
Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

Improving Multicore Architectures by Selective
Value Prediction of High-Latency Arithmetic

Instructions

Claudiu BUDULECI, Arpad GELLERT, Adrian FLOREA, Remus BRAD
Computer Science and Electrical Engineering Department, Lucian Blaga University of Sibiu,

 Emil Cioran Street, No. 4, 550025 Sibiu, Romania
claudiu.buduleci@ulbsibiu.ro

Abstract—This work is an original contribution consisting in

the implementation and evaluation of a selective value
predictor in a multicore environment, with focus on long
latency arithmetical instructions, having the goal to break the
dataflow bottleneck of each core, thus increasing the overall
performance. The Sniper simulator was used to augment the
Intel Nehalem architecture with a value predictor and to
estimate the computing performance, area of integration,
power consumption, energy efficiency and chip temperature
for the enhanced architecture. We run simulations and study
the impact of the number of values which are used for
prediction for each instruction. By increasing the history
length, we measured on average more than 3 % increase in
performance (core speed-up), a reduction in chip temperature
from 57.8 °C to 56.17 °C, and lower energy consumption in
most cases compared with the baseline configuration. We also
realized a comparison between the value prediction and
dynamic instruction reuse techniques in equitable condition (to
exploit the same value locality), where we highlight the
advantages and disadvantages of each technique in the given
context.

Index Terms—multicore processing, computer simulation,
prediction methods, benchmark testing, microprocessors.

I. INTRODUCTION

Breaking the dataflow bottleneck of microprocessors is
still an open research topic and researchers are still finding
ways of pushing this limit, using well known techniques like
out-of-order processing, dynamic instruction reuse (DIR),
and value pre-diction (VP). VP is a speculative technique,
which allows the execution of dependent instructions much
earlier in the processor pipeline. The dependent instructions
are executed using a speculated value provided by the
predictor based on the current instruction context, and after
the execution of this instruction the computed value is
compared with the speculated value. In the case of a match,
all the instructions which used the speculated value are
committed, but if a mismatch is found then the whole
pipeline is flushed, and all instruction are executed again
from the point of speculation. Flushing the pipeline and
executing again the instructions is not only time consuming,
but also consumes additional power which impacts the
overall energy consumption and chip temperature. DIR is an
anticipative technique which consists of a reuse buffer
which stores the input values and the results of instructions.
When an instruction is executed, the reuse buffer is
consulted, and in case an entry is found having the same
input, then the result is taken out of the buffer and feed to

dependent instructions inside the pipeline, without the need
to re-execute the instruction. In comparisons with the VP,
the DIR technique does not use any speculation and the
mentioned drawbacks are not applicable.

In our previous work [1] we emphasized the fact that
computer applications contain a lot of time-consuming
arithmetic instructions, and any performance gain is
beneficial. More than that, most of those instructions are
subject to repetition.

This work provides a brief overview of the state-of-the-art
VP techniques and their challenges in multicore
architectures, multicore simulators and benchmarks used in
computer architecture research. We implemented a selective
VP designated for the long-latency arithmetic instructions in
a multicore environment and study the impact of the history
length variation over the interested metrics: prediction
accuracy, performance, integration area, power
consumption, energy consumption and chip temperature. A
comparison was made between the VP and DIR techniques
in relation with the number of cores, in equitable conditions
(exploiting the same value locality). To validate our
enhancement of the Intel Nehalem architecture, we used
parallel computer benchmarks, which distribute the
workload among multiple cores. We have simulated the
enhanced processor using Sniper [2], which is a multicore,
high-speed and accurate x86 simulator, able to execute
parallel programs. To run the simulations, we have used the
supercomputer from the Advanced Computer Architecture
and Processing Systems (ACAPS) Research Center from
Sibiu.

This paper is structured as follows. In Section 2 we
present an overview of the latest VP techniques, multi-core
simulation and benchmarking, along with the most recent
data security concerns introduced by the speculative
techniques. Section 3 presents in detail our modification to
the Sniper simulator. Section 4 shows our simulation
methodology and environment. In Section 5 we show and
discuss our simulation results, and finally Section 6
concludes this work and present future work possibilities.

II. RELATED WORK

A. Multicore Simulation

Some of the most popular open-source multicore
simulators used in academic research are Graphite [3],
Sniper [2] and Gem5 [4].

Graphite is a distributed parallel simulator framework for

 61
1582-7445 © 2024 AECE

Digital Object Identifier 10.4316/AECE.2024.02007

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

multicore systems. It can simulate microarchitectures having
a few cores up to thousands of cores. For simulations it uses
techniques like direct execution, multi-machine distribution,
analytical modelling, and lax synchronization.

Build upon Graphite, Sniper is a more recent x86
multicore simulator which uses the interval simulation
concept. Cycle-by-cycle simulation requires a vast number
of details for each instruction which gets through the
simulated pipeline execution phases. Managing those details
makes simulation cumbersome and slow. To increase the
simulation speed, Sniper uses the interval simulation method
which approximates the core's performance by applying at
well-defined time intervals an analytical model to estimate
the timing within the interval. To integrate our proposed
technique we chose Sniper, as it provides a good trade-off
between simulation time and accuracy.

Gem5 offers a simulation framework that is easily
customizable, supports various CPU models and instruction
set architectures (ALPHA, ARM, MIPS, SPARC, Pow-er
and x86), a flexible memory system that contains different
cache coherence protocols and interconnect models.

B. Security and Data Consistency Concerns

Even if we have not implemented security and data
consistency techniques in VP, the role of this section is to
show the importance those topics and the need to approach
it from more perspectives besides performance, energy
consumption, integration area and temperature.

Breaches like Meltdown [5] and Spectre [6] affected
millions of microprocessors, while having the same
philosophical root cause, driven by a hardware vs. software
discipline seclusion paradigm, concretely by the lack of
cross-discipline collaboration and communication. Sensitive
data, which is protected by a memory protection
mechanism, can be read out by exploiting those breaches,
dodging the activation of the memory protection mechanism
in time. The authors of the breaches have discovered a new
way to exploit the side effects of out-of-order execution
(Robert Tomasulo's algorithm) and speculative execution
(such as BP and VP). These breaches depend on a narrow
window of time to access the sensitive data. Meltdown takes
advantage of out-of-order execution, whereas Spectre
exploits speculative execution. Both breaches rely on the
fact that the data is cached before the memory protection
exception is triggered.

