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ABSTRACT
An effective energy management system relies on the accurate pre-
diction of electricity consumption, facilitating energy suppliers to
optimise energy distribution, reduce energy waste, and avoid over-
loading the power system. This paper analyses different methods for
the estimation of electricity consumption at the level of an urban
area. A statistical model based on Trigonometric seasonality, Box-
Cox transformation, Auto-Regressive Moving Average errors, Trend
and Seasonal components is first presented. Then a model based on
fuzzy logic is also proposed. These methods will be optimised and
evaluated on a dataset collected by the electric power supply agency
of Sibiu, Romania, with the goal of reducing the forecast error. The
models are also compared with a Markov stochastic model and with
a Long Short-Term Memory neural model. The experiments have
shown that our statisticalmodel using ahistory lengthof 200electric-
ity consumption values and a daily seasonality is the most efficient,
with the lowest mean absolute error of 3.6 MWh, thus making it a
good candidate for integration into a city-level energy management
system.
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1. Introduction

With the advancement of technology, the electricity environmental footprint sectors (such
as smart buildings, street lighting, data centres, etc.) face a significant number of challenges
ranging from trying tomeet the constantly increasing electricity demand to reducing costs
and losses through the distribution of resources. Massive digitalisation in almost any sec-
tor of modern society, together with the Internet of Things (IoT) revolution as the basis for
Industry 4.0, and the paradigm changes in the way of working or teaching consequent to
the Covid-19 pandemic, led to the continuous generation of huge amounts of data (from33
ZB in 2018 to 175 ZB in 2025) to be stored and processed (Atoofian et al., 2021). For this rea-
son, companies that store sucha largeamountofdata in their clouds (likeGoogle,Microsoft,
YouTube, Amazon or Facebook), invested in bigger and bigger data centres. Nowadays,
these data centres use twice the electricity as ten years ago (about 3%) (Andrae, 2020).
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European reports indicate that data centres in the EUconsumed76.8 TWhof energy in 2018,
with a projected increase to 98.52 TWh by 2030 (Montevecchi et al., 2020).

Intelligent energymanagement systems are one of the constantly developing technolo-
gies that will not only have a beneficial effect but will also help to improve the operations
at the enterprise level as well as the financial judgments. Redefining how IT processes and
analyzes real-time information may lead to significant savings in terms of electricity con-
sumption. In addition, awareness of climate change due to the effect of greenhouse gases
(GHG) is also providing strong motivations for improving the current ecological footprint
by reducing energy waste and maximising the usage of renewable sources.

1.1. Challenges of energymanagement

Nowadays, energy management is a subject of complexity and major importance. It con-
sists of choosing a source of energy production that will provide this resource to a set of
consumers by minimising costs and losses. The choice of resources must be made in real
time to avoid system problems like a power outage. At the same time, this type of system
has to deal with several problems such as the non-linearities encountered, the behaviour
of the hardware components that make up the energy system, or the difficulty of choosing
the right energy source. This is a difficult and unevenmechanism. First of all, certain sources
do not guarantee continuous energy production (solar, hydro), whereas others aremissing
in certain areas or countries (wind, biogas, geothermal, etc.). Also, the consumption can
be very different in industrialised and populated areas (higher) with respect to other less
developed and less crowded ones (lower).

An intelligent electricitymanagement system relies on a series of computer-aided instru-
ments through which electricity operators monitor, optimise and control the performance
of the electricity transmission system. Energymanagement software is used for three main
purposes: to report, monitor, and react. Such systems can be designed specifically for
building-level automatic control andmonitoring of electromechanical equipment that pro-
duce high energy consumption such as ventilation, lighting, heating, etc. Data obtained
throughmonitoring canbeused tooptimise the systemand toestimate a forecast of annual
consumption. Intelligent electricity management systems aim to provide a range of instru-
ments based on which electricity operators can reduce costs and consumption of energy
in a building or a community.

1.2. Industrial significance of electricity consumption forecasting

Forecasting electricity consumption and production is a major energy management issue.
For effective energymanagement, the accuratepredictionof electricity consumption is cru-
cial, as it facilitates energy suppliers to optimise energy distribution, reduce energy waste,
and avoid overloading the power system (Porteiro et al., 2022). The short-term prediction
of electricity consumption is beneficial for consumers, prosumers and suppliers, since it
allows for improving energy efficiency policies and the rational use of resources. This is
more needed now when a large amount of the energy generated by prosumers accounts
for their own consumption.

The role of energy forecasting is to avoid as many as possible energy losses through
any source, for any reason. According to Electric Power Supply Agency (AFEE) Sibiu, energy
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purchase expenses could represent 93% of the company’s total expenses. If the forecast
is close enough to the actual consumption, then strictly the necessary electricity can be
bought from the next day’s market to modulate the last part of the load curve so that the
losses are as small as possible. If the forecast is not accurate, imbalances appear, and the
agency is obliged to buy if there is a deficit, or sell if there is an excess to balance the elec-
tricity market. Forecasting contributes to balancing and smoothing the electricity intake
from the electricity gridwith beneficial consequences onboth theoperationof thedistribu-
tion networks and the stability of prices on the daily energy market, improving the process
of quality assurance of the electricity distribution and supply service with the adaptability
to consumer requirements. Under the current conditions of electricity forecasting at AFEE
Sibiu, it is very important to have close communication between the staff who make the
energy forecast and the large consumers. For example, a factory producing shoesmay start
up several sections because it has double the demand compared to the last month and
neglects to notify the person in charge of collecting data for energy consumption and the
lack of information will result in a wrong forecast leading to imbalances in the delivery of
electricity to the system.

Industrial electricity consumption is difficult to be confidently estimated. It differs from
residential and commercial consumptionwhere the energy is usedmostly for buildings and
is reasonably uniform and easily related to household growth and employment. In contrast,
industrial electricity demand is extremely varied and tends to be concentrated in fewer
extensive uses instead of being spread amongmany relatively uniform ones.

