
Árpád GELLÉRT

Beyond the Limits of

Modern Processors

MATRIX ROM

Bucharest 2008

Scientific Reviewers:

Prof. Dr. Vladimir CREŢU – “Politehnica” University of Timişoara

Prof. Dr. Sergiu NEDEVSCHI –Technical University of Cluj-Napoca

Prof. Dr. Nicolae ŢĂPUŞ – “Politehnica” University of Bucharest

Prof. Dr. Theo UNGERER – University of Augsburg, Germany

Prof. Dr. Lucian N. VINŢAN – “Lucian Blaga” University of Sibiu

Contents

Foreword (Prefaţă) by Lucian N. Vinţan __________________________ 6

1. Introduction ___ 18

2. Speculative Computer Architectures _________________________ 21
2.1. Speculative Architectures with Reorder Buffer ___________________ 22

2.1.1. Speculative Dynamic Scheduling with Reorder Buffer __________________ 23
2.1.2. The Architecture of Sim-Outorder __________________________________ 26
2.1.3. Checkpoint Processing Architectures ________________________________ 31

2.2. Advanced Dynamic Branch Prediction __________________________ 39
2.3. Dynamic Value Prediction ____________________________________ 47

3. Finding Difficult-to-Predict Branches ________________________ 56
3.1. Related Work ___ 56
3.2. Methodology of Identifying Unbiased Branches __________________ 62
3.3. An Analytical Model for Determining Relative IPC Speedup _______ 66
3.4. Experimental Results __ 68

3.4.1. Pattern-Based Correlation __ 68
3.4.2. Path-Based Correlation __ 75
3.4.3. Evaluating Relative IPC Speedup Through an Analytical Model __________ 79

3.5. Summary __ 80

4. Predicting Unbiased Branches ______________________________ 82
4.1. Related Work ___ 82

4.1.1. Branch Prediction Based on Data Value Information ___________________ 82
4.1.2. State-of-the-Art Branch Predictors __________________________________ 89

4.2. Branch Prediction Using State-of-the-Art Predictors ______________ 94
4.2.1. The Perceptron-Based Branch Predictor _____________________________ 94
4.2.2. The Idealized Piecewise Linear Branch Predictor ______________________ 95
4.2.3. The Frankenpredictor __ 95
4.2.4. The O-GEHL Predictor __ 96

4.3. Value-History-Based Branch Prediction with Markov Models ______ 97
4.3.1. Local Branch Difference Predictor _________________________________ 100
4.3.2. Combined Global-Local Branch Difference Predictor __________________ 101
4.3.3. Branch Difference Prediction by Combining Multiple Partial Matches _____ 102

4.4. Using Previous Branch Condition as Prediction Information_______ 103
4.4.1. The GAg Predictor Using Global PBC Value ________________________ 104
4.4.2. The PAg Predictor Using Local PBC Value _________________________ 104
4.4.3. The Piecewise Linear Branch Predictor Using PBC Value ______________ 105

4.4.3.1 The Piecewise Linear Branch Predictor Using Global PBC Value _____ 105
4.4.3.2 The Piecewise Linear Branch Predictor Using Local PBC Value ______ 106

4 Beyond the Limits of Modern Processors

4.5. Experimental Results _______________________________________ 107
4.5.1. Evaluating State-of-the-Art Branch Predictors________________________ 107

4.5.1.1. Evaluating the Perceptron-Based Branch Predictor ________________ 108
4.5.1.2. Evaluating the Idealized Piecewise Linear Branch Predictor _________ 108
4.5.1.3. Evaluating the Frankenpredictor _______________________________ 110
4.5.1.4. Evaluating the O-GEHL Predictor _____________________________ 112

4.5.2. Evaluating Markovian Value-History-Based Branch Predictors __________ 112
4.5.2.1. Evaluating Local Branch Difference Predictors ___________________ 113
4.5.2.2. Evaluating Combined Global and Local Branch Difference Predictors _ 118
4.5.2.3. Branch Difference Prediction by Combining Multiple Partial Matches _ 119

4.5.3. Evaluating PBC-Based Branch Predictors ___________________________ 122
4.5.3.1 Evaluating the Global-PBC-Based GAg Predictor __________________ 122
4.5.3.2 Evaluating the Local-PBC-Based PAg Predictor ___________________ 123
4.5.3.3 Evaluating the Global-PBC-Based Piecewise Linear Branch Predictor __ 124
4.5.3.4 Evaluating the Local-PBC-Based Piecewise Linear Branch Predictor __ 125
4.5.3.5 Prediction Accuracy Improvements with PBC _____________________ 126

4.6. Summary ___ 127

5. Validating Unbiased Branches Using Random Degrees _________ 129
5.1. Related Work __ 129

5.1.1. What is a Random Sequence? ____________________________________ 130
5.1.2. Prediction with Hidden Markov Models ____________________________ 132

