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A B S T R A C T

Integrating smart grids in smart cities is pivotal for enhancing urban sustainability and
efficiency. Smart grids enable bidirectional communication between consumers and utilities, en-
abling real-time monitoring and management of electricity flows. This integration yields benefits
such as improved energy efficiency, incorporation of renewable sources, and informed decision-
making for city planners. At the city scale, forecasting electricity consumption is crucial for
effective resource planning and infrastructure development. This study proposes using a time-
series dense encoder model for short-term and long-term forecasting at the city level, showing its
superior performance compared to traditional approaches like recurrent neural networks and
statistical methods. Hyperparameters are optimized using the non-dominated sorting genetic
algorithm. The model’s efficacy is demonstrated on a six-year dataset, highlighting its potential
to significantly improve electricity consumption forecasting and enhance urban energy system
efficiency.

. Introduction

The integration of smart grids within the context of smart cities represents a significant convergence of technological ad-
ancements aimed at enhancing urban sustainability, resilience, and efficiency. Smart grids, characterized by their utilization of
dvanced digital communication and control technologies, fundamentally modernize traditional electricity grid infrastructure. These
ystems facilitate bidirectional communication between consumers and utility providers, enabling real-time monitoring, analysis, and
anagement of electricity flows.

In the context of urban development, smart cities leverage technology and data-driven solutions to address various challenges
nd improve residents’ living standards. The integration of smart grid technologies into smart city initiatives yields several tangible
enefits. Firstly, it promotes energy efficiency by optimizing energy consumption and reducing waste through real-time monitoring,
nergy analytics, and demand-side management strategies. Secondly, smart grids contribute to urban sustainability goals by enabling
he incorporation of renewable energy sources and supporting clean transportation options, such as electric vehicles, thereby
educing carbon emissions and promoting environmental stewardship. Finally, the data generated by smart grid systems can inform
ata-driven decision-making processes for city planners and policymakers, aiding in strategic energy infrastructure investments,
rban development strategies, and formulation of environmental policies, thereby fostering long-term sustainability and liveability
ithin smart cities.
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The data generated by smart grid systems is multifaceted, generated by multiple actors, and amenable to analysis at different
evels of aggregation. The focus of this article is on forecasting electricity consumption, at the city level, of residential customers
nd the technological consumption of electricity suppliers. At this level, having an accurate electricity consumption forecast, city
lanners and utility companies can plan resources more effectively, predict future energy needs and identify necessary infrastructure,
uch as power plants, transmission lines, and distribution networks. Another advantage is efficient resource allocation, allowing for
he optimized deployment of renewable energy sources, backup power capacity, and targeted energy efficiency programs, resulting
n significant cost savings. Using both short-term and long-term forecasts, grid operators can effectively manage and anticipate peak
emand periods, balance supply and demand in real time, and reduce the likelihood of blackouts, ensuring continuous power supply
or residents. Lastly, forecasts empower city officials to make informed decisions about energy infrastructure investments, policy
riorities, and resource allocation strategies, facilitating data-driven decision-making and ensuring a sustainable and efficient energy
ystem. Overall, accurate forecasting of electricity consumption is crucial for developing efficient, resilient, and sustainable energy
ystems that meet the needs of cities and their residents.

To forecast electricity consumption, we propose using a method that is suitable for both short-term and long-term forecasts. We
hose to make use of a Time-series Dense Encoder (TiDE) model, which has the ability to maintain and even surpass transformer
odels while having a simpler multi-layer perceptron architecture [1]. Additionally, we use the Non-dominated Sorting Genetic
lgorithm III (NSGA-III) [2,3] to tune the model hyperparameters. To showcase the performance of our approach, we test and
alidate the hyperparameter-optimized TiDE model on a real-world dataset that spans six years on both short-term and long-term
orecasting. We also show that the optimized TiDE model outperforms traditional approaches by comparing the results to other
ethods like Long Short-Term Memory (LSTM), Markov chains, or statistical models based on Trigonometric seasonality, Box–Cox

ransformation, Auto-Regressive Moving Average errors, Trend and Seasonal components (TBATS).
The rest of the paper is organized as follows. Section 2 describes the state-of-the-art in terms of electricity consumption

orecasting. Section 3 details the methodology used, describing the general approach. Section 4 describes the specific dataset used,
ogether with the model results, comparison, and discussion. Finally, Section 5 concludes the paper and presents further work
irections.

. Related work

Time series forecasting is an area of research whose aim is to predict future values based on historical data patterns. It involves
nalyzing sequential data points collected over time to identify trends, seasonal variations, and other underlying patterns that can
elp to anticipate future outcomes. This approach is extensively applied across multiple fields, including economics and finance [4],
eteorology [5], engineering [6], or healthcare [7], to inform decision-making, develop strategies, and optimize resource allocation.
ver the years, significant steps have been made in enhancing the accuracy, robustness, and applicability of time series forecasting

echniques, supported by advancements in computational power, new state-of-the-art methods, and data availability. In the energy
omain, forecasting of electricity demand and consumption takes place at different scales, from single houses, or large-scale
uildings, to cities, industries, and even countries, while also considering both short-term and long-term predictions.

A hybrid method that uses several statistical and machine learning methods is presented in [8] and incorporates empirical mode
ecomposition, particle swarm optimization, support vector regression, thermal reaction dynamics theory and an econometric model.
his complex model is used to forecast the energy consumption of New South Wales state of Australia. Pursuing the sustainable
evelopment and regulation of electricity, the hybrid method was analyzed using Nash equilibrium and Porter’s five-force model.

Using the Algerian market as a study case, the authors of [9] are using ensemble deep learning to forecast electricity consumption
o enhance the planning and management of energy resources. To predict the monthly energy consumption, three models are
uccessfully combined: LSTM, Temporal Convolutional Networks (TCN), and Gated Recurrent Unit neural network (GRU). With
dataset spanning 14 years, and almost 2000 consumers, their approach achieved an average error of 67.42 MWh, surpassing both

raditional methods and the expectations of the local energy supplier.
For short-term forecasting of electricity consumption in office buildings, three ensemble learning methods are used [10]. The

uthors present random forests, gradient-boosted regression trees, and Adaboost and compare them to fuzzy-based systems and
upport vector machine approaches. On one-hour ahead forecasting, the adapted Adaboost methods showed the best performance.

A method for day-ahead electricity consumption forecast for residential buildings based on Gaussian mixture clustering, XGBoost
nd neural networks was proposed in [11]. First, Gaussian clustering is used to create user behavior clusters. Then, using an XGBoost
lassification model, a day-ahead prediction of user behavior is made that is fed into a Multi-Layer Perceptron (MLP) model that is
sed to make the final electricity consumption prediction. As their method is based on user behavior, a different MLP model with
hidden layer and 100 neurons was trained for each of the over 500 households in their datasets. Compared to a baseline with

o behavior modeling, where only the final MLP is used, the proposed method achieved a smaller Mean Absolute Percentage Error
MAPE), with a difference of 7% on average. When looking only at the perfectly assigned behavior-modeled households, the MAPE
as reduced by 20%, from 66% to 46.1%.

