
Focalising dynamic value prediction to CPU’s context

L.N. Vintan, A. Florea and A. Gellert

Abstract: Value prediction (VP) is a relatively new technique that increases performance by
eliminating true data dependency constraints. VP architectures allow data dependent instructions to
issue and execute speculatively using the predicted value. This technique is built on the concept of
value locality, which describes the likelihood of a previously seen value recurring within a storage
location. The authors extend dynamic VP by introducing the concept of register-centric prediction
instead of instruction-centric prediction. The value localities obtained on some registers of MIPS
architecture were quite remarkable leading to the conclusion that VP might be successfully applied,
at least on these favourable registers. The idea of attaching a value predictor for the processor’s
favourable registers is original and might involve new architectural techniques for improving
performance and reducing the hardware cost of speculative micro-architectures. The register VP
technique consists in predicting the registers’ next values based on the previously seen values.
It executes the subsequent data dependent instructions using the predicted values. The speculative
execution will be validated when the correct values are known. If the value was correctly predicted
the critical path is reduced, otherwise the instructions executed with wrong entries must be executed
again. The authors examine different favourable register selections and different basic value
predictors to capture certain type of value predictabilities from the SPEC benchmarks (1995 and
2000) to obtain higher prediction accuracies. Their results show that there is a time correlation
between the names of the destination registers and the values stored in these registers.
The simulations show that the hybrid predictor optimally exploits this correlation with an average
prediction accuracy of 85.44%, which is quite remarkable (on some benchmarks the values are over
96%). Considering an eight-issue out-of-order superscalar processor it is shown that register-centric
VP produces average speedups of 17.30% for the SPECint95 benchmarks, and of 13.58% for the
SPECint2000 benchmarks.

1 Introduction

Value prediction (VP) is a relatively new technique built on
the value locality concept, which describes the likelihood of
a previously seen value’s recurrence within a storage
location. The main aim of this paper consists in adapting
dynamic VP to the CPU context. The idea of attaching a
value predictor to each CPU register (register centric
predictor) instead of an instruction or memory-centric
predictor [1] is original as far as we know and could
involve new architectural techniques for improving per-
formance and reducing the hardware cost of speculative
micro-architectures. In our earlier work [1], we performed
several experiments to evaluate the value locality exhibited
by MIPS general-purpose integer registers. The results
obtained on some special registers ($at, $sp, $fp, $ra) were
quite remarkable (� 90% value locality degree) leading to
the conclusion that VP might be successfully applied at least
on these favourable registers.

Whether or not the prediction process has been instruc-
tion (producer) or memory-centred with great complexity
and timing costs, by implementing the well known VP

schemes [2, 3] centred on the CPU’s registers will reduce
the hardware cost. However, there are some disadvantages.
Addressing the prediction tables with the instructions’
destination register name (during the decode stage) instead
of a program counter will cause some interference.
However, we have proved that, with a sufficiently large
history a hybrid predictor could eliminate this problem and
achieve very high prediction accuracy (85:44% of average
on eight MIPS registers using SPEC’95 benchmarks and
73:52% on 16 MIPS registers using SPEC2000 bench-
marks). The main benefit of the proposed VP technique
consists in unlocking the subsequent dependent instructions.

2 Related work

Lipasti et al. [2] first introduced the concept of value locality
as the third facet of the principle of locality (temporal and
spatial). They defined the value locality as ‘the likelihood of
the recurrence of a previously seen value within a storage
location’ [2] in a processor. When the ‘storage location’ is a
single condition bit in a processor, it serves as the basis of
branch prediction techniques.

Based on the dynamic correlation between load instruction
addresses and the values being loaded, Lipasti and Shen [4]
proposed a new data-speculative micro-architectural tech-
nique known as load VP that can effectively exploit value
locality to collapse true data dependencies exceeding the
dataflow limit and enhancing the instruction level paralle-
lism, reduce average memory latency and bandwidth
requirement and provide measurable performance gains.
Load VP is useful only if it can be done accurately since
incorrect predictions can lead to increased structural hazards

q IEE, 2005

IEE Proceedings online no. 20045090

doi: 10.1049/ip-cdt:20045090

The authors are with the Computer Science Department, University ‘Lucian
Blaga’ Sibiu, Str. E. Cioran, No. 4, Sibiu-550025, Romania

E-mail: lucian.vintan@ulbsibiu.ro

Paper received 16th July 2004

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 4, July 2005 473

and longer load latency. Starting from load dynamic
behaviour and classifying these separately (unpredictable,
predictable and constants), the full advantage of each case
can be extracted. The cost of mispredictions can be avoided
by detecting the unpredictable loads and also the cost of
memory access through identifying highly predictable loads.