5.2. Random Degree Metrics for Characterizing Unbiased Branches

Behavior ___ 133
5.2.1. Random Degree Metric Based on Hidden Markov Models ______________ 133

5.2.1.1. First Order HMMs __ 134
5.2.1.2. A Possible Generalization: Superior Order HMMs _________________ 139

5.2.2. Random Degree Metric Based on Discrete Entropy ___________________ 146
5.2.3. Random Degree Metric Based on Compression Rate __________________ 147
5.2.4. Random Degree Metric Based on Kolmogorov Complexity _____________ 147

5.3. Evaluation Results __ 148
5.3.1. Random Degree Evaluation with HMMs ____________________________ 149
5.3.2. Random Degree Evaluation Based on Discrete Entropy ________________ 151
5.3.3. Random Degree Evaluation Based on Compression Rate _______________ 153
5.3.4. Random Degree Evaluation Based on Kolmogorov Complexity __________ 154

5.4. Summary ___ 156

6. Selective Instruction Reuse and Value Prediction in a Superscalar

Architecture ___ 158
6.1. Related Work __ 159
6.2. Anticipating Long-Latency Instructions Results _________________ 164

6.2.1. Selective Dynamic Instruction Reuse _______________________________ 164
6.2.2. Selective Load Value Prediction __________________________________ 166
6.2.3. Simulation Methodology __ 167
6.2.4. Experimental Results ___ 169

6.3. Contributions to Dynamic Value Prediction: CPU Context Prediction173
6.3.1. Register Value Predictors __ 174

6.3.1.1. Last Value Predictors _______________________________________ 175

Contents 5

6.3.1.2. Stride Predictors ___ 176
6.3.1.3. Context-Based Predictors ____________________________________ 177
6.3.1.4. Hybrid Predictors __ 177

6.3.2. Simulation Methodology __ 180
6.3.3. Experimental Results ___ 181

6.4. Summary ___ 187

7. Enhancing the Simultaneous Multithreading Paradigm with Selective

Instruction Reuse and Value Prediction _________________________ 189
7.1. Related Work __ 189

7.1.1. Multithreading Architectures _____________________________________ 189
7.1.2. Simultaneous Multithreading _____________________________________ 192

7.2. Selective Instruction Reuse and Value Prediction in SMT Architectures196
7.3. Simulation Methodology _____________________________________ 198
7.4. Experimental Results _______________________________________ 199
7.5. Summary ___ 202

8. Conclusions and Further Work ____________________________ 203

References __ 208

Glossary __ 223

Foreword (Prefaţă)

Abstract: This book is focused on some advanced techniques in order to

improve the actual superscalar and simultaneous multithreaded processor

(SMT) paradigm. According to this the author proposes original branch

prediction methods, selective dynamic instruction reuse and value

prediction methods. These techniques are both revolutionary (critical path’s

compression) and evolutionary (compatibility with the actual superscalar

model). They try to avoid a fundamental limitation in the present day

computing model, the Read after Write data dependence, thus the intrinsic

program’s sequential execution. It is developed a valuable methodology

to find and solve difficult predictable branches, meaning dynamic branches

that are not predictable with the correlation information used by the actual

prediction methods. Focalising on these branches with high entropy – in

order to design some efficient specific predictors for them by using more

suitable context information – the overall prediction accuracy increases

with some percents, that is remarkable. Further, the author improved the

processing time of some long latency arithmetic instructions through

dynamic instruction reuse. Also he hides the long latency Load instructions’

execution through their dynamic value prediction, with important

performance benefits. Very important for further commercial exploitations

of these ideas, the author shows that the performance potential of these

methods will compensate the additional complexity and power consumption

required for effective implementation. All these interesting techniques were

implemented through complex laborious simulations and they were

integrated into complex superscalar and SMT architectures. The

performance was evaluated through benchmarking and, based on these

evaluations, the microarchitectures are iteratively improved. I highly

appreciated the hybrid qualitative and quantitative research approach used

by the author. As a consequence, I strongly recommend this valuable book

for all those interested in Computer Architecture domain, especially

graduated students, PhD students and researchers.