Daily electricity demand prediction for grid operation and management was studied in [12]. Similarly to other approaches,
hybrid multi-algorithm method was used that combined an artificial neural network, with an Encoder–Decoder-based LSTM

EDLSTM) and Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICMD). The model was tested
n datasets from four different electrical substations. To achieve the best results, the authors used Bayesian optimization for
yperparameter tuning. Using ICMD, the input data is decomposed into multiple Intrinsic Mode Functions (IMF), that are sorted
2

y their frequency. An artificial neural network is used to predict complex, high-frequency IMFs, while for the more stable ones,
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the EDLSTM model is used. The final prediction is a sum of all predicted IMFs. Having a hyperparameter-optimized model for each
electrical substation, the MAE result varied from 2.3 MWh to 11.2 MWh.

A comparative study of seven models was done in [13] to see their predictive performance over daily electricity use on datasets
rom three different metropolitan areas in the United States. The results showed that lightGBM provided the best results with a
oefficient of Variation of the Root Mean Square Error (CVRMSE) of 6.5% for Los Angeles, 4.6% for Sacramento, and 4.1% for
ew York. All the other tested models had their CVRMSE less than 10%. The authors also explored how extreme weather events

ike heat waves influence the electricity demand of the metropolitan area. The weather-sensitive component had a high influence,
ccounting for 30% to 50% of the daily electricity usage, where every Celsius degree increase in ambient temperature raised the
aily electricity consumption by 5% on average.

While predicting the electricity consumption at household-level or city-level seems to be of high interest, directly benefiting
large number of users, large electricity companies or governments require country-wide electricity consumption prediction. The

tudy from [14] evaluates four different models (multilayer perceptron, fuzzy time series, adaptive neuro-fuzzy inference system,
nd least squares support vector machines) on datasets containing monthly electricity consumption spanning 10 years from seven
ountries across two continents, covering different climate conditions. The models were evaluated on both short-term forecasting
f one to three months ahead but also on long-term forecasting of up to one year ahead. On average, the fuzzy time series model
erformed best for most countries, but it was found that different models performed better depending on the dataset and different
orecasting periods. Their conclusion emphasizes the necessity of evaluating multiple models when searching for the best approach
or a specific dataset.

Recent deep-learning approaches for time series forecasting have focused on transformer methods [15], which have a self-
ttention mechanism at their core that allows the model to assess the significance of various input elements during prediction.
riginally designed for natural language processing tasks, transformers have gained traction in time series forecasting because of

heir proficiency in modeling sequential data [16]. Transformer-based architectures for time series forecasting typically consist of
ncoder–decoder structures, where the encoder processes historical input sequences, and the decoder generates future predictions.
hrough multiple layers of self-attention and feed-forward neural networks, transformers can effectively learn complex patterns and
elationships within the time series data.

A long-term forecasting transformer-based method, called Autoformer, was proposed in [17], where the authors add custom
ecomposition blocks and replace the attention mechanism with an autocorrelation one. With dependency discovery and repre-
entation aggregation at sub-series level, the autocorrelation mechanism outperforms the self-attention one, providing a relative
mprovement of 38% in long-term multivariate time series forecasting compared to other state-of-the-art methods of that time, like
nformer [18], or N-BEATS [19].

Another improvement over the original transformer made specifically for long-term time series forecasting is proposed in [20]
here global time series properties are captured using multiple decomposition blocks. The method, called Frequency Enhanced
ecomposed Transformer (FEDformer), includes Fourier and Wavelet transformation blocks to map the time series in the frequency
omain. With increased computational and memory efficiency due to linear complexity, FEDFormer achieves a reduction of the
rediction error by 14.8% for multivariate and 22.6% for univariate time series forecasting.

With the fast-rising popularity of transformers applied to time series forecasting, some researchers have questioned their validity
nd computational complexity for this task. In [21], the authors propose a set of three simple one-layer models called LTSF-linear that
utperform large transformer models. While the Vanilla Linear contains only one layer, the DLinear model contains a decomposition
cheme that improves the performance of the Vanilla Linear when the data has a clear trend. To handle the distribution shift in the
atasets, a model called NLinear is proposed that has simple normalization of the input sequence through subtraction and addition
ayers. With small computational and memory footprint, LTSF-linear proved to outperform large transformer models like Informer,
utoformer or FEDFormer in both terms of efficiency and forecasting error. In response to this challenge, the authors of [22]
ropose an improved transformer model for multivariate time-series forecasting called Patch Time Series Transformer (PatchTST)
here the input data is divided into overlapping and non-overlapping patches and split into independent channels, reducing the

patio-temporal complexity of the attention map.
In [23–25], the authors evaluated supervised and semi-supervised artificial intelligence methods to detect electricity theft in

mart urban grids for alleviating energy losses.
Previously, we explored the accurate prediction of electricity consumption at the urban level by comparing different models,

ncluding TBATS [26], fuzzy logic [26], Markov chains [27] and LSTM networks [28]. In the experiments, the statistical method
BATS, proved to achieve the smallest prediction error of 3.6 MWh on average, being followed by the LSTM network and the fuzzy
ontroller. While the results are promising, no external factors like temperature, weather phenomena or social events were taken
nto account in these studies.

Similarly, a fuzzy controller is used in [29] and the TBATS in [30] for the prediction of electricity production and consumption
f a smart house that is equipped with solar panels and batteries for energy storage. While achieving very good results, the fuzzy
ogic-based method was surpassed only by a Markov chain predictor, which has the advantage of context awareness, the TBATS
eing the third best model.

. Methodology

Our approach methodology consists of several steps, as described below in Fig. 1. The first step is to analyze the dataset and
3

reprocess it to encode and normalize the features. Next, the dataset is split into three subsets for validation, training and testing.
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Fig. 1. Methodology workflow.

Having the initial hyperparameter space, we use different rules to eliminate unfeasible combinations that should not be evaluated,
thus reducing the search space dramatically. Using the validation data as a reference, we optimize the hyperparameters of TiDE
using NSGA-III, searching for the hyperparameter combination that provides the best results. Using this combination, the final TiDE
forecasting model is trained and evaluated on the test data. The hyperparameter optimization and TiDE model are further detailed
in this section.

3.1. TiDE model

The TiDE model introduced in [1] contains a novel encoder–decoder architecture, which employs a simple structure based
on MLP for long-term time-series forecasting. TiDE exhibits capabilities in accommodating covariates and capturing non-linear
dependencies while demonstrating superior computational efficiency compared to Transformer models and attaining error rates
approaching optimality for linear dynamical systems that obey certain conditions. This involves the utilization of two distinct MLP
networks: one for encoding past data points into a latent space representation, and another for decoding future predictions from this
latent space representation jointly with the future values of the covariates. A temporal decoder block facilitates the incorporation
of temporal information from past covariates, like seasonality or holidays, in forecasting future values within a given temporal
sequence or trend. Notably, the TiDE architecture makes extensive use of linear skip connections, allowing it to effectively capture
immediate dependencies and compliment them with the nonlinear predictions resulting from the encoder–decoder blocks. Empirical
evaluations of TiDE substantiate the efficacy of this approach, indicating its superiority over previous methods in long-term time
series forecasting. Furthermore, TiDE shows notable advantages in computational efficiency, exhibiting training speeds and inference
latencies approximately 5–10 times faster than those observed with Transformer-based models such as PatchTST [22], or FedFormer
[20].

