
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 22, Number 3–4, 2019, 215–227

Perceptron-Based Selective Load Value Prediction
in a Multicore Architecture

Arpad GELLERT , Maria VINŢAN , and Lucian VINŢAN

Computer Science and Electrical Engineering Department, Lucian Blaga University of Sibiu
Emil Cioran Str., No. 4, 550025 Sibiu, Romania

E-mails: arpad.gellert@ulbsibiu.ro, maria.vintan@ulbsibiu.ro,
lucian.vintan@ulbsibiu.ro

Abstract. In this work we have extended the load value prediction concept, previ-
ously implemented by us in a multicore architecture, with perceptron-based classification of
load instructions into the predictable and unpredictable categories. The prediction scheme
has been integrated into the Sniper multicore simulator. The goal of the load value predictor
is to anticipate the values of critical load instructions and to unlock in a speculative man-
ner the subsequent dependent instructions’ processing. Since high prediction accuracies are
necessary, we use the predicted value only if the corresponding load instruction is classified
as being predictable. The evaluations performed on the Splash-2 parallel benchmarks have
shown an average relative speedup of 4.21% over the baseline multicore architecture, with a
maximum of about 17%.

Key-words: Multicore architecture; issue bottleneck; selective load value prediction;
perceptron; speculative execution; Splash-2 parallel benchmarks; Sniper multicore simulator.

1. Introduction
In the last period, the research in the computer architecture domain has been focused on

multicore systems which exploit thread-level parallelism, frequently neglecting the instruction-
level parallelism, investigated for a long period especially within superscalar microarchitectures.
In this work, we have improved the selective load value predictor for a state-of-the-art multicore
architecture, developed previously in [8], by enhancing it with perceptron-based classification of
dynamic load instructions into the predictable and unpredictable classes.

Perceptrons have been successfully applied in [21, 10, 11] and [12] for efficient dynamic
branch prediction within two-level adaptive schemes that are using fast per branch single-cell
perceptrons instead of two-bit saturating counters. The branch address is hashed to select the
corresponding perceptron’s weights, which are used to generate a prediction based on the global

216 Arpad Gellert et al.

/ local branch history. The perceptron, one of the simplest neural networks, is a natural choice
for branch prediction because it can be efficiently implemented in hardware.

In this work, we adapted the perceptron-based branch prediction scheme presented in [10]
and [11] for load value prediction, in order to ameliorate the so-called issue bottleneck (data-flow
bottleneck). For each load instruction stored in the Load Value Prediction Table (LVPT), the cor-
responding perceptron’s weights are stored, too. Actually, the perceptron’s hardware structure,
representing a binary adder (Wallace-Tree of 3 to 2 Carry-Save, having a logarithmic depth), is
global. Based on the previous behaviors of a certain load instruction, the corresponding percep-
tron classifier (a unique hardware structure together with the load instruction’s corresponding
weights) determines if that load instruction is predictable or not. Only if a load instruction is
predictable, the predicted value is used to speculatively unlock the subsequent dependent in-
structions’ processing. Thus, if the prediction is correct, the dependent instructions are earlier
executed, which contributes to a global speedup of the multicore system. On the other hand,
if the prediction is wrong, a recovery process is necessary, in order to re-establish the correct
architectural state of the corresponding core (thread). Therefore, high prediction accuracies are
necessary, which can be obtained with efficient predictors applied only on the load instructions
which are dynamically classified as predictable. Thus, with good prediction accuracies on a
significant number of dynamic loads, this technique can provide a speedup. If the speedup is
sufficiently high, it can also reduce the energy consumption, as we already have shown in the
related papers [6, 7] and [8].

The rest of the paper is organized as follows. Section 2 presents the recent related work.
Section 3 presents the perceptron-based selective load value prediction mechanism. Section 4
presents the simulation methodology. Section 5 discusses the experimental results and, finally,
Section 6 presents the conclusions and the further work suggestions.

2. Related Work
In 2004 there were published about 70 papers, especially at the most prestigious computer

architecture conferences, focused on value prediction techniques implemented in single threaded
architectures. We have also applied value prediction methods in superscalar-, multithreaded- and
multicore-microarchitectures, in several previous works like [5, 6, 7, 8] and [9]. Value prediction
focused on the logical registers of superscalar architectures, as a low-power alternative to the
instruction-centric value prediction paradigm, have been successfully applied by us in [22, 23]
and [24]. The Sniper state-of-the-art multicore simulator and the Splash-2 parallel benchmark
suite have been successfully used for microarchitectural evaluations in [4] and [8]. Further, we
will limit our presentation only to some of the most recent valuable papers focused on this issue.