Relatively recent studies [5] introduced the store locality
concept and store prediction methods, with good results
especially for multiprocessor systems. Similarly to the load
instructions approach, the store value locality was measured
using its PC (instruction-centric) or its accessed data address
(memory-centric). In both cases the value locality degree is
between 30% and 70%. It introduces the ‘silent store’
concept, meaning that a store writes the same value as its
previous instance (34–68% of the dynamic store instruc-
tions are silent stores). So, removing these store instructions
at some points in the program’s execution (either statically
at compile time, or dynamically at run time) some potential
benefit can be gained in execution time and=or code size [5].
Also, the pressure on cache write ports, the pressure on store
queues and the data bus traffic outside the processor chip are
reduced. The free silent store squashing concept is based on
the idle read port stealing to perform store verification and
an aggressive load=store queue to exploit temporal and
spatial locality for store squashing [6].

Sazeides [3] has developed an empirical classification of
value sequences produced by instructions. There are two
kinds of value predictability in programs: value repetition
and value computability. To capture these types of value
predictability, the authors proposed two distinct main
categories of predictors: computational and contextual.
Two important characteristics were also defined for under-
standing prediction behaviour. One is the learning time
(LT), which is the number of values that have to be observed
before the first correct prediction. The second is the learning
degree (LD), which is the percentage of correct predictions
following the first correct prediction.

Computational predictors are predicting based on some
previous values in an algorithmic manner, therefore
according to a deterministic recurrence formula. An
incremental predictor belongs to the computational class.
Lipasti and Shen introduced the stride predictor [4] and
Sazeides [3] generalised the idea. A stride sequence is a
value sequence in which the later value can be computed by
the immediate previous value and a stride. Last VPs were
used for the first time in [2] to predict load values, and in
some subsequent work the VP process was extended to other
types of instruction (add, shift, store) [1, 4]. The simulation
results indicated that the computational prediction varies
between instruction types, indicating that its performance
can be further improved if the prediction function matches
the functionality of the predicted instruction.

The contextual predictor predicts the next value based on
a particular stored pattern (context) that is repetitively
generated in the value sequence. Theoretically it can predict
any repetitive sequences. A context predictor is of order k if
its context information includes the last k values, and
therefore, the search is done using this pattern of k values. In
this case the prediction process is based on a simple Markov
model [7]. The results of laborious simulation on SPEC
benchmarks showed that a single predictor cannot capture
all the types of predictability patterns that occur in
programs. This suggests that a hybrid scheme might be
useful for enabling high prediction accuracy at lower cost
[2, 8]. Although the hybrid value predictors can provide
more correct predictions than single predictors, they
consume more hardware resources. More importantly,
they can waste the limited hardware resources available

since every instruction being predicted occupies a unique
entry in each of the component predictors.

Rychlik et al. [9] combined a last, a stride, and a two-
level VP into an overall hybrid VP. To efficiently utilise the
hardware resources, they provided the dynamic classifi-
cation scheme to dynamically distribute instructions into
proper component predictors during run time [9]. Although
this dynamic classification scheme uses the hardware
resources more efficiently, it cannot provide a higher
prediction accuracy than the hybrid VP. Wang et al. [10]
modified the dynamic classification scheme by reclassifying
instructions that cannot be predicted well by their previously
assigned component predictor. Their modification improved
this kind of hybrid VP.

Calder et al. [11] proposed some techniques that give
priority for prediction to those instructions that belong to the
longest data dependence chains to reduce the pressure on the
limited VP resources (such as the limited table size and
limited read=write ports). For this reason, partial data
dependence graphs for instructions are constructed in the
processor’s active instruction window during run time. Also,
to detect the time consuming instructions, the compiler’s
help is required together with some profiling information.

