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Abstract— Over the last years, a steady increase in both domestic electricity consumption 

and in the adoption of personal clean energy production systems has been observed 
worldwide. By analyzing energy consumption and production on photovoltaic panels 
mounted in a house, this work focuses on finding patterns in electrical energy consumption 
and devising a predictive model. Our goal is to find an accurate method to predict electrical 
energy consumption and production. Being able to anticipate how consumers will use energy 
in the near future, homeowners, companies and governments may optimize their behavior 
and the import and export of electricity. We evaluated the ARIMA and TBATS statistical 
prediction methods and compared them with other models on datasets from a household 
equipped with photovoltaics and an energy management system. The evaluation results have 
shown a mean absolute error of 73.62 Watts for the TBATS model, which is far better than 
the one obtained with neural forecasting methods. 
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I. INTRODUCTION 

Environmental degradation and energy efficiency represent one of the big challenges of 
today’s society. Taking into consideration the expansion of the IoT (Internet of Things) with 
more than 95 billion interconnected devices expected in 2025, some grim estimates predict 
that, without a reduction in the consumption for all devices, in 2040 the energy required will 
exceed that which will be produced [1]. Among the reasons that led to the increase in energy 
consumption in buildings (over 40% in the EU and US) [2] we recall: population growth, 
COVID-19 which limited mobility and forced people to spend more time indoors, and the 
global climate change. 

A more efficient production and use of electricity reduces both the amount of fuel needed 
to generate electricity and the quantity of greenhouse gases and other air pollutants emitted 
as a result. Environmental specialists and the EU promote energy efficiency within the 
European Union by recommending alternative solutions for producing electricity from 
renewable resources, like solar, geothermal and wind energy that do not affect climate or air 
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pollution. Beyond the social character regarding the effect on the environment of the 
electricity production and consumption, the economic character must also be taken into 
account. For example, for regional electricity supply agencies, forecasting electricity 
consumption at agency level is very important. The average monthly deviation (AMD) 
represents a key performance indicator: 

𝐴𝑀𝐷 = 100 ⋅ (𝐴𝑀𝐶 − 𝑀𝐹)/𝑀𝐹 (1) 

where AMC means actual monthly consumption of electricity and MF stands for monthly 
forecast of electricity. Regional electricity distribution companies (at least in Romania) rely 
on the AMD indicator for an accurate estimate of the monthly consumption in order to be 
able to buy the exact amount of electricity needed for the region. If too much energy is 
bought, the distribution operator has to sell (most often in loss), and if they initially buy too 
little for that month, they have to buy later to cover the requests, possibly at a higher price. 
Under these conditions, it is desirable that the AMD is very close to 0, which means an 
almost perfect prediction of energy consumption for the next month. 

Among the external factors that can influence the fluctuating energy consumption, we 
mention: 

 Variations of weather conditions and implicitly of temperatures, precipitation and 
cloudiness. Thus, the winter that came too early or left relatively late in certain years, 
in comparison with the usual case (average), can cause the thermal heater to start up 
additionally. Analogously, a long summer can determine additional electricity 
consumption from heating, ventilation, air conditioning (HVAC). 

 A harsher winter during legal (national) or religious winter holidays, when many 
people are on vacation and staying longer at home, using more electricity. 

 Migration of large consumers to other distribution operators or arrival (contracting) 
of new consumers to the distribution operator. 

 Intensification of industrial or production activities in the night shifts, especially (but 
not only) in the period before major events (end of year, Christmas or Easter) when 
firms aim to match the increased demand and generate additional revenue. 

 The architecture of buildings, the character and degree of occupancy, family 
composition, the living behavior and the regime of use of the lighting and HVAC 
systems [3]. 

 Unexpected breakdowns in power stations or on low and medium voltage power 
lines. 

Regional agencies aim at maintaining an average monthly deviation of the electricity 
consumption forecast of approx. 5% for economic reasons. For example, for a small city 
with a monthly consumption of approximately 120,000 MWh, an improvement in prediction 
accuracy by only 0.13% results in a cost saving of 1500 Euros. 

Forecasting energy production and consumption can help make automated decisions in 
households with photovoltaic panels installed, to reduce power consumption from the grid 
and also ameliorate the carbon dioxide footprint. Nowadays, photovoltaics allow 
decentralized electricity production at a low cost. When energy storage systems are 
available, the consumption of self-produced electricity can be significantly increased with 
an intelligent energy management system able to streamline electricity production and 
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consumption [4]. As not all houses are equipped with photovoltaic panels and storage 
systems, an evaluation of the potential savings achievable could be a factor influencing the 
decision to invest into such systems. 

With the trend of embedded devices being more and more interconnected in the IoT, we 
can expect forecasting algorithms to be present in such devices as well, and to be able to 
influence and give indications on electrical energy consumption behaviors. One such 
application might be in photovoltaic panels. Like all "smart" devices, it may have downsides, 
like security vulnerabilities, but its pros outweigh the cons. These "smart" capabilities are 
enhanced by the increasing computational power of embedded devices, through which 
forecasting operations on the consumption and production of electrical energy for a house 
may be made. 

While several methods to forecast aggregated electricity demand have been published [5], 
and the prediction for campuses [6], office buildings [7] and hotels [8] have also been 
addressed, the pattern of electricity usage in a household raises some difficulties owing to 
the small scale, with effects of individual behavior [9]. 

In this stage of our research, the main goal is to determine the best method and its optimal 
configuration (from analysis of different prediction methods) which can be integrated into 
an embedded smart energy management system. The role of such a system is to adjust and 
synchronize through prediction the electricity consumption and production in a smart house. 
Based on predictions of electricity consumption and production, the management system can 
make decisions in order to increase self-consumption from an energy storage system, 
reducing the intake from the power grid and thus decreasing the total annual operating cost, 
with the additional benefit of reducing losses in distribution networks. The energy 
management system may decide to activate some household appliances when cheap 
electricity is available and to delay their activation when only high-cost electricity is 
available. 