According to the available statistics (International Energy Agency, 2015), Small and
Medium Enterprises (SMEs) generate at least one-third of the global energy demand in
industry and service. It can reach 60% of the industrial sector in some countries (Trianni &
Cagno, 2011) and 50% of the manufacturing sector in the U.S. (Trombley, 2014). Numerous
new enterprises are created constantly worldwide, for which no data on electricity con-
sumption is available, but it could be beneficial for load planning and grid operation. When
a new enterprise is founded or a new industrial area is developed in a city, it is relevant
for the local utility companies to estimate the upcoming load. The synthetic standard load
profiles of typical businesses usually cover only a limited number of consumer types (e.g.
general business, shop, bakery, etc.) and focus on the daily load distribution, but do not
help to estimate the annual energy consumption of enterprises.

Given that our analysis covers all the electricity consumption in the Sibiu county, includ-
ing residential consumers (with more than 400,210 inhabitants) as well as SMEs and even
large companies (at least 50) in the automotive, manufacturing, extractive industry, food
processing (meat, milk), the electrical and electronic equipment industry and IT sectors,
an accurate prediction of consumption at the regional level is important for the energy
efficiency of AFEE Sibiu.

1.3. Research objectives

This paper presents an analysis regarding the predictability of city-level electricity con-
sumption througha statisticalmodelbasedonTrigonometric seasonality, Box-Cox transfor-
mation, Auto-Regressive Moving Average (ARMA) errors, Trend and Seasonal components
(TBATS), and amodel based on fuzzy logic. Themajor contribution of the research reported
in this article is the evaluation and comparison of computational intelligencemodels (both
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statistical-based and a model relying on fuzzy logic) applied to forecasting the electricity
demand at the city-level. The fuzzy controller seems more appropriate for such a purpose,
as it is a flexiblemethod of reasoning (allows to add or remove rules) applicable in industrial
process control systems, able to model imprecise concepts.

We will optimise and evaluate the proposed methods on a dataset collected by AFEE
Sibiu at the city level, in terms of reducing the Mean Absolute Error (MAE). These models
will be compared with a Markov stochastic model and a Long Short-Term Memory (LSTM)
neural model. The most efficient model will be targeted for integration into a city-level
energy management system. The rest of the paper has the following construction: Section
2 reviews relevant and recent related work, Section 3 details the forecasting models used,
Section 4 discusses the experiments and their results, Section 5 is a discussion about the
limitations of the proposed methods, and Section 6 provides the conclusions and outlines
paths for further study.

2. Related work

As a consequence of the recent considerable modernisation of the electrical industry,
demand, offer, andpricinghavebecome increasingly irregular andunpredictable. Theman-
agement, monitoring, and optimisation (in terms of cost and efficiency) of energy systems,
whether on the production or the consumption side, all depend on energy prediction,
often defined (Gellert & Florea, 2013) as the approximation of future states based on the
present and past states. Forecasting the production and consumption of electricity has
been the subject of numerous studies. Even though several methods for predicting elec-
tricity demand have been published (Ahmad et al., 2020; Bourdeau et al., 2019), addressing
hotels (Shao et al., 2020), schools (Mohammed et al., 2021), office buildings (Dong et al.,
2021; Ilbeigi et al., 2020; Skomski et al., 2020), campuses (Kim et al., 2020), or entire distri-
bution grids (Wu et al., 2023b), the variability of electricity usage patterns in a residence
implies a more challenging prediction at a small level (Falaki et al., 2021).

A long-term goal is the sustainability of the energy sector, so there is a need for research
and innovation in forecasting electricity consumption, through the use of advanced tech-
nologies such as smartmetering, Internet of Things (IoT), bigdata, digital twins, andartificial
intelligence (Ding et al., 2022). The future will also see the start of a new electrification
stage, with electricity penetrating virtually all domestic, industrial and transport systems,
increasing the importance of being able to control it (Almihat et al., 2022).

Feilmeier (2015) studied the FENECON Energy Management System (FEMS), an energy
management system for a house equipped with photovoltaics and energy storage. Fea-
tures such as the hour, theweather, the season, and the travel plans of the house occupants
are fed to a Multi-Layer Perceptron (MLP) for making short-term predictions of both the
production and consumption of electricity in the household. The job of the energy man-
agement system incorporating the predictor is to maintain a balance between electricity
production and consumption to boost individual consumption and reduce the load on the
grid. MLPs have also been used in (Escrivá-Escrivá et al., 2011) to forecast the total energy
use at the building level over the next few days. The day type was a significant input that
was used when training theMLP, grouping days with similar labour patterns, in addition to
meteorological features (temperature coefficient). The model was validated with the con-
sumption of the Polytechnic University of Valencia, an institution with an annual electricity
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use of around 11.5 Megawatts in more than 60 buildings. Five predictors, one Markovian
(Gellert, 2023; Gellert et al., 2019), one using a variant of the Auto-Regressive Integrated
Moving Average (ARIMA) method (Gellert et al., 2022), one using LSTM (Bachici & Gellert,
2020; Gellert, 2023), the TBATS algorithm (Gellert et al., 2022), and the last based on the
fuzzy controller (Olaru et al., 2022), have all been evaluated using the datasets compiled by
Feilmeier (2015).

A predictor based on Markov Chains theory is a contextual predictor. These types of
predictors estimate the next value corresponding to a particular context that has been
memorised. The context refers to a finite sequence of values with a repetitive appearance.
Context-based predictors allow the prediction of any sequence of repetitive values, which
can be either incremental or non-incremental. The main limitation of this predictor is that
it must have encountered the same context at least once to make a correct prediction. A
context-based (Markov) predictor, a stride-based predictor, and a hybrid model (incorpo-
rating the functions of both context and stride-based predictors) were evaluated in (Gellert
et al., 2019), drawing the conclusion that the stride-based predictor did not perform well,
whereas the context-based and hybrid predictors fared better (the Markov model-based
predictor being the best overall), with a mean absolute error lower than that of the MLP
predictor. The ideal setup for such amodel would have an interval of size 1, a contextmade
up of just one value, and a history length of 100.

