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Abstract—This work is an original contribution consisting in 

the implementation and evaluation of a selective value 
predictor in a multicore environment, with focus on long 
latency arithmetical instructions, having the goal to break the 
dataflow bottleneck of each core, thus increasing the overall 
performance. The Sniper simulator was used to augment the 
Intel Nehalem architecture with a value predictor and to 
estimate the computing performance, area of integration, 
power consumption, energy efficiency and chip temperature 
for the enhanced architecture. We run simulations and study 
the impact of the number of values which are used for 
prediction for each instruction. By increasing the history 
length, we measured on average more than 3 % increase in 
performance (core speed-up), a reduction in chip temperature 
from 57.8 °C to 56.17 °C, and lower energy consumption in 
most cases compared with the baseline configuration. We also 
realized a comparison between the value prediction and 
dynamic instruction reuse techniques in equitable condition (to 
exploit the same value locality), where we highlight the 
advantages and disadvantages of each technique in the given 
context. 
 

Index Terms—multicore processing, computer simulation, 
prediction methods, benchmark testing, microprocessors. 

I. INTRODUCTION 

Breaking the dataflow bottleneck of microprocessors is 
still an open research topic and researchers are still finding 
ways of pushing this limit, using well known techniques like 
out-of-order processing, dynamic instruction reuse (DIR), 
and value pre-diction (VP). VP is a speculative technique, 
which allows the execution of dependent instructions much 
earlier in the processor pipeline. The dependent instructions 
are executed using a speculated value provided by the 
predictor based on the current instruction context, and after 
the execution of this instruction the computed value is 
compared with the speculated value. In the case of a match, 
all the instructions which used the speculated value are 
committed, but if a mismatch is found then the whole 
pipeline is flushed, and all instruction are executed again 
from the point of speculation. Flushing the pipeline and 
executing again the instructions is not only time consuming, 
but also consumes additional power which impacts the 
overall energy consumption and chip temperature. DIR is an 
anticipative technique which consists of a reuse buffer 
which stores the input values and the results of instructions. 
When an instruction is executed, the reuse buffer is 
consulted, and in case an entry is found having the same 
input, then the result is taken out of the buffer and feed to 

dependent instructions inside the pipeline, without the need 
to re-execute the instruction. In comparisons with the VP, 
the DIR technique does not use any speculation and the 
mentioned drawbacks are not applicable. 

In our previous work [1] we emphasized the fact that 
computer applications contain a lot of time-consuming 
arithmetic instructions, and any performance gain is 
beneficial. More than that, most of those instructions are 
subject to repetition. 

This work provides a brief overview of the state-of-the-art 
VP techniques and their challenges in multicore 
architectures, multicore simulators and benchmarks used in 
computer architecture research. We implemented a selective 
VP designated for the long-latency arithmetic instructions in 
a multicore environment and study the impact of the history 
length variation over the interested metrics: prediction 
accuracy, performance, integration area, power 
consumption, energy consumption and chip temperature. A 
comparison was made between the VP and DIR techniques 
in relation with the number of cores, in equitable conditions 
(exploiting the same value locality). To validate our 
enhancement of the Intel Nehalem architecture, we used 
parallel computer benchmarks, which distribute the 
workload among multiple cores. We have simulated the 
enhanced processor using Sniper [2], which is a multicore, 
high-speed and accurate x86 simulator, able to execute 
parallel programs. To run the simulations, we have used the 
supercomputer from the Advanced Computer Architecture 
and Processing Systems (ACAPS) Research Center from 
Sibiu. 

This paper is structured as follows. In Section 2 we 
present an overview of the latest VP techniques, multi-core 
simulation and benchmarking, along with the most recent 
data security concerns introduced by the speculative 
techniques. Section 3 presents in detail our modification to 
the Sniper simulator. Section 4 shows our simulation 
methodology and environment. In Section 5 we show and 
discuss our simulation results, and finally Section 6 
concludes this work and present future work possibilities. 

II. RELATED WORK 

A. Multicore Simulation 

Some of the most popular open-source multicore 
simulators used in academic research are Graphite [3], 
Sniper [2] and Gem5 [4]. 

Graphite is a distributed parallel simulator framework for 
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multicore systems. It can simulate microarchitectures having 
a few cores up to thousands of cores. For simulations it uses 
techniques like direct execution, multi-machine distribution, 
analytical modelling, and lax synchronization. 

Build upon Graphite, Sniper is a more recent x86 
multicore simulator which uses the interval simulation 
concept. Cycle-by-cycle simulation requires a vast number 
of details for each instruction which gets through the 
simulated pipeline execution phases. Managing those details 
makes simulation cumbersome and slow. To increase the 
simulation speed, Sniper uses the interval simulation method 
which approximates the core's performance by applying at 
well-defined time intervals an analytical model to estimate 
the timing within the interval. To integrate our proposed 
technique we chose Sniper, as it provides a good trade-off 
between simulation time and accuracy. 

Gem5 offers a simulation framework that is easily 
customizable, supports various CPU models and instruction 
set architectures (ALPHA, ARM, MIPS, SPARC, Pow-er 
and x86), a flexible memory system that contains different 
cache coherence protocols and interconnect models. 