In [14], the authors have investigated load value estimation in applications that accept inex-
actness. Thus, rollbacks are eliminated, since re-execution in the case of misprediction is not
necessary. They show that without rollbacks, the load value estimation is still presenting low
error in the application’s output. Spatio-value approximation is also exploited through the so-
called Bunker Cache in [15]. In contrast, our method targets all the types of applications by not
accepting any inexactness of the speculated data values.

In [17], the authors proposed a confidence estimation mechanism for value prediction in
monocore architectures. They used 3-bit confidence counters and they predicted only on satu-
rated counter (so on highest value). They incremented the counters on correct prediction and
reset them (to zero) on misprediction. The authors reported prediction accuracies between 95%

Perceptron-Based Selective Load Value Prediction in a Multicore Architecture 217

- 99%. They have also introduced the VTAGE context-based value predictor (derived from the
previous ITTAGE predictor) which uses global branch history and path information to predict
values. In [19], the authors proposed a block-based value prediction scheme which associates
the predicted values with fetch blocks. They have also presented the Differential VTAGE pre-
dictor (D-VTAGE), which uses stride-based value prediction. The obtained average speedup was
11.2%. In contrast with our work, which investigates value prediction in a multicore system, all
these authors were focused on monocore processors.

In [18], Perais and Seznec proposed the Early Out-of-order Late Execution (EOLE) mono-
core architecture, which delays the value prediction validation within the pipeline until the com-
mit stage. Thus, the authors avoid selective replay and enforce complete pipeline squash on
misprediction, significantly simplifying the hardware design. Additionally, the authors further
reduced the design’s complexity by dynamically classifying instructions into early execution,
out-of-order execution and late execution instructions. The instructions having immediate or
predicted operands are executed early and in-order, in the front end. On the other hand, pre-
dicted instructions and high confidence branches are executed late and in-order in a pre-commit
processing stage. Both the early and late execution instructions avoid the out-of-order engine,
reducing thus the pressure on this unit which led to lower energy consumption. The same clas-
sification of the instructions into the early execution, out-of-order execution and late execution
categories is applied in [20], too. In contrast with this briefly presented work, limited to mono-
core approaches, we applied the value prediction on critical load instructions (with miss in the
Data L1 Cache) processed within a complex multicore architecture.

In [3], Endo et al. have evaluated the potential of value prediction in the context of the
EOLE microarchitecture and the D-VTAGE value predictor, considering different compilation
options. The authors observed a large benefit from load value prediction, especially in the case
of unoptimized codes. In [16], Orosa et al. proposed a load value prediction mechanism which
predicts the load address first. The predicted load address is then used to index a Value Table
(VT) in order to predict the load’s value. For a better coverage, the authors improved the hit rate
of the VT with an adaptive algorithm which is prefetching future predicted addresses into the
VT.

In [13], a very interesting original work, the authors have shown that value prediction can
violate the sequential consistency in multithreaded and multicore architectures. The problem can
occur when value prediction is applied on codes manipulating pointer-based shared variables.
As a concrete instructive example, the authors are considering two distinct threads: one thread
is inserting to the front of a list (writer), while the other thread is reading the first element of
the list (reader). No further synchronization is necessary between these two threads. The reader
or writer may execute its code first, or the instructions may occur in an interleaved manner. If
the reader thread is executed first (with load value prediction), the predicted value V1 of its L1
load instruction is speculatively used as an address for another subsequent load instruction L2.
An initially wrong prediction (V1) might be erroneously seen as being correct at the time of
verification, reading thus a possible wrong value V2 with L2 instruction, since another thread
or core (the writer) has already modified the values V1 and V2, between (L1) prediction and
verification (late validation). Thus, the authors have firstly shown that predicting the value of an
instruction with later validation is not sufficient in a multicore architecture. Despite the fact that
this process might be counterintuitive, however it can appear. To solve such possible consistency
problems of shared variables, we applied in the simulator the value-based detection solution
proposed in [13]. According to this approach, all the load instructions executed with directly

218 Arpad Gellert et al.

or transitively predicted address are re-executed when the address becomes non-speculative. If
the corresponding values match, the sequential consistency was not violated and the execution
can continue. If the values do not match, all the subsequent data-dependent instructions are re-
executed with the right values, restoring in this way the sequential consistency. We applied this
selective re-issue mechanism in our work, too.