Accurate prediction of electricity consumption and production is crucial, since it directly 
influences the efficiency of smart energy management systems and the amount of electricity 
used from self-production. Models for predicting energy demand take into account several 
predictor variables, such as time of day, temperature, season and other social elements. On 
the consumption side, the time of day reflects the diurnal pattern of human activity, while 
on the supply side it relates to sunlight peaks which influence the production of photovoltaic 
panels. The outside temperature is also important when electricity is used for heating and 
cooling. Seasonal cycles will influence all of the above. For the forecasting of such seasonal 
data the ARIMA and TBATS statistical models are good candidates. In this work we 
comparatively present two prediction models – ARIMA and TBATS – applied on the data 
recorded by the FENECON Energy Management System (FEMS) [10] to forecast electricity 
consumption and production in a smart home. We used the same dataset from our previous 
work [4] since we compare the ARIMA and the TBATS statistical prediction methods with 
our previous work. The AutoRegressive Integrated Moving Average (ARIMA) algorithm 
was selected since it is a combination of several other models and can generalize them, 
covering a wide range of possibilities through its parameters. We will analyze several models 
like the ARIMA, Seasonal ARIMA (SARIMA) and ARIMA with external regressors and 
possibly seasonality (SARIMAX). We predict electricity consumption and production at a 



4 
 

granularity of five minutes using these models. For better prediction results then we proceed 
by analyzing the TBATS model. 

The remainder of this paper is organized as follows. Section II reviews the related work. 
Section III presents electricity prediction using the ARIMA and TBATS models. Section IV 
illustrates the experimental methodology and results, studies the impacts and potential 
applications. Section V discusses a case study and a backcasting strategy. Finally, Section 
VI reports conclusions and some possible directions for further study. 

II. RELATED WORK 

In [11], the authors used linear regression analysis and quadratic regression analysis to 
predict hourly and daily energy consumption in a residential building. They observed that 
the longer the interval between the observations, the better the quality of the prediction 
model, which is explained by the fact that the differences between individual effects are 
averaged over the longer time periods. The use of solar radiation improves the coefficient of 
determination, but affects the root mean square error. The authors concluded that quadratic 
regression model can provide better results for shorter intervals, for example on hourly data. 

In [12], the authors propose convolutional neural networks (CNN) used together with long 
short-term memory (LSTM) to predict residential electricity consumption. These methods 
combined together can extract complex electricity consumption features. The CNN can 
extract features of variables that affect the consumption. The outputs of the CNN layers are 
applied as input to the LSTM which can model the irregular trends of the electricity 
consumption. The output of the LSTM layer is then passed to a fully connected layer which 
provides the predicted electricity consumption. In [13], a similar methodology is applied but 
with bi-directional LSTM. In [14], LSTMs are directly used to predict electricity 
consumption and production in a household equipped with photovoltaic panels. In [15], 
CNNs and recurrent neural networks are analyzed in comparison with the SARIMAX 
method in terms of day-ahead building-level load forecasting. The authors concluded that 
the CNN proved to be competitive. 

In [16], Bedi et al. evaluated an Elman recurrent neural network and an exponential model 
for electricity consumption forecasting in IoT-driven buildings. They exploited the 
correlation between the electricity consumption and the ambient temperature along with the 
occupancy of the building. They used for the evaluations as target building a laboratory 
equipped with smart monitoring and control capabilities through IoT technology.  

The original ARIMA model was introduced in 1970 by Box and Jenkins [17], and it is still 
widely used. The forecast R package provides a convenient interface to fitting an ARIMA 
model to data. These fitting and forecasting steps are somewhat equivalent to the "training" 
and "testing" terminology from the domain of neural networks. To model complex 
seasonality, terms of the Fourier series can be used instead of seasonal dummies [18]. Other 
models for predicting the electrical energy consumption and production of a household over 
a period of time include Markov Models [4] and multi-layer perceptrons (MLP) [10]. 

Bouzerdoum et al. investigated a hybrid model (SARIMA-SVM) for short-term power 
forecasting of a small-scale grid-connected photovoltaic plant [19]. Pedro and Coimbra have 
analyzed five different models: Persistent, ARIMA, k-Nearest Neighbors, NNs and Genetic 
Algorithm optimized NNs. They reported the best results with NNs and Genetic Algorithm 
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(or in short form: GA) optimized NNs [20]. Ding et al. have proposed in 2001 a NN system 
forecasting a full day of the future power output of a photovoltaic plant. They report that 
improvements can be made if the day of the forecast is selected to match weather data [21]. 
This approach of selecting the day based on weather data is similar to using dummies in 
ARIMAX models. We would have one set of dummies for sunny days and another one for 
cloudy days. 

For capturing different seasonal periods of a time series, multiple runs of the ARIMA 
algorithm are needed, in which the appropriate seasonality is used. For capturing multiple 
seasonal periods at a time, Fourier terms might be used. Depending on the number of Fourier 
terms included in the regression, the seasonal pattern may be smoother (for fewer terms) or 
more precise (for many terms). 

III. FORECASTING ELECTRICITY PRODUCTION AND CONSUMPTION 

A. Electricity Prediction Using ARIMA 

An ARIMA model is written as: ARIMA(p,d,q) (see [18]), where 𝑝 is the order of the 
autoregressive part, 𝑑 is the number of non-seasonal differences applied, and 𝑞 is the order 
of the moving average part. The model is built according to equation (2): 

𝑦௧
ᇱ =  𝑐 + ∑ 𝜙  𝑦௧ି

ᇱ
ୀଵ + ∑ 𝜃  𝜀௧ି


ୀଵ +  𝜀௧                  (2) 

where: 
 𝑦௧

ᇱ is the differenced series, the degree of differencing being given by the 𝑑 parameter of 
the model; 

 𝑐 is a constant; 
 𝜙𝑦௧ି

ᇱ  are Auto Regressive (AR) terms, their number being defined by the 𝑝 parameter 
of the ARIMA model and they being weighted by the 𝜙 coefficients which are 
computed during the fitting phase; 

 𝜃𝜀௧ି are Moving Average (MA) terms, again determined in number by the 𝑞 parameter 
of the ARIMA model, with the coefficients 𝜃being computed during the fitting phase; 

 𝜀௧ are i.i.d. error terms with zero mean. 
To model seasonal patterns, four other parameters should be added to (2), obtaining an 