Tullsen and Seng [12] proposed a technique called
register VP that identifies instructions that produce values
that are already in the register file. Therefore, the
corresponding results are predicted using the values
belonging to the register file. This technique mainly uses
the previous value in the instruction’s destination register as
a prediction for the new result, in a static or dynamic
manner. This technique produced speedups of up to 11% for
the SPECint95 benchmarks and up to 13% for SPECfp95
benchmarks. In contrast to our work, this approach is
instruction-centric, instead of register-centric, as our
approach is. Tullsen and Seng [12] pointed out that in
their prediction approach ‘confidence counters are associ-
ated with instructions rather than registers’. As an
alternative, our original register VP technique consists in
predicting the register’s next value based on the previously
seen values. To implement this strategy we attach a VP to all
the CPU’s favourable registers (having a high value locality
degree). After the instruction’s decode, in order to predict
the instruction’s destination the corresponding register-VP
is activated. Based on this approach, we systematically
developed some context predictors.

Gabbay and Mendelson [13] developed a so-called
register-file predictor that is the closest predecessor to our
register VP technique. They predicted the destination value
of a given instruction according to the last previously seen
value and the stride of its destination register. Unfortunately
they did not further pursue this particular idea by system-
atically developing new register-centric predictors and
evaluating them through simulations.

3 Register VPs

The main goal of this Section is to show the current stage in
instruction-centric VP development and to adapt these
schemes for register VP. Whereas in the producer-centric
prediction case the structures are addressed during the
instructions’ fetch stage using the PC in the register-centric
prediction case the tables are indexed only in the second part
of the instructions’ decode stage.

3.1 The ‘last value’ predictors

The ‘last value predictors’ (see Fig. 1) predict the new value
as the same as the last value stored in the corresponding
register. Exploiting the correlation between register names

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 4, July 2005474

and the values stored in those registers, will decrease the
instructions’ latencies.

Each entry in the prediction table has its own automata,
which is incremented when the prediction is correct and it is
decremented otherwise. Obviously, the utility of VP
techniques is emphasised only in the case of a correct
prediction otherwise it determines structural hazards and a
higher instruction execution latency. Based on the dynamic
behaviour of the register content we developed the
classification: unpredictable and predictable registers. By
treating each group of registers separately the misprediction
costs can be avoided. It is necessary to verify the value
generated by the value history table (VHT). The automata’s
state will be changed according to the comparison between
the generated value and the predicted value.

The VHT generates the predicted values and the ‘state’
field could implement the hysteresis mechanism using an
automata. Each register used in the prediction mechanism
has an entry in the VHT. In this way the number of
entries in the prediction table is the same as the number of
logical registers.

3.2 Stride predictors

In this case, considering that vn�1 and vn�2 are the most
recent values, the new value vn will be calculated using
the recurrence formula: vn ¼ vn�1 þ ðvn�1 � vn�2Þ; where
ðvn�1 � vn�2Þ is the stride of the sequence. The stride could
be variable in time and not simply a constant. This technique
reduces the number of mispredictions from two to only one
in the case of repetitive stride sequences. Figure 2 shows the
structure of this predictor.

When a register is used as destination for the first time,
there is a miss in the prediction table and no prediction is
made. When an instruction stores a value in the destination
register that value is stored also in the VHT’s ‘Val’ field and
the automata will be in the initial unpredictable state. If that
register is used again as a destination register, no prediction
is made but the stride Str1 ¼ V1 � Val is calculated, and V1

and Str1 are introduced in the ‘Val’ and ‘Str1’ fields. If it is
used again as a destination register no prediction is made,
but the stride Str2 ¼ V2 � Val is again calculated. The value
from the field Str1 is introduced in the field Str2. Also V2 and
Str2 are introduced in the fields Val and Str1 respectively.
If the register is used again as an instruction’s destination
and Str1 ¼ Str2; the predicted value adding the stride Str2 to
the value stored in the VHT (Val) is calculated. If the
automata is in the predictable state, the prediction is
generated. The automata is incremented if the prediction
is correct, otherwise it is decremented.

