
data of the SLAM algorithm also plays an important role
in the stability and reliability of the method. As such, com-
bining multiple LiDAR sensors to have more input data or
to cover a larger area of the environment [5]–[7] is a pop-
ular choice that has increased financial and computational
costs.

Unreliable sensors, connection errors or physical obstruc-
tion are common problems that cause missing data. Miss-
ing data imputation or prediction problem can be found
in many fields of research, being mostly researched in
the statistics field. The missing data is classified depend-
ing on the mechanism that caused it into four cate-
gories [8], [9]: missing completely at random (MCAR),
missing at random (MAR), a non-ignorable case or miss-
ing not at random (MNAR) and missing by natural design
(MBND). Classical statistical methods include expectation-
maximization (EM) [10]–[12], maximum likelihood, partial
deletion, hot/cold deck, mean substitution [10], [13]–[16],
etc., while more classical machine learning approaches
include Markov Chain Monte Carlo computations [17], [18],
linear regression [13], [14], [19], KNN [10], [11], [13]–[16],
[20], Support Vector Machines (SVMs) [13], [14], Neural
Networks (NNs) [10], [13], [21], Vector Autoregressions
(VARs) [13], Decision Tree Regressors (DTRs) [13], or deep
neural networks [9], [16].

In [13], the authors present an in-depth study of mul-
tiple univariate and multivariate methods for missing data
imputation of sensor data in the field of maritime industry.
They compare 20models using 7 different metrics, describing
advantages and disadvantages for each of them. Their con-
clusion is that none of the evaluated methods can be used
universally, and that their performance depends on the type
of data, missing mechanism, and the presence of a real-time
requirement.

Authors of [10] analyze multiple sensor data imputa-
tion methods for a water quality information system on
two separate datasets. The algorithms used are statistical
based, model based, and neural network based, with neural
network algorithms achieving the best results among the
three.

In [20], several data imputation methods – Multiple Impu-
tation by Chain Equations (MICE), Variational Autoencoder
(VAE), NN with Random Weights (NNRW), KNN, Random
Forest – are used to replace missing data that would improve
the calibration process of IoT sensors. In their study, the
VAEmissing value imputation method shows the best results,
followed by the NNRW.

A study on air pollution sensor calibration [11] evaluates
KNN, Regression Imputation (RI), EM and Random Forest
techniques individually against their proposedmeta-predictor
based on k-Means clustering, a variation of Best Fit Missing
Value Imputation (BFMVI) method, that can choose an opti-
mal imputationmethod at a given time. The proposed BFMVI
algorithm partitions data into clusters using the k-means algo-
rithm and then a best fit estimation method is chosen for
each partition by evaluating each technique individually on
that specific partition. In this case, BFMVI showed the best
results, followed by the KNN method.

In [12], a new sequence-to-sequence imputation model
(SSIM) is proposed to predict missing data from a network
of wireless water quality sensors. Their method combines a
deep learning network architecture with a Long Short-Term
Memory Network. Their proposed method is compared with
other algorithms like the AutoRegressive Integrated Moving
Average (ARIMA), Seasonal ARIMA, Matrix Factorization
(MF), MICE and EM.

An extensive study of mean imputation, predictive mean
matching (PMM), Bayesian Principal Component Analysis
(PCA), KNN, Iterative KNN and meta predictor on a group
of 84 datasets from UCI Machine Learning Repository was
made in [15]. The best performing algorithms, in general,
were their proposed meta predictor, followed by KNN and
BPCA while the worst performing was mean imputation
and PMM.

Another recent benchmark study of missing data imputa-
tion was done in [16] on 69 datasets from OpenML database
with different experimental settings, regarding missing data
mechanism and completeness of the data in the training
dataset. The tested methods are mean and mode imputa-
tion, KNN, Random Forest, discriminative Deep Learning
and Generative Deep Learning. Their conclusion is that in
general, KNN and random forest perform the best in most
situations.

Other approaches used to impute missing sensor data
include methods used in forecasting problems, since the two
problems are very similar. In [22], a framework is proposed
based on Seasonal and Trend decomposition using Loess
(STL) [23] to impute large missing gaps of sensor data for
industrial Internet of Things (IoT) manufacturing while in
[24] BayesianMaximumEntropy is used for imputing similar
IoT sensors data.

LiDAR is a method for determining ranges, with applica-
tion in multiple domains like agriculture, autonomous vehi-
cles, archeology, biology, geology, military, robotics, etc.
A LiDAR sensor, depending on its complexity, can output
directly 2D or 3D scan of the environment, usually with the
goal of creating a 3Dmodel of the environment by combining
multiple scans [25].

In [26], the authors present a novel approach to improve
the rendering quality of LiDAR point-cloud. Usually, large
datasets resulted from LiDAR scans have incomplete infor-
mation or lack the quality for the desired visual appeal.
They focus on the reconstruction of missing building walls,

VOLUME 10, 2022 68417



A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

parts of the terrain and of water surfaces. They propose a
processing pipeline enhancing through data fusion the point-
cloud, achieved by using vector maps, color information
and by calculating point normals for the illumination for a
more visually appealing outcome. Their approach provides
remarkable results.

In [27], a new method for the recovery of missing LiDAR
data points from vehicle trajectory is presented. The method
uses microscopic traffic flow models. For short gaps in the
data points, the authors state that the data can be recovered
using a simple linear regression, while for bigger gaps their
method is preferred. They calibrated and tested several car
following models such as Gipps, Pipes, Newell or IDM.
Based on their results, the Gipps model performed the best.

Machine Learning methods have been employed in a lot
of fields, especially during the last years. This also applies to
multi-output regression models. There are multiple domains
where multi-output problems might occur, starting from life
related sciences, to ecology, industry manufacturing, multi-
media, and so on. Multiple methods have been proposed for
dealing with multi-output prediction problems. They can be
categorized in different ways. One way is to consider the
context, which can be local or global. When local context
is used, the multi-output problem will be split into simpler
methods or single-output predictions and parts of the output
will be predicted, and then the separate methods will be
combined to get the overall multi-output result. If global
context is considered, the prediction will be determined for
the whole structure entirely, one model for predicting the
multi-output vector. The global approach has the advantage
of taking the dependencies between target variables into
account. It can also be more efficient from a computational
perspective. If the output is very large, applying a basic model
for each target variable can be unfeasible. According to [28],
the multi-output prediction methods can be divided into two
categories: problem transformation, which corresponds to
the local context outlined earlier, and algorithm adaptation,
which corresponds to the global context.