ARIMA(p,d,q)(P,D,Q)[m] (see [18], [22], and [23]) also known as SARIMA: 

𝑦௧
ᇱ =  𝑐 + ∑ 𝜙 𝑦௧ି

ᇱ
ୀଵ + ∑ 𝛷୦𝑦௧ିି୦

ᇱ
୦ୀଵ + ∑ 𝜃 𝜀௧ି


ୀଵ + 𝜀௧ + ∑ 𝛩୩𝜀௧ିି୩

୕
୩ୀଵ + 𝜀்ି  (3) 

where: 
 𝑃, 𝐷, 𝑄 are the orders of the autoregressive, differencing and moving average for the 

seasonal part of the data; 
 𝛷𝑦௧ିି

ᇱ  represents one or more Seasonal Auto Regressive terms (SAR), their number 
is defined by the 𝛷 parameter of the SARIMA model and are weighted by the  
coefficients which are computed during the fitting phase of the SARIMA model; 

 𝛩ொ𝜀௧ିିொ represents one or more Seasonal Moving Average terms (SMA), again, their 
number is defined by the Q parameter of the ARIMA model and are weighted by the 𝛩ொ 
coefficients which are computed during the fitting phase of the SARIMA model, 
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similarly to the SAR coefficients 𝛷; 
 𝑚 is fixed to the seasonal period of the data. 

ARIMA and SARIMA models only include information about the time series itself in the 
model. The (S)ARIMAX algorithm incorporates external regressors, writing 𝑦௧

ᇱ = 𝛽𝑥௧ + 𝑛௧
ᇱ , 

where 𝑥௧ is the external regressors time series and  𝛽 is the coefficient, and reinterpreting 
Eqs. (2) and (3) as written for the residuals 𝑛௧

ᇱ  (see [24], [25] and [18]). 

B. Electricity Prediction using TBATS 

The next analyzed model is TBATS (Trigonometric Seasonal, Box-Cox Transformation, 
ARMA residuals, Trend and Seasonality), introduced in [26]. The 
TBATS(𝜔, 𝜑, 𝑝, 𝑞, {𝑚ଵ, 𝑘ଵ}, … , {𝑚் , 𝑘்}) model has the following parameters: ω is the Box-
Cox parameter, φ is the dumping parameter, p and q are the ARMA parameters, 𝑚ଵ, … , 𝑚் 
are the seasonal periods, and 𝑘 is the number of harmonics necessary for the 𝑖th seasonal 
component. 

The Box-Cox transformation 𝑦௧
(ఠ) can be computed using the following formula, with the 

parameter ω: 

y୲
(ன)

= ൝
୷౪

(ಡ)
ିଵ

ன
       , 𝜔 ≠ 0

log( y୲)    ,   ω = 0
                  (4) 

y୲
(ன)

= l୲ିଵ +  φb୲ିଵ +  ∑ s୲ି୫

(୧)
+ 

୧ୀଵ d୲                  (5) 

l୲ =  l୲ିଵ +  φb୲ିଵ + αd୲                  (6) 
b୲ = (1 − φ)b +  φb୲ିଵ +  βd୲                  (7) 

s୲
(୧)

=  s୲ି୫

(୧)
+  γ୧d୲                  (8) 

d୲ =  ∑ γ୧d୲ି୧ + ∑ θ୧ε୲ି୧ + 
୯
୧ୀଵ ε୲

୮
୧ୀଵ                   (9) 

where b is the long-run trend, 𝑏௧  is the short-run trend in period t, 𝑙௧ is the level component 

at time t, 𝑠௧
() is the ith seasonal component at time t, 𝑑௧ is prediction error, 𝜀௧ is a Gaussian 

white noise process with zero mean and constant variance σ2, and α, β, s and γ୧ are the 
smoothing parameters. For a higher flexibility, the trigonometric representation of the 
seasonal components based on Fourier series have been introduced: 

s୲
(୧)

=  ∑ s୨,୲
(୧)୩

୨ୀଵ                   (10) 

s୨,୲
(୧)

=  s୨,୲ିଵ
(୧)

cos λ୨
(୧)

+ s୨,୲ିଵ
∗(୧)

sin λ୨
(୧)

+ γଵ
(୧)

d୲                  (11) 

s୨,୲
∗(୧)

=  −s୨,୲ିଵ
(୧)

sin λ୨
(୧)

+ s୨,୲ିଵ
∗(୧)

cos λ୨
(୧)

+ γଶ
(୧)

d୲                  (12) 

λ୨
(୧)

=  
ଶ୨

୫
                  (13) 

where γଵ
(୧) and γଶ

(୧) are the smoothing parameters, s୨,୲
(୧) is the stochastic level of the ith 

seasonal component, and s୨,୲
∗(୧) is the stochastic growth of the ith seasonal component. 

The TBATS models can decompose seasonal time series into trend, seasonal and irregular 
components. The trigonometric terms from TBATS do not need normalization and the 
overall seasonal component can be decomposed to multiple seasonal components having 
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different frequencies. As it is shown in [26], TBATS allows automated model selection, 
which makes it easier to apply in comparison with ARIMA. 

IV. EXPERIMENTAL RESULTS 

The experimental installation consists of two 12.24 kWp photovoltaics and an 8.5 kWh 
“FENECON by BYD PRO Hybrid” energy storage system, supplying the electricity for a 
household. The data has been collected with a previously developed energy monitoring 
system, called FEMS, and stored in a computer through FENECON Online-Monitoring, as 
it is described in [10]. We used the dataset presented in [10], which consists of five time 
series, called Ph1, Ph2, Ph3, PV1 and PV2. The first three correspond to each phase for 
three-phase current while the last two represent the electrical energy of two photovoltaic 
panels installed in the same household. The sampling frequency is five minutes. Data were 
captured over five months, from January 2015 to May 2015. This means that for each time 
series we have 150 days’ worth of data, with 288 samples per day or about 43200 data points 
in a single time series. For the considerations about granularity explained previously in 
Section III and because the sheer amount of data points makes impractical to apply ARIMA 
to the original time series, we have further transformed the initial data by downsampling it. 
For each of the five time series we created other two, one where we keep a data point every 
hour and one where we keep a data point every two hours from the original time series. As 
we will see, downsampling did not lose too much information, since the results of the 
ARIMA models applied to them will be very similar with those obtained on the initial data. 