3.3 Context-based predictors

The context-based predictors predict the value that will be
stored in a register based on the last values stored in that
register. A context is a finite sequence of values with
repeated appearance as in a Markov chain.

The predictors that implement the prediction by partial
matching (PPM) algorithm [3, 14] represent an important
class of context-based predictors. This predictor contains a
set of simple Markov predictors as can be seen in Fig. 3.

The predicted value is the value that followed the context
with the highest frequency. As can be observed in Fig. 3 the
predicted value depends on the context. A longer context
frequently drives to a higher prediction accuracy but
sometimes it can behave as noise. In the considered sample

Fig. 3 PPM predictor

Fig. 1 ‘Last value’ predictor

Fig. 2 Stride predictor

Fig. 4 Structure of a context-based predictor

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 4, July 2005 475

only the third-order Markov predictor makes a correct
prediction. A complete PPM predictor contains N simple
Markov predictors, from 0th order to ðN � 1Þth order. If the
ðN � 1Þth Markov predictor produces a prediction (the
context is matched in the sequence) the process is finished,
otherwise the ðN � 2Þth order Markov predictor will be
activated, and so on.

Figure 4 shows the structure of the context-based
predictor. Each entry from the VHT has an associated
automaton that is incremented when the prediction is correct
and is decremented in the case of a misprediction. The fields
V1; V2; . . . ;V4 store the last four values associated with each
register (considering that the predictor works with a history
of four values). If the automaton is in the predictable state, it
predicts the value that follows the context with the highest
frequency (Fig. 3).

3.4 Hybrid predictors

It has been shown that a single type of predictor does not
offer the best results. Some types of value sequences
generated in programs are better predicted with a certain
predictor, and others, with another type of predictor [8].
Therefore, it is natural to consider the idea of hybrid
prediction: two or more VPs working together dynamically
in the prediction process. Figure 5 shows a hybrid predictor
composed of a context-based predictor and by a stride
predictor. The context-based predictor always has priority.
In this way the value generated by the stride predictor is
only used if the context-based predictor cannot generate a
prediction. This fixed prioritisation seems not to be optimal.
Probably a dynamic prioritisation based on some confi-
dences would be better (the predictor having the highest
confidence degree will have priority).

4 Simulation methodology and experimental
results

We developed a cycle-accurate execution-driven simulator
derived from the sim-outorder simulator in the SimpleScalar
tool set [15]. The baseline superscalar processor supports
out-of-order instruction issue and execution. We modified it

to incorporate the registers’ VPs proposed in Section 3.
Table 1 shows the configuration of the baseline processor
used to obtain the results.

To perform our evaluation, we collected results from
different versions of SPEC benchmarks: five integer (li, go,
perl, ijpeg, compress) and three floating point (swim, hydro,
wave5) SPEC’95 benchmarks. We simulated seven bench-
marks (gzip, b2zip, parser, crafty, gcc, twolf and mcf) from
the CINT SPEC2000 set. We also simulated some SPEC’95
benchmarks to compare their behaviour with that of
SPEC2000. In other words, we intend to discover how
these different benchmarks influence the VP’s micro-
architectural features.

The number of instructions fast forwarded through
before starting our simulations is 400 million. We used
the –fastfwd option in SimpleScalar=PISA 3.0 to skip
over the initial part of execution in order to concentrate on
the main body of the programs. Results are reported for
simulating each program for 500 million committed
instructions.

Statistical results based on simulation have proved that
commonly used programs are characterised by strong value
repetitions [2, 16]. The main causes for this phenomenon
are: data and code redundancy, program constants, and the
compiler routines that resolve virtual function calls,
memory aliases etc. The register value locality is frequently
met in programs and shows the number of times each
register is written with a value that was previously seen in
the same register and dividing by the total number of
dynamic instructions having this register as its destination
field [1, 17].