3. Perceptron-Based Selective Load Value Prediction
In this work, we improve our selective load value prediction (SLVP) scheme implemented in

a multicore architecture [8] by classifying the critical load instructions into predictable or unpre-
dictable through simple one-cell perceptrons instead of saturating counters. The main goal is to
increase the predictability of the SLVP unit. We adapted the perceptron-based branch prediction
presented in [10] and [11] for load value prediction. The whole load value prediction process
is presented in Figure 1. The LVPT has a TAG field consisting in the most significant part of
the load instruction’s address stored in the Program Counter (PC), a LRU field necessary for the
decisions regarding the replacements within the set-associative table, a Locality History Register
(LHR) containing the last behaviors of the load instruction (see its detailed description below, in
paragraph 3.2), the set of perceptron weights W, a history of the load instruction’s last distinct
produced values, each such value V having associated a confidence automaton C and a vLRU
field. The role of the vLRU fields is to decide which one of the last H stored values must be
replaced when a new one occurs.

Fig. 1. The whole load value prediction process.

Perceptron-Based Selective Load Value Prediction in a Multicore Architecture 219

Further we present the selective load value prediction mechanism, the perceptron-based pro-
cedure of dynamically classifying load instructions into the predictable or unpredictable classes,
as well as the update mechanism.

3.1. The Selective Load Value Prediction Mechanism
If the currently executed load instruction is involving a miss in the Data L1 Cache, the

LVPT is accessed during its pipelined issue stage. The LVPT set is selected using the least
significant part of the PC and then an associative search is performed for the TAG within the
selected set. In the case of miss in the LVPT, the load instruction is considered unpredictable and
it is normally executed through the instructions’ pipeline. If there is a hit in the LVPT, the highest
confidence is evaluated to select the corresponding value. The LHR and the W fields are used
for the perceptron’s forward stage, in order to determine if the load instruction is predictable
or not. In the unpredictable case, the load is normally executed, thus without prediction and
speculation. Otherwise, the value selected from the LVPT is speculatively forwarded to the in-
flight Read After Write (RAW) dependent instructions and they are executed in a speculative
manner, potentially reducing the processing time. In the commit stage, the predicted value is
compared with the real value. In the case of misprediction, a recovery process is necessary in
order to squash the wrong speculative results and selectively re-execute the RAW dependent
instructions with the correct produced values.

During the commit stage, every critical load updates the corresponding SLVP entry: the
confidences, the vLRU fields and, additionally, the data value, in the case of a new produced
value. The confidence automaton is incremented for the correct value and decremented for the
wrong values. If the actual produced value is not belonging to the stored history, it overwrites the
value having the lowest vLRU. The vLRU fields are set to their maximum value for the correctly
predicted value and decremented for the others. The LHR is correspondingly updated, too (see
paragraph 3.2). The backward step is also applied, if necessary, to adjust the weights according
to the simplified implemented gradient descent learning rule.

In the case of miss in the LVPT, the entry with the lowest LRU from the set is selected. The
new TAG is inserted into the selected entry, the V1 field is updated with the produced data value
and all the confidences from that entry are reset. The first vLRU is set to the maximum, whereas
all the other vLRUs are reset. Finally, the LRU of the selected entry is set to its maximum value
and the LRUs corresponding to the other entries from the corresponding set are decremented.
The LHR bits are reset, excepting LHR0 which is kept on 1. The weights W are reset, too.

3.2. The Selective Load Value Prediction Mechanism
The LHR contains the last n behaviors (Li, 1≤ i≤ n) of a certain load instruction: Li=0 when

the corresponding Load’s real output value (VR) is not in the V set, or Li=1 when the produced
output value belongs to the V set. The V set from a certain LVPT entry is containing the last H
distinct values produced by the previous dynamic instances of the corresponding load instruction.
The LHR is logical right-shifted after the commit of each load instruction whose behavior (0 or
1) is inserted as the most significant bit (MSB) into the LHR. We keep LHR0 always on logical
1 (L0=1) for the bias weight w0. The detailed perceptron-based load value prediction scheme is
depicted in Figure 2.