However, the main disadvantage of TiDE is its reliance on a large number of hyperparameters. While this granularity allows for
precise network configuration, it also significantly expands the hyperparameter search space, making tuning both time-consuming
and labor-intensive. Our method addresses this issue by simplifying the tuning process.

3.2. Hyperparameter space exploration

The TiDE model [1], uses a broad set of hyperparameters that influence its learning capacity and effectiveness in generating
predictions. However, the expansive nature of its hyperparameter space presents a significant challenge in determining the optimal
configuration for the forecasting task on a specific dataset. As with any neural network model, the hyperparameters of the
TiDE model directly impact its ability to learn. Inappropriate hyperparameter choices can induce overfitting, where the model
memorizes the training data, resulting in poor generalization to unseen examples. Conversely, underfitting can occur if the chosen
hyperparameters lead to an overly simplistic model, hindering its capacity to effectively capture the underlying patterns within the
data.

Identifying the optimal hyperparameter configuration presents a sophisticated challenge. Besides being inherently complex, due
to the intricate interactions between the hyperparameters, it is also computationally expensive. Evaluating the impact of each
4
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Table 1
Hyperparameters together with their description and possible values.

Hyperparameter Description Possible values

batch_size Size of mini-batch for each iteration {16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}
learning_rate Learning rate for Adam optimizer {1e−5, 3e−5, 3.82e−5, 6.55e−5, 8.39e−5, 1e−4, 2.24e−4, 2.52e−4, 3e−4, 9.99e−4, 1e−3, 1e−2, 1e−1}
dropout_rate Dropout rate for regularization {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
layer_norm Apply layer normalization or not {True, False}
hidden_size Size of the hidden layers {16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}
decoder_output_dim Output dimension of the decoder {1, 2, 4, 8, 16, 32, 64, 128}
final_decoder_hidden Hidden layer size for final decoder {16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}
hist_len Length of input history (dynamic) {24, 48, 96, 192, 336, 384, 720, 1440, 2880, 5760}
pred_len Length of prediction period (dynamic) {24, 48, 96, 192, 336, 384, 720, 1440, 2880, 5760}

hyperparameter combination necessitates a complete training run of the TiDE model. Given the vastness of the hyperparameter
space, this iterative process necessitates substantial computational resources.

To mitigate these challenges, we use an automated hyperparameter space explorer system that streamlines the hyperparameter
uning process for the TiDE model by leveraging advanced optimization algorithms. These algorithms enable efficient exploration
f the hyperparameter landscape, significantly reducing the computational burden associated with traditional approaches like grid
earch. We opted to utilize NSGA-III [2,3]. This algorithm, as a refinement of the well-known NSGA II, is particularly adept at
andling multi-objective optimization problems. Its effectiveness stems from its ability to efficiently identify a diverse set of solutions
hat represent trade-offs between the competing objectives, in this case, model performance metrics. Another big advantage of
SGA-III is that the Pareto-optimal solutions are not missed during the optimization process [31].

To initiate the hyperparameter tuning process, a pre-defined search space was established for each hyperparameter. This space
as constructed by meticulously combining three sources of information: best practices from the broader field of machine learning,

he inherent characteristics of the TiDE model architecture, and the recommendations outlined in the seminal TiDE paper [1]. This
ultifaceted approach ensured that the explored hyperparameter configurations were not only aligned with recognized machine

earning principles but also specifically catered to the unique functionalities of the TiDE model. Table 1 provides a list of the
yperparameters together with a description and possible values. The initial parameter space encompasses 208 million possible
yperparameter settings. Effectively navigating such a large search space requires not only significant computational resources but
lso underscores the critical role of employing efficient and intelligent optimization algorithms.

The extensive number of hyperparameters needed a strategic reduction in the dimensionality of the search space. This
imensionality reduction was driven by practical considerations grounded in the model’s operational environment and the inherent
haracteristics of the data being analyzed. By focusing on the most relevant hyperparameters to the specific application and data
roperties, we aimed to achieve a more efficient exploration of the most promising regions within the vast hyperparameter landscape.

Within the hyperparameter tuning process, the length of the sequence of historical data employed for predictions (history length)
as constrained to not exceed the size of a single training batch. This deliberate limitation ensures that the model learns from a

emporally cohesive data range that falls entirely within its immediate processing window. By maintaining consistency between the
odel’s input size and the available training data, we aimed to enhance the model’s capacity to effectively capture the relevant

emporal dependencies within the historical data.
To maintain practical relevance to our forecasting task, we imposed a constraint on the prediction length. This limitation ensured

hat predicted values did not extend beyond the maximum number of data points present in the test dataset. By adhering to this
onstraint, we safeguarded against generating forecasts that surpassed the testable range, thereby precluding the generation of
mpractical and unverifiable results.

The batch size was meticulously chosen after careful consideration of both the volume and inherent structure of the employed
atasets. This strategic selection aimed to achieve a well-balanced approach, optimizing the trade-off between computational
fficiency and the model’s learning stability. By establishing an appropriate batch size, we sought to avoid potential inefficiencies
hat could arise during the training process, such as slow training times or unstable learning dynamics.

The learning rate and dropout rate hyperparameters were initialized within established boundaries, commonly employed in
achine learning. The learning rate search space was constructed using a logarithmic scale. This approach ensures adequate

xploration across various orders of magnitude, crucial for identifying optimal learning rates that can effectively guide the model’s
ptimization process. In contrast, the dropout rate search space was established with uniform spacing. This even distribution allows
or a thorough exploration of the conventional range of dropout rates, enabling the identification of dropout values that effectively
romote model generalization and mitigate overfitting.

The configuration of the neural network components, including the number of hidden layers and output dimensions, was
onstrained based on our practical observations and insights gleaned from experimentation with the model, but we also carefully
onsidered the architectural recommendations outlined in the original TiDE paper. This approach allowed us to leverage established
est practices for network design while simultaneously adapting the architecture to the specific characteristics and requirements of
5

ur data.
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Fig. 2. Average energy consumption in the CC dataset for each event.

Fig. 3. Average energy consumption in the CC dataset for each event.

4. Results

4.1. Dataset description

The dataset contains energy consumption data, weather events, temperature, and events for the city of Sibiu, Romania, collected
over 6 years from 2014 to 2019. Sibiu is a medieval city with a population of approximately 133 000, making it the 15th largest
city in Romania. Geographically, the city is close to the mountains at an average height of 415 meters above sea level and has a
humid continental climate. According to the Romanian statistical yearbook [32], in 2019 Sibiu had an average air temperature of
11.1 ◦C with a maximum of 34.4 ◦C and a minimum of −22.9 ◦C.