In (Gellert et al., 2022), statistical forecasting of electricity production and demand was
analysed at the household level. Although it performed worse than the Markov model, the
analysed ARIMA-based predictor outperformed the MLP. In terms of execution time and
computational complexity, this predictionmethod is more sophisticated. It is worth noting
that China uses a form of the ARIMA model among its main forecasting tools for energy
consumption. Another statistical predictor, the TBATSmodel, produced even better results
than ARIMA but was still worse than theMarkovmodel. The broad nature of this prediction
technique and its capability to extract seasonal trends from the time series were the main
factors that led the authors to choose it.

The LSTM, a recurrent neural network (Hochreiter & Schmidhuber, 1997) able to capture
long-termdependencies (Fu et al., 2022),was used in (Bachici &Gellert, 2020) to forecast the
production and consumption of electricity in households. An LSTM network is organised
into layers composedofunits. Aunit itself is composedof a cellwith threegates, called input
gate, output gate and forget gate. The role of the cell is to store information, whereas the
three gates are responsible for the flow of information through the cell. The memory of an
LSTM communicates the knowledge acquired at the current time step to subsequent time
steps. It has the ability to discard irrelevant data from the state, sending only the pertinent
information to the output. In (Bachici & Gellert, 2020), the sigmoid function was used as an
activation function providing nonlinearity. The best hyperparameters were determined as
4 inputs, 10 units in the first and 5 units in the second hidden layer as far as the architecture
is concerned, and 50 epochs at a learning rate of 0.01 for training. The LSTM performed far
better than the ARIMA and MLP, but it was less accurate than both the Markov and TBATS
models.

In (Zhang et al., 2020), a hybrid approach using LSTM and MLP together was presented.
More recently, researchers have combined convolutional neural networks (CNNs) for spatial
characteristics and LSTM for temporal characteristics to make accurate predictions in vari-
ous chaotic phenomena. The CNN-LSTM model for electricity consumption outperformed
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other deep learning models. Time series decomposition with deep learning models has
potential for energy consumption prediction and analysis (Rosas et al., 2022). By training
a hybrid CNN-LSTM neural network model with available weather and electricity demand
data in a region of the study site, relevant results were obtained for the discharging and
charging of two ideal energy storage devices, one powered by wind energy and the other
by photovoltaics (Rosas et al., 2022). Kim and Cho (2019) used LSTM and CNN to predict the
usage of residential electricity demand. The input goes first into the CNN and then into the
LSTM component. A fully connected layer uses the output of the LSTM to return the final
prediction. Le et al. (2019) employed a similar methodology and bidirectional LSTM. Cai
et al. (2019) compared the SARIMAXmodel with their analysis of gated CNNs for day-ahead
power consumption forecasting in buildings. The gated CNNs performed better in their
tests. An Elman neural network and an exponential model were suggested by Bedi et al.
(2020) as a way to forecast electricity use in buildings with IoT sensors, leveraging upon the
relationship between power consumption and, separately, outside temperature and build-
ing occupancy. In their experiment, a lab with sophisticated monitoring and control was
utilised.

Fumo and Biswas (2015) forecasted power usage in residential buildings for the next
hour and day using linear and quadratic regression. The linear model fared better with
day-ahead forecasting, while the quadratic regression model performed better for shorter
time frames andwas effective for predicting electricity one hour in advance. Othermachine
learning techniques, including a data-driven ensemble model incorporating swarm intelli-
gence (Li et al., 2021), a technique based on deep learning algorithms and rough set theory
(Lei et al., 2021), kernel-based algorithmswith a linear kernel and tree-basedmethods (Ding
et al., 2021), and a Bayesian regression model (Dab et al., 2022), have been used to predict
short-term consumption of electricity at the level of a single building. Zhou et al. (2022)
proposed a deep generative model based on a latent stochastic recurrent neural network
to forecast the energy generation needs of large-scale hydropower stations. Additionally,
generative flows are used to approximate the time series distribution.

Reddy et al. (2023) analysed several machine learning techniques, including linear
regression, K-Nearest Neighbours (KNN), extreme gradient boosting (XGBoost), random
forest, and artificial neural networks (ANN), to predict power usage. They trained and eval-
uated thesemodels on a dataset obtained from a power utility business. The data is a year’s
hourly electricity demand that has been pre-processed to address outliers andmissing val-
ues. Their experiments have shown that the KNN model outperformed all others. Lazzari
et al. (2022) proposed day-ahead electricity consumption forecasting for residential house-
holds using Gaussian mixture clustering to identify behaviour clusters and an XGBoost
model to predict the day-ahead behaviour pattern. This predicted user behaviour informa-
tion is used by an ANN to estimate electricity consumption. The efficiency of their method
was proved on 500 residential users located in a southeastern region of Spain. Ghimire et al.
(2023) proposed a hybrid forecasting model, composed of ANN, Encoder-Decoder Based
LSTM (EDLSTM) and Improved Complete Ensemble Empirical Mode Decomposition with
AdaptiveNoise (ICMD), for estimatingdaily electricity demand.After datapartitioningusing
ICMD, the most frequent components of electricity demand are predicted with the ANN,
and the remaining components being predicted with the EDLSTM. The experiments con-
ducted on the aggregated demand dataset of the State of Queensland have shown the
efficiency of the proposed hybrid model with respect to its standalone components. Stingl
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et al. (2018) show that industrial-level electricity consumption canbe forecastedbetterwith
linear regression models than with a random predictor, but with high uncertainty.

