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ABSTRACT This study addresses the need to develop a sustainable manufacturing process in industrial
factories, as the industry desires to remain competitive while it is challenged to adopt eco-friendly practices.
A Machine Learning based software is proposed to deal with the environmental issues, aiming to facilitate
the monitoring and analysis of industrial machinery, more exactly of CNC woodworking machines. The
focus is on two aspects that determine the environmental impact: energy consumption and toxic emissions,
which are used to determine the operating modes of the machines and to detect potential working anomalies.
This software consists of a pipeline with two main components: the first one aims to categorize the operating
modes of the used machines through time series clustering methods, such as Hidden Markov Models. The
second component employs Hidden Markov Models again alongside deep learning based Autoencoders to
identify huge deviations within the environmental data. For evaluation, a dataset was collected as a time
series from a CNC woodworking machine and then the preprocessed data was further analyzed using the
implemented software. The experiments have shown that for anomaly detection in machine operating modes,
the Hidden Markov Model outperforms the Autoencoder and state-of-the-art models in terms of efficiency
and robustness.

INDEX TERMS Anomaly detection, autoencoders, hidden Markov models, Industry 4.0, long short-term
memory, working mode detection.

I. INTRODUCTION
Sustainable manufacturing has become one of the most
important environmental problems and it is moving towards
eco-friendly practices in its various subfields, notably also
in the manufacturing sector via the Industry 4.0. Industrial
factories often face challenges when it comes to imple-
menting eco-friendly practices due to limited knowledge
and resources in production. Therefore, identifying and
developing efficient methods to analyze and improve the
manufacturing process can ultimately lead to minimizing the
toxic environmental impact.

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

This study concentrates on novel approaches of integrat-
ing established methods to detect anomalies in industrial
machinery. While we are fortunate enough to have a plethora
of methods that deal with all kinds of anomaly detec-
tion, one of the biggest challenges is that many models
struggle with the increasing dimensionality of the data.
Although many models emerged that could handle many
features theoretically, such as Vector Autoregressive models
or Deep Learning based methods, e.g., Long Short-Term
Memory (LSTM), the nature of the dimensionality may
still provide an impediment in finding important correla-
tion within the data. Some dimensionality reduction methods
can be employed before the actual anomaly detection pro-
cess, such as principal component analysis (PCA), averaging
similar features or other space-embedding strategies [1].
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Another challenge, especially in the case where the data is
unlabeled, appears to be the evaluation metrics. Heuristics
are necessary to flag possible outliers, such as the Pauta
criterion (also known as 3-sigma rule) after pseudo-labeling
the data.

Our study starts with a clustering process aimed to identify
patterns within the time series, where the final goal is to
categorize the operating modes of the CNC woodworking
machines. Furthermore, those clusters are meant to aid the
process of flagging anomalies to obtain valuable insights
regarding the manufacturing process. Anomaly detection
algorithms examine data streams, by extracting irregularities
in the energy consumption patterns. These insights give man-
ufacturers an advantage to identify inefficiencies in real-time,
thereby reducing energy usage, lowering operational costs,
and empowering eco-friendly production practices. More-
over, proactively identifying anomalies in machinery and
equipment for manufacturers prevents potential breakdowns
and malfunctions. This shifts the pace of maintenance from
reactive to predictive, improving equipment longevity and
reducing waste. Another advantage is resource optimization,
deviations in resource usage, such as raw materials or water,
can be detected and data driven decisions can be made in
real time. Another operational aspect that can be achieved
is worker safety. Abnormalities in the manufacturing pro-
cess that can endanger the workforce can be detected and
addressed. This proactive stance in improving worker safety
not only averts costly incidents but also fosters a safe work
environment.

The proposed method has two main components: the
first component classifies the operating modes of the work-
ing machines using Hidden Markov Models (HMM), while
the second focuses on flagging huge deviations within the
environmental data, using yet again HMM, but also employ-
ing more modern techniques, such as deep learning based
autoencoders (AE). These two components build a close
connection, as the automatic clustering part is applied first
to enable an easier flow in detecting anomalies. The nov-
elty of the paper consists in the combination of the two
components. By applying these techniques, this study aims
to enable more sustainability in the manufacturing sec-
tors. While some aspects of the software are particular for
this specific woodworking industry, the core idea of fus-
ing clustering and anomaly detection algorithms can be
further applied to promote eco-friendliness in other fields
as well.

The paper has the following structure: Section II reviews
the relevant work in the field, and Section III outlines the
theoretical aspects regarding the used algorithms. This is
followed by Section IV, which presents the dataset and the
preprocessing step and describes the implementation of the
proposed workingmode identification and anomaly detection
methodology, with a focus on industrial machinery. Finally,
Section V illustrates and discusses the experimental results,
while Section VI concludes the paper by providing possible
further work directions.