Next, several related work cases will be presented briefly.
According to [29], multi- output regression models were used
to perform ecological modelling. They did a comparative
analysis of single-output models and multi-output regression
models, and they have shown the advantages of using the
multi-output models. They used a decision tree and ensemble
of decision trees.

A multi-output regression model was used for predict-
ing real-time gas tank levels [30]. The model was based
on the least square support vector algorithm. Another study
shows that multi-output regression models (specifically ker-
nel regression) were used to predict multiple sound variables
representing the wind noise for a specific vehicle component
[31]. In [32], the task of using extra predictive clustering
tree ensembles to predict multi-output target has been ana-
lyzed. The experimental evaluation was considered over 41
datasets, that covered different application domains. A com-
parative analysis over three ensemble learning algorithms has

been presented. It included extra predictive clustering trees,
random forest and bagging method. Together with these,
a comparative analysis between the ensemble methods and a
single predictive model was presented. When it comes to the
overall results, it was shown that the ensemble methods yield
better results and outperform significantly a single predictive
model. Comparing the ensemble methods alone, extra predic-
tive clustering trees provided the best results over multiple
datasets.

In [33], a high-level analysis of the learning models for
structured outputs prediction is outlined. In this case, the
problem is stated at a higher level of abstraction, and the target
is defined as a generic structured output, which can be a vec-
tor, or a graph, or any structured data format, in contrast to the
standard regression problems with single-value output. The
authors mentioned that the multi-target prediction problem
is related to multitask learning. In this paradigm, instead of
having only one input source, multiple input sources can be
used to predict a continuous or discrete variable, which can
be a single value or multiple values. It is shown that the time
complexity of a global model is lower than the complexity of
local models due to a lot of repetitive sorting operations that
are needed for local models (since multiple simple models
will be used to predict each variable from the target output).
On the other hand, the computational complexity is amplified
for local models because they are bigger compared to a global
model. Also, it was presented that the global methods are
scalable even for a large dataset considering different dimen-
sions, like the number of samples, the size of the input and
output vectors. As noted in [33], multiple evaluation metrics
have been considered for predicting multi-output continuous
variables: root mean squared error, relative root mean squared
error and correlation coefficient.

By looking at the analyzed state-of-the-art, there is
strong experimental evidence that all these methods outper-
form classical statistics-based approaches for missing sensor
data [10]–[16] while in other experiments, the classical statis-
tics methods are not even considered [20]–[22] anymore.
However, it remains unclear which method performs best
in a wide range of AGV localization scenarios in industrial
settings when the AGV is often exposed to perturbations such
as light and humidity conditions. Table 1 summarizes the
analyzed related work with brief description of used method,
application area, missing data mechanism and the evaluation
metrics used in each paper.

III. MACHINE LEARNING METHODS TO SUBSTITUTE
MISSING LIDAR DATA
This article aims at solving the missing data (caused by
natural design) from a LiDAR sensor, which is hosted on an
AGV. The LiDAR sensor is set up on the bottom of the vehicle
due to design constraints. An AGV is an autonomous vehicle
that is used to accomplish specific tasks in an industrial
manufacturing environment.

In Figure 1, the AGV is carrying its payload across an
assembly line to the worker. The payload represents some

68418 VOLUME 10, 2022



A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

TABLE 1. Literature review summary.

modules required for the assembly of a modular tablet. The
wheels of the AGVobturate significant regions of the LiDAR,
preventing key landmark features to be observed. Our goal
is to try to substitute the disruptive data, which is generated
in front of the vehicle wheels. By leveraging the power of
Digital Twins, we created a virtual counterpart of our physical
setup using Gazebo, a robot simulation tool. By correlating
real information from the AGV’s sensors, especially LiDAR
data, with information from its Digital Twin, we are hoping to
increase the localization accuracy of our AGV. To make this
possible, first we must estimate the missing data points from
our physical AGV.

The approach that was taken into consideration during this
work, is to try to predict the missing data using machine
learning methods. Since the LiDAR sensor attached to the
AGV will provide a set of numbers representing the dis-
tance, we are facing a multi-output regression problem.
Using the simulator, the Digital Twin was able to provide
a training dataset, but without the disruptive sensor infor-
mation. In this way, the data can be split so that the sensor
information, which is clean, will represent the input data
for the machine learning problem, and the sensor informa-
tion which will be disruptive in the real environment, will
be considered as target data, the vector that must be pre-
dicted. In this context, supervised machine learning methods

FIGURE 1. AGV carrying the payload.

can be used to learn the relationship between relevant sen-
sor information and the obstructed data, if there is such a
connection.

At first, a general mathematical perspective over the multi-
output regression problem will be covered, together with the
main two approaches for this problem, output transforma-
tion to apply single-output models, and adapting the models
to predict a vector instead of a scalar value. Secondly, the
main algorithms implemented in this work, will be covered
in a mathematical form. Most of them are tree-based, that

VOLUME 10, 2022 68419



A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

meaning decision tree, and then ensemble of trees using bag-
ging or boosting techniques. Also, the KNN algorithm was
analyzed. Most of the algorithms have been analyzed based
on multiple criteria and hyper parameter tuning. The analy-
sis of the results was done in a comparative way, multiple
regression evaluation metrics were taken into consideration
when comparing the models.

The evaluation is an important phase when it comes to
machine learning models. There are certain metrics that are
usually used for multi-output regression problems. A mathe-
matical representation will be covered for each of the evalu-
ation metrics used in the experimental phase.

FIGURE 2. Workflow of the AI model.

Figure 2 depicts the AGV with LiDAR and its reading
zones. The green zones are Li-DAR readings that are always
visible, while the orange obturated zones need to be esti-
mated. Our approach is composed of two phases. The first
phase involves the use of data points acquired from the virtual
environment to train our models to better estimate the missing
data. The second phase represents the usage of the trained
models in a real environment on the physical AGV to predict
the obstructed zones.

Currently, the dataset is generated by simulation, where
both green and orange areas are available for reading. To per-
form the simulations, we chose Gazebo as the AGV is devel-
oped on top of the Robot Operating System (ROS) platform.
Gazebo allows us to simulate the real-world physics and
reproduce our automated assembly system within the sim-
ulator. After replicating the real-world automated assembly
system footprint in Gazebo (see Figure 3), we implemented
the AGV kinematic model and a basic visual representation
to help us with testing.

After the simulator setup was completed the ROS setup
was required. We installed the packages for robot movement
and visualization of LiDAR (RViz). The final step in the
preparation was to create an automated flow for testing. First,
we recorded the commands sent to the AGV by the user to
achieve consistent behavior. Lastly, we prepared a script to
be run after the testing was completed that resets the world
and replays the recorded commands in sequence.

FIGURE 3. Simulated assembly system footprint in Gazebo.