The dataset contains data with an hourly frequency and includes three distinct types of energy consumption data:

• Captive Consumers (CC): This category primarily consists of energy used by households and small-scale consumers.
• Own Technological Consumption (OTC): This category refers to the energy consumed by energy distribution and generation

utilities for their internal operational needs, including maintenance and process energy requirements.
• CC_OTC: This composite metric represents the aggregate energy consumption, encompassing both the energy utilized by end

consumers (CC) and the operational consumption by utilities (OTC).

4.2. Dataset analysis

Events, such as holidays, that affect energy consumption were recorded in the dataset as covariates. Table 9 lists all the events
along with their IDs. In Fig. 2 we show the average energy consumption for each event in the dataset. The dotted red line shows the
median energy consumption in common days without events, specifically 177 MWh. The top-5 events with the highest deviation in
energy consumption from the baseline are:

• New Year’s Day (1 January, event no. 11) with 85.28 MWh;
• New Year’s Eve (31 December, event no. 13) with 50.12 MWh;
• Three Holy Hierarchs (30 January, event no. 29) with 47.49 MWh;
• Christmas Day (25 December, event no. 2) with 35.50 MWh;
• Ascension Day (variable date, 40 days after Orthodox Easter, event no. 4) with 31.19 MWh.
6
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Fig. 4. Average energy consumption in the OTC dataset by relevant event.

Fig. 5. Average energy consumption in the CC_OTC dataset by relevant event.

Figs. 3–5 depict, using the error bar, the minimum and maximum of the energy consumption for an event across the dataset,
with the dot being the average. The average event consumption is calculated as the average of the 7 days window around the event,
with the relevant event in the middle.

As can be seen from Figs. 3–5, in terms of the OTC, the minimum and maximum range for the event can vary a lot compared to
the neighboring period resulting in an unpredictable jump or drop in consumption, which can contribute negatively to the prediction
of the relevant event being used as a prediction factor. We can also note that in a lot of cases, while the range of the event varies
a lot, the average of the event is often significantly below or above the average of the period resulting in a further deviation. This
can be a cause of the deviations in the results when the events were added to the input data for predictions.

4.3. Data preprocessing

In this section of our study, we detail the methodology employed for structuring the dataset to facilitate subsequent analysis.
The dataset contains a variety of features to comprehensively represent the factors influencing energy consumption, such as:

• Temporal Feature: The date column serves as the primary temporal feature. This column records the timestamp of data
collection in the format DD-MM-YY HH:MM. This high-resolution temporal data is important for identifying consumption
patterns and trends over time.

• Numerical Features: Energy consumption, minimum and maximum temperature readings, are quantified as numerical features.
These features are essential for modeling the correlation between energy usage and temperature variations, providing a
quantitative basis for assessing the impact of climatic conditions on energy demand.

• Weather Events: To capture the impact of specific weather events on energy consumption, each event is represented as a separate
feature within the dataset. These features are encoded using a binary scheme, where ‘‘0’’ denotes the absence of an event and
‘‘1’’ indicates its occurrence. This encoding strategy simplifies the integration of weather events into our model, enabling the
assessment of their individual and combined effects on energy consumption. There are a total of 16 different weather events,
grouped into 2 categories: primary events such as ‘‘rainy ’’, ‘‘cloudy ’’, ‘‘thermal inversion’’, etc., and secondary events such as
‘‘heavy rain’’, ‘‘partially cloudy ’’ etc.

• Event Feature: The representation of relevant events (cultural, religious, local, etc.) within the dataset is handled through
a categorical feature, where each event is assigned a Unique Identifier (ID). This approach allows for the differentiation of
events and the evaluation of their respective impacts on energy consumption patterns. The categorization of events as a distinct
feature is essential for analyzing variations in energy demand during these periods, reflecting changes in social activity and
public behavior. There are a total of 33 encoded events and 1 ID is reserved for no events (encoded as 0).
7
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Table 2
Reduced hyperparameters space.
Hyperparameter Values

batch_size {256, 512, 1024}
learning_rate {1e−5, 3e−4, 1e−4, 1e−3, 1e−2}
dropout_rate {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
layer_norm {True, False}
hidden_size {256, 512, 1024}
decoder_output_dim {4, 8, 16, 32}
final_decoder_hidden {32, 64, 128}
hist_len {96, 192, 336, 720}
pred_len {96, 192, 336, 720}

To facilitate effective learning and improve the algorithm’s performance, the numerical features of the data were normalized
sing Standard Scaler from the scikit-learn library. This rescales the features to have zero mean and unit variance. The normalization
as performed based on the statistics of the training dataset, where 𝜇 is the mean and 𝜎 is the standard deviation:

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋 − 𝜇

𝜎
Finally, the datasets were split into three subsets: 70% for the training set, 10% for the validation set, and 20% for the testing

et. This convention was set by several published papers. This split ensures adequate data for learning while allowing for effective
alidation and testing.

.4. Hyperparameters tuning

The strategic application of dimensionality reduction techniques yielded a significant decrease in the size of the hyperparameter
pace. The initial staggering number of 208 million possible combinations was effectively reduced to a considerably more
anageable size of 103 680. This dramatic reduction from eight orders of magnitude to five underscores the effectiveness of the

mplemented rules. By focusing on the most relevant hyperparameter settings within the context of the model’s application and
ata, we were able to significantly simplify the hyperparameter tuning process, rendering it computationally feasible and enabling
more efficient exploration of the most promising regions within the search space defined by the values from Table 2.

.5. Model configuration

Our prediction model is trained from scratch over a span of maximum 20 epochs using Adam optimizer and Mean Squared Error
MSE) as loss function:

𝑀𝑆𝐸
(

{

𝑦 (𝑖)
𝐿+1∶𝐿+𝐻

}𝑁

𝑖=1
,
{

𝑦 (𝑖)
𝐿+1∶𝐿+𝐻

}𝑁

𝑖=1

)

= 1
𝑁𝐻

𝑁
∑

𝑖=1
‖𝑦 (𝑖)

𝐿+1∶𝐿+𝐻 − 𝑦 (𝑖)
𝐿+1∶𝐿+𝐻‖

2
2

here:

• 𝑦 (𝑖)
𝐿+1∶𝐿+𝐻 is the true value of the time series from time 𝐿 + 1 to 𝐿 +𝐻 for the 𝑖th example in the dataset.

• 𝑦 (𝑖)
𝐿+1∶𝐿+𝐻 is the predicted value of the time series from time 𝐿 + 1 to 𝐿 +𝐻 for the 𝑖th example.

• 𝑁 is the number of examples in the dataset.
• 𝐻 is the forecasting horizon, the number of time steps we are predicting into the future.
• ‖𝑦 (𝑖)

𝐿+1∶𝐿+𝐻 − 𝑦 (𝑖)
𝐿+1∶𝐿+𝐻‖

2
2

denotes the squared Euclidean norm (L2 norm).