At the city level, sevendata-drivenmodels for thepredictionofdaily electricity consump-
tion (Wang et al., 2021) were applied and evaluated for the data in threemetropolitan areas
of the US: Los Angeles, Sacramento, and New York. The models evaluated how city-level
electricity usage is influenced by two factors, namely weather conditions and the Covid-
19 pandemic. All models achieved a high performancewhen predicting electricity demand
at the city level, with a Coefficient of Variation of the Root Mean Square Error (CVRMSE) of
less than 10%. The Gradient Boosting Tree model performed best, with a CVRMSE ranging
between 4–6%.

Electricity management companies need to be able to plan optimally the electricity
production and supply, in order to prevent electricity surpluses or shortages. A compar-
ative study (Lee et al., 2022) of electricity consumption forecasting in different countries,
which aimed to analyze the forecasting accuracy of somemachine learningmodels, specifi-
cally compared fourmodels: neural network, fuzzy time seriesmodel, adaptive neuro-fuzzy
inference system and least squares support vector machine. The variables considered in
the study were the monthly electricity consumption over ten years in the target coun-
tries. The models were evaluated using different error metrics. The fuzzy time series model
was the most efficient for most of the countries studied. A fuzzy controller realises a con-
trol strategy that is defined qualitatively. The technology of fuzzy controllers is constantly
evolving and it can enhance industrial automation and is appropriate for control oper-
ations in complex environments (Wu et al., 2023a). Because the fuzzy controller accepts
inputs with linguistic values, it is not constrained by binary statements like “true” or
“false.” This type of controller can provide empirical guidance by outlining the appropri-
ate course of action given the input. Both simple/straightforward applications and intri-
cate/advanced projects employ this kind of controller. The portability of a system depends
on how it is programmed as well as on the system features that we wish to use fuzzy
control on.

Fuzzy logic finds use in a range of domains, including the automotive industry for
the enhancement of automatic transmission on highways or for controlling speed, in the
aerospace industry for controlling the altitude of planes or satellites, in the defense sec-
tor for target recognition in underwater circumstances or for the automatic recognition of
infrared images. Business uses it in supporting decision making or in personnel evaluation
systems in large firms, in medical systems for diagnosing or modelling the neuropatholog-
ical discoveries in patients presenting Alzheimer symptoms, in the food industry for milk or
cheese production, etc. Additionally, it can be used in tandemwith other techniques, such
as neural networks, to improve artificial intelligence systems. Examples of how fuzzy tech-
nology has been used in agent-based systemsmay be found in (Baloglu &Demir, 2018) and
(Walter & Gomide, 2007).

In (Zadeh, 2008), Lofti A. Zadeh, the creator of fuzzy theory, attempts to respond to the
question “Is fuzzy logic necessary?” According to him, fuzzy logic formalises twoof themost
amazing human abilities. First and foremost, the capacity to communicate, think critically,
and act rationally in a complex environment when information is incomplete or conflict-
ing, thus, to put it in another way, in a situation where there is imperfect information.
The capacity to perform a variety of physical and mental activities without calculation or
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measurement is the second. Furthermore, according to Zadeh, the linguistic variablemech-
anism is special to fuzzy logic and plays a crucial part in the conception and design of both
control systems and user products. The large universality of fuzzy logic in comparison to
bivalent logic is another significant benefit. In his conclusion, he asserts that fuzzy logic is
considerably more than a straightforward logic system.

WangandMendel (1992)presentedamore in-depthapproach tobuild a fuzzy controller,
showing a general technique for creating fuzzy rules out of numerical data. The input and
output of the numerical data are split into fuzzy regions in the first phase. This operation,
which is a part of the data preprocessing, is carried out in the fuzzification block. Fuzzy
rules will also be produced by the fuzzification block using the information gathered in the
previous step.

In our previous work (Olaru et al., 2022), a particular fuzzy controller is used in the pre-
diction of electricity consumption and production at the household level, presenting the
purpose of each blockmentioned above and theway the predictor is designed for a certain
problem. In the present work, we optimise the fuzzy controller for electricity consumption
forecasting at the city level.

The related work is synthesised in Table 1. The forecasting method, the purpose, the
dataset lengths, and the data sampling interval are presented.

3. Electricity consumptionmodelling

In this section, twomethods are proposed to predict the electricity consumption at the city
level.One is a statisticalmethodand theotherone is basedon fuzzy logic. Bothmethodsuse
electricity consumption history to forecast the upcoming electricity consumption levels.
Figure 1 illustrates the methodology flowchart.

As the flowchart depicts, the data collection is followed by a data preprocessing step,
which includes treatingmissing values and removing outliers. Then, the preprocessed data
is provided to the forecasting method (e.g. fuzzy controller, TBATS, etc.). Finally, the pre-
dicted electricity consumption is used by the energy management system for decision
making with the following goals: to optimise energy distribution, to reduce energy waste,
and to avoid overloading the power system, with financial benefits for AFEE.

3.1. The TBATS statistical method

For the forecasting of seasonal data, statistical models like ARIMA and TBATS can be good
candidates. For its better prediction results, we choose the TBATSmodel which has the fol-
lowing parameters: ω is the Box-Cox value, ϕ is the dumping value, p and q are the ARMA
parameters,m1, . . . ,mT are the seasonal periods, and ki denotes the number of harmonics
in the case of the ith seasonal element. The TBATSmodel has an automatedmodel selection,
which makes it simpler to use than ARIMA.

The Box-Cox transformation y(ω)
t can be determined as follows:

y(ω)
t =

⎧⎨
⎩

y(ω)
t −1

ω
, ω �= 0

log(yt), ω = 0
(1)
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Table 1. Synthetized related work.