II. RELATED WORK
A. INDUSTRY 4.0
In the era of the fourth industrial revolution – oftenmentioned
as Industry 4.0 [2] –, similarly to software versioning sys-
tems, manufacturing and production systems have undergone
a transformative evolution. The advent of this new industrial
era has given rise to numerous innovative concepts, each
contributing to the realization of more sustainable and effi-
cient manufacturing processes. Among these groundbreaking
ideas, predictive maintenance has emerged as a central pillar,
fundamentally altering the landscape of machine care and
defining a digital age of maintenance practices [3]. As part
of this revolution and adding layers of software on top of
already existing infrastructure, a significant layer of cyber-
security threats is also exposed [4]. A systematic Industry
4.0 review [5] answers the question about what applications
and business cases are enabled for companies by the Indus-
try 4.0. Another industry review [6] explores the innovative
realm of supply chain collaboration, particularly in the con-
text of the circular economy.

This emerging field emphasizes close and novel forms
of cooperation among supply chain stakeholders, extending
beyond traditional industry boundaries, all with the goal of
implementing sustainable circular systems. In [7], a smart
environment is described as a place where the boundaries
between the physical and virtual worlds blur, all orchestrated
by intelligent cyber-physical systems. The very industrial
environment that hosts such cutting-edge digital automation
and information technology is an attractive target for cyberat-
tacks. The focus of the study is using machine vision to detect
anomalies or behaviors of machines caused by different cyber
security threats. A digital twin is explored in [8] with the
goal of detecting anomalies based on data from the machine
learning algorithms, digital twin and Industry 4.0 technology.
Anomaly detection is also explored in [9] by doing a review of
the current techniques used in metal additive manufacturing.

B. TIME SERIES CLUSTERING
Clustering is a method which groups similar data into homo-
geneous categories without prior knowledge or information.
In contrast, classification follows the same process, however
with the groups being already defined. Specifically for this
study, one type of clustering that will be performed is time
series clustering, a time series being a sequence of values
recorded at successive timesteps. The main difference over
the classical clustering arises due to the fact that the data is
manifesting temporal dependencies over time [10].
To elaborate further, the goal is to group the operat-

ing modes of the CNC woodworking machine. While the
exact number of possible clusters is unknown, as we do
not even know the specific machine used, we are aware
that there must be some working modes (e.g., the machine
can be shut down, cutting, standby and so on). Such modes
might be observed for a longer period of time (e.g., if the
machine is turned off overnight) or they can switch frequently
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(e.g., in case the stand-by comes immediately after cutting
one product and then this process is repeated).

One common algorithm used for time series clustering
is K-Means, which falls into the category of Partitioning
Clustering methods. K-Means divides the data into k distinct
clusters by looking at the similarity between the data points
and each cluster. While this is a simple, efficient and fast
technique, the disadvantage lies in the fact that it inherently
neglects the temporal dependencies [11].

On the opposite spectrum, there are Hierarchical Clus-
tering methods, such as the Agglomerative Hierarchical
Clustering (AHC) algorithm. In this case, each data point
is considered a cluster initially and then the clusters are
gradually merged until only the most relevant ones remain.
As previously mentioned, the temporal information is not
taken inherently into account in [10] and [11].
To overcome the previously mentioned limitation, other

algorithms can be employed, such as the Model-Based Clus-
tering methods. Within this category falls also the main
algorithm used in this study, namely the HMM which does
take into account the temporal dependencies. The idea of
using HMM to categorize sequences of data can also be seen
in a related field, namely applied to music genre classification
as seen in [12]. While the music part is not directly relevant
for our study, this highlights the application of a model-based
algorithm on time series to automatically determine the genre
of the melodies. Moreover, the study also shows a way on
how to select the number of hidden states (or clusters) within
the HMM, which is problematic as we are not aware of
the number of possible operating modes within the working
machines. A solution proposed in [12] is to increase the
number of hidden states until no noticeable improvement is
seen in performance.

An alternative for choosing the number of hidden states
in a HMM-based application is described in [13], where a
Monte-Carlo based cross-validation approach was proposed.
Also, [14] goes in depth to discuss this notorious prob-
lem of determining the optimal number of hidden states
and inclusively mentions the usage of Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC).
A particular case of those coefficients is further employed in
our study.

C. ANOMALY DETECTION
Anomaly detection is the process of flagging data points
which highly deviate from the expected pattern of the other
items within the whole dataset. From detecting fraud transac-
tions, diagnosing medical risks or identifying environmental
problems, the usage of anomaly detection is widespread
across many fields [15]. With regard to this project, anomaly
detection is performed with the final goal of flagging huge
deviations within the CNC woodworking machine data,
which could indicate potential mechanical or environmental
problems. Flagging such anomalies early can also prevent
more serious issues down the line and make the process an

eco-friendly one. Furthermore, a prior application of time
series clustering can provide valuable information for the
anomaly detection process, as by splitting the data into dif-
ferent working modes it can simplify the detection procedure
for each operating mode, make the flow go smoother and give
more reliability to the process.

One approach to identify anomalies, as described in [16],
involves the application of joint statistical moments. By an
analogy to PCA, the principal kurtosis vectors are used to sig-
nal the principal directions along which the outliers are most
likely to appear. The kurtosis is serving as a reliable metric
to detect anomalies, since it represents the ‘‘tailedness’’ of
the probability distribution (or in other words, how often the
outliers occur).