In Figs. 6 and 7 we calculated the value locality metric
using the formula

VLjðRkÞ ¼
Pn

i¼1 VL
k
j ðiÞPn

i¼1 VRef
kðiÞ ð1Þ

where n ¼ number of benchmarks (8 for SPEC’95, 7 for
SPEC2000), j ¼ history length (4, 8, 16, 32), k ¼ register’s
number, VLkj ðiÞ ¼ number of times when register Rk is
written with a value that was previously seen in last j values

Fig. 5 Hybrid predictor (contextual and stride)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 4, July 2005476

Table 1: Machine configuration for baseline architecture

Processor core fetch=decode=issue width 8 instruction=cycle

reorder buffer size 128 entries

load-store queue 64 entries

integer ALUs 8 units, 1-cycle latency

integer multiply=divide 4 units, 3=12-cycle latency

Branch predictor hybrid branch predictor gshare with 16K entries, 14 bit history, bimodal with 16K

entries

branch and value misprediction 7-cycle latency

memory access 60-cycles latency

memory width 32 bytes

Caches level-one data cache 4-way set associative, 64 KB, 1-cycle hit latency

level-one instruction cache direct mapped, 128 KB, 1-cycle hit latency

level-two cache (unified) 4-way set associative, 1024 KB, 10-cycle hit latency

Fig. 6 Value locality on registers

a SPEC’95 simulation results
b SPEC2000 simulation results

Fig. 7 Implementation of register VP mechanism in pipeline structure of a general micro-architecture

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 4, July 2005 477

of the same register (on benchmark i); and VRef kðiÞ ¼ the
total number of dynamic instructions that have register Rk as
their destination field (on benchmark i).

Figures 6 and 7 emphasise the concept of value locality
on registers. As can be observed (Fig. 6), the value locality
on some registers is remarkable high (90%), and this
predictability naturally leads us to the idea of implementing
VP on these favourable registers.

The dynamic VP on registers represents a new
technique that allows the speculative execution of the
read after write dependent instructions by predicting the
values of the destination registers during second half of
the instruction’s decode stage (see Fig. 7). The VP
technique predicts the next register’s value based on the
last values belonging to that register. It executes the
operations using the predicted value. The speculative
execution will then be validated when the correct value is
known (after the execution stage). If the value was
correctly predicted the critical path might be reduced.
Otherwise, the instructions executed with wrong entries
must be executed again (recovery).

In this work we developed and simulated several different
basic value predictors [17], such as the last value predictor,
the stride value predictor, the context-based predictor and a
hybrid value predictor to capture certain type of value
predictabilities from SPEC benchmarks and to obtain higher
prediction accuracy. All these predictors were adapted to
our proposed prediction model.

After the instruction’s decode stage, the VPT table is
accessed with the name of the destination register. In the
case of a valid prediction, the VPT will generate the
predicted value to the subsequent corresponding RAW
dependent instructions. After execution, when the real value
is known, it is compared with the predicted value. In the
case of a misprediction the speculatively executed depen-
dent instructions are re-issued for execution.

Starting with a minimal superscalar architecture,
we studied how the simulator’s performance will be affected
by the variation of its parameters. We now present the
results obtained with a register value predictor. Each
register has associated four-state confidence automata. A
prediction is made only if the automata is in one of the two
predictable states. In Figs. 8a and 8b, respectively, each bar
represents the average of register VP accuracy obtained for
eight SPEC’95 benchmarks and for seven integer
SPEC2000 benchmarks, respectively.

In Figs. 6 and 7 we calculated the prediction accuracy
(PA) metric using the following formula:

PAðRkÞ ¼
Pn

i¼1 CPV
kðiÞ

Pn
i¼1 VRef

kðiÞ ð2Þ

where n ¼ number of benchmarks (8 for SPEC’95 and 7
for SPEC2000), k ¼ register number, CPVkðiÞ ¼ number
of correctly predicted values of register Rk (on benchmark i),
andVRef kðiÞ ¼ the total number of dynamic instructions that
have register Rk as their destination (on benchmark i).