Article Method Purpose Dataset length Sampling interval

Feilmeier (2015) Multi-Layer Perceptron Forecasting electricity production and consumption in a
household with solar panels

5 months 5min

Gellert et al. (2022) TBATS Forecasting electricity production and consumption in a
household with solar panels

5 months 5min

Bachici & Gellert (2020) Long Short-TermMemory Forecasting electricity production and consumption in a
household with solar panels

5 months 5min

Gellert et al. (2019) Markov model Forecasting electricity production and consumption in a
household with solar panels

5 months 5min

Escrivá-Escrivá et al. (2011) Multi-Layer Perceptron Short-term prediction of total power consumption in
buildings

450 days 15min

Zhang et al. (2020) LSTM-ANN hybrid Short-term prediction of building-level energy
consumption

5 months 1 h

Kim & Cho (2019) CNN-LSTM hybrid model Prediction of residential electricity demand 4 years 1 min
Le et al. (2019) CNN-BiLSTM hybrid Energy consumption prediction at household-level 4 years 1 min
Cai et al. (2019) Gate CNNs Day-ahead building-level load forecasting 1 year 1 h
Bedi et al. (2020) Elman neural network Prediction of electricity use in IoT-driven buildings 8 weeks 10min
Fumo & Biswas (2015) Linear regression and quadratic Regression models Prediction of residential energy consumption 1 month 5min
Li et al. (2021) Swarm intelligence-based ensemble model Short-termelectricity consumptionprediction for buildings 6 months 1 h
Zhou et al. (2022) Latent stochastic recurrent neural network Prediction of electricity generation demand for large-scale

hydropower stations
2 years 1 h

Rosas et al. (2022) Hybrid CNN-LSTM Prediction of regenerable energy production and
consumption in a public building

1 year 10min

Wang et al. (2021) Gradient Boosting Tree model Prediction of daily electricity consumption at city scale 4 years 1 h
Lee et al. (2022) Fuzzy time series model Prediction of electricity consumption at country-level 10 years 1 month
Reddy et al. (2023) KNN, XGBoost, Random Forest, LSTM Electricity usage prediction from the power utility provider 1 year 1 h
Stingl et al. (2018) Linear regression models Forecasting annual electricity consumption at industrial

level
5 years 1 d

Porteiro et al. (2022) Linear regression models Day-ahead electricity demand forecasting at industry / city
/ country level

4 / 2 / 9 years 1 h

Lazzari et al. (2022) XGBoost-ANN hybrid Day-ahead electricity consumption forecasting for
residential households

1 year 1 h

Ghimire et al. (2023) ICMD-ANN-EDLSTM hybrid daily electricity demand prediction at state level 10 years 30min
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Figure 1. Methodology flowchart

y(ω)
t = lt−1 + ϕbt−1 +

∑T

i=1
s(i)t−mi

+ dt (2)

lt = lt−1 + ϕbt−1 + αdt (3)

bt = (1 − ϕ)b + ϕbt−1 + βdt (4)

s(i)t = s(i)t−mi
+ γidt (5)

dt =
∑p

i=1
γidt−i +

∑q

i=1
θiεt−i + εt (6)

where b is the long-run trend, bt is the short-run trend in period t, lt is the level element
at time t, s(i)t is the ith seasonal element at time t, dt is the prediction error, εt is a Gaussian
white noise process with zero mean and constant variance σ 2, whereas α, β , s and are γi

the smoothing values. For more flexibility, we can apply the trigonometric representation
of the seasonal elements based on Fourier series, as follows:

s(i)t =
∑ki

j=1
s(i)j,t (7)

s(i)j,t = s(i)j,t−1 cos λ
(i)
j + s∗(i)

j,t−1 sin λ
(i)
j + γ

(i)
1 dt (8)

s∗(i)
j,t = −s(i)j,t−1 sin λ

(i)
j + s∗(i)

j,t−1 cos λ
(i)
j + γ

(i)
2 dt (9)

λ
(i)
j = 2π j

mi
(10)

where γ
(i)
1 and γ

(i)
2 are the smoothing values, s(i)j,t is the stochastic level of the ith seasonal

element, and s∗(i)
j,t is the stochastic growth of the ith seasonal element.

TBATS can decompose seasonal time series into trend, seasonal and irregular elements.
The trigonometric terms from TBATS might not be normalised and the overall seasonal
element can be decomposed into multiple seasonal elements with different frequencies.

We are forecasting electricity consumption at a granularity of one hour using TBATS on
the AFEE datasets.

3.2. Fuzzy controller

The structure of the proposed fuzzy controller is presented in Figure 2. The process of turn-
ing the input data into fuzzy sets is called fuzzification. The energy management system’s
sensors provide accurate, precise data as input. These values have undergone preprocess-
ing so that the fuzzy system can understand them. A membership function is used in
this type of transformation to convert every input value to a membership degree within
0 and 1. The partitioning of the mapping region varies depending on the function used.
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Figure 2. The Structure of the fuzzy controller.

Figure 3. Numerical domain divided into fuzzy regions.

According to Mendel (1995), the triangular, trapezoidal (see Figure 5), and Gaussian mem-
bership functions are the most often used.

Figure 3 shows how the numerical domain of one of our research cases was divided into
fuzzy regions using the triangular membership function. The numerical domain, shown in
the abscissa, ranges from the smallest conceivable value of electricity consumption to the
highest number recorded on our benchmarks. The size of the regions varies due to the
different behaviours present in the data.

The fuzzy rule base is produced once the fuzzy regions have been identified and the
fuzzy rules have been constructed. In this N-dimensional space, N stands for the quantity of
incoming data. The rule base can be shown as a matrix in Figure 4 for a system with “AND”
rules and two inputs and one output (x1, x2; y).