During training, the model iterates over the training data in each epoch, computing the MSE loss on a batch-by-batch basis.
he model weights are updated using the backpropagation algorithm. An early stopping mechanism was implemented based on a
atience parameter (set to 5 epochs). If the validation loss did not improve for the specified number of epochs, training was halted to
revent overfitting. Additionally, checkpoints of the model were saved whenever it achieved a better performance than the previous
ne on the validation set. Predictions for the validation and test sets on each checkpoint were also saved for subsequent analysis or
ost-processing.

.6. Model evaluation

We used the Mean Absolute Error (MAE) to evaluate and compare our model with previous approaches to forecasting electricity
onsumption.

𝑀𝐴𝐸
(

𝑦𝑝𝑟𝑒𝑑 , 𝑦𝑡𝑟𝑢𝑒
)

= 1
𝑛
∑

|

|

|

𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑡𝑟𝑢𝑒,𝑖
|

|

|
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Table 3
Results of next hour prediction (MAE in MWh).
Method CC OTC CC_OTC Average

Fuzzy Controller 6.80 3.05 8.63 6.16
TBATS 4.64 1.46 5.45 3.85
LSTM 6.78 2.09 8.14 5.67
Markov 10.36 4.18 12.73 9.09
TiDE 3.44 0.89 3.24 2.52

Table 4
Optimal hyperparameter values and network configuration for next hour
prediction.
Hyperparameter CC OTC CC_OTC

batch_size 521 256 1024
learning_rate 0.0001 0.0003 0.0001
dropout_rate 0.1 0.4 0.2
layer_norm FALSE FALSE FALSE
hidden_size 1024 512 512
decoder_output_dim 8 4 8
final_decoder_hidden 32 128 64
hist_len 720 96 96
pred_len 1 1 1

4.6.1. Next hour forecasting
In this section, we initially focused on conducting next-hour energy consumption predictions on our test set. This was aimed

t benchmarking the performance of various established predictive methods against our proposed model, specifically within the
ontext of short-term forecasting.

The analysis of next-hour energy consumption predictions reveals meaningful insights, particularly when assessing the perfor-
ance of our proposed method against other widely used forecasting models. The MAE, measured in MegaWatt-hours (MWh), serves

s the metric for evaluating predictive accuracy across different methods, including Fuzzy Controller, TBATS, LSTM, and Markov
odels.

As presented in Table 3, our method outperformed the competing approaches, achieving an average MAE of 2.52 MWh, indicating
high level of precision in its predictions. Compared to the next best model, TBATS, which had an average MAE of 3.85 MWh, TiDE
emonstrated a 34.55% improvement in predictive accuracy, underscoring its superior capability in short-term energy consumption
orecasting. The optimal hyperparameter values, along with the detailed network configuration for next hour prediction are detailed
n Table 4.

.6.2. Next month forecasting
In the subsequent phase of our study, the focus shifted toward evaluating the long-term forecasting capabilities of our model

hrough next month (30 days) predictions, where all the 720 (30 days * 24 h) data points were forecasted simultaneously. For this
nalysis, the TiDE model, identified as the most effective method from our initial short-term forecasting comparison, was exclusively
sed to examine prediction performance over an extended horizon.

The evaluation aimed not only to assess TiDE’s ability in long-term energy consumption forecasting but also to explore the impact
f incorporating additional training data beyond historical energy consumption records. To comprehensively understand how each
ifferent type of auxiliary data influences forecasting accuracy, separate tests were conducted including weather events, minimum
nd maximum temperature readings, and events. Afterward, we trained and evaluated a model that combined all these data types
o observe the cumulative effect on the model’s performance. This approach allowed for a detailed analysis of the impact each data
ategory had on the forecasting model.

We applied the optimal hyperparameters identified during the next month of forecasting experiments across all tests. This
pproach ensures that any observed differences in model performance are attributable to the data inputs rather than variations
n model configuration.

To address the variability observed across training runs, each model was trained 3 times. The results were then aggregated, and
he reported values from Table 5 represent the mean performance accompanied by the standard error, providing a more reliable
nd statistically sound measure of each model’s performance, while Table 6 presents the optimal hyperparameters and network
onfiguration for next month prediction across all experiments.

.6.3. Statistical analysis of forecasting results
In our scientific exploration into the variations of MAE across different forecasting methods and datasets, a factorial Analysis

f Variance (ANOVA) was conducted. In Table 7 we present several statistical aspects. The ‘‘Source’’ column classifies the variance
rigins into different methods, with the ‘‘Residual’’ row capturing variance unexplained by these categories. The ‘‘Sum of Squares’’
olumn quantifies the variation each source contributes to MAE, with larger values indicating greater contributions. Degrees of
9

reedom (‘‘df’’ column), dependent on the number of categories, shows values free to vary in each source, including residuals
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Table 5
Results of next month prediction (MAE in MWh).
Method CC OTC CC_OTC Average

TiDE + Weather Events 3.96 ± 0.09 1.26 ± 0.05 5.42 ± 0.02 3.55 ± 0.05
TiDE + Temperature 4.38 ± 0.05 1.20 ± 0.01 5.63 ± 0.02 3.74 ± 0.03
TiDE + Events 5.69 ± 0.03 1.16 ± 0.03 7.04 ± 0.04 4.63 ± 0.03
TiDE + All 4.13 ± 0.15 1.22 ± 0.08 5.06 ± 0.03 3.47 ± 0.09
TiDE 3.86 ± 0.05 1.09 ± 0.07 5.40 ± 0.03 3.45 ± 0.05

Table 6
Optimal hyperparameter values and network configuration for next month
prediction.
Hyperparameter CC OTC CC_OTC

batch_size 1024 256 1024
learning_rate 0.001 0.001 0.0001
dropout_rate 0.4 0.4 0
layer_norm FALSE FALSE FALSE
hidden_size 256 512 512
decoder_output_dim 16 8 16
final_decoder_hidden 32 128 32
hist_len 720 720 720
pred_len 720 720 720

Table 7
ANOVA test results.
Source Sum of Squares df F-value p-value

Method 12.01 4 748.95 < 0.0001
Dataset 164.99 3 13 727.99 < 0.0001
Method:Dataset 5.12 12 106.52 < 0.0001
Residual 0.16 40 – –

for unexplained variance. The F-value assesses the ratio of variance explained by groups to that within groups, with higher values
indicating significant impacts on MAE. Lastly, the 𝑝-value evaluates the likelihood of observing the F-value under the null hypothesis,
with values less than 0.05 indicating strong evidence of significant group differences.

The test results highlight the statistical significance of differences in the MAE when comparing various TiDE enhancements across
different prediction categories (CC, OTC, CC_OTC). For instance, the ‘‘Method’’ factor, with an F-value of 748.95, and a 𝑝-value of
less than 0.0001, illustrates the significant impact that different TiDE data enhancements (such as weather events, temperature,
events, and their combination) have on prediction accuracy. This confirms that each method variant influences the error margin
distinctly.