Fig. 1 illustrates how the statistical prediction methods are integrated into the energy 
management system. In the first stage, historical data about the produced and consumed 
electricity is collected. In the next stage, the collected data is checked for erroneous values 
and corrected. The data is also encoded in this preprocessing stage. In the forecasting stage, 
the predictor computes the electric power for the next period, based on the available 
historical data. The predicted electricity production and consumption are used to make the 
appropriate decisions in the view of efficient energy management, with positive 
environmental, social and economic impact. 

 

Fig. 1. Energy management system 

As experimental methodology, we analyzed the data by looking at pieces of it, each piece 
being approximately the size of a week, and for avoiding assumptions about the 
representativeness of that week, we always model with ARIMA a single week and produce 
forecasts for several days. This approach also falls in line with the Pareto principle, having 
approximately a week for training and several days for testing. The exact size for the training 
days and test days is determined based on the so-called 80/20 rule [27]. This "week by week" 
forecasting approach is also useful in parallelizing the code. The code is embarrassingly 
parallel since every data chunk is independent of the previous or the next chunk. We can 
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create an ARIMA model for a week and produce forecasts from it without influencing in any 
way the model and predictions for the previous or next week, for which all the data is 
independent. Of course, the parallelization was done using the foreach and doParallel R 
packages. 

Forecasting errors were used for comparing models. When a model is tested on 𝑁 data 
samples, several measures can be used to evaluate its performance [28], including the Mean 
Absolute Error: 

𝑀𝐴𝐸 =
ଵ

ே
∑ |𝑦௧ − ý௧

ே
௧ୀଵ |                              (14) 

Further, this section presents the main results and provides some insight into the causes 
that led to these results. All the experiments were run on a quad-core Intel Core i5 processor 
with 8GB of RAM. 

 

 
Fig. 2. The electrical energy consumption and production for one day (7th January 2015) 
 
First of all, we note (Fig. 2) that the energy consumption (Ph1, Ph2 and Ph3) and 

photovoltaic production (PV1 and PV2) curves have different patterns. The photovoltaic 
production curves are typically smooth, showing peaks around noon depending on weather 
conditions, whereas electricity consumption often shows peaks in the morning and evening. 
This confirms the potential for an energy management system that matches production and 
consumption through smart automated decisions. What follows next are tables that provide 
the main results for each of the time series, together with their downsampled versions, and 
descriptions for each set of results. All the tables from this section will have the same format 
and meanings for the columns, namely: 
 Time series: the series for which we applied the model; 
 Model: the forecasting model applied to the series (this will respect the ARIMA(p,d,q) 

or  ARIMA(p,d,q)(P,D,Q) notations shown in the rest of the paper, where 𝑝 is the order 
of the autoregressive part, 𝑑 is the number of non-seasonal differences applied, and 𝑞 
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is the order of the moving average part, whereas 𝑃, 𝐷, 𝑄 are the orders of the 
autoregressive, differencing and moving average for the seasonal part of the data);  

 𝐾: the number of Fourier terms, a hyphen being shown instead if none were used; 
 Dummies: the dummies configuration in the form of “start:length”, where start 

represents the hour of the start dummy and length shows how many dummies were 
used (in hours), a hyphen being shown instead if none were used; 

 Train and test days: the number of training days for the fitting phase of the algorithm 
and the number of the test days on which the accuracy was tested; 

 MAE. 
Table 1 shows the models chosen for the Ph1 data series, first the series sampled every 

two hours is shown, then the series sampled every one hour, and finally the original series 
sampled every 5 minutes.  

 
Table 1. Models for the Ph1 data series 

Time 
series 

Model K
Dummies 

(start:length) 
Train 
days 

Test 
days

MAE 

2hrs Ph1 ARIMA(1, 0, 0) 2 - 7 2 220.87 

2hrs Ph1 ARIMA(1, 0, 0) 2 12:6 7 2 218.81 

2hrs Ph1 ARIMA(1, 0, 0)(1, 0, 0) 2 - 7 2 223.40 

2hrs Ph1 ARIMA(1, 0, 0)(1, 0, 0) 2 12:6 7 2 222.06 

1hrs Ph1 ARIMA(1, 0, 0) 2 - 7 2 217.44 

1hrs Ph1 ARIMA(1, 0, 0) 2 11:1 7 2 215.51 

1hrs Ph1 ARIMA(1, 0, 0)(1, 0, 0) 2 - 7 2 218.36 

1hrs Ph1 ARIMA(1, 0, 0)(1, 0, 0) 2 11:1 7 2 217.18 

5min Ph1 ARIMA(1, 0, 0) 2 - 7 2 223.15 

5min Ph1 ARIMA(1, 0, 0) 2 11:1 7 2 218.04 

 
For each series, several models have been fit and used for predictions. The results for the 

Ph1 series show that the ARIMA(1,0,0) with K=2 (two Fourier terms) and dummies starting 
at 11:00 and ending at 12:00 is best suited for forecasting the Ph1 data series with the lowest 
errors. The reason for choosing to use the same dummy values as for the hourly sampled 
data set, is simple: the more frequently sampled data set (i.e., the hourly Ph1 series) is a 
closer approximation of the real data than are the series sampled every two hours. 