A pure hardware-based approach to mitigate security
concerns in a system with a VP unit, denoted VPsec, was
proposed in [7]. The authors suggested an enhanced
predictor which is capable to detect abnormal behaviors
during the program executions and to react. In case an
abnormal behavior is detected, the predictor can decide to
provide a random (infected) value, for misguiding the
attacker, which will read the altered value instead of the
correct one. The approach imposes no software overhead
(no increase in memory consumption) and, under typical
attack scenarios, it maintains most of the performance
advantages of VP. The simulation results of VPsec confirm
its effectiveness in countering attacks while preserving the
performance of modern microprocessors.

Another security concern presented in [8] with focus on
VP shows that sensitive information can be leaked through

the microarchitectural state maintained by predictors in
contemporary processors. The security of VPs has been
examined in this study, and novel security attacks have been
presented. Until now these attacks have not been considered
for VPs functional units as potential vulnerabilities.
Additionally, the study illustrates the existence of various
VP attack variations, as determined through a new attack
model. The research emphasizes the significance of
conducting security assessments of processor features before
their implementation in silicon, to comprehend their security
during the design phase.

Towards implementing VP techniques in microprocessors
which support multithreading or integrate multiple cores,
one must ensure that it is implemented correctly, without
introducing unintended side effects.

For example, in [9], the authors discovered that the VP
technique can cause unexpected erroneous results if is not
correctly implemented. They demonstrate on a pointer-based
data structure, a situation where the reader gets a value
which is invalid, neither old nor new, making this scenario
an unintended side effect of the VP technique. Different
techniques were analyzed and proposed to eliminate these
consistency model violations. Unfortunately, they have a
negative impact on performance and are adding even more
complexity to the microarchitecture. Although, the
sequential consistency issues rarely occur in practice, the
designer of the chip must ensure a solution to avoid them
when implementing VP.

C. Value Prediction

VP is a speculative micro-architectural technique that
improves the instruction-level parallelism. The parallelism is
increasing each time the value of an instruction is correctly
predicted. The technique was proposed in the period 1995-
1997 by four distinct groups in [10-15].

Lately, researchers focus on the VP technique and lagged
the DIR. The rationale of the statement is based on the
following observation. Recently, at the prestigious ISCA
conference, the 1st Championship Value Prediction
(https://www.microarch.org/cvp1/cvp1) was organized.
Also, other similar competitions will be organized, with
involvement of major companies in the field, such as Intel,
Qualcomm, Nvidia, Samsung, etc.

The fundamental difference between VP and DIR is the
following: VP is a speculative technique and DIR is non-
speculative. This means that the DIR technique eliminates
the speculative execution of instructions. Basically, the
recovery time paid in case of a wrong prediction does not
exist in DIR. This puts DIR in advantage over VP. Both
architectural techniques can exploit the same value locality,
in a history context of n values.

Given the execution phases of an instruction (fetch,
decode, issue, execute, writeback and commit), the VP table
is accessed in the frontend and based on the information
from the prediction table a prediction can be made. In case a
prediction is done, the processor executes speculatively the
subsequent dependent instructions using the predicted value.
When the outcome of the instruction is available, it is
compared with the prediction and, if they are matching
(correct prediction), the speculated instructions are finally
committed. In case of a wrong prediction the speculative

 62

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

 63

execution must revert to the point when the prediction was
done, the instruction must be executed again with the correct
value. This implies an additional recovery time penalty.

One remark is that the VP unit can be accessed earlier in
the pipeline stages in case the prediction is not done on
values which are available only after the decode stage (e.g.,
register values, data addresses). If this is the case, then the
predictor can be consulted directly in the fetch phase, using
only the program counter (PC) or with a more complex
access using both the PC and part of the global branch
history.

Researchers proposed different implementation
techniques of VP which will be summarized in the next
sections, grouping them in the following categories:
computational, contextual and store/load VPs.

D. Computational Predictors

In [12], the authors proposed a simple VP, called last-VP,
which uses as current prediction the last computed value of
a previous execution of the instruction. Such a predictor
decides what value it will predict based on a quite
rudimentary decision mechanism using confidence counters,
thus achieving a performance gain from 4.5 % up to 23 %
using this technique.

A more advanced technique is the stride predictor, which
was introduced in [15]. The advantage of the stride predictor
over the last-VP, is that it can predict values which were not
previously seen. Generally, stride predictors are simplistic
models because they only add to the last value the difference
of the last two recent values that were generated by an
instruction.

Most of the modern context-based predictors are
incorporating in a way or another, a stride predictor, making
it an essential part of modern VPs. In [16], context-based,
stride and hybrid predictors are applied for register-centric
VP. Basic stride predictors are good at predicting
arithmetical strides but are problematic when they must deal
with stride patterns that occur on an interval basis. However,
a newer predictor, called Stride Equality Prediction (SEP), is
proposed in [17] by Yang et al., and is specialized in
identifying and predicting interval stride patterns. They
achieved a 5.3 % improvement compared with the state-of-
the-art E-Stride predictor [18]. They also enhanced the
Context-Based Computational Value TAGE (CBC-VTAGE)
with SEP and achieved 1.5 % better results without adding
extra costs.

E. Context Predictors

Context-based predictors try to identify patterns between
multiple produced values of one dynamic instruction and to
predict the next value based on the identified pattern.
Predictors using a finite context method are based on a
mechanism that estimates the next value based on a finite
number of previous values. A predictor of this kind of order
K will use the last K previous values. In other words, such
predictors implement learning mechanisms that are used to
predict future values.

A finite context method (FCM) was proposed in [14]
along with an intensive study for the predictability of data
values. They define and compare different types of predictor
models, computational (stride and last value) vs. the
proposed contextual predictor. The contextual predictor can

record previous values for multiple instructions, thus
maintaining a history and perform a prediction based on the
identified patterns. In average, the contextual predictor has
an 20 % better accuracy than the computational predictors.