The MAX circuit works as follows: if MAX (C1, C2, C3, C4) = CK then the MAX circuit
generates the binary value of k, codified on 2 bits. Based on this value, the 4:1 multiplexer

220 Arpad Gellert et al.

(MUX) will select the predicted value Vk, k=1÷4.

Fig. 2. Perceptron-Based Load Value Prediction Scheme (H=4).

The weights are signed integers, represented on one byte, which cannot exceed the value of
Θ. The threshold Θ is also used to decide if the training stage is necessary. As it was shown in
[10], the value of Θ is “exactly” b1.93n + 14c.

3.2.1. The Forward Stage

The forward stage consists in calculating the perceptron’s output sign which is used to decide
if the corresponding load instruction is predictable or not. The output O is given by the following
formula (as in [12] for branch prediction):

O = w0 +

n∑
i=1

{
wi, ifLi = 1

−wi, ifLi = 0
(1)

where wi represent the perceptron’s corresponding weights (w0 being the bias weight). The
formula (1) is equivalent with the following one:

Perceptron-Based Selective Load Value Prediction in a Multicore Architecture 221

O = w0 +

n∑
i=1

wi · (−1)Li+1 (2)

Implementing formula (1) in hardware is not very complicated. According to [11], the above
sum can be obtained using a Wallace-tree of 3-to-2 carry-save adder, which reduces the process
of adding n bytes to the problem of adding just two bytes. The final two signed integers are
added with a carry-look-ahead adder. Taking into account that the Wallace-tree and the carry-
look-ahead adder have logarithmic depths, the computation is relatively quick. Only the sign bit
of the result is needed to make a decision (the load instruction is predictable or not). A prediction
is generated only in the case of a positive output.

3.2.2. The Backward Stage

The backward (learning) stage is applied if the output is in contradiction with the fact that
the real value VR belongs or not to the V set, or if the magnitude of the output is less or equal
with the threshold Θ. The pseudocode of the backward algorithm is given below:

If (O<0 and VR ∈ V) or (O≥0 and VR /∈ V) or |O|≤ Θ then
If VR ∈ V then

If w0 < Θ then
w0 : = w0 + 1

Endif
Else

If w0 > (−Θ) then
w0 : = w0 − 1

Endif
Endelse
For i:=1 to n in parallel do

If (VR ∈ V and Li=1) or (VR /∈ V and Li=0) then
If wi < Θ then

wi : = wi + 1
Endif

Endif
Else

If wi > (−Θ) then
wi : = wi − 1

Endif
Endelse

Endfor
Endif

According to the single-cell perceptron’s stochastic gradient descent learning method, the
simplified implemented learning algorithm increments the bias weight w0 if VR belongs to V
and decrements it otherwise. Furthermore, it increments the weight wi if Li agrees with the fact
that VR belongs or not to V and it decrements that weight in the case of disagreement. Thus,
the weights with mostly agreement become positive with large magnitude and those with mostly

222 Arpad Gellert et al.

disagreement become negative with large magnitude. In these cases there is a high correlation
between the output and the weight. The correlation between the output and a certain weight is
weak if its magnitude is close to 0.

4. Experimental Research Methodology
We have integrated our developed load value prediction technique into the Sniper 6.1 state-

of-the-art multicore simulator [1]. The simulated microarchitecture is Intel Nehalem and can
include between 1 and 16 cores running at 2.66 GHz.

Table 1. Parameters of the simulated architecture

DL1 / IL1
cache

Size 16 KB
Block size 64 B
Associativity 4
Latency 3 cycles

L2 cache

Size 256 KB
Block size 64 B
Associativity 8
Latency 9 cycles

L3 cache

Size 8192 KB
Block size 64 B
Associativity 16
Latency 35 cycles

Memory Latency 175 cycles

SLVP

Entries 32
Associativity 2
Latency 1 cycle
Recovery 7 cycles

The baseline configuration of the simulated microarchitecture is presented in Table 1. The
latencies have been determined using the Membench tool in [2] and configured in gainestown.cfg.
The cache sizes and associativity degrees have been configured in nehalem.cfg. The L3 cache
is shared among all cores. We have used for the evaluations the large datasets of the Splash-2
parallel benchmarks [26]. The simulations have been performed on a host computer with Intel
Core 2 CPU running at 2.4 GHz and a DRAM memory of 2 GB, under the Fedora 22 operating
system (kernel 4.0.8-300). In order to integrate our Selective Load Value Predictor into the Sniper
simulator, it was necessary to apply the following setups:

Table 2. Sniper configuration

Configuration File
[general] issue memops at functional = false gainestown.cfg
[perf model/core] type = interval nehalem.cfg
[perf model/dram/queue model] enabled = false base.cfg
[network/emesh hop by hop/queue model] enabled = false base.cfg
[network/bus/queue model] enabled = false base.cfg

Perceptron-Based Selective Load Value Prediction in a Multicore Architecture 223

The counters necessary for statistics like the number of loads, the number of critical loads,
the number of load predictions and the number of correct load predictions have been defined in
performance model.h, registered as output metrics in performance model.cc and written to the
sim.out file within gen simout.py. The predictor’s structure and functions have been implemented
in micro op performance model.cc and called in the handleInstruction function from the same
source file. We presented these technical details because they are not documented.

We have determined the relative speedup of a multicore architecture with value prediction
(RSVP) with respect to the baseline architecture, using the following equation:

RSV P =
CB − CV P

CB
· 100[%] (3)

where CB and CV P are the execution times in cycles for the baseline and for the VP-based
architectures, respectively.

5. Experimental Results

We considered as a good starting point for our evaluations the optimal configuration obtained
in our previous related work [8]. Thus, we evaluated a dual-core microarchitecture with a level
1 data cache of 16 KB, and a 2-way associative LVPT of 32 entries, storing just one value per
entry. We use confidence automatons belonging to the [0, 3] interval attached to the load’s values,
whose role is just to select for prediction the value with the highest locality. We have varied
the size of the LHR, which is equal with the number of weights (W), and we compared these
perceptron-based LVPT configurations with our previous counter-based method. The relative
speedups obtained over the baseline architecture are depicted in Figure 3.

Fig. 3. Comparing the relative speedups of the counter-based and perceptron-based methods.

As Figure 3 shows, there are only insignificant differences between different LHR sizes. The
results are in concordance with those obtained in [8]: on the most of the benchmarks, the relative
speedup is less than 2%, but on the ocean benchmarks it is over 15%. Figure 4 focuses on the
averages among benchmarks.

224 Arpad Gellert et al.

Fig. 4. The average relative speedups of the counter-based and perceptron-based methods.

As Figure 4 shows, the best configuration is using 40 weights, involving thus an LHR of 40
bits (load instruction behaviors). With that configuration, the average relative speedup was 4.21%
which is slightly better than the 4.14% obtained previously with the counter-based method. Next,
we have analyzed this best perceptron-based method in comparison with the previous counter-
based method.

Table 3. Analyzing the optimal configuration

Splash-2
Benchmarks

Counter-Based Method
Perceptron-Based
Method (W=40)

Coverage
[%]

Prediction
Accuracy

[%]

Coverage
[%]

Prediction
Accuracy

[%]
barnes 2.49 82.07 2.55 86.85
cholesky 9.34 75.30 9.70 72.73
Fmm 22.48 89.87 24.60 86.94
lu.cont 0.20 84.32 0.15 86.63
lu.ncont 0.13 99.79 0.18 99.13
ocean.cont 22.02 99.12 22.09 99.24
ocean.ncont 23.63 99.09 23.70 99.36
raytrace 24.62 87.00 27.06 73.17
water.nsq 19.88 88.25 20.63 96.22
water.sp 20.85 66.88 26.46 91.12
average 14.56 87.17 15.71 89.14

Perceptron-Based Selective Load Value Prediction in a Multicore Architecture 225

Table 3 presents the coverage, computed as the number of correctly predicted loads divided
to the number of critical loads, and also the prediction accuracy, computed as the number of
correctly predicted loads divided to the number of predicted loads. The results show that both
indicators are better for the proposed perceptron-based method, meaning that a higher number of
loads are predicted and the prediction is provided with a higher accuracy.

Fig. 5. The average relative speedups of the counter-based and the optimal perceptron-based methods
considering different core numbers.

Finally, we have compared the optimal perceptron-based configuration (W=40) with the
counter-based one, considering dual-core and quad-core architectures. Figure 5 presents the rel-
ative speedups obtained with respect to the corresponding baseline architectures, averaged on all
the benchmarks. The relative speedup is lower as the number of cores grows, but the performance
gain is at the same level.