Next, we will present the results for the Ph2 data series. Table 2 presents the models and 
their errors on the original and down-sampled versions of the Ph2 time series. As shown in 
Table 2, the best results for the original data series are provided by a model that consists of 
a combination of dynamic harmonic regression (in this case with K = 3), non-seasonal 
ARIMA errors with one autoregressive term and dummies starting in the morning hours, 
lasting until noon (8:00 to 11:00). For this series the best results are achieved if we fit the 
model on four days’ worth of data and predict three, thus going a bit against the Pareto 
principle, which stated that we should use 70% or 80% of the data for learning and the rest 
for testing, here the proportions are closer to 60% for the training data and 40% for the test 
data. 
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Table 2. Models for the Ph2 data series 
Time series 

Model K
Dummies 

(start:length) 
Train 
days 

Test 
days MAE 

2hrs Ph2 ARIMA(1, 0, 0) 1 - 7 3 185.72 

2hrs Ph2 ARIMA(1, 0, 0) 1 8:8 7 3 178.53 

2hrs Ph2 ARIMA(1, 0, 0)(1, 0, 0) 1 - 7 3 184.51 

2hrs Ph2 ARIMA(1, 0, 0)(1, 0, 0) 1 8:8 7 3 178.84 

1hrs Ph2 ARIMA(1, 0, 0) 3 - 4 3 159.89 

1hrs Ph2 ARIMA(1, 0, 0) 3 8:7 4 3 157.91 

1hrs Ph2 ARIMA(1, 0, 0)(1, 0, 0) 3 - 4 3 165.76 

1hrs Ph2 ARIMA(1, 0, 0)(1, 0, 0) 3 8:7 4 3 164.03 

5min Ph2 ARIMA(1, 0, 0) 3 - 4 3 163.15 

5min Ph2 ARIMA(1, 0, 0) 3 8:3 4 3 161.40 

 
The results for the Ph3 data series are not presenting any surprise, the best model for this 

series is shown in Table 3, it consists of dynamic harmonic regression with two Fourier terms 
(K = 2) and dummies between 9:00 and 11:00 with a first-order autoregressive ARIMA error.  

Table 3. Models for the Ph3data series 

Time 
series 

Model K 
Dummies 

(start:length) 
Train 
days 

Test 
days MAE 

2hrs Ph3 ARIMA(1, 0, 0) 2 - 7 3 183.13 
2hrs Ph3 ARIMA(1, 0, 0) 2 10:2 7 3 179.03 
2hrs Ph3 ARIMA(1, 0, 0)(1, 0, 0) 2 - 7 3 182.83 
2hrs Ph3 ARIMA(1, 0, 0)(1, 0, 0) 2 10:2 7 3 179.90 
1hrs Ph3 ARIMA(1, 0, 0) 2 - 7 2 179.01 
1hrs Ph3 ARIMA(1, 0, 0) 2 9:2 7 2 172.99 
1hrs Ph3 ARIMA(1, 0, 0)(1, 0, 0) 2 - 7 2 179.53 
1hrs Ph3 ARIMA(1, 0, 0)(1, 0, 0) 2 9:2 7 2 174.30 
5min Ph3 ARIMA(1, 0, 0) 2 - 7 1 187.96 
5min Ph3 ARIMA(1, 0, 0) 2 9:2 7 2 183.96 

 
For this data series, it appears best to fit the model on seven days and predict maximum 

two days or even a single one. For this model, as for the others, the hourly sampled data 
dummies apply best to the original time series. An intermediary conclusion that we can draw 
is the fact that all the phases have similar behaviors, all three of them having similar models 
that fit best. All observations can be deduced from the previous one (first-order auto-
regressive ARIMA model), all are seasonal and the observations that influence the results 
are situated in the first part of the day, morning to noon. This is unsurprising, since at that 
time people prepare for work or have lunch. 

The next two sets of results deal with the PV1 and PV2 data series. These represent the 
electrical energy production of a household that has two photovoltaic panels installed. First, 
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Table 4 shows the results for the PV1 time series and the down-sampled series. What is 
fundamentally different is the time covered by the dummies. Here the interval is directly 
proportional with the interval the sun shines most, which, as shown here by the best model, 
is between 11:00 in the morning and 17:00 in the afternoon (start dummy is 11, and length 
is 6). In this case, we consider the best model to be the one with the lowest overall errors, 
hence: ARIMA(1,0,0) with three Fourier terms and dummies starting at the 11th hour and 
lasting 6 hours. These dummies are necessary to capture the peaks created by the high 
production of electrical energy during the afternoon hours when the sun shines brightest. 
 

Table 4. Models for the PV1 data series 
Time 
series 

Model K 
Dummies 

(start:length) 
Train 
days 

Test 
days 

MAE 

2hrs PV1 ARIMA(1, 0, 0) 2  - 5 2 241.34 

2hrs PV1 ARIMA(1, 0, 0) 2 16:4 5 2 238.33 

2hrs PV1 ARIMA(1, 0, 0)(1, 0, 0) 2  - 5 2 244.64 

2hrs PV1 ARIMA(1, 0, 0)(1, 0, 0) 2 16:4 5 2 242.84 

2hrs PV1 ARIMA(1, 0, 1) 2  - 5 2 242.13 

2hrs PV1 ARIMA(2, 0, 0) 2  - 5 2 241.65 

2hrs PV1 ARIMA(2, 0, 0) 2 16:4 5 2 239.15 

1hrs PV1 ARIMA(1, 0, 0) 2  - 5 2 237.59 

1hrs PV1 ARIMA(1, 0, 0) 2 11:6 5 2 234.52 

1hrs PV1 ARIMA(1, 0, 0)(1, 0, 0) 2  - 5 2 232.71 

1hrs PV1 ARIMA(1, 0, 0)(1, 0, 0) 2 11:6 5 2 230.87 

1hrs PV1 ARIMA(2, 0, 0) 2  - 5 2 237.27 

1hrs PV1 ARIMA(2, 0, 0) 2 11:6 5 2 234.58 

1hrs PV1 ARIMA(3, 0, 0) 2  - 5 2 237.09 

1hrs PV1 ARIMA(3, 0, 0) 2 11:6 5 2 234.80 

5min PV1 ARIMA(1, 0, 0) 2  - 5 2 238.26 

5min PV1 ARIMA(1, 0, 0) 2 16:4 5 2 237.10 

5min PV1 ARIMA(1, 0, 0) 3 11:6 5 2 225.91 

 
The results produced by the models on the PV2 data can be seen in Table 5. The best 

model in this case is ARIMA(1,0,0) with three Fourier terms for modeling the seasonality in 
the data. What is different in this case is the fact that we have chosen as the "best" model the 
one without dummies. Taking into account the similar errors, the reason behind this decision 
was the complexity of the model, hence choosing the simplest one. Apparently, this case is 
modeled sufficiently well by capturing the seasonality with the three Fourier terms and one 
autoregressive term for the errors. Both models for the PV1 and PV2 data work best when 
they are fit on five training days and when predicting two days. 
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Table 5. Models for the PV2 data series 
Time 
series 