One general drawback of the FCM predictor is that the
size of the value history table is increasing exponentially
along with the length of the history. The efficiency of
prediction accuracy is correlated with the prediction history.
Usually, more history means better accuracy in prediction.

To solve the exponential size increase in the FCM
predictor, in [19] the authors proposed an optimized variant
named Differential FCM (DFCM). They are proposing to
predict strides instead of values, thus achieving an increase
of 33 % in prediction accuracy. Using strides instead of
actual values to identify the difference over time makes the
predictor more space-efficient and allows a longer history
pattern to be recorded and used for prediction. Another
improved aspect of DFCM over the initial implementation is
the ability to identify patterns faster, especially in case of
constants.

The DFCM predictor was further improved in [20]
achieving an 28.1 % improvement in overall speedup. There
are four notable improvements proposed on top of the
standard DFCM: early update policy, a value estimator
which correlates dependencies for prediction, blacklist usage
for hard to predict instructions, and the introduction of
dynamic context length determination and adaptation.

The VTAGE predictor [21] is using multiple sources of
information to perform a prediction. It uses as input the
global branch history, difference of successive values and
history of local values. Also, a combination of multiple
prediction tables are checked in parallel, and it will use the
entry with the longest history for prediction. Saturated
confidence counters are also considered for the final verdict.
The prediction table is accessed using a hash, which is
computed using multiple global branch history lengths in
combination with the PC, such combination resulting a
geometric progression. This predictor was further improved
in the E-VTAGE [18] variant with the following
enhancements:
 usage of tags and associativity on the PC indexed

component;
 was optimized to reduce the needed storage;
 has improved the confidence management;
 reduced the number of burst miss predictions.

The E-Stride predictor is an improved classical stride
predictor. It was adapted in such way that it can predict
inflight instructions by considering the speculative instances
of instructions and multiple improvements.

In [18], the authors are proposing a state-of-the-art VP
named Enhanced VTAGE Enhanced Stride (EVES). It
combines two predictors E-VTAGE and E-Stride which are
not relaying only on using the last result of the instruction to
compute the prediction. Each predictor is addressing
different types of instructions. According to the
Championship Value Prediction competition, the speedup
achieved using this predictor is the highest, 23.8 % using
8 KB storage. Increasing the storage up to 32KB the
obtained speedup is 28.6 % and using unlimited storage
space a 45 % performance increase was measured. It won
the first place, thus becoming the state-of-the-art of VPs.

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

Figure 1. SHLA-VP scheme

Another modern VP is proposed in [22], which won the

second place in the Value Prediction Championship held in
2018, in the 8 KB storage budget category, achieving a
17.1 % performance speedup. This predictor, named
Context-Base Computational VP with Value Compression
(CBC-VTAGE), enhances the original VTAGE predictor
scheme. The predictor proposed in [23] won the 2nd place in
the Value Prediction Championship held in 2018, in the 32
KB storage budget section achieving a 4.3 % performance
speedup. It also won the 3rd place in the 8 KB storage
category, obtaining a speedup of 3.4 %. The predictor is
called H3VP: History-Based Highly Reliable Hybrid Value
Predictor. It is composed of a common history table and
three independent predictors (arithmetic, 2-periodic and 3-
periodic).

F. Store/Load Predictor

In [24], the authors propose a Decoupled Load Value
Predictor to tackle two important challenges when dealing
with VP. First, is related to the store instructions which are
changing the content of memory locations, thus making the
values in the predictor deprecated and the predictor itself
prone to an increase in misprediction rate. It takes time until
the modified value via a store operation is loaded and used
in the pipeline, meanwhile the predictor most probably will
speculatively insert the deprecated value in the pipeline. The
effect of a misprediction consists in costly pipeline flushes,
which denotes the second challenge: to minimize the
number of mispredictions. To mitigate this issue most of the
VPs are using confidence counters, but, according to the
authors, there is a probability which negatively impacts the
training time and the overall prediction coverage.

The idea of this predictor is to not use the outcome value
for prediction, instead to use the memory address and to rely
on the data cache to distribute the predicted values just in
time for prediction. In this way, they can predict the value of
a subsequent load instruction considering the value from the
data cache. This idea is used to tackle the first challenge. As
for the second, they implement a new context-based address
prediction scheme, which uses the load-path history to
improve the accuracy. The performance improvement is
4.8 % in average, having a maximum of 71 %, using a
memory allocation of 8 KB.

Selective VP applied on long-latency Load instructions

within superscalar processors was evaluated in [25-31],
whereas its integration into multicore microarchitectures
was discussed in [32-33].

In [32], the scheme applied in a multicore environment is
called Selective Load Value Predictor (SLVP) and targets
the prediction of long-latency load instruction’s outcome.
The selectiveness is used to maintain an energy-efficient
architecture. The overall performance speedup was 4 % in
average and the authors observed an 1.25 % reduction in
energy consumption.

In [33], the authors expanded the idea of load VP, by
using a perceptron-based classification method to categorize
load instructions into predictable and unpredictable classes.
The prediction technique has been incorporated into the
Sniper multicore simulator. The primary objective of the
load VP is to predict the values of crucial load instructions
and to enable the processing of dependent instructions in a
speculative manner. VP is considered only if the
corresponding load is found in the predictable state, since
high prediction accuracies are required. Assessments were
conducted on the Splash-2 parallel benchmarks, revealed an
average relative speedup of 4.21 % compared to the baseline
multicore architecture, with a maximum of approximately
17 %.

III. TECHNICAL MODIFICATIONS

A. Value Prediction Scheme

In Fig. 1 is depicted the scheme of the Selective High
Latency Arithmetic (SHLA) VP, denoted SHLA-VP. It
comprises a set-associative enhanced last VP, which can
keep up to H result values, produced by one instruction. The
values are kept in dedicated entries from V1 up to VH. For
each value, a two-bit confidence counter C and a two-bit
vLRU field is associated. The vLRU field is used to
determine which one of the H values is replaced with a
newer one. In case of correct prediction, the corresponding
vLRU field is set to the maximum value and is decremented
for the others. The LRU field is used to decide on which
entry gets evicted within the set-associative table, the well-
known LRU algorithm is applied. The table is accessed
using two sub-set bitfields from the instruction PC:
PC_TAG represented by the most significant bits and the
SET given by the least significant bits.