In [17], Hu et al. proposed a computational framework for
anomaly detection in multivariate time series. First, a recur-
rence plot is generated, then abrupt changes are selected and,
finally, anomalies are detected by computing the dissimilar-
ities between any two subsequences. The proposed method
proved to be efficient on a single dimensional dataset, two
electrocardiogram datasets, a two-dimensional video surveil-
lance dataset, and a five-dimensional dataset from a river
tunnel.

HMMs, which were previously mentioned in the context
of time series clustering, can also be adapted for anomaly
detection as one application of the HMM is to compute the
likelihood of observing a certain sequence given a model.
By taking advantage of this, anomalies can be detected by
identifying the sequences which are unlikely to belong to any
of the hidden states [18].

Modern state-of-the-art methods for anomaly detection
are often based on Deep Learning techniques, as described
in [15]. One of them is the AE, which aims to learn a
lower-dimensional representation space for the input and
accurately reconstruct it. The same procedure can be found
applied in data compression, where an AE can learn to
encode and decode a particular signal or image. The core
idea of using this technique in anomaly detection, is that
the learned representation is enforced to be remembered
in order to minimize the reconstruction error during the
decoding part. Thus, since anomalies are much harder to
be reconstructed, those decoded data points which sig-
nificantly deviate from the original points are flagged as
anomalies.

A special type of AE relies on a Recurrent Neural Network
(RNN), specifically LSTM, and can be applied to identify
anomalies in electrocardiography time signals, as described
in [19]. The advantages of using LSTMs over classical
RNNs are due the fact that they take into account temporal
dependencies and are capable of remembering informa-
tion over longer periods, making them more suitable for
time series.

Furthermore, the authors in [20] employ an LSTMnetwork
to detect possible anomalies within the injection molding
stage of the PET bottle production. This resembles this
project, however the flow is reversed, as there the clustering
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step is not used to aid the anomaly detection phase, but
rather to further cluster the detected anomaly data in order
to improve the process.

In [1], Ji et al. proposed a hybrid model based on
space-embedding strategy (SES) to detect anomalies in mul-
tivariate time series. In the first stage, SES is used for
dimensionality reduction and to determine the dissimilar-
ities between adjacent subsequences. Then, the generated
dissimilarity vector is processed by an LSTMmodel. Finally,
a statistical method is used on the output of the LSTM to iden-
tify anomalies. Their experiments have shown high accuracy
on four public datasets, but weaker performance on two real
datasets.

Although the algorithms developed in this study are unsu-
pervised and work with unlabeled data, a way to pseudo-label
the data and measure the effectiveness of the algorithms
and compare them was developed. The Pauta criterion [21],
[22], [23], also referred to as the three-sigma rule, operates
on the assumption that a dataset adheres, or approximately
adheres, to a normal distribution and comprises solely ran-
dom errors. This method involves calculating the standard
deviation of the dataset and establishing an interval based on
a specified probability. Errors falling outside this interval are
identified as gross errors rather than random errors and are
therefore flagged for elimination.

III. ANOMALY DETECTION IN MACHINE
OPERATING MODES
A. HIDDEN MARKOV MODELS
A HMM is a stochastic model which represents systems
directed in the background by hidden (or unobservable)
states [24]. Even though those states are hidden, the emissions
(or the observable outputs) are dependent on them and this
leads to the possibility to analyze the hidden aspects, based
on the observable outputs.

Each of the states possess a probability of transitioning
to another state, which can also mean that it can remain in
the same state (or in other words, perform a self-transition).
Furthermore, these states are subject to a constraint in which
the upcoming states depend solely on the current ones. As an
example, if we were to model weather patterns, then a HMM
assumes that if we desire to forecast tomorrow’s weather,
then we will do that based on today’s weather, ignoring any
information prior to this day. This principle is more concisely
called the Markov Property, which is at the core of Markov
chains [25].

Markov chains (or Markov processes) are memoryless
stochastic processes that model the transition probabilities
between sequences of random variables, each of those vari-
ables representing a state in the system. Formally, if we define
the sequence of states Q = qi, i ∈ [1, n], then for any state k ,
the Markov Property can be described as:

P(qk |qk−1, . . . , q2, q1) = P(qk |qk−1) (1)

In addition to the state Q, a mathematical description of
a Markov chain also includes a matrix holding the transition

probabilities,A = {aij}, i, j ∈ [1, n], where each aij represents
the probability of switching from the state i to the state j.
Initially, the system can be found according to a certain
probability in any of the system’s states, as given by the initial
probability distribution: P = {pi}, i ∈ [1, n].
In contrast, the HMM is an extended variant of the Markov

chain, augmented with an additional ‘‘layer’’ of emissions
B = {bj(ok )}, each emission representing the likelihood of
emitting the observation ok while being in the qj state. Above,
O = {ok}, k ∈ [1,m] is the set of all possible observations.
On top of the Markov Property, the nature of the model also
brings out the Output Independence property:

P(ok |q1, . . . , qn, o1, . . . , om) = P(ok |qi) (2)

That is, the probability of observing the output ok is based
only on the state that produced the output (in this case qi) and
not in any other state or observation [25].
In [26], Rabiner characterized HMMs by three funda-

mental problems: learning the model parameters, decoding
the sequences and computing the likelihood of observing a
specific sequence. In the context of this study, for a given
time series clustering problem, learning themodel parameters
is essentially performing the training part. More exactly, the
Baum-Welch algorithm, through an iterative process, learns
the model parameters, such as the transition and the emission
probabilities (the probability matrix corresponding to the
transition between different clusters as well as the probabil-
ity matrix representing the observations). After the model
is trained, each timestamp can be assigned to one hidden
state (or cluster) using the decoding algorithm (essentially
this determines to which hidden state the instance most
likely belongs to). This step is performed using the Viterbi
Algorithm and takes advantage of dynamic programming to
compute the most probable sequence of hidden states that led
to the observed sequence (more exactly, features of the data
are the observed part).

The time series clustering part can be enabled through the
application of these two problems. Furthermore, the likeli-
hood of observing a sequence of data can be employed to
detect whether some potential anomalies occur within the
time series. More exactly, when an instance has a low likeli-
hood to belong to any of the hidden states, then that instance
can be considered an outlier. This step is performed through
the usage of the Forward Algorithm, which also employs
dynamic programming.

B. THE LSTM MODEL
The modern anomaly detection is based upon deep learn-
ing techniques, starting from simple encoder-decoder RNNs.
However, those pose a few limitations since only a few suc-
cessive time steps are taken into consideration while training
them. Also, problems such as the vanishing gradient are
often encountered. Additionally, the layers associated with
recurrent cycles are trying to make an accurate decision in
the current timestep, while also trying to remember distant
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information. Performing two tasks at once adds too much
complexity to the process [25].

More advanced RNNs, such as the Long Short-TermMem-
ory (LSTM) network, are addressing the previous limitations.
These networks resemble (traditional) RNN with the dif-
ference that the recurrent cycle is replaced by a memory
cell [27]. LSTM has already been studied in different indus-
trial contexts [28], [29].

The name ‘‘long short-term memory’’ comes from the
original paper [30] and reflects how the networks can use their
recurrent cycles to memorize representations of recent input
events in the form of outputs (seen as the short-termmemory)
for a long-term period embodied within the process of slowly
changing weights.

As with standard RNNs, the data flowing into those mem-
ory cells (or LSTM cells), is the value of the hidden state
(the output of the memory cell) from the previous timestep
alongside the input from the current timestep. The process of
how LSTMs work is detailed in [27] and further summarized
below. LSTM cells (see Fig. 1) are formed out of an internal
state (which is the memory that the cell holds through data
processing) and three gates that control the flow of the infor-
mation into, within and out of the cells:

• the input gate decides how much of an input should be
stored in memory;

• the forget gate ponders whether some part of the infor-
mation should be flushed or not;

• the output gate decides how much the memory informa-
tion should impact the cell’s output.

FIGURE 1. The architecture of a LSTM memory cell [27].

Essentially, the three gates are separate fully connected
layers, with their outputs being dragged through an activation
function – typically through the sigmoid function, denoted
with σ , as its output is in the (0, 1) interval and this is ideal
for creating a gate (or rather, it is easier for each gate to take
a decision this way).

A single LSTM cell might not achieve that much on its
own, but interconnected with other similar cells it builds up
the structure of the layers and further that of the entire RNN.

What makes RNNs special is their ability to operate over
sequences of vectors in multiple ways, as shown in Fig. 2.
This includes structures such as: one-to-one (with fixed inputs
and outputs, as for image classification); one-to-many (with
a sequence vector output, as when the input is an image

FIGURE 2. Different structures of RNNs [31].

and the output is a language description of it); many-to-one
(the reverse of the one-to-many structure) and many-to-many
(the most generalized variant, which is also the case in the
context of this study, where both the input and the output are
sequences of vectors) [31]. The flow within such a general
structure goes as shown in Fig. 2. Specifically for a time
series, the process starts with the first time step being the input
for the first LSTM cell, then the second time step alongside
the output of the first LSTM cell becomes the input for the
second LSTM cell. The process goes further like this until
the very end, but taking into account the different types of
outputs (mentioned previously). Additionally, since the cells
are encapsulated so that from an external perspective theywill
appear as basic units (similarly as with the concept of objects
within object-oriented programming), it enables easily to
experiment with different types of RNN architectures [25].
One such possible different architecture is the Bidirectional

LSTM (Bi-LSTM), which essentially consists of two LSTMs:
one that processes the data in the natural direction, whereas
the other one reverses the direction, with both outputs from
each network being concatenated at each timestep. While this
is not feasible for online learning (where new data contin-
uously appears), it is a major advantage for offline training
(meaning that we are in possession of all the data), as there is
simultaneous access to both the future and the past data from
the network’s perspective.