B. Security and Data Consistency Concerns 

Even if we have not implemented security and data 
consistency techniques in VP, the role of this section is to 
show the importance those topics and the need to approach 
it from more perspectives besides performance, energy 
consumption, integration area and temperature. 

Breaches like Meltdown [5] and Spectre [6] affected 
millions of microprocessors, while having the same 
philosophical root cause, driven by a hardware vs. software 
discipline seclusion paradigm,  concretely by the lack of 
cross-discipline collaboration and communication. Sensitive 
data, which is protected by a memory protection 
mechanism, can be read out by exploiting those breaches, 
dodging the activation of the memory protection mechanism 
in time. The authors of the breaches have discovered a new 
way to exploit the side effects of out-of-order execution 
(Robert Tomasulo's algorithm) and speculative execution 
(such as BP and VP). These breaches depend on a narrow 
window of time to access the sensitive data. Meltdown takes 
advantage of out-of-order execution, whereas Spectre 
exploits speculative execution. Both breaches rely on the 
fact that the data is cached before the memory protection 
exception is triggered. 

A pure hardware-based approach to mitigate security 
concerns in a system with a VP unit, denoted VPsec, was 
proposed in [7]. The authors suggested an enhanced 
predictor which is capable to detect abnormal behaviors 
during the program executions and to react. In case an 
abnormal behavior is detected, the predictor can decide to 
provide a random (infected) value, for misguiding the 
attacker, which will read the altered value instead of the 
correct one. The approach imposes no software overhead 
(no increase in memory consumption) and, under typical 
attack scenarios, it maintains most of the performance 
advantages of VP. The simulation results of VPsec confirm 
its effectiveness in countering attacks while preserving the 
performance of modern microprocessors. 

Another security concern presented in [8] with focus on 
VP shows that sensitive information can be leaked through 

the microarchitectural state maintained by predictors in 
contemporary processors. The security of VPs has been 
examined in this study, and novel security attacks have been 
presented. Until now these attacks have not been considered 
for VPs functional units as potential vulnerabilities. 
Additionally, the study illustrates the existence of various 
VP attack variations, as determined through a new attack 
model. The research emphasizes the significance of 
conducting security assessments of processor features before 
their implementation in silicon, to comprehend their security 
during the design phase. 

Towards implementing VP techniques in microprocessors 
which support multithreading or integrate multiple cores, 
one must ensure that it is implemented correctly, without 
introducing unintended side effects. 

For example, in [9], the authors discovered that the VP 
technique can cause unexpected erroneous results if is not 
correctly implemented. They demonstrate on a pointer-based 
data structure, a situation where the reader gets a value 
which is invalid, neither old nor new, making this scenario 
an unintended side effect of the VP technique. Different 
techniques were analyzed and proposed to eliminate these 
consistency model violations. Unfortunately, they have a 
negative impact on performance and are adding even more 
complexity to the microarchitecture. Although, the 
sequential consistency issues rarely occur in practice, the 
designer of the chip must ensure a solution to avoid them 
when implementing VP. 

C. Value Prediction 

VP is a speculative micro-architectural technique that 
improves the instruction-level parallelism. The parallelism is 
increasing each time the value of an instruction is correctly 
predicted. The technique was proposed in the period 1995-
1997 by four distinct groups in [10-15]. 

Lately, researchers focus on the VP technique and lagged 
the DIR. The rationale of the statement is based on the 
following observation. Recently, at the prestigious ISCA 
conference, the 1st Championship Value Prediction 
(https://www.microarch.org/cvp1/cvp1) was organized. 
Also, other similar competitions will be organized, with 
involvement of major companies in the field, such as Intel, 
Qualcomm, Nvidia, Samsung, etc. 

The fundamental difference between VP and DIR is the 
following: VP is a speculative technique and DIR is non-
speculative. This means that the DIR technique eliminates 
the speculative execution of instructions. Basically, the 
recovery time paid in case of a wrong prediction does not 
exist in DIR. This puts DIR in advantage over VP. Both 
architectural techniques can exploit the same value locality, 
in a history context of n values.  

Given the execution phases of an instruction (fetch, 
decode, issue, execute, writeback and commit), the VP table 
is accessed in the frontend and based on the information 
from the prediction table a prediction can be made. In case a 
prediction is done, the processor executes speculatively the 
subsequent dependent instructions using the predicted value. 
When the outcome of the instruction is available, it is 
compared with the prediction and, if they are matching 
(correct prediction), the speculated instructions are finally 
committed. In case of a wrong prediction the speculative 
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execution must revert to the point when the prediction was 
done, the instruction must be executed again with the correct 
value. This implies an additional recovery time penalty. 

One remark is that the VP unit can be accessed earlier in 
the pipeline stages in case the prediction is not done on 
values which are available only after the decode stage (e.g., 
register values, data addresses). If this is the case, then the 
predictor can be consulted directly in the fetch phase, using 
only the program counter (PC) or with a more complex 
access using both the PC and part of the global branch 
history. 