Next, this section will cover several machine learning algo-
rithms from a theoretical perspective. Most of the methods
that will be covered are based on tree models. These methods
were chosen because of their simplicity, ease of understand-
ing and efficiency (good balance between complexity and
running time). The analysis was started from very simple
methods and continued building up models by adding one
more layer of complexity on top with the goal of having a
meaningful comparison between different tree-based meth-
ods by varying their tuning parameters. For each of these
methods we will consider a training dataset D of N instances
as D = {(X1,Y1), . . . , (XN ,YN )}. Each predictor instance
Xk consists of a set of n variables Xk = {x1, . . . , xn}, and
each output variable Yk consists of a vector of m variables
Yk = {y1, . . . , ym}, where m is the number of target variables
with k ∈ {1, . . . ,N }.

A. REGRESSION TREES
Regression trees [34] are quite identical to classification trees,
with the only difference being that the output variables will
take a list of ordered values used to approximate real-valued
functions, when classification trees output labels. The used
regression tree algorithm is CART, where node impurity is
calculated as the sum of squared deviations from the mean
and the prediction of each node will be the sample mean from
the Y variable.

The CART Algorithm:

1) Start by analyzing the top (root) node.
2) Taking into account each training instance X ,

determine S so that the sum of the impuri-
ties in the child nodes will be minimized, and
choose the split X∗ that will satisfy the minimum
condition.

3) Detect if the stopping condition has been reached and
exit. Otherwise, the step 2 will be applied for the child
nodes.

Each class variable Yk consists of a set of k possible values
Yk = {1, . . . , d} with i ∈ {1, . . . , n} and d representing the
number of sets. The splitting criteria used will be the residual
sum of squares (RSS), where Ŷ is the mean of the observation

68420 VOLUME 10, 2022



A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

in the set Sl :

RSS =
∑d

l=1

∑
i∈Sl

(
Yi − Ŷ

)2
(1)

The goal is to find the sets in order to minimize the RSS.
Since this is a computationally intensive operation, another
method is usually used: recursive binary splitting.

The Recursive Binary Splitting Algorithm:
1) Apply a recursive greedy approach.
2) Split all observations into two branches at each level in

the regression tree.
3) The best split is selected by using the greedy approach,

without looking ahead.
4) Considering the splitting point s and a splitting variable

k the following pair will be defined:

R1 (j, s) = {X |Xj < s} (2)

R2 (j, s) = {X |Xj ≥ s} (3)

5) Then we find the best s and k variables that minimize
the RSS for the regression tree:

RSS=
∑

xi∈R1(j,s)

(
Yi−Ŷ1

)2
+

∑
xi∈R2(j,s)

(
Yi−Ŷ2

)2
(4)

where Ŷa is the average of Ŷi is the set Sl with
a ∈ {1, 2}:

Ŷa =
1
n

∑
i∈Sl

Yi (5)

B. BAGGING
One of the main issues with machine learning methods such
as regression trees is that they tend to produce a high variance.
The variance, which is usually noted as σ 2, is a measure of
how much each value is differing from the mean, and it is
calculated in the following way: the difference between each
value and the mean is determined, which will provide the
distance from each value relative to the mean, then the square
of each distance will be added together, and the sum will be
divided to the number of values. The mathematical formula
for this is the following:

σ 2
=

1
N

∑N

i=1

(
Xi − X̂

)2
(6)

where N is the number of samples in the dataset and Ŷ is the
mean of the variable X ,

Ŷ =
1
N

∑N

i=1
Xi (7)

The standard deviation is the square root of the variance, and
it is represented in a mathematical way as follows:

σ =

√
1
N

∑N

i=1

(
Xi − X̂

)2
(8)

One of the solutions for reducing the variance issue for the
regression trees is called bagging [35], or bootstrap aggrega-
tion. Let us consider a set X of independent random variables,

X = {X1, . . . ,XN }, with N observations, and each of them
with variance σ 2. If we compute the variance of X the result
will be:

Var (X) =
σ 2

N
(9)

Based on this, we can say that averaging a set of random
observations will end up reducing the variance. In this way,
a solution for a better prediction accuracy is to create multiple
separate prediction models and then average the results of the
predictions. But then, the next question comes: how do you
get a set of separate training sets in order to have multiple
separatemodels? The answer is to take repeated samples from
the same training set and use them in order to have multiple
separated models. This process is called bootstrapping.

We will considerM different training sets from the original
training dataset, D∗i , with i ∈ {1, . . . ,M}. Let us define f

i as
being the function representing the prediction for the training
set D∗i . So, in order to apply the bagging procedure, we have
to proceed with the following steps:

1) Calculate f i for the separate train sets.

f i (x) , . . . , f M (x) (10)

2) Apply the bagging step to determine the average result
and improve the high variance problem.

f ∗ =
1
M

∑M

i=1
f i (x) (11)

C. RANDOM FOREST
Random forest methods [36] are very similar to the bagging
methods, but with a small difference in the way the trees are
selected. Similar to the bagging approach, the bootstrapping
technique will be used to select the trees, but instead of using
all the variables from the input vector, only a random subset
will be used when the split is performed.

The split, in the random forest case, will use only a subset
of Xk instance, which will be selected randomly, with p
number of variables, q ∈ {1, . . . , p}:

X ′k = {x1, . . . , xq, . . . , xp} (12)

where, X ′k ⊆ Xk , p ≈
√
n and p < n.

When building the random forest model, pmust be strictly
lower than n, and in most of the cases it will consider a minor-
ity of all the available variables in the input set. This is the
main idea of the random forest model, compared to bagging.
Since it will select all the time a random sample of variables,
it will not be affected so hard by very strong predictors, which
will decrease the number of highly correlated trees and the
reduction in variance will be higher.

D. BOOSTING
Boosting is also a method based on decision tree which tries
to improve the overall predictions. Boosting is a technique
that can be used in multiple machine learning scenarios,
either for classification or for regression problems. Boosting
models work in a very similar way to bagging models, but

VOLUME 10, 2022 68421



A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

instead of building separate decision trees, it will grow them
sequentially. Instead of creating multiple trees from the same
dataset, each tree will be created based on the information
from previous decision trees. The model is fitted on a mod-
ified state of the initial dataset, instead of creating separate
subsets, like in the bootstrapping procedure. We choose two
boosting algorithms, adaptive boosting and gradient boosting,
as described next.

The adaptive boosting (AdaBoost) algorithm variation as
described in [37]:

1) Assign weight to each training set instance, wi = 1,
i ∈ {1, . . . ,N }.