C. AUTOENCODERS
An AE is a special type of neural network which can effi-
ciently compress its input data. The architecture consists of
an Encoder (which aims to obtain a lower dimensional repre-
sentation of the input data) and a Decoder (which attempts to
reconstruct the original data based on the encoded represen-
tation) [32].
As an illustrative example, if we consider a simple feed-

forward neural network with a single hidden layer and the
size of the output layer is the same as for the input layer, then
the network can be used as an AE by training it to minimize
the error between the output and the original input itself,
making an encoder-decoder process. More exactly, the output
of the hidden layer is the resulting encoded representation.
In case the hidden layer contains significantly fewer neurons
than the input or the output layer, then this representation
can be also viewed as the compressed data, assuming that
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the programming language represents the resulting encoded
representation using the same datatype as for the original
input, which often might not be the case.

An LSTM-based AE is similar to the feedforward network
exemplified in Fig. 3, with the difference that the architecture
is built out of layers containing LSTM cells, as described in
the previous section [33].

FIGURE 3. The architecture of an LSTM-based AE [33].

IV. EXPERIMENTAL METHODOLOGY
A. DATA PREPROCESSING
This project started by preprocessing the time series data,
which was gathered in CSV files from a CNC woodworking
machine. More exactly, the data consisted of two time series
related to energy consumption and environment emissions.
The exact type of the machine and its operating modes is,
however, unknown.

Specifically, the energy data contained: the Active Power,
the Current, the Power Factor, the Reactive Power, the Total
Harmonic Current Distortion (THDI), the Total Harmonic
Voltage Distortion (THDU) and the Voltage for each phase
(A, B and C, as the machine was using a three-phase electric
power system).

Meanwhile, the environmental data consisted of ambient
conditions within the woodworking factory. These met-
rics encompass readings for ‘‘sound’’, ‘‘pressure’’, ‘‘temp’’,
‘‘humidity’’, and ‘‘VOC’’ used for environmental conditions.
‘‘Organic chemicals’’ and ‘‘particles’’ gauge the presence of
these elements, while ‘‘roll’’, ‘‘pitch’’ and ‘‘yaw’’ quantify
rotational movements about the X, Y, and Z axes, respec-
tively. Accelerations along the X, Y, and Z axes are captured
by ‘‘Xacc’’, ‘‘Yacc’’, and ‘‘Zacc’’, whereas ‘‘Xgyr’’, ‘‘Ygyr’’,
and ‘‘Zgyr’’ correspondingly represent gyroscope values.
Finally, metrics like ‘‘pm1.0’’, ‘‘pm2.5’’, and ‘‘pm10’’ delve
into particulate matter of varying sizes, and ‘‘CO2’’ offers
insight into carbon dioxide levels.

Given that the initial data had a frequency of 1 second, the
time series were resampled by averaging them over 5 seconds.
This was mainly performed in order to ignore the unneces-
sary high-frequency fluctuations and noise, thus focusing on

longer patterns. After this step, any missing data was filled
with the nearest non-null value within the data frame. Lastly,
as the energy data came from a three-phase electric power
system, each of the three phases were averaged in order to
obtain a single representative value for each feature, thus,
preserving the essential information while at the same time
reducing the high-dimensionality of the data.

Before applying the HMM to cluster the time series, it was
necessary to ensure that all features contribute equally to the
model. This is performed by standardizing the data, which
rescales the values so that the new mean is 0 and the new
standard deviation is 1. This step is also essential to be applied
before training the HMM algorithm, since the emissions are
assumed to belong to a Gaussian distribution and having the
values standardized can make the model more stable. The
most appropriate model available for the used data was Gaus-
sianHMMwhich works with Gaussian emissions, as opposed
to CategoricalHMM which assumes that the emissions are
discrete.

B. DETERMINING THE OPTIMAL NUMBER OF CLUSTERS
The next step after standardizing the data was to determine
the optimal number of hidden states, or in other words to
find the number of clusters that the HMM algorithm should
work with (a parameter that must be predefined). This can
be found visually by looking at how HMM performs when
changing the number of hidden states. However, in order to
enable an automatic process, we desired to find the optimal
number dynamically.

Some variants for determining the optimal number of
states automatically were already employed by other authors,
as described in Section II. Specifically, a common criterion
that deals with this issue is the BIC, which is defined as:

BIC = k ln(n) − 2 ln (L̂) (3)

Above, k is the number of parameters in the model, n
is the data size (or the number of timesteps) and L̂ is the
maximized value of the likelihood of the model given the
observed data (in simpler terms this likelihood is a measure
of how accurately the model represents the data) [14].

However, for the data originating from the CNCmachines,
BIC had the unfortunate drawback of not penalizing the
model enough, as it led to the situation where increasing
the number of hidden states resulted in a decrease for the
BIC value (and a smaller value of BIC means that the model
performs better). In short, BIC always recommended choos-
ing the largest possible number of states, but knowing how
many operation modes the machine has, we could see that
this should not be the case.