 64

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

Figure 2. High-level structure of the Micro Operation Performance Model

In the current implementation, each core has its own local

implementation of the presented VP model, no information
is shared between cores. All parameters are listed in Table I.

TABLE I. LIST OF PARAMETERS OF THE VP MODEL

Parameter Value

associativity
Specifies the associativity of the table: {1, 2, 3, 4, 8,
16}.
Note: value “1” – means a direct mapped table.

num_entries The total number of entries allocated inside table.

history
The number of result values which are kept for one
entry.

penalty_latency
The latency penalty in case of a wrong prediction
[cycles].

block_size Block size [bytes].
size Total size of the unit [KB].

B. Micro-Operation Performance Model

The solution to make the operand values accessible in
Sniper, was presented in [34], and in this work we apply the
same approach. The SHLA-VP is modeled inside the Core
Performance Model of the simulator, which lays in the
backend, more concrete in the Micro-Operation
Performance model area (an overview of this model is
presented in Fig. 2).

In this area, the dynamic instructions are further split into
multiple micro-operations. Based on those operations, the
intra-instruction dependencies are determined, and the
latency of each micro-operation is calculated. It
communicates with instruction and data caches to calculate
the access latency, for example in case of a miss in one of
the caches penalty latency is added to the instruction
execution time.

For branch instructions, the dedicated BP model is
accessed. After all the micro-operations are evaluated and
the corresponding latency is assigned, they are pushed into
the selected core model which further simulates them. When
the core model finishes the simulation, it returns the number
of committed instructions and the latency necessary to
commit those instructions.

We inserted a placeholder for our VP or DIR table,
namely “Custom Unit”. The active custom unit is selected
by the “custom_unit/type” configuration parameter, which
can be placed for example inside the “gainestown.cfg”
configuration file or set via a command line parameter (e.g.,
“-g --custom_unit/type=dir”).

Based on this parameter the DIR or VP model is selected

for one simulation.
Each custom unit is implemented in separated source files

and can be configured via dedicated parameters. For
example, there is no need to rebuild the simulator to change
the associativity of the selected model.

C. Latency Adaptations

Considering the architecture of the micro-operation
performance model presented in B we adapted the micro-
operations before the core model simulation is performed. In
this way, the existing models were not modified, and the
proposed solution is working independently regarding the
simulation model. Sniper has multiple models for core
simulation: one-ipc, interval and instruction-window centric
(rob timer).

According to [2], the one-ipc model offers the lowest
simulation accuracy against real hardware, it is also the
simplest model in terms of modelling complexity and is
prone to misleading and incorrect result. The interval
simulation model offers high simulation speed, modest
accuracy, and short simulation time. Instruction-window
centric simulation is the newest implemented model and
offers better estimations due to the modelling of a reorder
buffer. The simulation time is slightly increasing when
compared to the interval model.

For VP, we distinguish between three outcomes: no
prediction, correct prediction, and wrong prediction. No
prediction means that the table is accessed and the
information (LRU counters, confidence counters, values,
etc.) is updated. In this case we do not apply adaptations
regarding latency, but we increment the read/write counters
necessary to estimate for power consumption estimations. A
correct prediction will impact the latency in the following
manner:
 all execution micro-operations of the current instruction

are squashed and not feed into the core simulation model
(analogy to unblock the execution of instructions which
are waiting for the outcome of the current instruction,
without interfering with the simulation model);

 the number of executed instructions is incremented by one
to reflect that the execution of the current instruction was
correctly speculated;

 65

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

 one cycle is considered for accessing the table, the cycle
being added to the last stage of store micro-operation.
For a wrong prediction we add to the execution latency of

the current instruction an extra 17 cycles of penalty, the
same as it is used to treat a mispredicted branch instruction.
The misprediction penalty (in cycles), was measured in [35]
(paragraph 3.6) for BP in Intel Nehalem by Agner Fog.

IV. SIMULATION ENVIRONMENT AND METRICS

The host configuration used to run the simulations was a
computer with Intel Xenon Gold 6240R CPU (2.4 GHz, 48
physical and 96 virtual cores), 128 GB DRAM (2933 MHz)
and 2 TB SSD storage.

To run the simulator, we used a virtual machine running
Ubuntu 18.04 64-bit version. The simulated
microarchitecture is Intel Nehalem codename Gainestown
using a clock speed of 2.66 GHz. The baseline configuration
is presented in Table II.

TABLE II. BASE CONFIGURATION OF THE SIMULATED ARCHITECTURE

(INTEL NEHALEM – GAINESTOWN)
Parameter Name Value

Size 8192 KB L3 Cache (Shared)
Associativity 16
Size 256 KB L2 Cache
Associativity 8
Size 32 KB L1 Data Cache
Associativity 8
Size 32 KB L1 Instruction

Cache Associativity 4
Frequency 2.66 GHz

In
te

l N
eh

al
em

 –
 G

ai
n

es
to

w
n

Number of cores 4

We are interested in the following metrics: performance,

area of integration, dynamic power consumption, energy
consumption and maximum temperature. For DIR we are
interested also in the reuse rate and for VP in the prediction
accuracy, which are the main performance indicators for
these units.

Regarding the performance metric, we are measuring it as
instructions per cycle (IPC) from two perspectives: core and
processor. For the core performance we are averaging the
calculated IPC of all used cores and for processor
performance we sum the number of instructions executed by
all cores and divided by the longest cycle time among cores.
Below are presented the equations, which were used to
determine the performance, equation (1) for IPC, (2) for the
performance of the core and (3) to compute the processor
performance.