Model K 
Dummies 

(start:length) 
Train 
days 

Test 
days 

MAE 

2hrs PV2 ARIMA(1, 0, 0) 2 - 5 2 234.55 

2hrs PV2 ARIMA(1, 0, 0) 2 8:8 5 2 235.44 

2hrs PV2 ARIMA(1, 0, 0)(1, 0, 0) 2 - 5 2 238.04 

2hrs PV2 ARIMA(1, 0, 0)(1, 0, 0) 2 8:8 5 2 239.05 

2hrs PV2 ARIMA(2, 0, 0) 2 - 5 2 234.83 

2hrs PV2 ARIMA(2, 0, 0) 2 8:8 5 2 235.60 

1hrs PV2 ARIMA(1, 0, 0) 3 - 5 2 220.40 

1hrs PV2 ARIMA(1, 0, 0) 3 13:2 5 2 219.32 

1hrs PV2 ARIMA(1, 0, 0)(1, 0, 0) 3 - 5 2 219.20 

1hrs PV2 ARIMA(1, 0, 0)(1, 0, 0) 3 13:2 5 2 219.01 

1hrs PV2 ARIMA(2, 0, 0) 3 - 5 2 220.30 

1hrs PV2 ARIMA(2, 0, 0) 3 13:2 5 2 219.54 

5min PV2 ARIMA(1, 0, 0) 3 - 5 2 220.00 

5min PV2 ARIMA(1, 0, 0) 3 13:2 5 2 220.02 

5min PV2 ARIMA(1, 0, 0) 2 8:8 5 2 232.03 

 
Since the residuals from the regression with the ARIMA models are still presenting some 

higher values, which can lead to lower prediction accuracy, we will further apply the TBATS 
forecasting method (presented in Section III) for an automated selection of the best suited 
model (including the ARMA parameters).  

 

 
Fig. 3. MAE measured with TBATS using a history length of 500 data points on the 

original vs. SQRT data (5 minutes) 
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We have used the original 5 minutes datasets. We have also tried to provide the square 
root (SQRT) of the data to the TBATS model which provides the squared value of its 
prediction, with the goal of reducing the spikes’ magnitude. Thus, we hoped to obtain a 
lower prediction error. Fig. 3 presents the obtained results. As Fig. 3 shows, the root-squared 
data has been better modeled by TBATS, the prediction errors being significantly lower. 
Further, we have analyzed the differences between the 5 minutes, 1 hour and 2 hours SQRT 
data.  

 

 
Fig. 4. MAE measured with TBATS using a history length of 500 data points on the 

SQRT data and considering different sampling frequencies 

 
Fig. 5. MAE measured with TBATS using different history length on the 5 minutes 
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As we can see in Fig. 4, the down-sampled data is much worse than the original 5 minutes 
data, on the TBATS model. Consequently, by using down-sampled data the model is losing 
essential details, which makes it less efficient in predicting electricity production and 
consumption. On the 5 minutes SQRT data we have varied the history length.  Fig. 5 presents 
the results. As Fig. 5 shows, a data history length of 750 is better than 500 in terms of MAE. 
If we further increase the data history length to 1000, on Ph2, PV1 and PV2 the results are 
just slightly better, whereas on Ph1 and Ph3 the results are worse. Therefore, we consider 
the optimal data history length as being 750.  

 

 
Fig. 6.  Plot of the MAE from different types of models 

Finally, Fig. 6 shows a comparison in terms of MAE between the Markov model used in 
[4] and [29], the MLP used in [10], the LSTM used in [14], the Gated Recurrent Unit (GRU) 
used in [30], Bayesian Regression Structural Time Series (BRSTS) model, Regression Tree 
(RT) and the best ARIMA and TBATS models identified in this work. It also presents the 
average of the MAE among all the five time series. On average, the ARIMA model performs 
better than the MLP, it is comparable with the RT, but far worse than the Markov, LSTM, 
GRU and BRSTS models. Apparently, the magnitude of the errors for the MLP, RT and the 
ARIMA methods is similar, while the Markov, BRSTS and TBATS models provide 
exceptionally good results, since their errors are one order of magnitude lower. 

V. DISCUSSION 

To provide an example of how the results of the proposed forecasting methods may be 
actually applied to a household-level smart system, a simple binary decision approach is 
described and evaluated. In this context, the photovoltaic panels are assumed to be coupled 
with a storage subsystem capable to store energy and supplement the grid supply with it at a 
later time. Excess energy can thus be stored during time periods when prices are low and 
retrieved when demand and prices are high. The residential energy management system 
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makes the decision whether to store energy. 
The energy supplied from the grid is assumed to be priced according to two tariffs: Rଵ and 

Rଶ, (with Rଵ  <  Rଶ) both of which are expressed in monetary units per unit of energy (e.g. 
€/Whatt). Tariff 𝑅ଶ is assumed to apply from 8:00 to 18:00 every day excluding Sundays. 
Batteries are supposed to be adequately dimensioned, so they are capable of storing the 
energy generated by photovoltaic panels in one day. The cost of procurement and installation 
𝐶, as well as the slight performance degradation which occurs at every charge/discharge 
cycle, can be modeled by making the hypothesis that the storage system has a lifetime of 𝐿 
hours. The upfront cost can be modeled as an hourly cost 𝑅 = 𝐶/𝐿 of the energy produced 
by the photovoltaics. Next, considering that what really matters are the differences 𝑅ଶ − 𝑅 
and 𝑅ଵ − 𝑅, it will be assumed that both Rଵ and Rଶ incorporate 𝑅, so they will be thought 
of as incremental rates relative to 𝑅. 

The evaluation is performed following a time series cross validation approach. Data is 
considered as being acquired continuously and forecasts are made by using all of the 
available data up to the time of forecasting. An initial time window of 9 weeks is used for 
the initial calibration of the models, and an elongated window including all the observation 
up to the current time is considered for the forecasts.  

At the beginning of a day, the forecasts for that day are generated and the smart energy 
management system will elaborate a plan for the day. As the forecasts get updated with the 
arrival of new data, the plan is adapted to better suit the current situation. At the end of each 
day, savings are evaluated and accrued.  