6. Conclusions and Further Work
In this work, we have enhanced the selective load value prediction mechanism with hardware

perceptron-based classification of load instructions as predictable or unpredictable. Thus, we
have inserted into the LVPT’s hardware structure two new fields, the locality history register
and the set of weights, which are used to determine if the corresponding load instruction is
predictable or not. The goal of the load value predictor is to anticipate the values of critical load
instructions and to unlock in a speculative manner the subsequent RAW dependent instructions’
execution. Since each misprediction implies a recovery process, we are interested in obtaining
a high prediction accuracy. Therefore, we predict only the results of critical load instructions
identified as predictable by our developed perceptron. In the experimental process, we have
varied the size of the perceptrons between 24 and 48 bits. The results have shown that the
best configuration implies 40 weights within each perceptron. With the dual-core configuration,
consisting in a level 1 data cache of 16 KB and a 2-way associative LVPT with 32 entries and
one value per entry, we have obtained an average relative speedup of 4.21% over the baseline
architecture (the same configuration, but without LVPT), with a maximum speedup of about

226 Arpad Gellert et al.

17% (on the ocean.ncount benchmark).
As a further work, we propose to generalise the implemented value prediction method to In-

tel Nehalem’s all long-latency machine instructions (multiplication, division, square-root, etc.),
through some dedicated hardware value predictors. In this way, the obtained speedups would be,
for sure, much more significant. Also we intend to further apply an automatic multi-objective op-
timization method for our speculative multicore system, based on our already developed complex
and effective software optimization tools [25]. Obviously, this automatic design space explo-
ration will provide a better optimal solution, but, due to the enormous design space, not certainly
the ideal one.

Acknowledgements. We express our gratitude to Dr. Wim Heirman (Intel) for his support in
configuring the Sniper simulator and also to our former MSc student Claudiu Bruda for providing
his useful and competent help in identifying the correct location where we could integrate the
load value predictor.

References
[1] T.E. CARLSON, W. HEIRMAN, S. EYERMAN, I. HUR, L. EECKHOUT, An Evaluation of High-

Level Mechanistic Core Models, ACM Transactions on Architecture and Code Optimization (TACO),
11(3), 2014.

[2] T.E. CARLSON, W. HEIRMAN, The Sniper User Manual, 2013.

[3] F.A. ENDO, A. PERAIS, A. SEZNEC, On the Interactions Between Value Prediction and Compiler
Optimizations in the Context of EOLE, ACM Transactions on Architecture and Code Optimization,
14(2), 2017.

[4] A. FLOREA, C. BUDULECI, R. CHIS, A. GELLERT, L. VINTAN, Enhancing the Sniper Simulator
with Thermal Measurement, The Eighteenth International Conference on System Theory, Control and
Computing, Sinaia, 2014.

[5] A. GELLERT, A. FLOREA, L. VINTAN, Exploiting Selective Instruction Reuse and Value Prediction
in a Superscalar Architecture, Journal of Systems Architecture, Elsevier, 55(3), pp. 188–195, 2009.

[6] A. GELLERT, G. PALERMO, V. ZACCARIA, A. FLOREA, L. VINTAN, C. SILVANO, Energy-
Performance Design Space Exploration in SMT Architectures Exploiting Selective Load Value Predic-
tions, International Conference on Design, Automation and Test in Europe (DATE 2010), pp. 271–274,
Dresden, Germany, 2010.

[7] A. GELLERT, H. CALBOREAN, L. VINTAN, A. FLOREA, Multi-Objective Optimizations for a
Superscalar Architecture with Selective Value Prediction, IET Computers & Digital Techniques, 6(4),
pp. 205–213, Stevenage, United Kingdom, 2012.

[8] A. GELLERT, L. VINTAN, A Multicore Architecture with Selective Load Value Prediction, Proceed-
ings of the Romanian Academy, Series A, 19(4), pp. 597–604, 2018.

[9] A. GELLERT, A. FLOREA, U. FIORE, P. ZANETTI, L. VINTAN, Performance and Energy Op-
timisation in CPUs through Fuzzy Knowledge Representation, Information Sciences, Elsevier, 476,
pp. 375–391, 2019.