Alternative variants to BIC, such as applying AIC or per-
forming cross-validation did not resolve this issue either (for
the current dataset), as those also continued to suggest the
maximum possible number of hidden states. To address this
limitation, a modified version of BIC was further proposed in
this study. More precisely, an Adjusted Bayesian Information
Criterion (ABIC) was considered, which penalizes harder
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models with a higher number of parameters. This criterion
is further defined as:

ABIC = ln(L̂) − k2 ln(n) (4)

The main difference appears in the fact that the number of
parameters (k) is squared in order to give a harder penaliza-
tion. The minus sign was also reversed so that a higher value
for ABIC now suggests that the model performs better (which
felt more natural, as usually metrics with higher values tend
to represent a better performance).

C. HMM IMPLEMENTATION
With the optimal number of hidden states determined, the
next step was to cluster the time series. This was performed
using the GaussianHMM model provided from the ‘‘hmm-
learn’’ library.

The optimal number of clusters was determined using the
ABIC criterion, and the covariance matrix of each component
was chosen to be diagonal, meaning that the features are
assumed to be uncorrelated within each component (hidden
state or cluster). The training part is performed using the
Baum-Welch algorithm within the ‘‘fit’’ method, whereas the
‘‘predict’’ function employs the Viterbi algorithm in order to
decode to which component each observation belongs to.

Furthermore, the HMM can be employed to find potential
anomalies within the predicted data. More exactly, the ‘‘com-
pute_log_likelihood’’ function provides for each observation
the log likelihood of belonging to any of the hidden states.
Thus, by summing up the likelihoods of all the features within
an observation and comparing it to a threshold can inform us
about outliers.

The threshold was chosen to be 0.27% (100–99.73) fol-
lowing the classic 68-95-99.7 empirical rule, or more exactly
following that 99.73% of the observations fall within three
standard deviations of the data, assumed to be normal dis-
tributed. Moreover, in the context of HMM, the anomalies
are spotted by looking at observations with extremely low
likelihoods (or those in which the model is not confident that
they belong to any of the states), thus picking out the bottom
0.2% of those likelihoods yield potential outliers.

D. AUTOENCODER IMPLEMENTATION
In terms of implementation, a Bi-LSTM is used to build this
network. The implementation of this model starts by splitting
the data into groups (one for each cluster) and then an AE is
applied for each group.

This AE is mainly composed of an Encoder and a Decoder.
The Encoder consists of two Bi-LSTM layers, for which each
LSTM cell has as output a vector of size 64 (and 32 respec-
tively). The first layer outputs such a vector for each timestep
(since the return sequence is set to True), while the second
layer outputs a single final vector. Therefore, in order to
match the dimension needed at the Decoder, a RepeatVec-
tor layer is further introduced in order to copy that final
vector for each timestep. On the other hand, the Decoder
mirrors the architecture outlined above for the Encoder.

Afterwards, a TimeDistributed layer is used to restore the
original number of features for each timestep.

Lastly, the parameters for training are set: the Mean
Squared Error (MSE) loss function alongside the Adam opti-
mizer. Then, the AE is trained for each working mode and
further the model is used to predict the original data. The dif-
ference between the original and the predicted data enables us
to detect anomalies, as significant differences can represent
outliers found within the data.

Likewise, as with detecting anomalies using the HMM
model, the AE yet again followed the classic empirical rule.
More exactly, the observations where the squared difference
between the original and the predicted output exceeded three
standard deviations (or above 99.73% of all other observation
likelihoods) were flagged as outliers. In contrast to HMM
where small likelihood values resembled outliers, here the
anomalies were considered those whose reconstruction error
was large.

E. PSEUDO-LABELING TO VALIDATE
ANOMALY DETECTION
In the context of this study, despite the unsupervised nature
of the developed algorithms, an approach for pseudo-labeling
the data using the Pauta criterion was employed to assess and
compare their effectiveness [21], [22], [23]. This criterion is
found by calculating the standard deviation (σ ) and mean (µ)
of the normalized dataset and flagging any data point (x) that
deviates from the mean by a certain multiple (usually k = 3)
of the standard deviation as an anomaly, as defined by the
criterion. The identification of anomalies is realized by the
following formula:

Anomaly = |x − µ| > 3σ (5)

In this expression, |x − µ| represents the absolute difference
between a data point and the mean, and 3σ represents the
threshold for flagging anomalies. Any data point exceeding
this threshold is considered an anomaly and is subsequently
labeled as such in the analysis. Although the sensors detected
a wide range of data, in order to train the algorithms and
measure the performance, the following means were used
based on the three phases of the electric current: average reac-
tive power, average power factor, average current, average
voltage, average THDI, average THDU, Xacc, yaw and pitch.

V. RESULTS
We started the experiment by determining the operating
modes of the factory machine using the HMM algorithm.
Thus, first the scores used to automatically determine the
number of hidden states were computed, namely BIC and
ABIC. Fig. 4 illustrates that BIC does not stabilize and tends
to suggest the model with the highest possible number of
states. A lower value of BIC means that the model should
perform better with that number of clusters, as it can be seen
in Fig. 4.