Researchers proposed different implementation 
techniques of VP which will be summarized in the next 
sections, grouping them in the following categories: 
computational, contextual and store/load VPs. 

D. Computational Predictors 

In [12], the authors proposed a simple VP, called last-VP, 
which uses as current prediction the last computed value of 
a previous execution of the instruction. Such a predictor 
decides what value it will predict based on a quite 
rudimentary decision mechanism using confidence counters, 
thus achieving a performance gain from 4.5 % up to 23 % 
using this technique. 

A more advanced technique is the stride predictor, which 
was introduced in [15]. The advantage of the stride predictor 
over the last-VP, is that it can predict values which were not 
previously seen. Generally, stride predictors are simplistic 
models because they only add to the last value the difference 
of the last two recent values that were generated by an 
instruction. 

Most of the modern context-based predictors are 
incorporating in a way or another, a stride predictor, making 
it an essential part of modern VPs. In [16], context-based, 
stride and hybrid predictors are applied for register-centric 
VP. Basic stride predictors are good at predicting 
arithmetical strides but are problematic when they must deal 
with stride patterns that occur on an interval basis. However, 
a newer predictor, called Stride Equality Prediction (SEP), is 
proposed in [17] by Yang et al., and is specialized in 
identifying and predicting interval stride patterns. They 
achieved a 5.3 % improvement compared with the state-of-
the-art E-Stride predictor [18]. They also enhanced the 
Context-Based Computational Value TAGE (CBC-VTAGE) 
with SEP and achieved 1.5 % better results without adding 
extra costs. 

E. Context Predictors 

Context-based predictors try to identify patterns between 
multiple produced values of one dynamic instruction and to 
predict the next value based on the identified pattern. 
Predictors using a finite context method are based on a 
mechanism that estimates the next value based on a finite 
number of previous values. A predictor of this kind of order 
K will use the last K previous values. In other words, such 
predictors implement learning mechanisms that are used to 
predict future values. 

A finite context method (FCM) was proposed in [14] 
along with an intensive study for the predictability of data 
values. They define and compare different types of predictor 
models, computational (stride and last value) vs. the 
proposed contextual predictor. The contextual predictor can 

record previous values for multiple instructions, thus 
maintaining a history and perform a prediction based on the 
identified patterns. In average, the contextual predictor has 
an 20 % better accuracy than the computational predictors. 

One general drawback of the FCM predictor is that the 
size of the value history table is increasing exponentially 
along with the length of the history. The efficiency of 
prediction accuracy is correlated with the prediction history. 
Usually, more history means better accuracy in prediction. 

To solve the exponential size increase in the FCM 
predictor, in [19] the authors proposed an optimized variant 
named Differential FCM (DFCM). They are proposing to 
predict strides instead of values, thus achieving an increase 
of 33 % in prediction accuracy. Using strides instead of 
actual values to identify the difference over time makes the 
predictor more space-efficient and allows a longer history 
pattern to be recorded and used for prediction. Another 
improved aspect of DFCM over the initial implementation is 
the ability to identify patterns faster, especially in case of 
constants. 

The DFCM predictor was further improved in [20] 
achieving an 28.1 % improvement in overall speedup. There 
are four notable improvements proposed on top of the 
standard DFCM: early update policy, a value estimator 
which correlates dependencies for prediction, blacklist usage 
for hard to predict instructions, and the introduction of 
dynamic context length determination and adaptation. 

The VTAGE predictor [21] is using multiple sources of 
information to perform a prediction. It uses as input the 
global branch history, difference of successive values and 
history of local values. Also, a combination of multiple 
prediction tables are checked in parallel, and it will use the 
entry with the longest history for prediction. Saturated 
confidence counters are also considered for the final verdict. 
The prediction table is accessed using a hash, which is 
computed using multiple global branch history lengths in 
combination with the PC, such combination resulting a 
geometric progression. This predictor was further improved 
in the E-VTAGE [18] variant with the following 
enhancements:  
 usage of tags and associativity on the PC indexed 

component; 
 was optimized to reduce the needed storage; 
 has improved the confidence management; 
 reduced the number of burst miss predictions. 

The E-Stride predictor is an improved classical stride 
predictor. It was adapted in such way that it can predict 
inflight instructions by considering the speculative instances 
of instructions and multiple improvements. 

In [18], the authors are proposing a state-of-the-art VP 
named Enhanced VTAGE Enhanced Stride (EVES). It 
combines two predictors E-VTAGE and E-Stride which are 
not relaying only on using the last result of the instruction to 
compute the prediction. Each predictor is addressing 
different types of instructions. According to the 
Championship Value Prediction competition, the speedup 
achieved using this predictor is the highest, 23.8 % using     
8 KB storage. Increasing the storage up to 32KB the 
obtained speedup is 28.6 % and using unlimited storage 
space a 45 % performance increase was measured. It won 
the first place, thus becoming the state-of-the-art of VPs. 
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Figure 1. SHLA-VP scheme 

 
Another modern VP is proposed in [22], which won the 

second place in the Value Prediction Championship held in 
2018, in the 8 KB storage budget category, achieving a   
17.1 % performance speedup. This predictor, named 
Context-Base Computational VP with Value Compression 
(CBC-VTAGE), enhances the original VTAGE predictor 
scheme. The predictor proposed in [23] won the 2nd place in 
the Value Prediction Championship held in 2018, in the 32 
KB storage budget section achieving a 4.3 % performance 
speedup. It also won the 3rd place in the 8 KB storage 
category, obtaining a speedup of 3.4 %. The predictor is 
called H3VP: History-Based Highly Reliable Hybrid Value 
Predictor. It is composed of a common history table and 
three independent predictors (arithmetic, 2-periodic and 3-
periodic). 