Actualitatea şi oportunitatea lucrării

Toate programele actuale care rulează pe un calculator – unele categorisite

ca fiind “ultrasofisticate, adaptive, inteligente” etc. – se mapează şi se

execută pe arhitecturile relativ simpliste ale maşinilor actuale. În fond, toate

Foreword (Prefaţă) 7

aceste aplicaţii soft complexe sunt reductibile la o succesiune de operaţii

simple, descrise prin codul obiect aferent. Acesta, în general, nu are

cunoştinţă de semantica algoritmică a aplicaţiei ori de cea a corpurilor şi

structurilor programului de nivel înalt. Acest fapt are repercursiuni

defavorabile asupra execuţiei programelor. Din acest punct de vedere,

hardware-ul a rămas în urma metodelor şi tehnicilor, tot mai rafinate, din

cadrul ştiinţei calculatoarelor şi a ingineriei software. Complexitatea

aplicaţiilor actuale din punct de vedere al rulării acestora pe maşină, provine

deci din acumulări de natură cantitativă, procesarea fiind reductibilă la

enorme succesiuni de operaţii binare de prelucrare (aritmetico-logice) sau/şi

de transfer. Evident că această complexitate este uriaşă, având în vedere

ierahizarea ei pe niveluri de abstractizare succesive, ele însele complexe şi

care intercomunică (maşină hardware, microarhitectură, compilator, sistem

de operare, maşină virtuală, aplicaţie software etc.). Actualmente,

paradigma aceasta nu mai este eficientă, la interfaţa hardware-software

apărând probleme extrem de subtile şi de dificile, unele abordate într-un

mod realmente interesant în această lucrare.

În particular, creşterea performanţelor microprocesoarelor actuale a

vizat atât îmbunătăţiri tehnologice cât şi de tip conceptual, arhitectural.

Desigur că între aceste două modalităţi de perfecţionare, aparent disjuncte,

există interdependenţe profunde, care trebuie înţelese şi exploatate

corespunzător. Ambele se supun unor limitări importante, unele considerate

fundamentale. Astfel, microarhitecturile care exploatează paralelismul la

nivel de instrucţiuni – prin pipelining şi prin tehnici de scheduling

static/dinamic implementate în procesoare cu execuţii multiple ale

instrucţiunilor (Multiple Instruction Issue Processors) – au devenit în

ultimii 2-3 ani ceva mai puţin atractive datorită complexităţii baroce, a

limitărilor pe aducerea şi respectiv pe execuţia instrucţiunilor (fetch

bottleneck respectiv issue bottleneck), a “prăpastiei” temporale de

comunicare microprocesor-memorie (memory wall) etc. Toate acestea au

condus la explorarea unor arhitecturi novatoare, care să se focalizeze pe

tehnici predictiv-speculative de procesare şi, respectiv, pe exploatarea

paralelismului la nivelul unor fire de execuţie (multithreading,

hyperthreading), cu implicaţii majore asupra compilatoarelor şi chiar asupra

ingineriei programării. În plus, din punct de vedere tehnologic, frecvenţele

de tact actuale, practic nu mai sunt scalabile, în principal datorită creşterii

exponenţiale a densităţii de putere consumată în cip (nx100W/cm2). Prin

urmare, în continuare, creşterea performanţelor poate fi obţinută, în

principal, prin implementarea unor arhitecturi de procesoare de tip multicore

şi manycore (sute şi mii de procesoare simple integrate per cip; există deja,

spre exemplu, procesoare grafice comerciale cu 128 de core-uri pe un singur

8 Beyond the Limits of Modern Processors

cip.) Cum vor exploata aceste arhitecturi – propulsate mai mult de putinţe şi

de neputinţe tehnologice decât de progrese ale calculului paralel (aşa cum ar

fi fost natural) – paralelismul la nivelul instrucţiunilor, microfirelor, firelor

şi task-urilor, deopotrivă? Cine şi cum va exploata paralelismul programelor

secvenţiale, zdrobitor majoritare azi? Cum va fi influenţată perspectiva

programatorului de către aceste microarhitecturi masiv-paralele şi care vor

deveni ubicue în scurt timp? Iată doar câteva întrebări fundamentale, pe care

tot mai multă lume şi le pune dar la care, actualmente, nimeni nu poate da

un răspuns limpede şi complet, după cum o arată de altfel şi celebrul raport

al Universităţii Berkley (K. Asanovic et al., The Landscape of Parallel

Computing Research: A View from Berkeley, 2006). Rezumând, cercetarea

din domeniul microarhitecturilor de calcul trece azi printr-o criză, potenţial

fertilă, care se pare că va produce “a sea change in computing” după cum se

exprima Paul Otellini, preşedintele companiei Intel (2005). Această carte

ilustrează această criză într-un mod viu, autentic aşa cum numai cercetarea o

poate face.

În acest cadru, schiţat succint, se înscrie şi această monografie

ştiinţifică a domnului ing. Á. Gellért. Ea s-a dezvoltat în cadrul unor

cercetări desfăşurate în mod continuu – vreme de 15 ani, în domeniul

microarhitecturilor de calcul avansate – de către grupul de cercetare condus

de către subsemnatul şi activând la Universitatea “Lucian Blaga” din Sibiu

(http://acaps.ulbsibiu.ro/research.php). În această periodă s-au publicat

numeroase articole ştiinţifice în conferinţe şi reviste de prestigiu mondial,

extrem de fertile inclusiv din punct de vedere al frecvenţei citărilor, s-au

câştigat şi s-au finalizat numeroase granturi de cercetare şi s-au publicat

cărţi şi monografii ştiinţifice focalizate pe domeniul arhitecturii

microprocesoarelor. Dintre aceste cărţi, cităm mai jos câteva, considerate

mai importante, tocmai pentru a sublinia continuitatea preocupărilor de

publicare şi de diseminare a cercetărilor acestui grup precum şi cadrul

natural în care această nouă monografie a apărut:

 VINŢAN N. LUCIAN – Arhitecturi de procesoare cu paralelism la

nivelul instrucţiunilor, Editura Academiei Române, Bucureşti, 2000

 VINŢAN N. LUCIAN, FLOREA ADRIAN – Microarhitecturi de

procesare a informaţiei, Editura Tehnică, Bucureşti, 2000

 VINŢAN N. LUCIAN – Predicţie şi speculaţie în microprocesoarele

avansate, Editura Matrix Rom, Bucureşti, 2002

 FLOREA ADRIAN, VINŢAN N. LUCIAN – Simularea şi optimizarea

arhitecturilor de calcul în aplicaţii practice, Editura Matrix Rom,

Bucureşti, 2003. Această carte a obţinut Premiul “Tudor Tanasescu” al

Academiei Române pe anul 2003, decernat în 23 decembrie 2005.

http://acaps.ulbsibiu.ro/research.php

Foreword (Prefaţă) 9

 FLOREA ADRIAN – Predicţia dinamică a valorilor în

microprocesoarele generaţiei următoare, Editura Matrix Rom,

Bucureşti, 2005

 VINŢAN N. LUCIAN – Prediction Techniques in Advanced

Computing Architectures (în limba engleză), Matrix Rom Publishing

House, Bucharest, 2007

Această lucrare duce mai departe bagajul de cunoştinţe şi de realizări

originale prezentate în aceste cărţi. Scopul ei principal constă în

îmbunătăţirea paradigmei procesoarelor actuale, caracterizate de exploatarea

paralelismelor la nivelul instrucţiunilor şi microfirelor (ILP – Instruction

Level Parallelism şi TLP – Thread Level Parallelism), prin grefarea unor

tehnici predictiv-speculative de execuţie. Acestea conduc la creşterea

performanţei, atât prin exploatarea unor paralelisme suplimentare cât şi prin

posibila compresare a căii critice aferente programului executat

(contrazicând deci celebra lege a lui E. Amdahl). În acest scop autorul a

implementat tehnici deosebit de actuale de predicţie dinamică a salturilor

condiţionate (branches), a valorilor instrucţiunilor precum şi tehnici de

reutilizare dinamică a instrucţiunilor. Aceste tehnici au fost evaluate în

cadrul unor arhitecturi complexe de procesoare superscalare respectiv

arhitecturi cu execuţii simultane ale microfirelor (procesoare SMT –

Simultaneous Multithreading). Este important ca, în această perioadă în care

cercetarea se axează masiv pe arhitecturile de tip multicore, să nu se

neglijeze cercetările legate de exploatarea paralelismului în sistemele

monoprocesor, întrucât progresele de aici pot conduce la eficientizarea

paralelizării instrucţiunilor şi microfirelor din aşa-numitele programe

secvenţiale. Din acest punct de vedere, această lucrare riscă, prezentând

soluţii noi acolo unde mulţi cercetători credeau că acestea nu mai sunt

posibile, domeniul ILP fiind practic unul saturat.

Iată doar câteva argumente care mă determină să consider că această

carte, înscrisă în cadrul generos al acestor dezvoltări ştiinţifice majore,

abordează o tematică actuală, fiind deosebit de oportună în contextul

preocupărilor cercetătorilor în ştiinţa şi ingineria calculatoarelor de pe întreg

mapamondul.

Analiza lucrării

În Capitolul 2 se face o analiză actualizată a caracteristicilor

microarhitecturilor cu execuţii predictiv-speculative ale instrucţiunilor.