In the next investigations, we are focusing only on the
predictable registers which have a prediction accuracy
higher than a certain threshold (60% and 80%, respectively),
measured using the hybrid predictor on the SPEC bench-
marks (see Fig. 8). As can be seen in Figs. 8a and 8b the
registers having a prediction accuracy higher than 60% are:
1, 5, 7–13, 15, 18–20, 22 and 29–31 for SPEC’95, and, 1,
6–8, 10–16, 18–25 and 29–31 for SPEC2000. The statistic
results on SPEC’95 benchmarks exhibit a using degree of
19:36% for these 17 registers. This means that 19:36% of
instructions use one of these registers as a destination. The
equivalent average result on SPEC2000 is 13:24% using 22
general purpose registers.

In Fig. 9 we compared the previously presented VP
techniques: last VP (Fig. 1), stride prediction (Fig. 2),
context-based prediction (Fig. 4) and hybrid prediction

Fig. 8 Register VP using a hybrid predictor (context based, stride)

History of 256 values
a Pattern has four values (SPEC’95 simulation results)
b Pattern has four values (SPEC2000 simulation results)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 4, July 2005478

(Fig. 5). We used in the prediction process only the 17
favourable registers on SPEC’95 benchmarks and 22
favourable registers on the SPEC2000 benchmarks.
The context-based and the hybrid predictors use a history
of 256 values and a search pattern of 4 values.

These results (see Fig. 9) represent the global prediction
accuracies of the favourable registers for each benchmark.
Hybrid predictor synergy can be observed. It involves an
average prediction accuracy of 78:25% on the SPEC’95
benchmarks and 72:93% on the SPEC2000 benchmarks.

Now we will try a more elitist selection considering only
the registers with a prediction accuracy higher than 80% (see
Figs. 10a, b). The selection is again based on Figs. 8a and b.
We can observe that there are 8 registers that fulfill this
condition: 1, 10–12, 18, 29–31 on SPEC’95 benchmarks and
respectively 16 registers: 1, 8, 11–15, 20–25, 29–31 on
SPEC2000 (registers 1, 29–31 are included even if they don’t
fulfill this condition because they exhibit a high degree of
value locality according to Fig. 6b; they also have special
functions). The global using rate of these registers is 10:58%

Fig. 9 Prediction accuracy using favourable registers

a 17 favourable registers (SPEC’95 benchmarks)
b 22 favourable (SPEC2000 benchmarks)

Fig. 10 Prediction accuracy using favourable registers

a 8 favourable registers (SPEC’95)
b 16 favourable registers (SPEC2000)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 4, July 2005 479

on SPEC’95 benchmarks, and 9:01% on SPEC2000
benchmarks.

Figure 10 emphasises, for each benchmark, the global
prediction accuracy obtained with the implemented
predictors using 8 and 16 selected registers (threshold
over 80%, according to the previous explanations). Each bar
represents the register VP for a certain benchmark,
measured by counting the number of times when prediction
is accurate for any of the favourable registers and dividing
by the total number when these registers are written. The
simulation results offered by the last value predictor are
relatively close to the stride predictor’s results. The best
prediction average prediction accuracy was obtained with
the hybrid predictor was 85:44%, which was quite
remarkable (on some benchmarks values over 96% were
obtained).

Figure 11 shows the speedup obtained compared to the
baseline processor when using each of the register VPs
described in Section 3.

5 Conclusions

We have considered the register VP concept. As we have
discussed the intention of the register VP concept is to
reduce the unfavourable effect of the RAW dependencies,
by reducing the wait times of the subsequent dependent
instructions. Also, the prediction focused on registers
instead of on instructions. This is advantageous because
many fewer predictors are needed, thus saving complexity
and costs. We proposed to exploit the value locality on
registers using different prediction techniques. We used the
hybrid predictor presented in Fig. 5 to select the favourable
registers. We continued after that with the evaluation of the
predictors using registers with a prediction accuracy higher
than 60%. The best results were obtained with the hybrid
predictor: an average prediction accuracy of 78:25% and

a utilisation rate of 19:36%. We then tried a more elitist
selection of the registers and we continued the evaluation of
the predictors using only the registers with prediction
accuracy higher than 80%. The best results were obtained
with the hybrid predictor: an average prediction accuracy of
85:44% (on some benchmarks values over 96% were
obtained) and a utilisation rate of 10:58%. Also, considering
an 8-issue out-of-order superscalar processor simulations
shows that utilisation register centric VPs produce average
speedups of 17:30% for the SPECint95 benchmarks and
13:58% for the SPECint2000 benchmarks.