The matrix includes two rules as an example. If we were to construct some rules using
our datasets and the representation of fuzzy regions fromFigure 3, thenwewould translate
the followingdeclaration: “IF at t0 the electricity consumptionwas equal to 1104Watts AND
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Figure 4. The structure of a fuzzy rule base.

at t1 the electricity consumption value was equal to 1108 Watts, THEN at t2 the electricity
consumption value was equal to 1112 Watts” to “R1: IF x1 is R601 AND x2 is R602, THEN
y is R603”. For the sake of representing the rule base we can add a second rule “R2: IF x1
is R598 AND x2 is R603, THEN y is R600”. The regions related to the input x1 are vertically
represented and the regions corresponding to the input x2 are represented horizontally.
The regions of interest for each rule must be selected, and the position that is chosen will
be labelled with the region that corresponds to the output. Conflicts between the existing
mapped rules and the newly created rules may arise at this stage. If this occurs, it may be
useful todesign amechanism for assessing the level of confidence in that rule, and themore
trusted rule should be assigned a position in the matrix based on the level of confidence.

Applying the input data to each rule in the fuzzy rule base yields the final set of rules.
As a result, if the rule base contains N rules, it will produce N mappings, each indicating
the degree to which the input data is a member of the rule. An illustration of mapping the
input data onto two rules is shown in Figure 5. We can see how the inputs are mapped on
both rules by considering the set of inputs (x1: 7 Megawatts, x2: 26 Megawatts). The two
given inputs represent two values of energy consumption levels measured consecutively.
For example, for R1, the membership degree of x1 has a value of 0.5 and the membership
degree for x2 has a value of 0.75, whereas R2 presents the x1 input with a membership
degree of 0.5 and x2 has amembership degree value of 0.25. The outcomeof eachmapping
is determined by fuzzy operators. The min and max operators are the most used ones for
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Figure 5. Input data mapping onto fuzzy rules.

Figure 6. The result of the interference.

“OR” and “AND” rules. The inference engine then combines all the findings. It computes all
the mapping results and establishes the defuzzification region using an inference method.

The MIN approach was employed to ascertain each rule’s outcomes in the preceding
example. This approach entails picking the rule’s smallestmembership degree. Utilising the
maximal algorithm, which presupposes the reunion of the previously established areas, we
computed the final area. Figure 6 illustrates the outcome of this entire process, known as
inference, which is a fuzzy value. The next step is to convert this fuzzy value into a genuine
value by defuzzifying it.

Defuzzification techniques can be applied to the output of the inference block in a vari-
ety of ways. Since no single technique would be effective on all systems, it might be one
of the system’s programmable parameters that can be adjusted to discover the optimal
match. The weighted average approach, the centroid method, and the mean of maxima
method are the most well-known ones. The membership function, the kind of inference,
the fuzzification method, and the defuzzification method are finally selected through this
five-step process. We must evaluate each output and replace the variables with the most
appropriate ones to determine the system’s ideal configuration. Additionally, because each
block is interconnected, a change in one block might have an impact on the outcomes of
another.
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Table 2. Excerpt of electricity consumption from the AFEE dataset.

cc [MWh] cpt [MWh] cc_cpt [MWh]

107.971 126.260 234.231
82.731 120.800 203.531

4. Experimental results

The benchmarks used for this purpose are the datasets provided by AFEE Sibiu serving
Sibiu county with a total population of 400,210 inhabitants (urban population: 259,337
inhabitants, rural population: 140,873 inhabitants) and an installed power 2020 of 160,915
MW. There are three data collections: the one that indicates the captive consumers (cc), the
one that indicates the technological consumers (cpt) and the last one is a sum of the previ-
ous two categories (cc_cpt). All these data collections contain the electricity consumption
inMWhat a granularity of onehour for six years between January 2014 andDecember 2019.
Because the benchmarks contain measurements with one hour interval between observa-
tions, all the predictors are forecasting one hour ahead electricity consumption. Table 2
presents an excerpt from the dataset.

At each predicted value, the computed error is added to the overall error. Thus, after
predicting the entire reference file, we will get the total error induced by all the predictions
made. Finally, we will use the following formula to compute the mean absolute error:

MAE = 1
N

·
N∑
i=1

| Ri − Pi | (11)

whereRi is the actual value taken from the reference file,Pi is the valuepredictedby the con-
troller, and N is the total number of predicted values. Precision analysis consists of running
multiple simulations with different configurations and on different benchmarks.

4.1. TBATS

The accuracy of this model will bemeasured using the 80/20 rule. This implies that two sets
of data must be generated: one for training and one for testing. The training set accounts
for 80% of the total dataset. This portion of the dataset will be used by themodel. The test-
ing set accounts for 20% of the whole dataset. This collection of data will be used for the
final evaluation. There will be nomore changes made to the model to improve its fit to the
dataset.

The next step is to decide how the data will be supplied to themodel. In order to reduce
the magnitude of the spikes, we tried different data transformations. Figure 7 presents the
TBATSmethod applied to the original data, the square root (sqrt), the natural logarithm (ln)
and the base 10 logarithm (lg), respectively. We considered a data history length of 500 and
a seasonality of 24 (one day).

As Figure 7 depicts, data transformation had no improvement, thus keeping the original
untransformed data is the best solution, with an error of 3.85 MWh at average. The sec-
ond parameter we varied for the TBATS statistical method is the data history length. We
considered the original data and a seasonality of 24 (one day).
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Figure 7. Data transformation.

Figure 8. The influence of the data history length over the mean absolute error.

As Figure 8 shows, a data history length of 200 provides the best results, the error
decreasing to 3.60 MWh with this history lengths. Either a lower or a higher history length
makes TBATS less performant. Next, we have varied the seasonality. Besides the seasonality
of 24 (one day), we also tried 168 (one week) and 720 (one month).

As Figure 9 illustrates, the seasonality of 24 (one day) provides the lowest error in all
the three datasets, 3.6 MWh at average. Consequently, the optimal TBATS configuration is
based on untransformed data, a history of 200 values and a seasonality of 24.
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Figure 9. Varying the seasonality.

4.2. Fuzzy controller

In the fuzzy controller case, theparameters that can influence the accuracy of theprediction
are: the number of fuzzy inputs, the number of training values, the method through which
the rules from the fuzzy rule base are chosen in case of a conflict, the error threshold and
the number of states related to the saturated countermethod and lastly the defuzzification
method.