Astfel, se prezintă într-un mod sintetic cele mai importante şi mai recente

scheme de predicţie dinamică a branch-urilor, respectiv de predicţie

10 Beyond the Limits of Modern Processors

dinamică a valorilor instrucţiunilor. Acestea din urmă se bazează pe fertilul

principiu statistic de vecinătate a valorilor instrucţiunilor (Value Locality),

enunţat pentru prima dată de Mike Lipasti et al. într-un articol din anul

1996. Se remarcă în mod justificat faptul că, esenţial pentru refacerea

contextului procesorului în cazul unei predicţii greşite dar şi pentru

implementarea unui mecanism precis de tratare a evenimentelor de excepţie,

este aşa numitul buffer de reordonare (ROB – ReOrder Buffer). Se

analizează în mod exhaustiv funcţionarea acestuia, punctându-se în mod clar

rolul său în execuţia speculativă a instrucţiunilor. Cercetări mai recente au

arătat însă că ROB-ul (ca, de altfel, şi alte resurse ale microprocesorului) nu

este scalabil şi că reprezintă deseori un blocaj în execuţie, limitând deci

puternic numărul de instrucţiuni aflate în curs de procesare. Iată de ce

autorul acestei lucrări analizează în mod aprofundat şi cercetări alternative,

mai recente, bazate în special pe salvarea selectivă a contextului

procesorului, determinată doar de anumite instrucţiuni critice

(checkpointing). Astfel, prin scalabilizarea resurselor CPU (Central

Processing Unit), se ajunge la microarhitecturi agresive, care permit

procesarea simultană a mii de instrucţiuni, numite Kilo-instruction

Processors. Acestea au fost dezvoltate în principal la Universitatea

Politecnica din Barcelona de către un grup de cercetare în cadrul căruia a

activat şi dl. ing. Á. Gellért, graţie unei burse de 6 săptămâni. De menţionat

interesul deosebit manifestat de compania Intel de a integra aceste concepte

arhitecturale în microprocesoarele comerciale. Tot aici se prezintă

arhitectura simulatoarelor de arhitecturi superscalare cu execuţii out-of-

order din cadrul familiei SimpleSim respectiv a simulatoarelor de

procesoare SMT din familia M-SIM. Ambele platforme au fost utilizate şi

dezvoltate semnificativ de către autor în vederea efectuării cercetărilor sale.

În capitolul următor se detectează în premieră, o categorie de branch-

uri practic impredictibile, cu repercursiuni extrem de negative asupra

performanţei microprocesoarelor. Acestea sunt caracterizate de un grad

redus de polarizare Taken/Not Taken în contextul dinamic utilizat (istorie

locală, globală, informaţia de cale etc.) precum şi de o “dezordine” a

secvenţei temporale de apariţie a tranziţiilor comportamentale. Astfel,

procesul de învăţare a comportamentului acestor ramificaţii de program este

practic compromis. Metodologia de identificare a acestor branch-uri

speciale este una originală şi extrem de laborioasă, necesitând finalmente

zeci de ore de simulare. Autorul sesizează în mod corect faptul că creşterea

numărului de biţi aferent codificării contextului utilizat în predicţie precum

şi creşterea dimensiunii contextului de reprezentare a branch-urilor

dinamice, pot conduce la scăderea numărului de salturi dificil predictibile.

Astfel, se arată că într-un context de istorie globală şi locală (GHR & LHR)

Foreword (Prefaţă) 11

de 32 de biţi aceste branch-uri reprezintă în medie, pe benchmark-urile

SPEC 2000 utilizate, cca. 17%, dar descreşte la cca. 6% dacă respectivul

context este extins pe 56 de biţi. Această descoperire este una extrem de

valoroasă întrucât arată că există o limită fundamentală în procesul de

predicţie dinamică a branch-urilor, chiar şi la nivelul unei istorii codificate

pe 56 de biţi, inutilizabilă practic în predictoarele markoviene de tip Two

Level Adaptive, datorită complexităţii exponenţiale implicate. Tot aici,

foarte interesant, se dărâmă un mit în cercetarea din domeniul branch

prediction, care pretindea că informaţia de cale (path) aferentă branch-ului

curent, fiind evident mai completă decât istoria de corelaţie globală, ar fi

mult mai eficientă decât aceasta. În 1999 chiar subsemnatul sugera

eficientizarea predictoarelor prin utilizarea informaţiei de cale într-un articol

publicat la Milano în cadrul conferinţei Euromicro. După cum arată autorul

într-un mod convingător, această afirmaţie este una relativ incorectă,

întrucât la nivelul unor istorii cu adâncimea mai mare de 12 instanţe, istoria

globală aproximează extrem de precis informaţia de cale. Astfel se arată

pentru prima dată că utilizarea informaţiei de cale în cadrul predictoarelor

de branch-uri îşi are sensul doar atunci când se utilizează istorii globale

relativ scurte. Pe baza unui model analitic special dezvoltat, autorul arată că

performanţa globală a procesorului, exprimată în numărul mediu de

instrucţiuni/ciclu, are o creştere neliniară atât ca funcţie de lungimea istoriei

contextului utilizat cât şi ca funcţie de acurateţea de predicţie a branch-

urilor, subliniind astfel importanţa deosebită a cercetării abordate.