We developed the following case study based on a full day energy production and 
consumption (the photovoltaics start producing at 7:50 in the morning and stop producing at 
16:55). 

 

 
Fig. 7. Electricity consumption (Ph) and production (PV) aggregated for one day 
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Fig. 8. Real situation using battery and grid for one day 

We consider two scenarios: a social one and an economic one. The social scenario does not 
necessarily aim the financial benefits, mainly to reduce the personal / family costs for energy. 
The economic scenario targets to exploit every potential benefit by selling or buying energy 
depending on the price set by the energy market and house requirement. Remarks about 
changing contexts for a whole day: 

 The analysis was performed in social context because we did not have access to the 
energy prices from the period when the data were collected (2015) and this could be 
a separate optimization study that would require much more time and more complex 
algorithms. 

 The whole consumption (Ph) is realized from the battery from midnight until 5:20 in 
the morning when the battery is fully discharged. From that moment until 8:30 and 
in the evening after 22:35 the consumption was made from the grid. It should be 
mentioned that even the photovoltaics (PV) start to produce at 7:50, only after 8:30 
will cover the consumption. 

 From 8:30 till 10:40 the PV starts to recover the battery which will constantly charge 
until reaching its maximum value of 8000 Watts. In the economic scenario, the 
homeowner can choose to sell the energy and not charge the battery if this will bring 
him a financial benefit relying on the fact that later when he consumes, if his battery 
is discharged, the price of energy from the grid is smaller (and loses less).  

 Since 10:40 when the battery is fully charged and PV continues to produce and 
exceed consumption, the energy is sold (Feed-in). This process ends at 18:40 when 
the consumption is relatively high and the PV does not produce at all.  

 After the energy is no longer sold to the network (Feed-in becomes 0), the house uses 
the battery for own consumption until the evening at 22:35 after which the grid is 
used. But, if the next night the battery remains discharged, it will recharge only the 
next day (most likely after the same time of 7:50) and overnight will use the grid for 
internal consumption. 

 Our algorithm can set time horizons in both scenarios in which the owner can decide 
from where to consume energy and whether or not to sell in the network. The moment 
when the consumption is changed from the battery to the grid or conversely and also 



17 
 

the degree of charge of the battery in the evening for the next day may vary depending 
on the day or on the season (production and consumption being influenced by several 
environmental factors) [3]. For this reason, the analysis must be extended to a long 
period, but our study wanted to show the major decision stages that our predictive 
system can provide. 

 An extensive study that can be done in the economic scenario must follow in parallel 
with the prediction system developed by us, the price of energy on the market for the 
next day1 (MND). This is a component of the wholesale electricity market on which 
firm transactions with electricity for delivery on the next day are hourly realized 
based on the offers submitted by the MND participants. This study is left for further 
research. Since 17.06.2021, the MND in Romania started operating in a coupled 
mechanism at European level with the implementation of the DE-AT-PL-4M MC 
project2, also known as Interim Coupling. 

Ensuring sustainability of cities and society regarding energy requires significant shifts in 
both production and consumption patterns. The backcasting techniques could help but, 
unfortunately, we did not collect data about each household behavior or each power 
consumer like home heating, personal washing, heating the food, ironing, cleaning etc., 
neither weather conditions from that period. 
 

 
Fig. 9. Backcasting 

 
1 https://www.opcom.ro/pp/grafice_ip/raportPIPsiVolumTranzactionat.php?lang=ro#url  
2 https://www.ote-cr.cz/en/short-term-markets/market-coupling-day-ahead-market/de-at-pl-4m-mc  



18 
 

One example that could be implemented in the future is based on shifting of some 
household activities that consume high power in the night when the consumption decrease 
even to 0. For example, the clothes washing machine, dishwasher or electric bread oven 
could be scheduled to start at night, or very early in morning when the rest of the consumers 
are idle or stopped. The next scheme presents our tentative of backcasting strategy to 
improve the house energy efficiency and maybe to increase the revenues. 

VI. CONCLUSIONS AND FURTHER WORK 

The energy consumption and photovoltaic production curves can show different patterns. 
While the photovoltaic curves are typically smooth, showing peaks around noon, electricity 
consumption is highly dependent on individual parameters. Thus, households often show 
peaks in the morning and evening. Therefore, the final target is an energy management by 
matching the production and consumption curves. 

In this work the goal was forecasting the electricity consumption and production of a house 
over a period of time. Two statistical prediction methods were implemented to find their 
performance comparing with several other models to determine the best method, such that 
its optimal configuration can be integrated into an embedded smart energy management 
system. For this, we have used the ARIMA and the TBATS models. The usage of the 
sampled data acquired at every 5 minutes provided the best prediction results on the TBATS 
model. The TBATS model had a prediction error lower with 11.15% at average on the five 
datasets when we used the SQRT data with respect to the original data. The evaluation results 
have shown a mean absolute error of 73.62 Watts with the TBATS model using a history of 
750 data points, which is far better than the ARIMA (198.27 Watts), RT (192.71 Watts), 
MLP (211.07 Watts), LSTM (100.77 Watts) and GRU (120.64 Watts) and even than the 
BRSTS model (75.38 Watts). 

Producing usable forecasts from electrical consumption and production data is possible 
and the presented forecasting principles could be used in the future for smart devices and 
smart homes to optimize the consumption of electricity [31], or any other resource for that 
matter, to ensure a better, greener, healthier environment. 

One possible reason for the superiority of TBATS over ARIMA consists in the fact that 
the TBATS is highly suitable for forecasting time series rich in complex seasonal patterns. 
Moreover, TBATS allows automated model selection and therefore can easily find a more 
suitable configuration. The ARIMA models give good accuracy in forecasting relatively 
stationary time series. Regarding the Markov model, its superiority could be assured by the 
fact that the electricity demand profile of a certain household usually remains constant for 
long time. Other forecasting methods, like neural networks (which are nonlinear methods), 
provide less accuracy if they are not embedded into a framework that adapts their use to 
individual household attributes. The Markov and TBATS models can faster adapt to changes 
in the data than neural networks. 