The first step in configuring the fuzzy controller was to vary the number of inputs for the
fuzzy rules, meanwhile, all the other parameters were set to a random static value which is
maintained onwards for the parameters not configured yet.

In Figure 10, it can be seen that a number of 4 inputs gives the best results for the cc
and cc_cpt benchmarks and by increasing it onwards, themean absolute error increases as
well. The cpt benchmark did not respond to the changes in the number of inputs, maintain-
ing its error during the variations. The number of inputs for the fuzzy rule is an important
parameter because it helps the controller detect certain patterns in the benchmarks.

After determining the number of input values that resulted in a configuration with an
average absolute error of 7.1 MWh, the second parameter to be adjusted was the num-
ber of values utilised for the training phase. The training set of values helps build the first
set of rules in the fuzzy rule base and train the controller for its next predictions. Figure 11
depicts the desired size for the training set, 5,000, which results in a mean absolute error
of 6.89 MWh. Even though the mean absolute error tends to decrease with a bigger set of
training values such as 20,000, the number of predicted values decreases. Interestingly, this
behaviour applies to the cc and cc_cpt benchmarks, while the controller is more efficient
on the cpt benchmark with smaller sets of training values. The purpose of this controller is
to learn by prediction which led to selecting a smaller set for the training phase instead of
pursuing the onewhich created a smaller error. It is noticeable that by adjusting this param-
eter, the absolute error has slightly decreased as we increased the number of inputs. A size
of 5,000 values for the training set represents 10% of the whole benchmark, the remain-
ing 90% will then be predicted by the controller. With each value predicted, the rule base
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Figure 10. The influence of the number of inputs for the fuzzy rules.

Figure 11. The influence of the number of training values.

is updated with new rules if needed. This size will be maintained at this value for the next
simulations.

Now that the number of training values and the number of inputs have been set, the
next parameter to be varied is the method of solving the fuzzy rule base conflicts. As men-
tioned before, with each prediction, the fuzzy rule base is being updated. Sometimes, while
updating, the new rules to be added create conflicts that need to be resolved and decide
which rule gets to take the selected position in the rule base. Figure 12 depicts the results of
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Figure 12. The influence of the method of solving the fuzzy rule base conflicts.

three different approaches to solving conflicts. The last-rulemethod implies that the newly
created rule gets the position in the rule base, while the old one is erased. This method
might lead to erasinggood rules thatwouldhavebenefited the controller, hence thehigher
error of 7.26 MWh. In the second method, the degree of confidence is computed for each
rule with the help of the membership function, but as it can be seen in the diagram, the
mean absolute error of 6.83 MWh for this approach is still higher than the one produced by
the saturated counters method, which is an error of 6.34 MWh. Clearly, the third method
brings the best results because each rule has its own saturated counter which increases or
decreases based on the last prediction. If the prediction was below a certain threshold, the
counter for the fuzzy rules used for the prediction increases, which means the confidence
level for those rules increases, otherwise the counters for those rules are decreased. The
error threshold and the upper limit of the confidence counters associated with the rules
decide which rule wins the place in the rule base in the case of a conflict.

The choice of the saturated counters method as the approach for solving the fuzzy rule
base conflicts, brings twomore parameters to be varied: the number of counter states and
the error threshold. The first one to be varied is the number of states that the saturated
counter can take. For this, we need to maintain the error threshold at a certain value to
determine which configuration outputs the best results. So, the error threshold will be set
to 100 for the next set of simulations.

The influenceof thenumberof counter states canbe seen in Figure 13. It canbe seen that
the only benchmark that responds to this parameter variation is cpt, while in the other two
benchmarks, the error variation is almost unnoticeable. The best value for this simulation
will be chosen by observing the cpt benchmark behaviour. So, by increasing the number of
states up to10, the error is visibly decreasing, reaching apointwhere increasing thenumber
even more, does not help the results to improve. Consequently, a number of 10 states for
the saturated counter is the best configuration for this set of benchmarks as well.
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Figure 13. The influence of the number of counter states.

Figure 14. The influence of the threshold error value.

Now that the desired number of states has beendetermined for each of the benchmarks,
we can continue with the variation of the second parameter which is the error threshold.
The same scenario will be followed for this parameter as well.

The number of the counter states has to be fixed to 10 and the threshold will be var-
ied. In Figure 14, we can see that on the cpt file the mean absolute error decreases once
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Figure 15. The influence of the defuzzification method.

the threshold increases while on the cc and cc_cpt benchmarks it is slightly affected by the
change. In order to determine the best value for the threshold parameter, we analyze the
averages to seewhat configurationhad the smallest error as output.While varying thenum-
ber of states, the absolute error increased with almost half of MWh. This is because during
that configuration, the error threshold was set to 100, whichmeant that a lot of bad predic-
tionswere taken into consideration. Afterwards,while varying the error thresholdwe tested
out the controller with the parameter varying from a 3 MWh accepted error to a maximum
of 25 MWh of accepted error. So, the best configuration for this category of benchmarks
would be a counter with 10 states and an error threshold of 5. The number of states and the
error threshold are strongly connected.

Lastly, the defuzzification method was varied. Figure 15 depicts the results provided by
eachmethod. Themeanofmaximaapproachhas the least desirederror results of 8.43MWh,
while the weighted average method and the centroid method had similar results. In order
to choose the best one, we need to look at the average section of the diagram where we
can clearly see that theweightedaveragemethodgives thebest results overall, with amean
absolute error of 6.16 MWh.

4.3. Comparison

Now, we can compare the studied predictors with several other predictors that have been
used for the mentioned sets of benchmarks (see Figure 16). We considered the optimally
configured TBATS and fuzzy controller, as well as the best configurations of LSTM (Bachici
& Gellert, 2020) and Markov model (Gellert et al., 2019).