F. Store/Load Predictor 

In [24], the authors propose a Decoupled Load Value 
Predictor to tackle two important challenges when dealing 
with VP. First, is related to the store instructions which are 
changing the content of memory locations, thus making the 
values in the predictor deprecated and the predictor itself 
prone to an increase in misprediction rate. It takes time until 
the modified value via a store operation is loaded and used 
in the pipeline, meanwhile the predictor most probably will 
speculatively insert the deprecated value in the pipeline. The 
effect of a misprediction consists in costly pipeline flushes, 
which denotes the second challenge: to minimize the 
number of mispredictions. To mitigate this issue most of the 
VPs are using confidence counters, but, according to the 
authors, there is a probability which negatively impacts the 
training time and the overall prediction coverage. 

The idea of this predictor is to not use the outcome value 
for prediction, instead to use the memory address and to rely 
on the data cache to distribute the predicted values just in 
time for prediction. In this way, they can predict the value of 
a subsequent load instruction considering the value from the 
data cache. This idea is used to tackle the first challenge. As 
for the second, they implement a new context-based address 
prediction scheme, which uses the load-path history to 
improve the accuracy. The performance improvement is      
4.8 % in average, having a maximum of 71 %, using a 
memory allocation of 8 KB. 

Selective VP applied on long-latency Load instructions  

 
within superscalar processors was evaluated in [25-31], 
whereas its integration into multicore microarchitectures 
was discussed in [32-33]. 

In [32], the scheme applied in a multicore environment is 
called Selective Load Value Predictor (SLVP) and targets 
the prediction of long-latency load instruction’s outcome. 
The selectiveness is used to maintain an energy-efficient 
architecture. The overall performance speedup was 4 % in 
average and the authors observed an 1.25 % reduction in 
energy consumption. 

In [33], the authors expanded the idea of load VP, by 
using a perceptron-based classification method to categorize 
load instructions into predictable and unpredictable classes. 
The prediction technique has been incorporated into the 
Sniper multicore simulator. The primary objective of the 
load VP is to predict the values of crucial load instructions 
and to enable the processing of dependent instructions in a 
speculative manner. VP is considered only if the 
corresponding load is found in the predictable state, since 
high prediction accuracies are required. Assessments were 
conducted on the Splash-2 parallel benchmarks, revealed an 
average relative speedup of 4.21 % compared to the baseline 
multicore architecture, with a maximum of approximately 
17 %. 

III. TECHNICAL MODIFICATIONS 

A. Value Prediction Scheme 

In Fig. 1 is depicted the scheme of the Selective High 
Latency Arithmetic (SHLA) VP, denoted SHLA-VP. It 
comprises a set-associative enhanced last VP, which can 
keep up to H result values, produced by one instruction. The 
values are kept in dedicated entries from V1 up to VH. For 
each value, a two-bit confidence counter C and a two-bit 
vLRU field is associated. The vLRU field is used to 
determine which one of the H values is replaced with a 
newer one. In case of correct prediction, the corresponding 
vLRU field is set to the maximum value and is decremented 
for the others. The LRU field is used to decide on which 
entry gets evicted within the set-associative table, the well-
known LRU algorithm is applied. The table is accessed 
using two sub-set bitfields from the instruction PC: 
PC_TAG represented by the most significant bits and the 
SET given by the least significant bits. 
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Figure 2. High-level structure of the Micro Operation Performance Model 

 
In the current implementation, each core has its own local 

implementation of the presented VP model, no information 
is shared between cores. All parameters are listed in Table I. 

 
TABLE I. LIST OF PARAMETERS OF THE VP MODEL 

Parameter Value 

associativity 
Specifies the associativity of the table: {1, 2, 3, 4, 8, 
16}. 
Note: value “1” – means a direct mapped table. 

num_entries The total number of entries allocated inside table. 

history 
The number of result values which are kept for one 
entry. 

penalty_latency 
The latency penalty in case of a wrong prediction 
[cycles]. 

block_size Block size [bytes]. 
size Total size of the unit [KB]. 

B. Micro-Operation Performance Model 

The solution to make the operand values accessible in 
Sniper, was presented in [34], and in this work we apply the 
same approach. The SHLA-VP is modeled inside the Core 
Performance Model of the simulator, which lays in the 
backend, more concrete in the Micro-Operation 
Performance model area (an overview of this model is 
presented in Fig. 2).  

In this area, the dynamic instructions are further split into 
multiple micro-operations. Based on those operations, the 
intra-instruction dependencies are determined, and the 
latency of each micro-operation is calculated. It 
communicates with instruction and data caches to calculate 
the access latency, for example in case of a miss in one of 
the caches penalty latency is added to the instruction 
execution time.  