Similarly, for the ‘‘Dataset’’ factor, the variation among datasets is big, suggesting that some datasets are more sensitive to certain
types of data than others.

The interaction between the ‘‘Method’’ and ‘‘Dataset’’ factors (Method:Dataset), with an F-value of 106.52, and a 𝑝-value of less
than 0.0001 also shows significant differences. This indicates that the effectiveness of a TiDE data enhancement can vary depending
on which category it is applied to, highlighting the necessity of tailoring the forecasting approach to the specific characteristics of
each dataset.

Finally, the low residual sum of squares (0.16) implies that the model, with the inclusion of all these factors, accounts for most
of the variability in MAE, leaving only a small portion of the variation unaccounted for. This suggests a good fit of the model to
the data, reflecting that our analysis captures the primary influences on prediction accuracy effectively.

Given the significant ANOVA results, Tukey’s Honest Significant Difference (HSD) post-hoc tests were performed to identify
which specific group differences are statistically significant. The detailed results are presented in Table 8.

The baseline TiDE method produced the most consistent results, with the OTC category benefiting most from the unenhanced
approach, as indicated by its lowest MAE.

When weather events were factored in, there was no significant improvement, suggesting that the weather data does not
contribute to the model’s general predictability. However, the incorporation of temperature data led to a slight performance decrease
in all datasets, implying that temperature data might introduce noise or cause overfitting in our context. Event data inclusion resulted
in a significant decrease in MAE across all categories.

The combination of all data types (TiDE + All) showed a mixed impact: it slightly increased the MAE for CC, yet improved it for
CC_OTC, suggesting that while a broad dataset can be beneficial, it may not uniformly enhance model performance across different
prediction categories.

Hence, to achieve optimal performance in forecasting energy consumption, our analysis suggests employing the TiDE method
focused solely on historical energy consumption data, without any additional data enhancements. This streamlined approach appears
to yield the most accurate predictions across most datasets, as indicated by the lowest MAE values.
10
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Table 8
Statistically significant results from Tukey’s HSD tests.

Dataset Method Comparison Mean difference Adjusted p-value Confidence interval

CC TiDE vs. TiDE + All 0.4233 0.0006 0.2031 to 0.6434
CC TiDE vs. TiDE + Events 1.8605 < 0.0001 1.6404 to 2.0806
CC TiDE vs. TiDE + Temperature 0.5627 0.0001 0.3425 to 0.7828
CC TiDE + All vs. TiDE + Events 1.4372 < 0.0001 1.2171 to 1.6574
CC TiDE + All vs. TiDE + Weather Events −0.3056 0.0071 −0.5257 to −0.0855
CC TiDE + Events vs. TiDE + Temperature −1.2978 < 0.0001 −1.518 to −1.0777
CC TiDE + Events vs. TiDE + Weather Events −1.7428 < 0.0001 −1.963 to −1.5227
CC TiDE + Temperature vs. TiDE + Weather Events −0.445 0.0004 −0.6651 to −0.2249
OTC TiDE vs. TiDE + All 0.1396 0.0258 0.016 to 0.2631
OTC TiDE vs. TiDE + Temperature 0.1733 0.0066 0.0498 to 0.2968
OTC TiDE vs. TiDE + Weather Events 0.2334 0.0007 0.1098 to 0.3569
CC_OTC TiDE vs. TiDE + All −0.3117 < 0.0001 −0.4163 to −0.207
CC_OTC TiDE vs. TiDE + Events 1.7057 < 0.0001 1.601 to 1.8103
CC_OTC TiDE vs. TiDE + Temperature 0.2404 0.0001 0.1358 to 0.345
CC_OTC TiDE + All vs. TiDE + Events 2.0173 < 0.0001 1.9127 to 2.122
CC_OTC TiDE + All vs. TiDE + Temperature 0.5521 < 0.0001 0.4474 to 0.6567
CC_OTC TiDE + All vs. TiDE + Weather Events 0.3437 < 0.0001 0.2391 to 0.4483
CC_OTC TiDE + Events vs. TiDE + Temperature −1.4653 < 0.0001 −1.5699 to −1.3606
CC_OTC TiDE + Events vs. TiDE + Weather Events −1.6736 < 0.0001 −1.7783 to −1.569
CC_OTC TiDE + Temperature vs. TiDE + Weather Events −0.2084 0.0005 −0.313 to −0.1037
Average TiDE vs. TiDE + Events 1.1728 < 0.0001 0.9702 to 1.3754
Average TiDE vs. TiDE + Temperature 0.3142 0.0033 0.1116 to 0.5168
Average TiDE + All vs. TiDE + Events 1.1591 < 0.0001 0.9565 to 1.3617
Average TiDE + All vs. TiDE + Temperature 0.3006 0.0045 0.098 to 0.5031
Average TiDE + Events vs. TiDE + Temperature −0.8586 < 0.0001 −1.0612 to −0.656
Average TiDE + Events vs. TiDE + Weather Events −1.0292 < 0.0001 −1.2318 to −0.8266

Exceptionally, for the CC_OTC dataset, the incorporation of all data enhancements significantly enhances the model’s perfor-
ance. In this particular scenario, the comprehensive approach that leverages a multifaceted array of data points surpasses the

ccuracy of the baseline TiDE method. This suggests that when predicting across a merged dataset that spans multiple categories, a
ore intricate model that utilizes a broader spectrum of data can more effectively capture the complex dynamics at play in energy

onsumption patterns.
These findings emphasize the need for careful consideration of data relevance to the predictive model’s context, as indiscriminate

nclusion of variables may lead to suboptimal outcomes.

. Conclusions and further work

In this paper, we showed that a hyperparameter-optimized TiDE model provides significant improvements in prediction error
ompared to LSTM or traditional statistical models for next-hour electricity consumption forecasting. The comparative study of
dditional features’ (weather, events, temperature) influence on the prediction results demonstrates that different consumption
omponents (CC, OTC, CC_OTC) of an electricity supply station require different models. When looking at next month forecasting,
impler electricity consumption curves like CC and OTC are better forecasted with a simple model, while the CC_OTC required all
he three additional features included as input to achieve the best results.

Going forward, we want to evaluate the time series dense encoder method on other use cases, but also at different scales. For
mart houses equipped with renewable energy production and storage equipment, a time series forecasting model like TiDE could
rovide valuable information in terms of both electricity consumption and production that can further be used to drive the decision-
aking process required to optimize the grid electricity consumption. This paper’s case study is the electricity supplier of a small

ity that requires an hour-ahead and a month-ahead forecast, but other electricity distributors and suppliers have a larger customer
ase and might require different forecast intervals.

In conclusion, the integration of smart grids within the framework of smart cities represents a synergistic approach toward
dvancing urban sustainability, resilience, and efficiency. By harnessing the capabilities of smart grid technologies, cities can foster
nnovation, enhance the quality of life, and promote sustainable growth, ultimately contributing to the creation of more liveable
nd resilient urban environments.
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Table 9
Mappings of events and their ID.