The relative speedup is also calculated according to (4).
I

IPC
N

 (1)

1

C

i

i

IPC
Core Performance

C

  (2)

1 1

{ }

C
i

i k C k

I
Processor Performance

MAX E  

  (3)

where:
I = the number of instructions executed;
N = the number of cycles necessary to execute the

instructions;
C = the number of cores;
Ek = execution time in cycles for core k.

-
 100 [%] E B

B

IPC IPC
Relative Speedup

IPC
  (4)

where:
IPCB = IPC of the baseline configuration;
IPCE = IPC of the enhanced architecture (with DIR or VP

unit).
() ()

 []
CPU

AVG P MAX C
Energy J

f


 (5)

where:
P = the dynamic power consumption;
C = the number of cycles;
fCPU = frequency of the simulated processor [Hz].

-
 100 [%] B E

B

E E
Energy Reduction

E
  (6)

where:
EB = energy consumption of the baseline configuration;
EE = energy consumption of the enhanced architecture

(with DIR or VP unit).
The area of integration is measured in mm2 and the

dynamic power consumption in Watt [W], the values being
estimated by invoking the McPAT [36] framework. The
temperatures are estimated in Celsius degrees using the
HotSpot tool. We are interested in the maximum recorded
value. The energy consumption of the whole chip is
determined according to equation (5) and it is measured in
Joules (J). The energy reduction percentage is also
considered, the computation is done applying formula (6).

As for benchmarking, we use the programs from the
Splash-2 [37] suite with the large input dataset. Both units
are targeting the same x86 high latency arithmetic
instructions (DIV, IDIV, DIVSD, VDIVSD, MUL, IMUL
and SQRTSD).

V. EXPERIMENTAL RESULTS

A. VP Prediction Accuracy Study

The following simulations were done successively on a
quad core system to study the prediction accuracy in
variation to the number of entries in the table, table’s
associativity, and the history length.

First, we vary the number of entries E = {128, 256, 512,
1024, 2048}, associativity A = 4 and the number of results
history length H = 4. In Fig. 3 the prediction accuracy is
presented and on average the values are laying in the
interval 77.2 % and 75.5 %. For half of the benchmarks, we
achieved ~99 % accuracy, meaning that the values were
predicted correctly in most cases. A high contributor to this
achievement is the implementation of confidence counters,
which feeds a predicted value only when the confidence is
above the defined threshold. The optimal number of entries
is E = 512.

Next, we study the influence of associativity variation on
prediction accuracy, it is varied as follows A = {1,2, 4, 8}.
As for the other parameters we chose the number of entries
E = 512 and history length H = 4.

The results are shown in Fig. 4, and in comparison with
the results achieved when we vary the number of entries
(Fig. 3), we observe a decrease from ~1.7 % to 0.34 % in
accuracy.

 66

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

Figure 3. Averaged prediction accuracy per core for all benchmarks by varying number of entries (E = {128, 256, 512, 1024, 2048}; A = 4; H = 4; C = 4)

Figure 4. Averaged prediction accuracy per core for all benchmarks by varying the associativity (E = 512; A = {1,2, 4, 8}; H = 4; C = 4)

Figure 5. Average prediction accuracy per core for all benchmarks by varying the history length (E = 512; A = 4; H = {1, 2, 3, 4}; C = 4)

Figure 6. Area of integration in relation to the history length (E = 512; A =
4; H = {1, 2, 3, 4}; C = 4)

On average, the achieved results are looking stable,

meaning that the associativity variation does not
significantly impact the accuracy of prediction. For next
simulations we chose the associativity to be 4, an
associativity greater than 4 being uncommon.

Lastly, the variation of the number of result values which
are kept for each instruction in the prediction table is
studied. The VP table is configured as following E = 512
entries and an associativity of A = 4. We are scaling the
length of history as follows: H = {1, 2, 3, 4}. On average, in
Fig. 5 it is observable a decreasing trend from 83.10 % to
75.64 %. On half of the benchmarks the accuracy is not
influenced by the history length variation. But on the
“cholesky”, “radix”, “raytrace”, “water.nsq” and “water.sp”
benchmarks, we achieved a decrease in the accuracy along
with the increase in history length. In this context, it looks
like if more values are kept, the harder it gets to speculate

with the correct value. Comparing the achieved accuracy
with the ones measured on the previous result sets (number
of entries and associativity variation) we can say that by
varying the history length we achieved the biggest impact on
the prediction accuracy.

The processor area integration in relation to the history
length of the VP is visible in Fig. 6. It ranges from
139.68 mm2 on the baseline configuration, up to 205.63
mm2 for the configuration with a history length of four. One
remark is in the case of history of two and three, the
integration footprint being the same for both configurations.
In case of a history of two, 180 bits are required to keep all
the necessary information, thus rounding it up to the nearest
power of two, we end up with a line of 256 bits (32 bytes).
In case of a history of three, we need 238 bits to store the
information and after the rounding we achieved 256 bits (32
bytes). In this case, a more realistic memory model is used.
So, both configurations are having the same footprint for a
VP table on each core, making the overall chip to have the
same integration area. Overall, the integration area is
increasing along with the number of history elements which
are configured in the VP.

Further we can see the impact of the history length
variation over the performance in Fig. 7, namely the relative
core speedup. Interestingly, on average, the speedup is
decreasing from 3.40 % to 3.25 %. The highest speedup
achievement of 13.81 % was measured on the “lu.cont”
benchmark on the configuration with a history length of 1.
An interesting behavior is visible on the “cholesky”

 67

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

benchmark. In the configuration where we are keeping only
the last value produced for each instruction, we achieved a
0.51 % speedup. Increasing the number of values which are
stored has a negative impact on the performance, decreasing
up to -1.82 %. This happened because the prediction
accuracy is also decreasing when we increase the number of
values, from 87.82 % (H = 1) to 70.18 % (H = 4). The
achievement of the negative value reflects the speculative
execution drawback of the VP technique, making the system
overall to perform worse than the baseline configuration. As
a conclusion, the history length variation has small impact
on the speedup, for most of the benchmarks we measured a
positive speedup except for one.