For branch instructions, the dedicated BP model is 
accessed. After all the micro-operations are evaluated and 
the corresponding latency is assigned, they are pushed into 
the selected core model which further simulates them. When 
the core model finishes the simulation, it returns the number 
of committed instructions and the latency necessary to 
commit those instructions. 

We inserted a placeholder for our VP or DIR table, 
namely “Custom Unit”. The active custom unit is selected 
by the “custom_unit/type” configuration parameter, which 
can be placed for example inside the “gainestown.cfg” 
configuration file or set via a command line parameter (e.g., 
“-g --custom_unit/type=dir”).  

 
Based on this parameter the DIR or VP model is selected 

for one simulation. 
Each custom unit is implemented in separated source files 

and can be configured via dedicated parameters. For 
example, there is no need to rebuild the simulator to change 
the associativity of the selected model. 

C. Latency Adaptations 

Considering the architecture of the micro-operation 
performance model presented in B we adapted the micro-
operations before the core model simulation is performed. In 
this way, the existing models were not modified, and the 
proposed solution is working independently regarding the 
simulation model. Sniper has multiple models for core 
simulation: one-ipc, interval and instruction-window centric 
(rob timer).  

According to [2], the one-ipc model offers the lowest 
simulation accuracy against real hardware, it is also the 
simplest model in terms of modelling complexity and is 
prone to misleading and incorrect result. The interval 
simulation model offers high simulation speed, modest 
accuracy, and short simulation time. Instruction-window 
centric simulation is the newest implemented model and 
offers better estimations due to the modelling of a reorder 
buffer. The simulation time is slightly increasing when 
compared to the interval model. 

For VP, we distinguish between three outcomes: no 
prediction, correct prediction, and wrong prediction. No 
prediction means that the table is accessed and the 
information (LRU counters, confidence counters, values, 
etc.) is updated. In this case we do not apply adaptations 
regarding latency, but we increment the read/write counters 
necessary to estimate for power consumption estimations. A 
correct prediction will impact the latency in the following 
manner: 
 all execution micro-operations of the current instruction 

are squashed and not feed into the core simulation model 
(analogy to unblock the execution of instructions which 
are waiting for the outcome of the current instruction, 
without interfering with the simulation model); 

 the number of executed instructions is incremented by one 
to reflect that the execution of the current instruction was 
correctly speculated; 
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 one cycle is considered for accessing the table, the cycle 
being added to the last stage of store micro-operation. 
For a wrong prediction we add to the execution latency of 

the current instruction an extra 17 cycles of penalty, the 
same as it is used to treat a mispredicted branch instruction. 
The misprediction penalty (in cycles), was measured in [35] 
(paragraph 3.6) for BP in Intel Nehalem by Agner Fog. 

IV. SIMULATION ENVIRONMENT AND METRICS 

The host configuration used to run the simulations was a 
computer with Intel Xenon Gold 6240R CPU (2.4 GHz, 48 
physical and 96 virtual cores), 128 GB DRAM (2933 MHz) 
and 2 TB SSD storage.  

To run the simulator, we used a virtual machine running 
Ubuntu 18.04 64-bit version. The simulated 
microarchitecture is Intel Nehalem codename Gainestown 
using a clock speed of 2.66 GHz. The baseline configuration 
is presented in Table II. 

 
TABLE II. BASE CONFIGURATION OF THE SIMULATED ARCHITECTURE 

(INTEL NEHALEM – GAINESTOWN) 
Parameter Name Value 

Size 8192 KB L3 Cache (Shared) 
Associativity 16 
Size 256 KB L2 Cache 
Associativity 8 
Size 32 KB L1 Data Cache 
Associativity 8 
Size 32 KB L1 Instruction 

Cache Associativity 4 
Frequency 2.66 GHz 
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Number of cores 4 

 
We are interested in the following metrics: performance, 

area of integration, dynamic power consumption, energy 
consumption and maximum temperature. For DIR we are 
interested also in the reuse rate and for VP in the prediction 
accuracy, which are the main performance indicators for 
these units. 

Regarding the performance metric, we are measuring it as 
instructions per cycle (IPC) from two perspectives: core and 
processor. For the core performance we are averaging the 
calculated IPC of all used cores and for processor 
performance we sum the number of instructions executed by 
all cores and divided by the longest cycle time among cores. 
Below are presented the equations, which were used to 
determine the performance, equation (1) for IPC, (2) for the 
performance of the core and (3) to compute the processor 
performance.  

The relative speedup is also calculated according to (4). 
I

IPC
N

      (1) 
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i

i
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Core Performance
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     (2) 

1 1

  
{ }

C
i

i k C k
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    (3) 

where: 
I = the number of instructions executed; 
N = the number of cycles necessary to execute the 

instructions; 
C = the number of cores; 
Ek = execution time in cycles for core k. 