2) Compute probability of training instance i being in
the training set, pi =

wi∑N
j=1 wi

. Pick a training set by

selecting a number in the interval
[
0,
∑N

j=1 wi
]
. The

selected number corresponding to i will determine the
training set.

3) Create regression tree from the selected training set.
The model will define a hypothesis: ht : X → y.

4) Fit the model through the training set and get predic-
tions, ypi (X) with i ∈ {1, . . . ,N }.

5) Compute loss: Li = 1− exp
[
−
∣∣ypi (Xi)−yi∣∣

D2

]
where D =

sup
∣∣ypi (Xi)− yi∣∣ with i ∈ {1, . . . ,N }.

6) Compute average loss: L̄ =
∑N

i=1 Lipi.
7) Compute measure of confidence: β = L̄

1−L̄
.

8) Update weights: wi→ wiβ1−Li ;
9) At each step, the decision tree will make a predic-

tion for input X , ht with t ∈ {1, . . . ,B} and B
being the number of trees. The cumulative prediction
based on B is hf = inf

{
y ∈ Y :

∑
t:ht≤y log

(
1
βt

)
≥

1
2

∑
t log

(
1
βt

)}
. Each tree t will have a predic-

tion and a measure of confidence associated to it.
The predictions will be relabeled in the following
way y1i < · · · < yti < · · · < yBi, with t ∈ {1, . . . ,B}.
Then, log

(
1
βt

)
will be summed up until the inequality

will be satisfied for the smallest t and the prediction for
t will the considered as the ensemble prediction.

10) If the stopping criterion is not reached, repeat from
the step 2, otherwise exit. The stopping criterion is
based on the average loss, which should be less than
a threshold.

The gradient boosting algorithm based on Friedman’s [38]
proposal is:

1) Set f̂0 to a constant value, where f̂ is the estimate
function and f̂0 is the initial estimation.

2) For k ∈ {1, . . . ,B}:

2.1) Calculate negative gradient gk (x), where
gk (x) = Ey

[
∂L(y,f (X ))
∂f (X )

∣∣∣X]
f (X)=f̂k−1(x)

with Ey
referring to the expectation over the whole dataset
and L (y, f ) being the generic loss function.

2.2) Train the new learner h (X , θk).

2.3) Determine the best step size for the iteration:

ρk=argmin
ρ

N∑
i=1

cL
[
yi, f̂k−1 (Xi)+ρh (Xi, θk)

]
2.4) Update the learner estimate function f̂k ← f̂k−1+

ρkh (X , θk).
2.5) If the stopping criterion is not reached, repeat

from the step 3, otherwise exit.

E. KNN
The KNN algorithm is one of the basic machine learn-
ing methods. A detailed mathematical approach to KNN is
described in [39]. The main idea is to find the nearest data
point, in the training dataset, for the new data point that must
be classified or determined. KNN can be applied both for
regression and classification problems. If it is a classification
problem, the most frequent value in the k-nearest data points
can be used as the prediction value, and if it is a regression
problem, then the mean on the k-nearest values can be used.
In order to find the k-nearest data point, the algorithm will
calculate the distance between the two data points.
The KNN algorithm does not actually involve a training

stage, the distance between the current data point and the
other data points from the dataset will be calculated at the
prediction time. So, the y target variable will not be used in
the training part.
If we consider the current data point

X∗ =
(
x∗1 , . . . , x

∗
k , . . . , x

∗
n
)
, for each data point Xi, the

distance D (X∗,Xi) will be calculated, with i ∈ {1, . . . ,N }.
There are multiple methods for calculating the distance:

• Euclidian Distance,

D
(
X∗,Xi

)
=

√∑n

k=1

(
x∗k − xij

)2 (13)

• Manhattan Distance,

D
(
X∗,Xi

)
=

∑n

k=1

∣∣x∗k − xij∣∣ (14)

• Chebyshev Distance,

D
(
X∗,Xi

)
= maxnk=1

∣∣x∗k − xij∣∣ (15)

• Minkowski Distance,

D
(
X∗,Xi

)
=

(∑n

k=1

∣∣x∗k − xij∣∣p) 1
p

(16)

where p is a parameter that can be defined in the
algorithm.

There is not a procedural algorithmic approach to define
the value of the k parameter. It can be chosen based on
some research analysis for a particular problem. Also, the
over-fitting issue must be taken into consideration for KNN.
One valid solution is to use cross-validation, based on a
separate validation training set. Usually, the default value is
set to 5, as in the sklearn Python module.

68422 VOLUME 10, 2022



A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

IV. EXPERIMENTAL METHODOLOGY AND RESULTS
This section presents how we obtained the dataset, the struc-
ture of the dataset, the evaluation metrics and an analysis of
the performance for the proposed machine learning models
and their parameter tunning.

A. METHODOLOGY
This subsection explains how the data was gathered and
presents the metrics used in our models’ evaluation.

The dataset used for training and evaluation was generated
based on Gazebo [40], a virtual environment simulator. It is
a robot simulation tool which offers accurate and efficient
simulations that is using the same Robotic Operating System
(ROS) [41] platform as the physical AGV prototype. The
training and evaluation data was generated in a static envi-
ronment. The vehicle was moving along, generating about
30 thousand frames of data. Each frame corresponds to a
vector of 720 entries representing the distance from the vehi-
cle to the closest object or wall in the static environment.
The angle in which the distance was measured is defined
by the order in the vector, so the first entry is the distance
corresponding to zero angle degrees, the second entry is the
distance corresponding to 0.5 angle degrees, and so on until
the last element in the vector corresponding to 359.5 angle
degrees.

In summary, the dataset can be represented as a data table,
with 30200 entries, and 720 columns, where the columns
represent the angle (in degrees) in which the distance was
measured.

All the training and testing operations have been exe-
cuted on a Linux machine with the following configuration:
16GB of memory and Intel(R) Core(TM) i5¬6500 CPU with
4 cores clocked at 3.20GHz.

Let’s consider the test dataset Dt with N number of
instances, Dt =

{(
X (t)1 ,Y (t)1

)
, . . . ,X (t)N ,

(
Y (t)N

)}
. Each

instance X (t)i consists of a vector on n variables X (t)i =

(x1, . . . , xk , . . . , xn), and each target instance Y (t)i consists
of a vector of m variables Y (t)i = (y1, . . . , yl, . . . , ym) with
k ∈ {1, . . . , n}, l ∈ {1, . . . ,m} and i ∈ {1, . . . ,N }.
We will consider Ŷi to be the predicted vector for the input
instance X (t)i .
According to recent surveys on missing data in machine

learning [28], [42], the most popular evaluation methods are
Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Square Error (RMSE) and Area Under the
Curve (AUC). To evaluate our methods, we choose two
of them: MAE and RMSE. The evaluation metrics will be
used to compare the actual vector Y (t)i and the predicted
vector Ŷi:

• MAE is the mean of the absolute difference between
the actual and predicted value for all instances in the
dataset [43].