Capitolul 4 urmează perfect logic, încercând să dea seamă asupra

posibilităţilor practice de predicţie a acestor branch-uri problematice. În

acest scop, se utilizează mai întâi în predicţia lor cele mai avansate

predictoare prezentate în literatura de specialitate, unele dintre ele

câştigătoare ale Campionatului mondial de branch prediction organizat de

compania Intel. Astfel, autorul arată că cele mai bune performanţe pe

branch-urile nepolarizate le-a obţinut un predictor neuronal (format din

perceptroane simple), care utilizează în predicţie atât istoriile de corelaţie

globală/locală cât şi informaţia de cale, propus de către Dr. Daniel Jiménez

de la Rutgers University, unul dintre cei mai remarcabili cercetători în

domeniu. Acest predictor ingenios exploatează faptul că pe anumite lungimi

ale contextelor de predicţie, branch-urile sunt liniar separabile, în

consecinţă el variind în mod adaptiv lungimea contextelor pe durata

procesării. Din păcate, chiar şi acest predictor puternic este practic

neputincios în faţa salturilor nepolarizate, obţinând o acurateţe a predicţiei

medie de doar 77.30%. Fapt remarcabil, performanţa acestui predictor a fost

îmbunătăţită de către dl. ing. Gellért prin introducerea unei noi informaţii-

atribut, anume valoarea condiţiei branch-ului anterior celui curent (care

12 Beyond the Limits of Modern Processors

poate fi efectiv branch-ul anterior sau o anterioară instanţă a branch-ului

curent). Printr-un asemenea artificiu, acurateţea acestui predictor pentru

salturile nepolarizate a crescut la 78.3%, oricum modestă. De remarcat,

totuşi, că acest procent de creştere conduce la o creştere a acurateţii globale

cu 0.53%, fapt notabil având în vedere că această fracţiune poate conduce la

o creştere de câteva procente a performanţei globale. Interesant, pe

benchmark-urile Java SPEC cel mai bun predictor a obţinut o acurateţe de

cca. 81% pe aceste branch-uri, iar pe trace-urile Intel de cca. 89.1%,

performanţă remarcabilă. Altfel, aşa cum era de aşteptat, per global toate

aceste predictoare performante ating acurateţi de predicţie bune, de cca.

93%-95% pe benchmark-urile SPEC 2000 utilizate. Toate aceste fapte

constituie încă o confirmare a validităţii cercetărilor realizate de către autor

în capitolul precedent, în care a identificat o problemă importantă. În

continuarea lucrării, se remarcă un fapt simplu, anume că execuţia branch-

ului curent depinde în fond în mod determinist de valoarea semnului

condiţiei de salt (+,-,0). Se arată că predicţia semnului condiţiei pe baza

istoriei semnelor acesteia poate conduce la predictoare mai simple şi mai

eficiente decât clasica istorie globală de tip Taken/Not Taken. Autorul

proiectează într-un mod sistematic predictoare de condiţie care utilizează

istoria semnelor. Astfel, el propune un predictor bazat pe istoria locală a

semnelor aferente unui anumit branch, o schemă mai generală care

utilizează câte un predictor local pentru fiecare pattern de istorie globală

GHR şi respectiv o schemă locală care agreghează predicţiile a N

predictoare Markov de ordinele 1, 2, ..., N. Totuşi, nici aceste predictoare

sofisticate nu rezolvă în mod satisfăcător problema salturilor condiţionate

nepolarizate, deşi, per global, ating acurateţi notabile.

Desigur, utilitatea cea mai pragmatică a acestor cercetări

fundamentale ar consta într-un predictor care să prezică branch-urile

entropice cu o acurateţe foarte ridicată şi în timp real. În acest scop, trebuie

ca acestea să fie reprezentate nu în spaţiul atributelor convenţionale (PC,

istorie locală, globală, informaţia de cale etc.), ci într-un alt spaţiu, eventual

de dimensiune superioară, în care ele să devina (mai) “cuminţi”, (mai)

predictibile. Această abordare este, de altfel, comună multor probleme de

predicţie/clasificare din ştiinţa calculatoarelor, ceea ce sugerează o unitate a

cercetărilor diverselor sub-domenii, de care, cel mai adesea, nu suntem pe

deplin conştienţi. Chiar dacă autorul nu a atins pe deplin dezideratul

pragmatic al proiectării unui super-predictor de branch-uri, cercetarea sa

incrementală este una valoroasă şi utilă. În mod indirect, există în această

monografie şi un mesaj polemic la adresa empirismului devastator şi a

utilitarismului în detrimentul cogniţiei, care caracterizează paradigma

Computer Architecture de azi. Cei mai buni arhitecţi de microprocesoare se

Foreword (Prefaţă) 13

luptă la Campionatul mondial de branch prediction (Intel) ca să

predicţioneze cu 0.5% mai exact, fără să se întrebe însă de ce nu pot depăşi

o anumită limită a acurateţei. Această lucrare arată într-un mod interesant şi

inedit, că problema esenţială la ora actuală este alta, anume o mai adecvată

reprezentare informaţională a branch-urilor dinamice. (Pe vremuri,

inegalabilul matematician Carl Friedrich Gauss îi scria lui Farkas Bolyai că

nu a publicat niciodată geometria sa neeuclidiană pentru că s-a temut de

“urletele beoţienilor”. Păstrând proporţiile, constat că, totuşi, domnul Á.

Gellért a fost mai curajos decât “Princeps Mathematicorum”, pentru că,

iată, a publicat aceste cercetări, uşor neortodoxe!)