The average dynamic power consumption of the
processor in relation to the number of values stored for each
instruction is presented in Fig. 8 for all benchmarks. On
average, we measured a 34.39 W power consumption on the
baseline configuration. In comparison to the baseline
configuration, the power consumption overhead introduced
by the predictor is quite small, on average ranging from
35.41 W for the configuration with a history length of 1, up
to 35.48 W on the configuration with a history of 4. The
highest power consumption of 64.84 W was measured on
the “lu.cont” benchmark, the increase being justified by the
fact that on this benchmark we achieved the highest
performance increase of 13.81 %. Another notable increase
correlated with performance increase, is visible on the
“water.nsq” benchmark, with a power consumption of
47.63 % on the configuration with a history length of four.
A reduction in power consumption is visible on the
“cholesky” benchmark, on the maximal configuration
(H = 4), this can be correlated with the fact that on this
program we achieved a decrease in the overall performance
(it takes longer time to execute the same program).

A first comparison insight is given by the core and overall
processor performance metrics. The first metric represents
the average performance per core and the second metric the
overall performance of the system. Fig. 11 summarizes the
core performance and we can see that compared with the
baseline configuration, in both cases we achieved a modest
improvement. Thus, on average, cores that include an RB or
a VP table are running faster. We can see that using the
speculative VP technique, a higher IPC was achieved
compared with the non-speculative DIR technique.

The energy consumption in relation to the number of
result values which are kept for each instruction is
summarized in Fig. 9 for all benchmarks. On average, the
variation is quite small, with 8.97 J on the baseline
configuration, and from 8.94 J when only one result value is
stored, up to 8.99 J on the highest configuration.

As a conclusion, the history length variation did not
influence in a significant way the overall energy
consumption of the chip.

Regarding the chip’s maximum temperature, we achieved
its reduction by increasing the number of stored elements.
The results are visible in Fig. 10, on average ranging from
57.8 °C, up to 56.17 °C. The biggest contributors to the
decrease of chip temperature are due to the increase in
integration area, stable energy consumption and minimal
increase in the overall dynamic power consumption. One
remark is for the configurations with the history of two and
three, hence the predictors have the same integration area
also the estimated chip temperatures are approximately the
same, the trend is visible on all benchmarks.

B. Comparison of VP and DIR

This section presents a comparison between SHLA-DIR
[1] vs. VP in fair conditions, to exploit the same value
locality degree in a multicore environment. The DIR and the
VP are both only using the last available result for an
instruction. We showed in earlier simulations that the VP
has the capability to store more than one result for one
instruction by varying the history length (from 1 to 4), but
for a fair comparison we chose to store only one value.
Other parameters which are common for both schemes are
chosen as follows: the number of entries is 512 and the
associativity is set to 4.

Figure 7. Relative core speedup for all bechmarks by varying the history length (E = 512; A = 4; H = {1, 2, 3, 4}; C = 4)

Figure 8. Average of processor dynamic power consumption for all benchmarks by varying the history length (E = 512; A = 4; H = {1, 2, 3, 4}; C = 4)

 68

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

Figure 9. Average of processor energy consumption for all benchmarks by varying the history length (E = 512; AS = 4; H = {1, 2, 3, 4}; C = 4)

Figure 10. Maximum chip temperature for all benchmarks by varying the history length (E = 512; AS = 4; H = {1, 2, 3, 4}; C = 4)

A closer look at this metric is given by the relative

speedup, which is computed in Fig. 13. Now we can see the
difference as percentage. For both techniques the increase
trend is visible for the simulated configuration ranging from
1 core up to 16 cores. Now, comparing the 16 vs 32 cores
configurations we can see a small decrease in performance
with the higher core number. It happens because of the
scalability limits of the benchmarks. Adding more resources,
beyond a certain limit, often leads to the situation where the
communication interfaces and synchronization mechanisms
between cores negatively impacts the overall performance.
For this benchmark suite, the scalability sweet spot can be
found in the 16-core configuration, where using an RB we
achieved a 2.45 % speedup, whereas a 5.29 % increase in
performance was difference between the two techniques has
its roots in the achieved by using a VP.

Figure 11. Average core performance vs. number of cores

Figure 12. Average processor performance vs. number of cores

The main reason for this speedup is the fundamental

differences between them, meaning that the DIR technique
requires the values of the operands to check if the result can

be reused (non-speculative). But the VP technique can
provide a speculated value of the fetched instruction much
earlier, it does not need to wait until the value of the
operands are available.

Figure 13. Average processor speedup vs. number of cores

The time required to fetch and compute the operand

values is highly valuable in this scenario. Unlocking in a
speculative way the execution of dependent instructions is a
major advantage for the VP compared with the RB.

Regarding the processor area integration, we have
summarized two perspectives. The first one represents the
raw area numbers visible in Fig. 14. We can easily observe
that the configurations which are including an RB have a
bigger footprint than the ones which include a VP. In Fig. 15
we can see the differences between both configurations,
with respect to the baseline configuration which does not
include any architectural enhancement (DIR or VP). The
functional unit of the DIR technique occupies around 2.9
mm2 spaces on each core, on the other hand the VP has as a
footprint of only 0.412 mm2, thus, making the VP unit to be
more efficient in terms of integration area.

The processor’s average dynamic power consumption in
relation to the number of cores is visible in Fig. 16 and in
Fig. 17 the percentage increase is calculated with respect to
the baseline configuration. We can see that the power
consumption increases along with the number of cores,
because more hardware resources are used to run the same
program and it well correlates with the processor

 69

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

performance increase. Using the DIR technique, we
achieved a lower increase in power consumption and
performance. For the configurations which are using a
prediction table the increase in power consumption is much
higher, as well the performance. We can say that
configurations with an RB consume less power, than the
ones with a VP.

Interesting results were achieved on the energy
consumption metric, depicted in Fig. 18 and Fig. 19. On
most of the enhanced configurations we achieved, overall, a
lower energy consumption. Although, the power
consumption is increasing, the energy consumption is
decreasing along with the number of cores. The highest
difference is on the 32-core configuration using VP, we
measured a value of -0.48 % less energy consumption
compared with the baseline configuration. Based on the
results we can say that the VP technique is more energy-
efficient than the DIR.