MAE
(
Y (t), Ŷ

)
=

1
N

∑N

i=1

∣∣∣Y (t)i − Ŷi∣∣∣ (17)

FIGURE 4. Distances used by KNN with 3 neighbors and the kd_tree
algorithm.

• RMSE returns the square root of the mean squared error.
As the residual error increases, RMSE will penalize
more compared to MAE.

RMSE
(
Y (t), Ŷ

)
=

√
1
N

∑N

i=1

(
Y (t)i − Ŷi

)2
(18)

B. EXPERIMENTAL RESULTS
For the experimental results we are using the dataset pre-
sented in the previous subsection. First, we will present the
fine-tunning of the hyperparameters for the proposed meth-
ods and afterwards, a comparison of these methods in terms
of performance will be provided.

The first algorithm we used is the KNN implementation
using KNeighborsRegressor of the scikit-learn Python mod-
ule. This implementation has several parameters that can
be fine-tuned: number of neighbors, metric (distance) and
the algorithm to compute the nearest neighbors. The library
provides three choices in terms of algorithm selection to
compute the nearest neighbors: BallTree (ball_tree), KDTree
(kd_tree) and the brute algorithm. We evaluated these algo-
rithms with the default Minkowski distance and 3 neighbors.
The evaluations show that the used algorithm does not have
any meaningful impact on our results. However, if we are to
compare the time required for training and prediction, the
kd_tree algorithm is the best choice, with only 61 seconds
necessary in the evaluation phase.

The next parameter is the distance formula used by the
algorithm to compute the distance between data points.
In Figure 4 it can be observed that the Minkowski distance
has the best results, with the Manhattan distance perform-
ing similarly. The Chebyshev distance generates the worst
results, with significantly higher errors compared to any other
distance formula.

From Figure 5 it can be observed that the optimal number
of neighbors for the KNN algorithm is 3 if both MAE and
RMSE are taken into consideration. However, if we consider
only the MAE, then a KNN with only 1 neighbor seems to be
the best performing algorithm.

The Decision Trees are also implemented using the same
module. Compared to all the other algorithms presented,
these have a higher number of parameters that can be tuned.

VOLUME 10, 2022 68423



A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

FIGURE 5. Number of neighbors for KNN with Minkowski distance and
kd_tree algorithm.

FIGURE 6. Max_depth for the decision tree regressor using
min_samples_split = 8.

The splitter parameter represents the way in which a split is
performed in each node. There are two split options: random
or best. Using random splits yields mediocre results com-
pared to using the best split, which has significantly higher
results. The second and third parameters that we can vary
are max_depth and min_samples_split, which, as presented
in the following figures, are highly correlated. As the name
suggests, the max_depth parameter represents the maximum
depth of the tree and, if the default value – None – is
used, it will extend the tree until its leaves are pure. The
min_samples_split parameter represents the minimum num-
ber of samples required before a split operation on a node is
performed.

In Figures 6 and 7, different values for depth have been
analyzed for both min_samples_split being 8 and 16, respec-
tively. In both cases, there is a substantial improvement by
increasing the depth from 10 to 20, and almost no differ-
ence for higher depth values. A maximum depth of 20 nets
us the best results, with an MAE of 291.5 when using a
min_samples_split of 8 and 295.42 when min_samples_split
is 16.

Using a max_depth of 20, we tried to identify the opti-
mum value for the min_samples_split variable. As it can
be observed in Figure 8, there is little to no improvement
of MAE using a different min_samples_split value, a value

FIGURE 7. Max_depth for the decision tree regressor using
min_samples_split = 16.

FIGURE 8. Varying min_samples_split for the decision tree regressor
using max_depth = 20.

of 8 representing the lowest error of 291.5. However, if we
look at RMSE, we can observe a significant improvement,
obtaining an error of 461.52 if we use a min_samples_split
of 16.

Thus, the optimal Decision Tree configuration consists of
a max_depth of 20 and a min_samples_split of 16.

The next analyzed algorithm is the Bagging Regressor
implementation of the scikit-learns module. One parame-
ter was varied for this algorithm which is the number of
estimators that should be used in the ensemble process.
As it can be observed in Figure 9, the more estimators
are used, the lower the errors will be. However, with each
additional estimator used, the training time will increase
exponentially.

The Random Forest model is based on the baggingmethod,
in which a subset of the input vector will be used when
choosing a training sample from the dataset. Like all the other
presented methods, it is implemented using the scikit-learn
package.

For this algorithm we varied the number of estimators,
representing the number of trees in our algorithm, and the
maximum depth of the trees. As it is depicted in Figure 10,
better results are obtained with more trees and a depth of
100 is the best choice since there is no significant increase
in the overall results if we are using a higher depth than 100.

68424 VOLUME 10, 2022



A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

FIGURE 9. Number of estimators used for bagging regressor.

FIGURE 10. The number of estimators for random forest regressor with
max_depth = 200.

FIGURE 11. Results of all machine learning models used.

Increasing the number of the trees will lead to increasingly
high training times.

Now that we presented all the algorithms and their optimal
parameters, let us evaluate how they perform comparatively.
Additionally, we tested the AdaBoost and XGBoost imple-
mentations of Adaptive Boosting andGradient Boosting from
the skicit-learns module.

From Figure 11 it can be observed that the best performing
algorithm in terms of MAE is the KNNmodel. If RMSE is to
be considered, which is more sensitive to outliers compared
to MAE, it can be seen a shift in the best performing models,
with the XGBoost model being the top performing algorithm,

FIGURE 12. The structure of the neural network.

TABLE 2. Running times.

followed by Random Forest and the Bagging models. KNN
has slightly worse performance compared to Random Forest
and Bagging. AdaBoost is the weakest performing model.

We also tried to aggregate the best performing models into
ametapredictor.We did not consider the AdaBoost model due
to its high error and running time and the KNN model due
to its high running time (see Table 2). Thus, the predictor
consisted of a neural network composed of 1 input layer
(4 neurons), 1 hidden layer (12 neurons by default), and one
output neuron, as depicted in Figure 12.

All these neurons are fully connected, and the activation
function used is ReLU since it is able to provide output in
the [0,∞) interval. The input values represent the prediction
of each algorithm for a specific cloud point and the output
represents the estimated distance. The network was trained
for 850 epochs. Figure 13 presents the effect of variating the
number of hidden layer neurons. As we can observe, with 12
neurons we obtained the best results, but without significant
differences. The metapredictor, failed to improve the overall
results of the models, being outperformed by XGBoost.