Aşadar, în cazul acestor branch-uri nepolarizate, comportamentul lor,

memorat ca o secvenţă de ‘0’ (Not_Taken) şi de ‘1’ (Taken), este

impredictibil din punct de vedere al nevoilor inginereşti. De ce oare? În

fond, ele sunt generate prin rularea unor programe cu acţiuni deterministe

iar nu aleatoare. Or fi aceste branch-uri cvasi-aleatoare sau doar relativ

impredictibile prin structurile şi informaţiile de context utilizate? De

menţionat că nu există încă o paradigmă universală satisfăcătoare pentru

şirurile aleatoare de simboluri, problema fiind de actualitate şi de interes

pentru multe categorii de specialişti, nu doar pentru matematicieni.

Definirea şi înţelegerea aleatorului sunt, deloc surprinzător, legate strâns de

noţiuni precum cele de calculabilitate, entropie informaţională, algoritmi,

teoria complexităţii, teoria infiniţilor actuali etc. Prezenţa ubicuă a

aleatorului în ştiinţă şi în tehnologie, dar chiar şi în viaţa noastră de zi cu zi,

trebuie acceptată ca atare, înţeleasă cât mai profund şi gestionată adecvat, cu

implicaţii negative minimale. Altfel, aleatorul ne poate manipula în mod

dăunător şi, uneori, chiar frustrant. În capitolul următor al acestei lucrări

ştiinţifice se încearcă a se da un răspuns la asemenea întrebări şi probleme,

prezentându-se câteva reflecţii asupra aleatorismului, cu scopul practic de a

defini anumite metrici care să caracterizeze gradul de aleatorism al unei

secvenţe de simboluri (binare). Aceste metrici ar putea explica în mod

nuanţat comportamentul acestor salturi condiţionate. Relativ la problema

salturilor condiţionate impredictibile, se dezvoltă următoarele 4 metrici de

caracterizare a acestora din punct de vedere al gradului lor de aleatorism:

1. Acurateţea predicţiei unui şir de simboluri printr-un predictor Markov

cu legături ascunse (Hidden Markov Models – HMM), care ar putea

defini un anumit grad de aleatorism al secvenţei, din punct de vedere

practic. Astfel, în urma laborioaselor sale investigaţii autorul arată că un

HMM de ordinul întâi, cu două stări ascunse, obţine acurateţile de

predicţie cele mai ridicate. Totuşi, acurateţile obţinute pentru branch-

urile nepolarizate sunt modeste, arătând că nici măcar un astfel de

14 Beyond the Limits of Modern Processors

predictor de mare rafinament şi complexitate nu le poate anticipa

comportamentul. Este posibil totuşi, să existe un predictor HMM mai

performant, dar determinarea acestuia necesită timpi de calcul

prohibitivi la nivelul tehnicii de care a dispus autorul. În schimb, pentru

salturile polarizate, aceste predictoare generează acurateţi medii de

predicţie de 98.43%, extrem de ridicate.

2. Gradul de aleatorism aferent unei secvenţe binare S, definit ca produsul

dintre entropia discretă E(S) şi respectiv gradul de amestecare aferent

secvenţei, notat D(S) în lucrare. Chiar dacă metrica este discutabilă din

punct de vedere teoretic, definirea riguroasă a aleatorismului unui şir

fiind o problemă matematică deschisă, ea are utilitate practică în

contextul acestei cercetări. Acest fapt este arătat în mod convingător de

către dl. Gellért care obţine un “grad mediu de aleatorism” pentru

branch-urile nepolarizate, măsurat pe 6 benchmark-uri SPEC 2000, de

40%, comparat cu doar 9.16% pentru branch-urile normale.

3. Rata de compresie a unei secvenţe de simboluri, obţinută prin algoritmi

cunoscuţi de compresii fără pierderi (Huffman, Gzip), se constituie într-

o altă măsură a aleatorismului secvenţei. În cazul secvenţelor binare

generate de salturile dificil predictibile, rata de compresie a acestora

este mai mică decât în cazul celorlalte branch-uri, sugerând deci gradul

ridicat de “aleatorism intrinsec” al comportamentului lor. Acest fapt

este demonstrat cantitativ, într-un mod limpede de către autor, utilizând

comportamente ale acestora de sute de mii de instanţe pentru un anumit

context local-global considerat.

4. În fine, complexitatea Kolmogorov a secvenţei de program maşină care

generează salturile condiţionate impredictibile, constituie o altă metrică

care le caracterizează comportamentul cvasi-aleator. Complexitatea

Kolmogorov-Chaitin sau entropia algoritmică, este definită ca fiind

lungimea celui mai scurt program (algoritm) care poate genera un

anumit şir de simboluri si, evident, depinde de limbajul formal de

descriere considerat. Astfel, complexitatea algoritmică a acestor salturi

speciale ar trebui să fie mai mare decât a celorlalte salturi condiţionate.