Maximum chip temperatures and temperature reduction
were plotted in Fig. 20 respectively Fig. 21. We can see that
the trend is the same on all the simulations, configurations
which include an RB unit achieved a bigger reduction in
temperatures, compared with the ones with a VP. This
happens because the integration areas of configurations
which comprise an RB are higher than the ones with a VP.
Using the RB unit, lower processor performances were
achieved, similar energy consumption and the increase in
integration area means that it has more space for the heat to
dissipate.

All those factors are contributing to the lower temperature
achievement using the DIR technique, compared with those
which include an VP.

Figure 14. Processor area vs. number of cores

Figure 15. Processor area increase vs. number of cores

Figure 16. Average of processor dynamic power consumption vs. number
of cores

Figure 17. Average of processor power reduction vs. number of cores

Figure 18. Processor energy vs. number of cores

Figure 19. Processor energy reduction vs. number of cores

Figure 20. Maximum chip temperature vs. number of cores

Figure 21. Maximum chip temperature vs. number of cores

VI. CONCLUSIONS AND FURTHER WORK

In this work we show that the variation of the number of
entries of the predictor has low impact on prediction
accuracy. Changing the associativity seems to have
neglectable impact on the accuracy in our tests. The highest
impact on accuracy was achieved by varying the history
length, more than that we measured an increase in
performance, a reduction in chip temperature, lower energy
consumption in most cases, as trade-off we observed an
increase in power consumption and integration area.

 Our original comparison between VP and DIR
techniques, in fair conditions, is summarized in Table III.

 70

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

We can conclude that the most suitable configuration
depends on the needs of the user, the tradeoffs in each
dimension are easily observable in the table. For example, in
case one requires a high-performance configuration, then the
VP unit can be chosen considering the following aspects: it
has a smaller integration footprint in comparison with a DIR
unit and will consume less energy despite the higher power
consumption.

TABLE III. OVERVIEW OF THE COMPARISON DIR VS. VP

 Unit
Metric
(baseline difference)

DIR VP

Speed-up - +
Area of integration + -
Power consumption - +
Energy reduction + -
Max. temperature - +

Further, we plan to use existing state-of-the-art multi-

objective optimization methods and tools, for performing an
automatic design space exploration to search for optimal
configurations considering the trade-offs between the
following metrics: integration area, chip temperature,
processing performance, energy consumption and security.
We plan to enhance our Framework for Automatic Design
Space Exploration (FADSE) [38] with newer state-of-the-art
optimization techniques and algorithms located in the
Pareto-Fuzzy paradigm. We also plan to integrate the
modern benchmarking suite Splash-4 [39] into the Sniper
simulator and to model multiple complex context-based VP
schemes.

CONFLICT OF INTEREST

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

PUBLISHER’S NOTE

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the editor
and the reviewers. Any statements, claims, performances
and results are not guaranteed or endorsed by the publisher.

REFERENCES
[1] C. Buduleci, A. Gellert, and A. Florea, “Selective high-latency

arithmetic instruction reuse in multicore processors,” in 2023 27th
International Conference on System Theory, Control and Computing
(ICSTCC), Timisoara, Romania: IEEE, Oct. 2023, pp. 410–415.
doi:10.1109/ICSTCC59206.2023.10308483

[2] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Trans.
Archit. Code Optim., vol. 11, no. 3, pp. 1–25, Oct. 2014.
doi:10.1145/2629677

[3] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C.
Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in HPCA - 16 2010 The Sixteenth
International Symposium on High-Performance Computer
Architecture, Bangalore: IEEE, Jan. 2010, pp. 1–12.
doi:10.1109/HPCA.2010.5416635

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K.
Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
May 2011. doi:10.1145/2024716.2024718

[5] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P.
Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown.” arXiv,
Jan. 03, 2018. Accessed: Feb. 26, 2024. [Online]. Available:
http://arxiv.org/abs/1801.01207

[6] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S.
Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” 2018.
doi:10.48550/ARXIV.1801.01203

[7] R. Sheikh, R. Cammarota, and W. Ruan, “Value prediction for
security (VPsec): Countering fault attacks in modern
microprocessors,” in 2018 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), Washington, DC:
IEEE, Apr. 2018, pp. 235–238. doi:10.1109/HST.2018.8383922

[8] S. Deng and J. Szefer, “New predictor-based attacks in processors,” in
2021 58th ACM/IEEE Design Automation Conference (DAC), San
Francisco, CA, USA: IEEE, Dec. 2021, pp. 697–702.
doi:10.1109/DAC18074.2021.9586089

[9] M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and M. H.
Lipasti, “Correctly implementing value prediction in microprocessors
that support multithreading or multiprocessing,” in Proceedings. 34th
ACM/IEEE International Symposium on Microarchitecture. MICRO-
34, Austin, TX, USA: IEEE Comput. Soc, 2001, pp. 328–337.
doi:10.1109/MICRO.2001.991130

[10] L. Widgen and E. Sowadsky, “Operand cache addressed by the
instruction address for reducing latency of read instruction,” U.S.
Patent US5919256A, Jul. 06, 1999

[11] F. Gabbay and A. Mendelson, “System and method for concurrent
processing,” U.S. Patent US5996060A, Nov. 30, 1999

[12] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” in Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO 29, Paris,
France: IEEE Comput. Soc. Press, 1996, pp. 226–237.
doi:10.1109/MICRO.1996.566464

[13] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and
load value prediction,” SIGPLAN Not., vol. 31, no. 9, pp. 138–147,
Sep. 1996. doi:10.1145/248209.237173

[14] Y. Sazeides and J. E. Smith, “The predictability of data values,” in
Proceedings of 30th Annual International Symposium on
Microarchitecture, Research Triangle Park, NC, USA: IEEE Comput.
Soc, 1997, pp. 248–258. doi:10.1109/MICRO.1997.645815

[15] F. Gabbay and A. Mendelson, “Speculative execution based on value
prediction,” Technion - Israel Institute of Technology, EE Department
TR 1080, 1996