Table 2 presents the total running time and the resource
allocation on the whole testing dataset for each considered

VOLUME 10, 2022 68425



A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

TABLE 3. Wilcoxon test.

FIGURE 13. Variating the number of hidden layer neurons.

model. The Bagging, Random Forest and the metapredictor
were the most inefficient in terms of resource allocation.

Table 3 presents the p-value obtained with the Wilcoxon
test. The results show that the differences in performance
between the methods are significant. Unsignificant difference
was observed only between the Bagging and Random Forest
methods. According to the Wilcoxon test, the results of the
XGBoost method are the closest to the real data.

V. CONCLUSION AND FURTHER WORK
This work has provided a research analysis over multiple
machine learningmethods for a multi-output regression prob-
lem. It presented a theoretical perspective on machine learn-
ing algorithms focusing on the substitution ofmissing LiDAR
data for better AGV localization. Then, the MAE and RMSE
evaluation metrics were provided. Most of the algorithms that
were used are based on decision trees and ensemble trees,
including bagging methods and boosting techniques. More
exactly, the random forest, adaptive boosting and gradient
boosting algorithms were considered. Another model that
was analyzed is KNN, which is based on a simple search over
the whole dataset, and a distance measurement.

The evaluation was performed on a dataset obtained
through simulation using Gazebo and ROS. By analyzing
the results, the XGBoost algorithm has provided the best
performance. On the other hand, a simple decision tree model
seems to give good results if a tradeoff between performance
and prediction time has to be made. The KNN algorithm

is also performing pretty well, especially because we are
experimenting in a static environment.

As further research, we plan to evaluate deep neural net-
works considering the temporal nature of our dataset. Another
direction is to try to predict the next frame and check if it is a
more optimal solution instead of the prediction of the missing
data in the current frame. As our dataset was generated using
a static environment, we also plan to generate a new dataset,
which not only will be larger but will also incorporate the
dynamics of a real environment. The sensor fusion approach
is also analyzed.

ACKNOWLEDGMENT
The authors express their thanks to Nicolae Daniel Pop
and Radu Trimbitas for their help provided in the statistical
evaluation.

REFERENCES
[1] G. Grisetti, C. Stachniss, and W. Burgard, ‘‘Improved techniques for grid

mapping with Rao-Blackwellized particle filters,’’ IEEE Trans. Robot.,
vol. 23, no. 1, pp. 34–46, Feb. 2007, doi: 10.1109/TRO.2006.889486.

[2] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, ‘‘A flexible
and scalable SLAM system with full 3D motion estimation,’’ in Proc.
IEEE Int. Symp. Saf., Secur., Rescue Robot., Nov. 2011, pp. 155–160, doi:
10.1109/SSRR.2011.6106777.

[3] W. Hess, D. Kohler, H. Rapp, and D. Andor, ‘‘Real-time loop closure
in 2D LiDAR SLAM,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2016, pp. 1271–1278, doi: 10.1109/ICRA.2016.7487258.

[4] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source
SLAM system for monocular, stereo, and RGB-D cameras,’’ IEEE
Trans. Robot., vol. 33, no. 5, pp. 1255–1262, Oct. 2017, doi:
10.1109/TRO.2017.2705103.

[5] C. Debeunne and D. Vivet, ‘‘A review of visual-LiDAR fusion based
simultaneous localization and mapping,’’ Sensors, vol. 20, no. 7, p. 2068,
2020, doi: 10.3390/s20072068.

[6] T.-H. Kim and T.-H. Park, ‘‘Placement optimization of multiple
LiDAR sensors for autonomous vehicles,’’ IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 5, pp. 2139–2145, May 2020, doi:
10.1109/TITS.2019.2915087.

[7] M. Sualeh and G.-W. Kim, ‘‘Dynamic multi-LiDAR based multiple object
detection and tracking,’’ Sensors, vol. 19, no. 6, p. 1474, 2019, doi:
10.3390/s19061474.

[8] D. B. Rubin, ‘‘Inference and missing data,’’ Biometrika, vol. 63, no. 3,
pp. 581–592, 1976, doi: 10.2307/2335739.

[9] C. A. Leke and T. Marwala,Deep Learning andMissing Data in Engineer-
ing Systems. Cham, Switzerland: Springer, 2019, doi: 10.1007/978-3-030-
01180-2.

[10] Y. Zhang and P. J. Thorburn, ‘‘Handling missing data in near real-time
environmental monitoring: A system and a review of selected meth-
ods,’’ Future Gener. Comput. Syst., vol. 128, pp. 63–72, Mar. 2022, doi:
10.1016/j.future.2021.09.033.

68426 VOLUME 10, 2022

http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1109/SSRR.2011.6106777
http://dx.doi.org/10.1109/ICRA.2016.7487258
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.3390/s20072068
http://dx.doi.org/10.1109/TITS.2019.2915087
http://dx.doi.org/10.3390/s19061474
http://dx.doi.org/10.2307/2335739
http://dx.doi.org/10.1007/978-3-030-01180-2
http://dx.doi.org/10.1007/978-3-030-01180-2
http://dx.doi.org/10.1016/j.future.2021.09.033


A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

[11] B. Agbo, H. Al-Aqrabi, R. Hill, and T. Alsboui, ‘‘Missing data imputation
in the Internet of Things sensor networks,’’ Future Internet, vol. 14, no. 5,
p. 143, May 2022, doi: 10.3390/fi14050143.

[12] Y.-F. Zhang, P. J. Thorburn, W. Xiang, and P. Fitch, ‘‘SSIM—A deep
learning approach for recovering missing time series sensor data,’’
IEEE Internet Things J., vol. 6, no. 4, pp. 6618–6628, Aug. 2019, doi:
10.1109/JIOT.2019.2909038.

[13] C. Velasco-Gallego and I. Lazakis, ‘‘Real-time data-driven missing data
imputation for short-term sensor data of marine systems. A compar-
ative study,’’ Ocean Eng., vol. 218, Dec. 2020, Art. no. 108261, doi:
10.1016/j.oceaneng.2020.108261.