-
  100 [%] E B

B

IPC IPC
Relative Speedup

IPC
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where: 
IPCB = IPC of the baseline configuration; 
IPCE = IPC of the enhanced architecture (with DIR or VP 

unit). 
( )  ( )

 [ ]
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AVG P MAX C
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where: 
P = the dynamic power consumption; 
C = the number of cycles; 
fCPU = frequency of the simulated processor [Hz]. 

-
 100 [%] B E

B

E E
Energy Reduction

E
    (6) 

where: 
EB = energy consumption of the baseline configuration; 
EE = energy consumption of the enhanced architecture 

(with DIR or VP unit). 
The area of integration is measured in mm2 and the 

dynamic power consumption in Watt [W], the values being 
estimated by invoking the McPAT [36] framework. The 
temperatures are estimated in Celsius degrees using the 
HotSpot tool. We are interested in the maximum recorded 
value. The energy consumption of the whole chip is 
determined according to equation (5) and it is measured in 
Joules (J). The energy reduction percentage is also 
considered, the computation is done applying formula (6).  

As for benchmarking, we use the programs from the 
Splash-2 [37] suite with the large input dataset. Both units 
are targeting the same x86 high latency arithmetic 
instructions (DIV, IDIV, DIVSD, VDIVSD, MUL, IMUL 
and SQRTSD). 

V. EXPERIMENTAL RESULTS 

A. VP Prediction Accuracy Study 

The following simulations were done successively on a 
quad core system to study the prediction accuracy in 
variation to the number of entries in the table, table’s 
associativity, and the history length. 

First, we vary the number of entries E = {128, 256, 512, 
1024, 2048}, associativity A = 4 and the number of results 
history length H = 4. In Fig. 3 the prediction accuracy is 
presented and on average the values are laying in the 
interval 77.2 % and 75.5 %. For half of the benchmarks, we 
achieved ~99 % accuracy, meaning that the values were 
predicted correctly in most cases. A high contributor to this 
achievement is the implementation of confidence counters, 
which feeds a predicted value only when the confidence is 
above the defined threshold. The optimal number of entries 
is E = 512. 

Next, we study the influence of associativity variation on 
prediction accuracy, it is varied as follows A = {1,2, 4, 8}. 
As for the other parameters we chose the number of entries 
E = 512 and history length H = 4. 

The results are shown in Fig. 4, and in comparison with 
the results achieved when we vary the number of entries 
(Fig. 3), we observe a decrease from ~1.7 % to 0.34 % in 
accuracy. 
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Figure 3. Averaged prediction accuracy per core for all benchmarks by varying number of entries (E = {128, 256, 512, 1024, 2048}; A = 4; H = 4; C = 4) 

 
Figure 4. Averaged prediction accuracy per core for all benchmarks by varying the associativity (E = 512; A = {1,2, 4, 8}; H = 4; C = 4) 

 
Figure 5. Average prediction accuracy per core for all benchmarks by varying the history length (E = 512; A = 4; H = {1, 2, 3, 4}; C = 4) 

 

 
Figure 6. Area of integration in relation to the history length (E = 512; A = 
4; H = {1, 2, 3, 4}; C = 4) 

 
On average, the achieved results are looking stable, 

meaning that the associativity variation does not 
significantly impact the accuracy of prediction. For next 
simulations we chose the associativity to be 4, an 
associativity greater than 4 being uncommon. 

Lastly, the variation of the number of result values which 
are kept for each instruction in the prediction table is 
studied. The VP table is configured as following E = 512 
entries and an associativity of A = 4. We are scaling the 
length of history as follows: H = {1, 2, 3, 4}. On average, in 
Fig. 5 it is observable a decreasing trend from 83.10 % to 
75.64 %. On half of the benchmarks the accuracy is not 
influenced by the history length variation. But on the 
“cholesky”, “radix”, “raytrace”, “water.nsq” and “water.sp” 
benchmarks, we achieved a decrease in the accuracy along 
with the increase in history length. In this context, it looks 
like if more values are kept, the harder it gets to speculate 

with the correct value. Comparing the achieved accuracy 
with the ones measured on the previous result sets (number 
of entries and associativity variation) we can say that by 
varying the history length we achieved the biggest impact on 
the prediction accuracy.  

The processor area integration in relation to the history 
length of the VP is visible in Fig. 6. It ranges from      
139.68 mm2 on the baseline configuration, up to 205.63 
mm2 for the configuration with a history length of four. One 
remark is in the case of history of two and three, the 
integration footprint being the same for both configurations. 
In case of a history of two, 180 bits are required to keep all 
the necessary information, thus rounding it up to the nearest 
power of two, we end up with a line of 256 bits (32 bytes). 
In case of a history of three, we need 238 bits to store the 
information and after the rounding we achieved 256 bits (32 
bytes). In this case, a more realistic memory model is used. 
So, both configurations are having the same footprint for a 
VP table on each core, making the overall chip to have the 
same integration area. Overall, the integration area is 
increasing along with the number of history elements which 
are configured in the VP. 