A future research direction consists in the analysis of large datasets for different places of 
consumption from domestic customers connected to the regional/national electricity network 
to establish the performance of ARIMA and TBATS predictors. We will also try to establish 
a residence profile by recognizing household appliances because the electricity consumption 
of a household changes over time based on the operation of individual appliances used 
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differently by each family. The identification of house appliances may be an additional 
feature used for more accurate energy consumption forecasts. Forecasts would feed a 
dedicated optimization system, leveraging on the flexibility of nature-inspired algorithms 
and the potential of hybridization, as recently applied with success in cognate fields [32]. In 
a wider perspective, forecasts obtained could be integrated with a stream of energy prices 
and the ability to charge one or more batteries to store temporarily the surplus energy from 
panels, resulting in the minimization of household expenditure to use power from the grid 
or internally. The way prices evolve and the characteristics of batteries (capacity, charging 
time, working life in charge cycles) would involve simulations to generate realistic scenarios 
to work with. In addition, further refinements can be achieved by integrating other external 
regressors, such as weather conditions, temperature, and the number of occupants in a 
building, all of which can be readily obtained by installing sensors. An extensive study that 
can be done in the economic scenario and the use of backcasting techniques based on 
additionally collected data are other further work directions. 
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APPENDIX 

A. Stationarity and transformations 

The ARIMA model needs to be fed only with stationary data to yield good results. Data 
are said to be stationary when the statistical properties do not change regardless of the time 
window. A statistical test that can determine whether a data set is stationary or not is the 
augmented Dickey-Fuller test (for short: ADF). Seasonal time series are not stationary, their 
properties changing in function on the time they are observed at. Transformations can be 
applied to them to make them stationary. One such transformation is differencing [17], where 
the difference 𝑦௧

ᇱ = 𝑦௧ − 𝑦௧ିଵ from an observation and the previous one is computed, 
absorbing a linear trend. Higher-order differences can be computed if needed. In a similar 
way, seasonal differencing 𝑦௧

ᇱ = 𝑦௧ − 𝑦௧ି, applies to seasonal data with a seasonal period 
of m. As noted in the description of SARIMA, the order of seasonal differences will be 
denoted by the D parameter for the model. Other examples of data transformations that make 
the series stationary include calendar transformations, logarithm transformations, power 
transformations, and the Box-Cox transformations that encompasses the preceding two [18]. 

B. Autocorrelation and partial autocorrelation 

The autocorrelation function (ACF) is the correlation between the currently observed 
sequence with a previously observed sequence of the time series (see [18]): 

𝑟 =
 (𝑦௧ −  𝑦ത)(𝑦௧ି −  𝑦ത)



௧ୀାଵ

 (𝑦௧ −  𝑦ത)ଶ

௧ୀଵ

 

where 𝑟  is the autocorrelation at lag 𝑘. The plot of 𝑟  versus 𝑘  is known as a correlogram, 
its examination being one of the ways for identifying stationary or non-stationary time series. 
The autocorrelation will drop to zero quite quickly for a stationary time series, while on the 
other hand the ACF of a non-stationary time series will decrease very slowly [18]. The partial 
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autocorrelation function (PACF) [17] gives the amount of correlation of a stationary time 
series with its own lags, without the influence of the intermediate lags. For example, it 
eliminates the possibility of 𝑦௧ and 𝑦௧ିଶ being correlated only due to their association with 
𝑦୲ିଵ. 

C. Choosing the AR(p) and MA(q) terms 

The ACF and the PACF will guide the choice of the p and q parameters of ARIMA (and, 
of course, their seasonal counterparts P and Q). The auto-regressive part of the ARIMA 
equation (2) uses lagged values up to 𝑝, so 𝑝 should be chosen so that the PACF has 
significant lags up to and including lag p, but none beyond it. At the same time, positive 
values for the first few ACF values is also an indication of the need to include AR terms. 
For choosing the MA(q) part of the model, one has to apply a similar reasoning, but swapped 
for the two plots [18]. The autocorrelation function should have significant lags only up to 
lag q and a negative ACF is also an indication of MA terms. 

D. Model diagnosis 

Once the parameters for the model are chosen and the model is fitted on the data, one has 
to examine the residuals 𝑦௧ − ý௧, with ý௧ the fitted values from the model (the forecasts of 
the model for the training data). Residuals should be zero-meaned, homoscedastic, not 
autocorrelated and ideally normally distributed [18]. The Ljung-Box test has been 
specifically developed for use with residuals generated by ARIMA models: 

𝑄∗ = 𝑛(𝑛 + 2) 
ೖ
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where n is the same size (total number of residuals), 𝑟 is the sample autocorrelation at lag 
k, whereas h is the number of residual lags being tested. From Ljung-Box's formula we 
conclude that a higher 𝑄∗ will mean a more correlated set of residuals, hence we expect 
that the ARIMA model might be improved. This test statistic becomes helpful when 
comparing two ARIMA models by their residuals, a lower 𝑄∗ will mean less correlated 
residuals, hence a better model that extracts more information from the data. 

E. Dynamic harmonic regression 

Dynamic harmonic regression might be employed to model longer seasonality periods. 
This means that the seasonal pattern is modeled using Fourier series and the residuals are 
handled using ARIMA. The dynamic harmonic regression is included in the ARIMAX 
model, ARIMA with exogenous regressors. To determine how many Fourier terms to 
include, we have computationally varied the number of Fourier terms and selected the best 
performing model according to the Mean Absolute Error (MAE). 

F. Forecasting with dummies 

One-time events, for example, public holidays, concerts or sport events that may last 
several days and influence electrical energy consumption can be modeled with indicator 
variables conventionally denoted as dummies. In the original ARIMAX equation, we have 
used only one external variable: 𝑥௧. If one needs to model the seven days of the week, then 
one needs to use six dummy variables, that is: 𝑥ଵ…,௧. The general rule is that n-1 dummy 
variables are needed if there are n separate events to be modeled [18]. Using these variables, 
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the ARIMAX equation would become: 

𝑦௧
ᇱ = 𝑐 +   𝛽𝑥,௧
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 +  𝜑𝑦௧ି
ᇱ

୮
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+  𝜃𝜀௧ି

୯

୨

 +  𝜀௧ 

giving weights (in the form of 𝛽1…6) to each weekday, whenever it is the case. 