[14] A. Chong, K.-P. Lam, W. Xu, O.-T. Karaguzel, and Y. Mo, ‘‘Imputation of
missing values in building sensor data,’’ in Proc. ASHRA IBPSA-USA Sim-
Build Building Perform. Modeling Conf., 2016, vol. 6, no. 1, pp. 407–414.
[Online]. Available: https://ideaslab.io/publication/chong-2016-missing/

[15] D. Bertsimas, C. Pawlowski, and Y. D. Zhuo, ‘‘From predictive meth-
ods to missing data imputation: An optimization approach,’’ J. Mach.
Learn. Res., vol. 18, no. 1, pp. 7133–7171, 2017. [Online]. Available:
https://dl.acm.org/doi/abs/10.5555/3122009.3242053

[16] S. Jäger, A. Allhorn, and F. Bießmann, ‘‘A benchmark for data impu-
tation methods,’’ Frontiers Big Data, vol. 4, p. 48, Jul. 2021, doi:
10.3389/fdata.2021.693674.

[17] I.-H. Dinwoodie, ‘‘Missing sensor network data,’’ Commun. Statist.,
Case Stud., Data Anal. Appl., vol. 5, no. 2, pp. 146–152, 2019, doi:
10.1080/23737484.2018.1563513.

[18] L. Ehrlinger, T. Grubinger, B. Varga, M. Pichler, T. Natschlager, and
J. Zeindl, ‘‘Treating missing data in industrial data analytics,’’ in Proc.
13th Int. Conf. Digit. Inf. Manage. (ICDIM), Sep. 2018, pp. 148–155, doi:
10.1109/ICDIM.2018.8846984.

[19] X. Yan, H. Xie, and W. Tong, ‘‘A multiple linear regression data predicting
method using correlation analysis for wireless sensor networks,’’ in Proc.
Cross Strait Quad-Regional Radio Sci. Wireless Technol. Conf., Jul. 2011,
pp. 960–963, doi: 10.1109/CSQRWC.2011.6037116.

[20] N. U. Okafor and D. T. Delaney, ‘‘Missing data imputation on
IoT sensor networks: Implications for on-site sensor calibration,’’
IEEE Sensors J., vol. 21, no. 20, pp. 22833–22845, Oct. 2021, doi:
10.1109/JSEN.2021.3105442.

[21] G. Boquet, A. Morell, J. Serrano, and J. L. Vicario, ‘‘A variational
autoencoder solution for road traffic forecasting systems: Missing data
imputation, dimension reduction, model selection and anomaly detection,’’
Transp. Res. C, Emerg. Technol., vol. 115, Jun. 2020, Art. no. 102622, doi:
10.1016/j.trc.2020.102622.

[22] Y. Liu, T. Dillon, W. Yu, W. Rahayu, and F. Mostafa, ‘‘Missing
value imputation for industrial IoT sensor data with large gaps,’’ IEEE
Internet Things J., vol. 7, no. 8, pp. 6855–6867, Aug. 2020, doi:
10.1109/JIOT.2020.2970467.

[23] C. Robert, C. William, and T. Irma, ‘‘STL: A seasonal-trend decomposi-
tion procedure based on loess,’’ J. Off. Statist., vol. 6, no. 1, pp. 3–73, 1990.

[24] A. Gonzalez-Vidal, P. Rathore, A. S. Rao, J. Mendoza-Bernal,
M. Palaniswami, and A. F. Skarmeta-Gomez, ‘‘Missing data imputation
with Bayesian maximum entropy for Internet of Things applications,’’
IEEE Internet Things J., vol. 8, no. 21, pp. 16108–16120, Nov. 2021, doi:
10.1109/JIOT.2020.2987979.

[25] S. Royo andM. Ballesta-Garcia, ‘‘An overview of LiDAR imaging systems
for autonomous vehicles,’’ Appl. Sci., vol. 9, no. 19, p. 4093, Sep. 2019,
doi: 10.3390/app9194093.

[26] C. Bohak, M. Slemenik, J. Kordež, and M. Marolt, ‘‘Aerial LiDAR data
augmentation for direct point-cloud visualisation,’’ Sensors, vol. 20, no. 7,
p. 2089, Apr. 2020, doi: 10.3390/s20072089.

[27] C. Sazara, R. V. Nezafat, and M. Cetin, ‘‘Offline reconstruction of missing
vehicle trajectory data from 3D LiDAR,’’ in Proc. IEEE Intell. Vehicles
Symp. (IV), Jun. 2017, pp. 792–797, doi: 10.1109/IVS.2017.7995813.

[28] H. Borchani, G. Varando, C. Bielza, and P. Larrañaga, ‘‘A survey on
multi-output regression,’’ Wiley Interdiscipl. Rev., Data Mining Knowl.
Discovery, vol. 5, no. 5, pp. 216–233, Sep. 2015, doi: 10.1002/widm.1157.

[29] D. Kocev, S. Džeroski, M. D. White, G. R. Newell, and P. Griffioen,
‘‘Using single- and multi-target regression trees and ensembles to model
a compound index of vegetation condition,’’ Ecol. Model., vol. 220, no. 8,
pp. 1159–1168, Apr. 2009, doi: 10.1016/j.ecolmodel.2009.01.037.

[30] Z. Han, Y. Liu, J. Zhao, and W. Wang, ‘‘Real time prediction for converter
gas tank levels based on multi-output least square support vector regres-
sor,’’ Control Eng. Pract., vol. 20, no. 12, pp. 1400–1409, Dec. 2012, doi:
10.1016/j.conengprac.2012.08.006.

[31] D. Kuznar, M. Martin, and B. Ivan, ‘‘Curve prediction with kernel regres-
sion,’’ in Proc. 1st Workshop Learn. Multi-Label Data, 2009, pp. 61–68.

[32] D. Kocev, M. Ceci, and T. Stepišnik, ‘‘Ensembles of extremely randomized
predictive clustering trees for predicting structured outputs,’’Mach. Learn.,
vol. 109, no. 11, pp. 2213–2241, Nov. 2020, doi: 10.1007/s10994-020-
05894-4.

[33] D. Kocev, C. Vens, J. Struyf, and S. Džeroski, ‘‘Tree ensembles for pre-
dicting structured outputs,’’ Pattern Recognit., vol. 46, no. 3, pp. 817–833,
Mar. 2013, doi: 10.1016/j.patcog.2012.09.023.

[34] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifica-
tion and Regression Trees, 1st ed. Evanston, IL, USA: Routledge, doi:
10.1201/9781315139470.

[35] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996, doi: 10.1007/BF00058655.

[36] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001, doi: 10.1023/A:1010933404324.

[37] H. Drucker, ‘‘Improving regressors using boosting techniques,’’ in Proc.
ICML, vol. 97, 1997, pp. 107–115.

[38] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001, doi:
10.1214/aos/1013203451.

[39] T. Cover and P. Hart, ‘‘Nearest neighbor pattern classification,’’ IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967, doi:
10.1109/TIT.1967.1053964.