Further we can see the impact of the history length 
variation over the performance in Fig. 7, namely the relative 
core speedup. Interestingly, on average, the speedup is 
decreasing from 3.40 % to 3.25 %. The highest speedup 
achievement of 13.81 % was measured on the “lu.cont” 
benchmark on the configuration with a history length of 1. 
An interesting behavior is visible on the “cholesky” 
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benchmark. In the configuration where we are keeping only 
the last value produced for each instruction, we achieved a 
0.51 % speedup. Increasing the number of values which are 
stored has a negative impact on the performance, decreasing 
up to -1.82 %. This happened because the prediction 
accuracy is also decreasing when we increase the number of 
values, from 87.82 % (H = 1) to 70.18 % (H = 4). The 
achievement of the negative value reflects the speculative 
execution drawback of the VP technique, making the system 
overall to perform worse than the baseline configuration. As 
a conclusion, the history length variation has small impact 
on the speedup, for most of the benchmarks we measured a 
positive speedup except for one. 

The average dynamic power consumption of the 
processor in relation to the number of values stored for each 
instruction is presented in Fig. 8 for all benchmarks. On 
average, we measured a 34.39 W power consumption on the 
baseline configuration. In comparison to the baseline 
configuration, the power consumption overhead introduced 
by the predictor is quite small, on average ranging from 
35.41 W for the configuration with a history length of 1, up 
to 35.48 W on the configuration with a history of 4. The 
highest power consumption of 64.84 W was measured on 
the “lu.cont” benchmark, the increase being justified by the 
fact that on this benchmark we achieved the highest 
performance increase of 13.81 %. Another notable increase 
correlated with performance increase, is visible on the 
“water.nsq” benchmark, with a power consumption of 
47.63 % on the configuration with a history length of four. 
A reduction in power consumption is visible on the 
“cholesky” benchmark, on the maximal configuration     
(H = 4), this can be correlated with the fact that on this 
program we achieved a decrease in the overall performance 
(it takes longer time to execute the same program). 

   

A first comparison insight is given by the core and overall 
processor performance metrics. The first metric represents 
the average performance per core and the second metric the 
overall performance of the system. Fig. 11 summarizes the 
core performance and we can see that compared with the 
baseline configuration, in both cases we achieved a modest 
improvement. Thus, on average, cores that include an RB or 
a VP table are running faster. We can see that using the 
speculative VP technique, a higher IPC was achieved 
compared with the non-speculative DIR technique. 

The energy consumption in relation to the number of 
result values which are kept for each instruction is 
summarized in Fig. 9 for all benchmarks. On average, the 
variation is quite small, with 8.97 J on the baseline 
configuration, and from 8.94 J when only one result value is 
stored, up to 8.99 J on the highest configuration.  

As a conclusion, the history length variation did not 
influence in a significant way the overall energy 
consumption of the chip. 

Regarding the chip’s maximum temperature, we achieved 
its reduction by increasing the number of stored elements. 
The results are visible in Fig. 10, on average ranging from 
57.8 °C, up to 56.17 °C. The biggest contributors to the 
decrease of chip temperature are due to the increase in 
integration area, stable energy consumption and minimal 
increase in the overall dynamic power consumption. One 
remark is for the configurations with the history of two and 
three, hence the predictors have the same integration area 
also the estimated chip temperatures are approximately the 
same, the trend is visible on all benchmarks. 

B. Comparison of VP and DIR 

This section presents a comparison between SHLA-DIR 
[1] vs. VP in fair conditions, to exploit the same value 
locality degree in a multicore environment. The DIR and the 
VP are both only using the last available result for an 
instruction. We showed in earlier simulations that the VP 
has the capability to store more than one result for one 
instruction by varying the history length (from 1 to 4), but 
for a fair comparison we chose to store only one value. 
Other parameters which are common for both schemes are 
chosen as follows: the number of entries is 512 and the 
associativity is set to 4.  

 
Figure 7. Relative core speedup for all bechmarks by varying the history length (E = 512; A = 4; H = {1, 2, 3, 4}; C = 4) 

 
Figure 8. Average of processor dynamic power consumption for all benchmarks by varying the history length (E = 512; A = 4; H = {1, 2, 3, 4}; C = 4) 
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Figure 9. Average of processor energy consumption for all benchmarks by varying the history length (E = 512; AS = 4; H = {1, 2, 3, 4}; C = 4) 

 
Figure 10. Maximum chip temperature for all benchmarks by varying the history length (E = 512; AS = 4; H = {1, 2, 3, 4}; C = 4) 

 
A closer look at this metric is given by the relative 

speedup, which is computed in Fig. 13. Now we can see the 
difference as percentage. For both techniques the increase 
trend is visible for the simulated configuration ranging from 
1 core up to 16 cores. Now, comparing the 16 vs 32 cores 
configurations we can see a small decrease in performance 
with the higher core number. It happens because of the 
scalability limits of the benchmarks. Adding more resources, 
beyond a certain limit, often leads to the situation where the 
communication interfaces and synchronization mechanisms 
between cores negatively impacts the overall performance. 
For this benchmark suite, the scalability sweet spot can be 
found in the 16-core configuration, where using an RB we 
achieved a 2.45 % speedup, whereas a 5.29 % increase in 
performance was difference between the two techniques has 
its roots in the achieved by using a VP. 