[16] L. N. Vintan, A. Florea, and A. Gellert, “Focalising dynamic value
prediction to CPU’s context,” IEE Proc., Comput. Digit. Tech., vol.
152, no. 4, p. 473, 2005. doi:10.1049/ip-cdt:20045090

[17] L. Yang, L. Huang, R. Yan, N. Xiao, S. Ma, L. Shen, and W. Xu,
“Stride equality prediction for value speculation,” IEEE Comput.
Arch. Lett., vol. 21, no. 2, pp. 57–60, Jul. 2022.
doi:10.1109/LCA.2022.3195411

[18] A. Seznec, “Exploring value prediction with the eves predictor,” in
1st Championship Value Prediction, Los Angeles, CA, USA, Jun.
2018

[19] B. Goeman, H. Vandierendonck, and K. De Bosschere, “Differential
FCM: increasing value prediction accuracy by improving table usage
efficiency,” in Proceedings HPCA Seventh International Symposium
on High-Performance Computer Architecture, Monterrey, Mexico:
IEEE Comput. Soc, 2001, pp. 207–216.
doi:10.1109/HPCA.2001.903264

[20] N. Deshmukh, S. Verma, P. Agrawal, B. Panda, and M. Chaudhuri,
“DFCM++: Augmenting DFCM with early update and data
dependence-driven value estimation,” in 1st Championship Value
Prediction, Los Angeles, CA, USA, Jun. 2018

[21] A. Perais and A. Seznec, “Practical data value speculation for future
high-end processors,” in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), Orlando, FL,
USA: IEEE, Feb. 2014, pp. 428–439.
doi:10.1109/HPCA.2014.6835952

[22] Y. Ishii, “Context-base computational value prediction with value
compression,” in 1st Championship Value Prediction, Los Angeles,
CA, USA, Jun. 2018

[23] K. Koizumi, K. Hiraki, and M. Inaba, “H3VP: History based highly
reliable hybrid value predictor,” in 1st Championship Value
Prediction, Los Angeles, CA, USA, Jun. 2018

[24] R. Sheikh, H. W. Cain, and R. Damodaran, “Load value prediction via
path-based address prediction: avoiding mispredictions due to
conflicting stores,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, Cambridge
Massachusetts: ACM, Oct. 2017, pp. 423–435.
doi:10.1145/3123939.3123951

 71

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 24, Number 2, 2024

 72

[25] A. Gellert, “Advanced prediction methods integrated into speculative
computer architecture,” PhD Thesis, “Lucian Blaga” University of
Sibiu, Computer Science Department, Sibiu, 2008

[26] A. Gellert, Beyond the limits of modern processors. Bucharest Matrix
Rom, 2008

[27] A. Gellert, A. Florea, and L. Vintan, “Exploiting selective instruction
reuse and value prediction in a superscalar architecture,” Journal of
Systems Architecture, vol. 55, no. 3, pp. 188–195, Mar. 2009.
doi:10.1016/j.sysarc.2008.11.002

[28] A. Gellert, G. Palermo, V. Zaccaria, A. Florea, L. Vintan, and C.
Silvano, “Energy-performance design space exploration in SMT
architectures exploiting selective load value predictions,” in 2010
Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010), Dresden: IEEE, Mar. 2010, pp. 271–274.
doi:10.1109/DATE.2010.5457197

[29] A. Gellert, H. Calborean, L. Vintan, and A. Florea, “Multi-objective
optimisations for a superscalar architecture with selective value
prediction,” IET Comput. Digit. Tech., vol. 6, no. 4, p. 205, 2012.
doi:10.1049/iet-cdt.2011.0116.

[30] Gellert, A. Florea, U. Fiore, P. Zanetti, and L. Vintan, “Performance
and energy optimisation in CPUs through fuzzy knowledge
representation,” Information Sciences, vol. 476, pp. 375–391, Feb.
2019. doi:10.1016/j.ins.2018.03.029

[31] A. Gellert, “Prediction-based modeling and estimation in advanced
computing systems,” Habilitation Thesis, “Lucian Blaga” University
of Sibiu, Sibiu, 2023

[32] A. Gellert and L. Vintan, “A multicore architecture with selective
load value prediction,” Proceedings of The Romanian Academy,
Series A: Mathematics, Physics, Technical Sciences, Information
Science, vol. 19, no. 4, pp. 597–604, 2018

[33] A. Gellert, M. Vintan, and L. Vintan, “Perceptron-based selective
load value prediction in a multicore architecture,” Romanian Journal
of Information Science and Technology, vol. 22, no. 3–4, pp. 215–
227, 2019

[34] C. Buduleci, A. Gellert, A. Florea, and A. Matei, “Extending sniper
with support to access operand values: A case study on reusability
measurement,” in 2022 23rd International Carpathian Control
Conference (ICCC), Sinaia, Romania: IEEE, May 2022, pp. 70–75.
doi:10.1109/ICCC54292.2022.9805869

[35] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers,”
Technical University of Denmark, Nov. 2022

[36] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N.
P. Jouppi, "McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures," 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), New York, NY, USA, 2009, pp. 469-480

[37] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological
considerations,” in Proceedings 22nd Annual International
Symposium on Computer Architecture, Santa Margherita Ligure,
Italy: ACM, 1995, pp. 24–36. doi:10.1109/ISCA.1995.524546

[38] H. Calborean, “Multi-objective optimization of advanced computer
architectures using domain-knowledge,” PhD Thesis, “Lucian Blaga”
University of Sibiu, Sibiu, 2011

[39] E. J. Gomez-Hernandez, J. M. Cebrian, S. Kaxiras, and A. Ros,
“Splash-4: A modern benchmark suite with lock-free constructs,” in
2022 IEEE International Symposium on Workload Characterization
(IISWC), Austin, TX, USA: IEEE, Nov. 2022, pp. 51–64.
doi:10.1109/IISWC55918.2022.00015

[Downloaded from www.aece.ro on Friday, June 21, 2024 at 18:09:00 (UTC) by 86.123.229.211. Redistribution subject to AECE license or copyright.]