[10] D. JIMÉNEZ, C. LIN, Dynamic Branch Prediction with Perceptrons, Proceedings of the Seventh
International Symposium on High Performance Computer Architecture (HPCA-7), Monterrey, Nuevo
Leon, Mexico, 2001.

[11] D. JIMÉNEZ, C. LIN, Neural Methods for Dynamic Branch Prediction, ACM Transactions on Com-
puter Systems,20(4), 2002.

Perceptron-Based Selective Load Value Prediction in a Multicore Architecture 227

[12] D. JIMÉNEZ, Fast Path-Based Neural Branch Prediction, 36th International Symposium on Microar-
chitecture, San Diego, CA, USA, 2003.

[13] M.M.K. MARTIN, D.J. SORIN, H.W. CAIN, M.D. HILL, M.H. LIPASTI, Correctly Implementing
Value Prediction in Microprocessors that Support Multithreading or Multiprocessing, 34th Annual
ACM/IEEE International Symposium on Microarchitecture, Austin, Texas, 2001.

[14] J.S. MIGUEL, M. BADR, N.E. JERGER, Load Value Approximation, Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 127–139, Cambridge, UK, 2014.

[15] J.S. MIGUEL, J. ALBERICIO, N.E. JERGER, A. JALEEL, The Bunker Cache for Spatio-Value Ap-
proximation, 49th Annual IEEE/ACM International Symposium on Microarchitecture, Taipei, Taiwan,
October 2016.

[16] L. OROSA, R. AZEVEDO, O. MUTLU, AVPP: Address-First Value-Next Predictor with Value
Prefetching for Improving the Efficiency of Load Value Prediction, ACM Transactions on Architecture
and Code Optimization, 15(4), January 2019.

[17] A. PERAIS, A. SEZNEC, Practical Data Value Speculation for Future High-End Processors, 20th
International Symposium on High Performance Computer Architecture, pp. 428–439, Orlando, FL,
USA, February 2014.

[18] A. PERAIS, A. SEZNEC, EOLE: Paving the Way for an Effective Implementation of Value Prediction,
41st Annual International Symposium on Computer Architecture, pp. 481–492, Minneapolis, MN,
USA, June 2014.

[19] A. PERAIS, A. SEZNEC, BeBoP: A Cost Effective Predictor Infrastructure for Superscalar Value
Prediction, 21st International Symposium on High Performance Computer Architecture, pp. 13–25,
San Francisco, CA, USA, February 2015.

[20] A. PERAIS, A. SEZNEC, EOLE: Combining Static and Dynamic Scheduling through Value Pre-
diction to Reduce Complexity and Increase Performance, ACM Transactions on Computer Systems,
34(2), May 2016.

[21] L. VINTAN, Towards a Powerful Dynamic Branch Predictor, Romanian Journal of Information Sci-
ence and Technology, 3(3), pp. 287–301, ISSN: 1453-8245, Romanian Academy, Bucharest, 2000.

[22] L. VINTAN, A. GELLERT, A. FLOREA, Register Value Prediction Using Metapredictors, Proceed-
ings of the Eighth International Symposium on Automatic Control and Computer Science, Iasi, Octo-
ber 2004, republished in Bulletin of the Polytechnic Institute of Iasi, Fasc. 1–4, Section IV, Tomul L
(LIV), pp. 109–122, Iasi, 2004.

[23] L. VINTAN, A. FLOREA, A. GELLERT, Focalising Dynamic Value Prediction to CPU’s Context,
IEE Proceedings Computers & Digital Techniques, 152(4), pp. 473–481, Stevenage, United King-
dom, July 2005.

[24] L. VINTAN, A. GELLERT, A. FLOREA, Value Prediction Focalized on CPU Registers, Advanced
Computer Architecture and Compilation for Embedded Systems (ACACES 2005), Academia Press,
pp. 181–184, Ghent, Belgium, July 2005.

[25] L. VINTAN, R. CHIS, Md. ALI ISMAIL, C. COTOFANA, Improving Computing Systems Automatic
Multi-Objective Optimization through Meta-Optimization, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Volume 35, Issue 7, pp. 1125–1129, July 2016.

[26] S.C. WOO, M. OHARA, E. TORRIE, J.P. SINGH, A. GUPTA, The SPLASH-2 Programs: Characteri-
zation and Methodological Considerations, 22nd International Symposium on Computer Architecture,
pp. 24–36, Italy, June 1995.