Event type Event Date ID
– No Event – 0

Religious Saint Stephen’s Day December 27th 1
Religious Christmas December 25th 2
Religious Saint George April 23rd 3
Religious Ascension of Jesus 40 days after Easter 4
Religious Pentecost 50 days after Easter 5
National General Elections Variable 6
Religious Saint Peter’s Day June 29th 7
Religious Transfiguration of Jesus August 6th 8
Religious Epiphany January 6th 9
Religious The Entrance of the Virgin Mary into the Temple November 21st 10
International New Year’s Day January 1st 11
Religious The Exaltation of the Holy Cross September 14th 12
International New Year’s Eve December 31st 13
Weather Thermal Inversion – 14
National Public Sector Holiday Variable 15
Religious The Annunciation March 25th 16
– Other – 17
International Labor Day May 1st 18
Local Sibiu International Theater Festival Variable (typically in June) 19
Religious Saint Parascheva’s Day October 14th 20
Religious Orthodox Easter Variable (first Sunday after the first full moon occurring on or after the vernal equinox) 21
National Romanian National Day December 1st 22
International Daylight Saving Time Change Variable (last Sunday in March and last Sunday in October) 23
Religious Midsummer Day June 24th 24
Religious The Life-Giving Spring of the Mother of God First Friday after Easter 25
Religious Saint Nicholas’s Day December 6th 26
Religious Saint Constantine’s Day May 21st 27
Religious Saint Helen’s Day May 21st 28
Religious The Three Holy Hierarchs January 30 29
Religious Saints Joachim and Anne’s Day September 9th 30
Religious Saint John’s Day January 7th 31
Religious The Dormition of the Mother of God August 15th 32
Religious Palm Sunday The Sunday before Easter 33

Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Ugo Fiore: Writing –
review & editing, Writing – original draft, Validation. Bala-Constantin Zamfirescu: Writing – review & editing, Writing – original
draft, Visualization, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition,
Formal analysis, Conceptualization. Francesco Palmieri: Writing – review & editing, Writing – original draft, Validation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was financed by Lucian Blaga University of Sibiu, Romania (Knowledge Transfer Center) & Hasso Plattner Foundation
research grant LBUS-HPI-ERG-2023-03.

References

[1] A. Das, W. Kong, A. Leach, S.K. Mathur, R. Sen, R. Yu, Long-term forecasting with TiDE: Time-series dense encoder, Trans. Mach. Learn. Res. (2023)
http://dx.doi.org/10.48550/arXiv.2304.08424.

[2] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving
problems with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2014) 577–601, http://dx.doi.org/10.1109/TEVC.2013.2281535.

[3] H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling
constraints and extending to an adaptive approach, IEEE Trans. Evol. Comput. 18 (4) (2014) 602–622, http://dx.doi.org/10.1109/TEVC.2013.2281534.

[4] O.B. Sezer, M.U. Gudelek, A.M. Ozbayoglu, Financial time series forecasting with deep learning : A systematic literature review: 2005–2019, Appl. Soft
Comput. 90 (2020) 106181, http://dx.doi.org/10.1016/j.asoc.2020.106181.

[5] A.Y. Barrera-Animas, L.O. Oyedele, M. Bilal, T.D. Akinosho, J.M.D. Delgado, L.A. Akanbi, Rainfall prediction: A comparative analysis of modern machine
learning algorithms for time-series forecasting, Mach. Learn. Appl. 7 (2022) 100204, http://dx.doi.org/10.1016/j.mlwa.2021.100204.

[6] J. Wang, C. Xu, J. Zhang, R. Zhong, Big data analytics for intelligent manufacturing systems: A review, J. Manuf. Syst. 62 (2022) 738–752, http:
//dx.doi.org/10.1016/j.jmsy.2021.03.005.
12

http://dx.doi.org/10.48550/arXiv.2304.08424
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/TEVC.2013.2281534
http://dx.doi.org/10.1016/j.asoc.2020.106181
http://dx.doi.org/10.1016/j.mlwa.2021.100204
http://dx.doi.org/10.1016/j.jmsy.2021.03.005
http://dx.doi.org/10.1016/j.jmsy.2021.03.005
http://dx.doi.org/10.1016/j.jmsy.2021.03.005


Internet of Things 27 (2024) 101322D. Peteleaza et al.
[7] A. Zeroual, F. Harrou, A. Dairi, Y. Sun, Deep learning methods for forecasting COVID-19 time-series data: A comparative study, Chaos Solitons Fractals
140 (2020) 110121, http://dx.doi.org/10.1016/j.chaos.2020.110121.

[8] G.-F. Fan, X. Wei, Y.-T. Li, W.-C. Hong, Forecasting electricity consumption using a novel hybrid model, Sustainable Cities Soc. 61 (2020) 102320,
http://dx.doi.org/10.1016/j.scs.2020.102320.

[9] D. Hadjout, J.F. Torres, A. Troncoso, A. Sebaa, F. Martínez-Álvarez, Electricity consumption forecasting based on ensemble deep learning with application
to the Algerian market, Energy 243 (2022) 123060, http://dx.doi.org/10.1016/j.energy.2021.123060.

[10] T. Pinto, I. Praça, Z. Vale, J. Silva, Ensemble learning for electricity consumption forecasting in office buildings, Neurocomputing 423 (2021) 747–755,
http://dx.doi.org/10.1016/j.neucom.2020.02.124.

[11] F. Lazzari, G. Mor, J. Cipriano, E. Gabaldon, B. Grillone, D. Chemisana, F. Solsona, User behaviour models to forecast electricity consumption of residential
customers based on smart metering data, Energy Rep. 8 (2022) 3680–3691, http://dx.doi.org/10.1016/j.egyr.2022.02.260.

[12] S. Ghimire, R.C. Deo, D. Casillas-Pérez, S. Salcedo-Sanz, Efficient daily electricity demand prediction with hybrid deep-learning multi-algorithm approach,
Energy Convers. Manage. 297 (2023) 117707, http://dx.doi.org/10.1016/j.enconman.2023.117707.

[13] Z. Wang, T. Hong, H. Li, M. Ann Piette, Predicting city-scale daily electricity consumption using data-driven models, Adv. Appl. Energy 2 (2021) 100025,
http://dx.doi.org/10.1016/j.adapen.2021.100025.

[14] M.H.L. Lee, Y.C. Ser, G. Selvachandran, P.H. Thong, L. Cuong, L.H. Son, N.T. Tuan, V.C. Gerogiannis, A comparative study of forecasting electricity
consumption using machine learning models, Mathematics 10 (8) (2022) 1329, http://dx.doi.org/10.3390/math10081329.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: I. Guyon, U.V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017,
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[16] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, L. Sun, Transformers in time series: A survey, in: Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, Macau, SAR China: International Joint Conferences on Artificial Intelligence Organization, 2023, pp. 6778–6786,
http://dx.doi.org/10.24963/ijcai.2023/759.