In contrast, the ABIC coefficient penalizes the model
harder, stabilizes faster and does not suggest choosing the
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FIGURE 4. BIC score based on the number of hidden states within the
HMM.

FIGURE 5. ABIC score based on the number of hidden states within the
HMM.

highest possible number of hidden states. A higher value of
ABIC means that the model should perform better with that
number of clusters. This can be seen in Fig. 5, where ABIC
suggests choosing 5 different clusters as a starting point for
the current time series.

Since the nature of the problem is time series clustering,
visual results tend to give better insights compared to the
above metrics. Fig. 6 and 7 show some cases where the
operating modes are visibly distinguished.

Moreover, the HMM model was also exploited in the
context of detecting anomalies. Some samples of anomaly
detection are shown in Fig. 8 and 9 (the anomalies are high-
lighted in the middle with a red rectangle).

The data was mapped to the [0,1] interval for a better
visualization, also even though all features are taken into
consideration by the HMM, only the feature which visually
produced the anomaly was selected to be plotted.

Furthermore, to provide an efficient LSTM-based AE,
it was essential to build an efficient architecture which learns

FIGURE 6. Example visualization for the detected modes on 8th
November 2022 using HMM.

FIGURE 7. Example visualization for the detected modes on 16th
November 2022 using HMM.

FIGURE 8. Anomaly detected by the HMM on pitch.

FIGURE 9. Anomaly detected by the HMM on THDI.

as best as possible to reconstruct the given time series. Thus,
the MSE loss function was further employed to measure the
model’s performance.
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In Table 1, different architectures, activation functions and
output sizes were tested, with MSE being the loss function,
whereas the rectified linear unit (ReLU) alongside the hyper-
bolic tangent (TANH) are the possible activation functions.
As it was highlighted, the best performance was obtained by
a Bi-LSTM-based AE that utilizes a TANH activation across
four layers (with their output sizes at every timesteps being
64, 32, 32 and 64).

TABLE 1. MSE of AE.

Fig. 10 and 11 illustrate cases where the aforementioned
model detected some visual deviations within the data.
In contrast to the HMM, where the anomalies are detected
as the contributions of all the features within an observation,
the AE detects anomalies for each individual feature.

FIGURE 10. Anomaly detected by the AE on current.

FIGURE 11. Anomaly detected by the AE on pitch.

Next, the predicted anomalies from our proposed HMM
and AE methods and the state-of-the-art SES model [1]
were comparedwith the instances whichwere pseudo-labeled
using the Pauta criterion (as described in Section IV). In addi-
tion to the common metrics (recall, precision, accuracy, F1),

some metrics specific to anomaly detection were also used,
such as geometric mean (GM), Matthew’s Correlation Coef-
ficient (MCC) providing the quality of binary classification,
as well as false alarm rate (FAR):

GM =

√
TP

TP+ FN
·

FP
FP+ TN

(6)

MCC =
TP · TN − FP · FN

√
(TP+ FP) · (TP+ FN ) · (TN + FP) · (TN + FN )

(7)

FAR =
FP

FP+ TN
(8)

Although five different operating modes were detected
(Offline, Online, In Motion, Cutting 1 and Cutting 2), only In
Motion, Cutting 1 and Cutting 2 were examined as the focus
is on the operating modes where the machine is operating.

In Cutting 1, the HMM outperforms the AE and the SES
in terms of recall, precision, F1 score, and GM. The HMM
demonstrates a better ability to capture relevant instances
(higher recall), maintain precision in positive predictions
(similar precision) and achieve an overall balanced perfor-
mance (higher F1 score and GM). The higher accuracy of the
HMM further supports its effectiveness in this mode.

In Cutting 2, both the AE and HMM demonstrate strong
performances in contrast with the SES algorithm, with the
HMM having a slight edge in terms of recall and GM.
The HMM achieves a better balance between sensitivity and
specificity, resulting in a higher GM. While the AE excels in
precision, the HMM still outperformed the AE as well as SES
at the overall results.

When the machinery is In Motion, the AE outperforms
the HMM and SES due to the higher precision and recall.
This can be attributed to the fact that the HMM model has a
high precision, but a low recall or, in other words, the model
does not risk when predicting an anomaly, it only predicts
when it is almost 100% sure that the observation will be
an anomaly, while SES has trouble with finding the correct
anomaly patterns.

We can also see from Tables 2, 3 and 4 that the MCC, used
to determine the quality of binary classification, is achieving
scores of 0.71 and 0.67 for HMM compared to 0.45 and
0.55 for the AE, In Motion being an exception. For the SES
model, except for Cutting 1 (where it behaved similarly to
the AE), theMCC scores are close to 0. Also, we can note that
proposed approaches result in a low false alarm rate, making
them suitable for industry usage. However, the HMM model
is more in line with the pseudo-labeling performed through
the Pauta criterion.