Figure 11. Average core performance vs. number of cores 

Figure 12. Average processor performance vs. number of cores 

 
The main reason for this speedup is the fundamental 

differences between them, meaning that the DIR technique 
requires the values of the operands to check if the result can 

be reused (non-speculative). But the VP technique can 
provide a speculated value of the fetched instruction much 
earlier, it does not need to wait until the value of the 
operands are available. 

 
Figure 13. Average processor speedup vs. number of cores 

 
The time required to fetch and compute the operand 

values is highly valuable in this scenario. Unlocking in a 
speculative way the execution of dependent instructions is a 
major advantage for the VP compared with the RB. 

Regarding the processor area integration, we have 
summarized two perspectives. The first one represents the 
raw area numbers visible in Fig. 14. We can easily observe 
that the configurations which are including an RB have a 
bigger footprint than the ones which include a VP. In Fig. 15 
we can see the differences between both configurations, 
with respect to the baseline configuration which does not 
include any architectural enhancement (DIR or VP). The 
functional unit of the DIR technique occupies around 2.9 
mm2 spaces on each core, on the other hand the VP has as a 
footprint of only 0.412 mm2, thus, making the VP unit to be 
more efficient in terms of integration area. 

The processor’s average dynamic power consumption in 
relation to the number of cores is visible in Fig. 16 and in 
Fig. 17 the percentage increase is calculated with respect to 
the baseline configuration. We can see that the power 
consumption increases along with the number of cores, 
because more hardware resources are used to run the same 
program and it well correlates with the processor 
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performance increase. Using the DIR technique, we 
achieved a lower increase in power consumption and 
performance. For the configurations which are using a 
prediction table the increase in power consumption is much 
higher, as well the performance. We can say that 
configurations with an RB consume less power, than the 
ones with a VP. 

Interesting results were achieved on the energy 
consumption metric, depicted in Fig. 18 and Fig. 19. On 
most of the enhanced configurations we achieved, overall, a 
lower energy consumption. Although, the power 
consumption is increasing, the energy consumption is 
decreasing along with the number of cores. The highest 
difference is on the 32-core configuration using VP, we 
measured a value of -0.48 % less energy consumption 
compared with the baseline configuration. Based on the 
results we can say that the VP technique is more energy-
efficient than the DIR. 

Maximum chip temperatures and temperature reduction 
were plotted in Fig. 20 respectively Fig. 21. We can see that 
the trend is the same on all the simulations, configurations 
which include an RB unit achieved a bigger reduction in 
temperatures, compared with the ones with a VP. This 
happens because the integration areas of configurations 
which comprise an RB are higher than the ones with a VP. 
Using the RB unit, lower processor performances were 
achieved, similar energy consumption and the increase in 
integration area means that it has more space for the heat to 
dissipate.  

All those factors are contributing to the lower temperature 
achievement using the DIR technique, compared with those 
which include an VP. 

 
Figure 14. Processor area vs. number of cores 

 
Figure 15. Processor area increase vs. number of cores 

 
Figure 16. Average of processor dynamic power consumption vs. number 
of cores 
 

 
Figure 17. Average of processor power reduction vs. number of cores 

 
Figure 18. Processor energy vs. number of cores 

 
Figure 19. Processor energy reduction vs. number of cores 

 
Figure 20. Maximum chip temperature vs. number of cores 

 
Figure 21. Maximum chip temperature vs. number of cores 

VI. CONCLUSIONS AND FURTHER WORK 

In this work we show that the variation of the number of 
entries of the predictor has low impact on prediction 
accuracy. Changing the associativity seems to have 
neglectable impact on the accuracy in our tests. The highest 
impact on accuracy was achieved by varying the history 
length, more than that we measured an increase in 
performance, a reduction in chip temperature, lower energy 
consumption in most cases, as trade-off we observed an 
increase in power consumption and integration area. 

 Our original comparison between VP and DIR 
techniques, in fair conditions, is summarized in Table III. 
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We can conclude that the most suitable configuration 
depends on the needs of the user, the tradeoffs in each 
dimension are easily observable in the table. For example, in 
case one requires a high-performance configuration, then the 
VP unit can be chosen considering the following aspects: it 
has a smaller integration footprint in comparison with a DIR 
unit and will consume less energy despite the higher power 
consumption. 

 
TABLE III. OVERVIEW OF THE COMPARISON DIR VS. VP 

 Unit 
Metric  
(baseline difference) 

DIR VP 

Speed-up - + 
Area of integration + - 
Power consumption - + 
Energy reduction + - 
Max. temperature - + 

 
Further, we plan to use existing state-of-the-art multi-

objective optimization methods and tools, for performing an 
automatic design space exploration to search for optimal 
configurations considering the trade-offs between the 
following metrics: integration area, chip temperature, 
processing performance, energy consumption and security. 
We plan to enhance our Framework for Automatic Design 
Space Exploration (FADSE) [38] with newer state-of-the-art 
optimization techniques and algorithms located in the 
Pareto-Fuzzy paradigm. We also plan to integrate the 
modern benchmarking suite Splash-4 [39] into the Sniper 
simulator and to model multiple complex context-based VP 
schemes. 
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