We demonstrated that there is a dynamic correlation
between the names of the destination registers and the
values stored in these registers. The simulations show that
the hybrid predictor best exploits this correlation and the
value locality concept.

As part of our future work, we intend to improve the
implemented VPs. Because the hybrid predictor presented
in this work uses a static prioritisation, we want to develop
some meta-predictors with a dynamic selection mechanism
based on confidences and respectively on neural network
(simple perceptrons).

6 References

1 Florea, A., Vintan, L., and Sima, D.: ‘Understanding value prediction
through complex simulations’. Proc. 5th Int. Conf. on Technical
Informatics, Timisoara, Romania, Oct. 2002

2 Lipasti, M.H., Wilkerson, C.B., and Shen, J.P.: ‘Value locality and load
value prediction’. Proc. 7th Int. Conf. on Architectural Support
for Programming Languages and Operating Systems, October 1996,
pp. 138–147

3 Sazeides, Y.: ‘An analysis of value predictability and its application to
a superscalar processor’. PhD thesis, University of Wisconsin-Madison,
1999.

4 Lipasti, M.H., and Shen, J.P.: ‘Exceeding the dataflow limit via value
prediction’. Proc. 29th Annual ACM/IEEE Int. Symp. on Microarch-
itecture, Dec. 1996

5 Lepak, K.M., and Lipasti, M.H.: ‘On the value locality of store
instructions’. Proc. 27th Annual Int. Symp. on Computer Architecture,
Vancouver, Canada, June 2000

Fig. 11 Speedup over baseline machine

a 8 favourable registers (SPEC’95)
b 16 favourable registers (SPEC2000)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 4, July 2005480

6 Lepak, K.M., and Lipasti, M.H.: ‘Silent stores for free’. Proc. 33rd
Annual ACM/IEEE Int. Symp. on Microarchitecture (MICRO33),
California, USA, 2000

7 Rabiner, R.L.: ‘A tutorial on hidden markov models and selected
applications in speech recognition’, Proc. IEEE, 1989, 77, (2)

8 Wang, K., and Franklin, M.: ‘Highly accurate data value prediction
using hybrid predictors’. Proc. 30th Annual ACM/IEEE Int. Symp. on
Microarchitecture, Dec. 1997

9 Rychlik, B., Faistl, J., Krug, B., Kurland, A., Jung, J., Velev, M., and
Shen, J.: ‘Efficient and accurate value prediction using dynamic
classification’ (Carnegie-Mellon University, 1998)

10 Wang, Y., Lee, S., and Yew, P.: ‘Decoupling value prediction on trace
processors’. Proc. 6th Int. Symp. on High Performance Computer
Architecture, 1999

11 Calder, B., Reinman, G., and Tullsen, D.: ‘Selective value prediction’.
Proc. 26th Int. Symp. on Computer Architecture, May 1999, pp. 64–74

12 Tullsen, D.M., and Seng, J.S.: ‘Storageless value prediction using
prior register values’. Proc. 26th Int. Symp. on Computer Architecture,
May 1999

13 Gabbay, F., and Mendelsohn, A.: ‘Using value prediction to increase
the power of speculative execution hardware’, ACM Trans. Comput.
Syst., 1998, 16, (3)

14 Joseph, D., and Grunwald, D.: ‘Prefetching using Markov
predictors’. Proc. 24th Int. Symp. on Computer Architecture, June
1997, pp. 252–263

15 Simplescalar: ‘The SimpleSim tool set’, ftp://ftp.cs.wisc.edu/pub/sohi/
Code/simplescalar

16 Sodani, A.: ‘Dynamic instruction reuse’. PhD thesis, University of
Wisconsin-Madison, 2000

17 Gellert, A.: ‘Contributions to speculative execution of instructions by
dynamic register value prediction’. MSc thesis, University ‘Lucian
Blaga’, Sibiu, 2003 (in Romanian)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 4, July 2005 481

ftp://ftp.cs.wisc.edu/pub/sohi/code/simplescalar
ftp://ftp.cs.wisc.edu/pub/sohi/code/simplescalar