[40] N. Koenig and A. Howard, ‘‘Design and use paradigms for Gazebo,
an open-source multi-robot simulator,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., vol. 3, Oct. 2004, pp. 2149–2154, doi:
10.1109/IROS.2004.1389727.

[41] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, ‘‘ROS: An open-source robot operating system,’’ in Proc.
ICRA Workshop Open Source Softw., 2009, vol. 3, no. 3, p. 5.

[42] T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and
O. Tabona, ‘‘A survey on missing data in machine learning,’’ J. Big Data,
vol. 8, no. 1, p. 140, Dec. 2021, doi: 10.1186/s40537-021-00516-9.

[43] C. Sammut and G. I. Webb, ‘‘Mean absolute error,’’ in Encyclopedia of
Machine Learning. Boston, MA, USA: Springer, 2010, doi: 10.1007/978-
0-387-30164-8_525.

ARPAD GELLERT received the M.Sc. and Ph.D.
degrees in computer science from the Lucian
Blaga University of Sibiu, in 2003 and 2008,
respectively. He worked as a Visiting Researcher
in Barcelona andMilano. Previously, he was a Java
Developer at Multimedia Capital Romania. He is
currently working as an Associate Professor with
the Computer Science and Electrical Engineering
Department, Lucian Blaga University of Sibiu.
He developed as a Project Manager a research

grant supported by the Romanian National Council of Academic Research
and four internal grants. He published five books and over 50 scientific
papers in some prestigious journals and international top conferences and
acquired more than 300 citations. His research interests include computer
architecture, smart buildings and factories, web mining, and image process-
ing. He was a member of several research grants. He is also a member of an
ongoing Hasso Plattner Excellence Research Grant. He received in 2010 the
‘‘Ad Augusta Per Angusta’’ prize awarded by the Lucian Blaga University of
Sibiu for Excellence in Scientific Research. More information can be found
at: http://webspace.ulbsibiu.ro/arpad.gellert.

DARIUS SARBU received the B.Sc. and M.Sc.
degrees in computer science from the Lucian
Blaga University of Sibiu, in 2019 and 2021,
respectively. He is currently working as a Soft-
ware Developer at Elrond Network. Previously,
he worked as a Machine Learning Engineer at
Visma. His research interests include artificial
intelligence, blockchain technologies, and operat-
ing systems.

VOLUME 10, 2022 68427

http://dx.doi.org/10.3390/fi14050143
http://dx.doi.org/10.1109/JIOT.2019.2909038
http://dx.doi.org/10.1016/j.oceaneng.2020.108261
http://dx.doi.org/10.3389/fdata.2021.693674
http://dx.doi.org/10.1080/23737484.2018.1563513
http://dx.doi.org/10.1109/ICDIM.2018.8846984
http://dx.doi.org/10.1109/CSQRWC.2011.6037116
http://dx.doi.org/10.1109/JSEN.2021.3105442
http://dx.doi.org/10.1016/j.trc.2020.102622
http://dx.doi.org/10.1109/JIOT.2020.2970467
http://dx.doi.org/10.1109/JIOT.2020.2987979
http://dx.doi.org/10.3390/app9194093
http://dx.doi.org/10.3390/s20072089
http://dx.doi.org/10.1109/IVS.2017.7995813
http://dx.doi.org/10.1002/widm.1157
http://dx.doi.org/10.1016/j.ecolmodel.2009.01.037
http://dx.doi.org/10.1016/j.conengprac.2012.08.006
http://dx.doi.org/10.1007/s10994-020-05894-4
http://dx.doi.org/10.1007/s10994-020-05894-4
http://dx.doi.org/10.1016/j.patcog.2012.09.023
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1186/s40537-021-00516-9
http://dx.doi.org/10.1007/978-0-387-30164-8_525
http://dx.doi.org/10.1007/978-0-387-30164-8_525


A. Gellert et al.: Estimation of Missing LiDAR Data for Accurate AGV Localization

STEFAN-ALEXANDRU PRECUP received the
B.Sc. degree in computer science, in 2020. He is
currently pursuing the M.Sc. degree in com-
puter science with the Lucian Blaga University of
Sibiu.

Since 2019, he has been working as a Research
Assistant at the Lucian Blaga University of Sibiu.
Previously, he worked for two years as a Full-Stack
Software Developer at Transylvania Labs. His
research interests include blockchain technolo-

gies, artificial intelligence, and collaborative systems.

ALEXANDRU MATEI (Graduate Student Mem-
ber, IEEE) received the B.Sc. and M.Sc. degrees
in computer science from the Lucian Blaga Uni-
versity of Sibiu, in 2017 and 2019, respectively,
where he is currently the Ph.D. degree in computer
science.

Since 2018, he has been working as a full-time
Research Assistant at the Lucian Blaga University
of Sibiu, being involved as a member of several
research grants. He contributed to multiple confer-

ence and journal papers. He also participated to various summer schools and
contests. Previously, he worked for two years as an iOS Mobile Software
Developer at KeepCalling, Sibiu. His research interests include digital twins,
robotics, artificial intelligence, and human–computer interaction. He is a
member of the INCON Research Center.

DRAGOS CIRCA is currently pursuing the M.Sc.
degree in advanced computer science with the
Lucian Blaga University of Sibiu. He worked with
the Same University at the DiFiCIL Project—
‘‘Development of Cyber-Physical Social Systems
Based on the Internet of Things for the Fac-
tory of the Future’’ and also working on another
research project within a team of researchers
both as a Developer and as a Research Assistant.
He received multiple awards in various computer

science related competitions and published a paper regarding human inter-
action with HoloLens–AR head-mounted device (HMD). He participated
at BigDat 2018, a winter school in Cambridge, U.K., regarding usage and
collection of large amounts of data. He also participated in a one-month
internship program in Heilbronn, Germany, to further explore VR technolo-
gies and applications in medical and industrial fields and to a winter school
in Barcelona to study robotics.

CONSTANTIN-BALA ZAMFIRESCU received
the Ph.D. degree in automation and control from
the ‘‘Politehnica’’ University Bucharest, in 2007.
Since 1998, he has been with the Computer
Science and Electrical Engineering Department,
Lucian Blaga University of Sibiu, where he is
currently leading as a Full Professor with the
INCON Research Center. He also worked as an
Invited Researcher in Austria, Spain, Belgium, and
Germany, participating as a principal investigator

in many international projects. He is trained in foresight methods by UNIDO.
His current research interests include multi-agent systems, cyber physical
social systems, and decision support systems. He is a member of IFAC TC
5.4 ‘‘Large Scale and Complex Systems’’ and IEEE TC on Computational
Collective Intelligence.

68428 VOLUME 10, 2022