Looking at the averages, it can be seen that overall the TBATS model provided the low-
est error, 3.6 MWh. The TBATS is followed by the LSTM and the fuzzy controller, the Markov
model being the weakest on these datasets. However, when we examined each bench-
mark, TBATS predicted the cc best, while the fuzzy controller and LSTM had similar lower
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Figure 16. Comparison of the mean absolute error between different predictors.

performance. While predicting the electricity consumption for cpt, the TBATS model had
theworst performance out of all the other benchmarks, while the fuzzy controller and LSTM
performed better than they did on the cc or cc_cpt benchamrks. Lastly, the cc_cpt bench-
mark seems to have been harder to predict for the fuzzy controller and the LSTM, but the
TBATS’ performance was the best out of all the benchmarks.

Focusing on the two models described in this paper, we can state that even though
the TBATS model outperformed all the others, it is much slower than the fuzzy controller.
Because of this constraint and due to the fact that it had better results on the cpt bench-
mark, we can suggest that the fuzzy controller may be a better model to employ for the
supplied city-level dataset.

Regional agencies might maintain an average monthly deviation of the electricity con-
sumption forecast below 5% for economic reasons. As an example, for a small city with a
monthly consumption of approximately 120,000 MWh, a prediction accuracy increased by
only 0.13% results in an economy of 1,500 Euros. The average monthly deviation D can be
computed as follows:

D = 1
M

·
∑M

i=1

|Ri − Pi|
Pi

· 100[%] (12)

whereM is the number of months, Ri is the real electricity consumption in month i and Pi is
the predicted electricity consumption inmonth i. The averagemonthly deviation on all the
72 months was 0.07% (without exceeding 0.27% per month) for the TBATS model on the
cc_cpt dataset which includes both captive and technological consumers.

5. Discussion

Despite the valuable results produced, our method is limited by the lack of using exter-
nal factors that can influence the fluctuating energy consumption. Determinant factors
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influencing consumption must be identified and observed over time. These will be taken
into account as a further step of our research. Below, we briefly emphasise some of them:

• Outdoor temperature: this factor is the most important of all factors because it depends
onmaking a forecast as good as possible, as close as possible to the actual consumption
to be measured. During 2–3 weeks in the summer, directly proportional to the increase
in environmental temperatures, the energy consumption also increases by 30–40%, this
aspect being observed on the load curve when the temperature increases from 29°C to
33°C. For this difference of 4°C, the increase in electricity consumption is very high in
such a short time.

• Cloudiness means the degree to which the sun and by implication the sky is covered
with clouds, both during the day and at night: partial cloudiness and full cloudiness of
the sky in which it covers all types and aspects of the visual nature of clouds.

• Precipitation also has its importance in the oscillation of consumption observed on the
load curve because it can start instantly and stop in the same way.

• Official holidays that are free fromgovernment: they have a very big influence on house-
hold consumption because people have time off these days. Compared to another day
when they would normally spend at work and household consumption is lower, on the
day when it is a holiday, consumption increases considerably.

• Energy efficiency of buildings: numerous factors influence and even limit the energy
performance of buildings, in addition to these are added environmental conditions,
building architecture, character and degree of occupancy, habitation behaviour and the
regime of lighting and HVAC system utilisation.

• Unexpected breakdowns in stations or on low andmedium voltage power lines require
quick recovery measures, including that the surplus energy be sold on the balancing
market.

The twomodels presented in this study are set up to produce the best outcomes for the
benchmarks provided. In case themodels are to be used in different scenarios or use-cases,
a recalibrationmustbedone. Paragraphs 4.1 and4.2 shouldbeusedas aguide todetermine
the optimal parameters for the new scenario. For instance, we use data measured in MWh,
if any user wants to use data measured in KWh, then it is clear that the models provided in
the article need to be re-configured.

6. Conclusions and further work

In this paper, the TBATS statisticalmodel and the fuzzy controllerwereoptimised to forecast
the electricity consumption at the city level. These proposedmethods were also compared
with the LSTM and Markov models. The experiments have shown that TBATS is the best
model for electricity consumption prediction at the city level. The optimal TBATS config-
uration is using untransformed data, a history length of 200 values and a seasonality of
24 (meaning one day). This optimal TBATS model had a mean absolute error of 3.6 MWh
(averaged on all the datasets). To put it all together, TBATS is a time-consumingmodel and
was outperformed by the fuzzy controller on the cpt dataset. If time is favoured over accu-
racy, then the best choice would be the fuzzy controller. The average monthly deviation
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was 0.07% for the TBATS model on the cc_cpt dataset, which includes both captive and
technological consumers.

At the household level, the profit offered by a correct prediction (or the loss from an
incorrect one) will economically affect the owner of the building (individual / local level).
In the case of the AFEE approach at the city level, a wrong forecast leads to high economic
losses for the energy supplier which will later affect the entire population. The role of elec-
tricity consumption forecasting is to avoid as much as possible energy losses from any
source, for any reason. If the forecast is not precise, imbalances can occur, and the energy
company is obliged to buy electricity when there is a deficit or sell when there is a surplus.
In Sibiu, energy purchase expenses (in case of wrong estimation of daily energy demand)
represent 93% of the expenses of electricity supply companies.

As further work, we intend to implement a voter predictor that aggregates the best per-
forming predictors presented in order to exploit their particular advantages. In addition,
an analysis of the uncertainty of the predictions would be useful for risk managers. Indeed,
quantifying the uncertainty in the predictions made by machine learning models is one
of the most active areas of research in machine learning (see, among others, the survey of
Abdar et al. (2021) and thework of Sbailò andGhiringhelli (2023) on epistemic uncertainty).
A full-fledged investigation of the confidence that can be put in the predictive power of
models is in the plans for a subsequent study and will be undertaken when the techniques
andmodels are sufficientlymature. This will be complemented by a detailed analysis of the
explanatory capabilities of the models, another property that is much needed in practice,
as it facilitates, among other things, validation and what-if analysis.
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