[17] H. Wu, J. Xu, J. Wang, M. Long, Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting, in: M. Ranzato, A.
Beygelzimer, Y. Dauphin, P.S. Liang, J.W. Vaughan (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc., 2021, pp.
22419–22430, [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf.

[18] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond efficient transformer for long sequence time-series forecasting, in:
AAAI, Vol. 35, No. 12, 2021, pp. 11106–11115, http://dx.doi.org/10.1609/aaai.v35i12.17325.

[19] B.N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, in: International
Conference on Learning Representations, 2020, [Online]. Available: https://openreview.net/forum?id=r1ecqn4YwB.

[20] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, R. Jin, FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting, in: K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvari, G. Niu, S. Sabato (Eds.), Proceedings of the 39th International Conference on Machine Learning, in: Proceedings of
Machine Learning Research, vol. 162, PMLR, 2022, pp. 27268–27286, [Online]. Available: https://proceedings.mlr.press/v162/zhou22g.html.

[21] A. Zeng, M. Chen, L. Zhang, Q. Xu, Are transformers effective for time series forecasting? in: AAAI, Vol. 37, No. 9, 2023, pp. 11121–11128,
http://dx.doi.org/10.1609/aaai.v37i9.26317.

[22] Y. Nie, N.H. Nguyen, P. Sinthong, J. Kalagnanam, A time series is worth 64 words: Long-term forecasting with transformers, in: International Conference
on Learning Representations, 2023, http://dx.doi.org/10.48550/arXiv.2211.14730.

[23] N. Shahzadi, N. Javaid, M. Akbar, A. Aldegheishem, N. Alrajeh, S.H. Bouk, A novel data driven approach for combating energy theft in urbanized smart
grids using artificial intelligence, Expert Syst. Appl. 253 (2024) 124182, http://dx.doi.org/10.1016/j.eswa.2024.124182.

[24] Z. Aslam, N. Javaid, M.U. Javed, M. Aslam, A. Aldegheishem, N. Alrajeh, A new clustering-based semi-supervised method to restrict the users from
anomalous electricity consumption: supporting urbanization, Electr. Eng. (2024) http://dx.doi.org/10.1007/s00202-024-02362-3.

[25] A. Naeem, N. Javaid, Z. Aslam, M.I. Nadeem, K. Ahmed, Y.Y. Ghadi, T.J. Alahmadi, N.A. Ghamry, S.M. Eldin, A novel data balancing approach and a
deep fractal network with light gradient boosting approach for theft detection in smart grids, Heliyon 9 (9) (2023) http://dx.doi.org/10.1016/j.heliyon.
2023.e18928.

[26] A. Gellert, L.-M. Olaru, A. Florea, I.-I. Cofaru, U. Fiore, F. Palmieri, Estimating electricity consumption at city-level through advanced machine learning
methods, Connect. Sci. 36 (1) (2024) 2313852, http://dx.doi.org/10.1080/09540091.2024.2313852.

[27] A. Gellert, A. Florea, U. Fiore, F. Palmieri, P. Zanetti, A study on forecasting electricity production and consumption in smart cities and factories, Int. J.
Inf. Manage. 49 (2019) 546–556, http://dx.doi.org/10.1016/j.ijinfomgt.2019.01.006.

[28] M.-A. Bachici, A. Gellert, Modeling electricity consumption and production in smart homes using LSTM networks, Int. J. Adv. Stat. IT & C Econ. Life Sci.
10 (1) (2020) 80–89, http://dx.doi.org/10.2478/ijasitels-2020-0009.

[29] L.M. Olaru, A. Gellert, U. Fiore, F. Palmieri, Electricity production and consumption modeling through fuzzy logic, Int. J. Intell. Syst. 37 (11) (2022)
8348–8364, http://dx.doi.org/10.1002/int.22942.

[30] A. Gellert, U. Fiore, A. Florea, R. Chis, F. Palmieri, Forecasting electricity consumption and production in smart homes through statistical methods,
Sustainable Cities Soc. 76 (2022) 103426, http://dx.doi.org/10.1016/j.scs.2021.103426.

[31] S. Wietheger, B. Doerr, A mathematical runtime analysis of the non-dominated sorting genetic algorithm III (NSGA-III), in: Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, Macau, SAR China: International Joint Conferences on Artificial Intelligence Organization, 2023,
pp. 5657–5665, http://dx.doi.org/10.24963/ijcai.2023/628.

[32] Institutul Naţional de Statistică, 2020 Romanian statistical yearbook, 2021, [Online]. Available: https://insse.ro/cms/sites/default/files/field/publicatii/
anuarul_statistic_al_romaniei_carte_1.pdf. (Accessed 11 April 2024).
13

http://dx.doi.org/10.1016/j.chaos.2020.110121
http://dx.doi.org/10.1016/j.scs.2020.102320
http://dx.doi.org/10.1016/j.energy.2021.123060
http://dx.doi.org/10.1016/j.neucom.2020.02.124
http://dx.doi.org/10.1016/j.egyr.2022.02.260
http://dx.doi.org/10.1016/j.enconman.2023.117707
http://dx.doi.org/10.1016/j.adapen.2021.100025
http://dx.doi.org/10.3390/math10081329
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.24963/ijcai.2023/759
https://proceedings.neurips.cc/paper_files/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
http://dx.doi.org/10.1609/aaai.v35i12.17325
https://openreview.net/forum?id=r1ecqn4YwB
https://proceedings.mlr.press/v162/zhou22g.html
http://dx.doi.org/10.1609/aaai.v37i9.26317
http://dx.doi.org/10.48550/arXiv.2211.14730
http://dx.doi.org/10.1016/j.eswa.2024.124182
http://dx.doi.org/10.1007/s00202-024-02362-3
http://dx.doi.org/10.1016/j.heliyon.2023.e18928
http://dx.doi.org/10.1016/j.heliyon.2023.e18928
http://dx.doi.org/10.1016/j.heliyon.2023.e18928
http://dx.doi.org/10.1080/09540091.2024.2313852
http://dx.doi.org/10.1016/j.ijinfomgt.2019.01.006
http://dx.doi.org/10.2478/ijasitels-2020-0009
http://dx.doi.org/10.1002/int.22942
http://dx.doi.org/10.1016/j.scs.2021.103426
http://dx.doi.org/10.24963/ijcai.2023/628
https://insse.ro/cms/sites/default/files/field/publicatii/anuarul_statistic_al_romaniei_carte_1.pdf
https://insse.ro/cms/sites/default/files/field/publicatii/anuarul_statistic_al_romaniei_carte_1.pdf
https://insse.ro/cms/sites/default/files/field/publicatii/anuarul_statistic_al_romaniei_carte_1.pdf

	Electricity consumption forecasting for sustainable smart cities using machine learning methods
	Introduction
	Related Work
	Methodology
	TiDE Model
	Hyperparameter space exploration

	Results
	Dataset description
	Dataset analysis
	Data preprocessing
	Hyperparameters tuning
	Model configuration
	Model evaluation
	Next hour forecasting
	Next month forecasting
	Statistical Analysis of Forecasting Results


	Conclusions and Further Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