Table 4 showcases a decrease in performance for SES [1]
compared to the AE and HMM. However, this outcome is
expected given the two distinct architectures. Specifically, the
AE’s architecture was optimized for our problem (as high-
lighted in Table 1) to feature four LSTM layers (of size
64-32-32-64) whereas the SES utilized a single LSTM layer
(with 20 units). In addition, the AE also aimed to capture
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TABLE 2. Anomaly detection results for the AE.

TABLE 3. Anomaly detection results for the HMM.

TABLE 4. Anomaly detection results for the SES [1].

patterns backward within the data by utilizing bidirectional
layers.

The increase in performance for the AE unfortunately
also comes at a significant computational cost. At each
timestep, the LSTM cell performs two matrix multiplica-
tions, for each of the three gates and the cell state update,
leading to a complexity of O(U2

+ U · I ), where U is
the number of units and I is the input size. However, the
AE with its bidirectionality increased the number of units
and has four times more layers, resulting in approximately
16 times more computational demand than SES’s simpler
setup.

The HMM stands out not only for its impressive perfor-
mance, but also for its slim complexity. Primary the most
intensive part appears during the learning step, which is
performed using the Baum-Welch algorithm and has a com-
plexity of O(H2

· N ) for each iteration, where H is the
number of hidden states and N is the time series length.
The decoding part to assign a hidden state to every timestep
and later employ the Forward algorithm in order to flag
possible anomalies are also crucial, however, these two

are performed only once over the time series, whereas the
Baum-Welch algorithm iterates multiple times over the input
sequence until the model converges. This highlights the
effectiveness of the HMM approach in not only perform-
ing better in terms of performance, but also in terms of
computational cost.

McNemar’s test, a non-parametric pair-wise test, was con-
ducted to assess the significance of differences between the
performances of the HMM and AE algorithms. This test
evaluates whether there is a statistically significant increase
achieved by one algorithm over the other. The z-score is
utilized to determine confidence levels. A z-value exceeding
1.96 (p < 0.05) indicates a significant difference between the
two algorithms. In the context of McNemar’s test, the z-score
is calculated as follows:

z =
|N12 − N21| − 1

√
N12 + N21

(9)

where N12 represents the instances where the first algorithm
classified correctly with the second algorithm classify-
ing incorrectly and N21 represents the instances where
the second algorithm classified correctly with the first
algorithm classifying incorrectly. The results are presented
in Table 5.

TABLE 5. Z-score based on the McNemar statistical significance test.

As Table 5 shows, comparing HMM and AE, reveals a
significant difference in Cutting 1 and 2, while showing
negligible variance in the In Motion scenario.

For AE versus SES, the analysis indicates substan-
tial differences in all scenarios, as evidenced by high
z-scores in Cutting 1 and 2, as well as in the In Motion
situation.

Comparisons between HMM and SES show moderate to
significant differences across scenarios, with varying z-scores
with a quite low z-score in the Cutting 2 scenario.

VI. CONCLUSION AND FURTHER WORK
Throughout this study, a Machine Learning based software,
consisting of a pipeline with two components, was applied for
the CNC manufacturing data. The first component made the
best out of the HMMs in order to perform Time Series Clus-
tering, whereas the second component utilized both HMMs
and LSTM-based AE in order to flag possible anomalies.
More exactly, to cluster the energy consumption time series,
several steps were taken.

For evaluation, a dataset was collected as a time series from
a CNC machine and then the preprocessed data was further
analyzed using the implemented software. First, the optimal
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number of clusters was determined automatically using a
novel coefficient that evaluated the model’s performance,
namely ABIC, which penalizes the model harder in order
to stabilize and refrain from suggesting the highest possible
number of hidden states.

Different metrics were applied in order to validate each
model’s performance and gain a better understanding of the
ability to perform different tasks and outperform other algo-
rithms. The AE naturally aimed to detect anomalies through
its architecture, as it learned to reconstruct the time series in
an encoder-decoder manner. Thus, the anomalies were iden-
tified as being those data points which, when reconstructed,
presented major differences compared to the original ones.
In terms of results, the HMM proved to be more consistent
and robust compared to the AE and the state-of-the-art SES
method [1], especially in achieving higher F1 and MCC
scores. This highlights its potential for practical applications
where accurate anomaly detection is crucial for ensuring
the reliability and efficiency of machine operations. Conse-
quently, by assuring a fast automatic workingmode clustering
and anomaly detection, the proposed methodology addressed
the need for developing a sustainable manufacturing, as it
facilitates the analysis of the data obtained from the afferent
machines.

In addition, the proposed algorithms can provide a starting
point for the application of other techniques, which aim to
improve the environmental impact in this industry, or in other
related fields as well. One possible extension for the existing
software could be to develop a prediction mechanism in order
to preemptively alarm future anomalies. Algorithms such as
the autoregressive integrated moving average model, or even
those that were already applied in this study (HMMs and
LSTMs) can be taken into consideration. We plan to integrate
the best anomaly detection method into a real woodworking
factory environment.
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