Acest fapt este arătat de către autor printr-un exemplu elocvent, în care

comportamentul haotic al unui anumit branch este generat de programe

complexe, cu multe ramificaţii binare, conţinând corpuri recursive.

Cum complexitatea programelor creşte continuu, este de aşteptat ca

numărul şi influenţa negativă a salturilor nepolarizate să crească şi ea.

Deşi această metrică statică ar putea părea inadecvată în caracterizarea

comportamentului unui salt dinamic, din punct de vedere practic

utilitatea ei este evidentă, dupa cum autorul arată în mod convingător.

Foreword (Prefaţă) 15

Evident că aleatorismul branch-urilor nepolarizate nu este în mod riguros

unul nativ, intrinsec, ci unul determinat de haosul comportamentului

dinamic al unor corpuri de program extrem de complexe. Din acest punct de

vedere nici nu-i de mirare că există asemenea branch-uri cu un

comportament ciudat, impredictibil. Determinarea cauzalităţilor

deterministe concrete este însă cvasi-imposibilă, în contextul anterior schiţat

al complexităţii uriaşe. Chiar dacă un branch este generat în urma unor

constructe de program extrem de sofisticate, din cele, să zicem, 10 contexte

dinamice distincte (de tip Global_hist, Local_hist, Path_hist etc.) în care el

apare pe parcursul procesării, pot fi nepolarizate doar 2-3! Aici ciudăţeniile

complexităţii aferente procesării run-time sunt mai greu explicabile

calitativ. În orice caz, toate aceste metrici pot ajuta efectiv arhitectul de

procesoare în evaluarea performanţelor modelelor simulate. Mai mult chiar,

prin asemenea investigaţii interdisciplinare, rarissime în arhitectura

calculatoarelor, autorul face practic invitaţia de a oferi soluţii revoluţ ionare

acolo unde de zeci de ani se caută numai soluţii incrementale.

În continuare autorul arată că aproximativ 29% dintre branch-uri sunt

dependente de instrucţiuni având o latenţă de execuţie foarte ridicată, fapt

care degradează semnificativ eficienţa procesării, în special prin creşterea

semnificativă a timpului de refacere a contextului CPU în cazul predicţiilor

greşite (context recovery). Pe de altă parte, aceste instrucţiuni critice, de

mare latenţă (Load cu miss în cache, Mul, Div etc.), constituie o problemă

redutabilă în sine. În Capitolul 6 autorul propune o soluţie originală pentru

soluţionarea acestor probleme dificile. Astfel se dezvoltă o schemă de

reutilizare dinamică a rezultatelor instrucţiunilor Mul şi Div augmentată

prin detecţia unor operaţii triviale şi selectarea anticipată a rezultatului şi

respectiv o schemă de predicţie dinamică a valorilor instrucţiunilor Load cu

miss în L1-cache, bazată pe memorarea valorii lor anterioare. Deşi schemele

de reutilizare şi predicţie sunt adaptări ale celor publicate în literatura de

specialitate, ideea de a le grefa în cadrul unei arhitecturi superscalare

complexe, simulate prin modificarea simulatorului M-SIM – care extinde

cunoscutul mediu SimpleScalar, inclusiv prin facilităţi de procesare

multithreading – este una originală şi valoroasă. Rezultatele cantitative

confirmă importanţa acestor idei arhitecturale novatoare. Astfel, prin

schemele concrete implementate, se obţin creşteri medii ale performanţei de

până la 23.6%, respectiv reduceri ale consumului de energie relativ la rata

de procesare (EDP – Energy Delay Product) de până la 34.5%. Tot aici se

prezintă o altă dezvoltare originală, anume aceea a predicţiei valorilor

registrelor destinaţie ale instrucţiunilor. Aşadar, procesul predictiv este

focalizat în acest caz pe registrele CPU având grade mari de vecinătate ale

valorilor şi nu pe instrucţiuni, aşa cum s-a propus în toate celelalte lucrări

16 Beyond the Limits of Modern Processors

din literatură. Prin implementarea acestor scheme de predicţie a valorilor în

cadrul unor procesoare superscalare cu 8 căi, autorul raportează creşteri

medii de performanţă de până la 17.3% faţă de o arhitectură superscalară

clasică, ceea ce este remarcabil. În plus, acest concept implică

implementarea doar a câtorva predictoare, comparativ cu miile de

predictoare necesitate de conceptul predicţiei valorilor instrucţiunilor.

În Capitolul 7 autorul studiază grefarea acestor scheme de reutilizare

şi de predicţie a valorilor instrucţiunilor, în cadrul unei sofisticate arhitecturi

cu microfire multiple de execuţie, de tip SMT. Aici paralelismul la nivel de

instrucţiuni, exploatat de nucleul superscalar, se suprapune cu cel la nivelul

firelor de execuţie, care permite execuţia simultană a până la 6 microfire

distincte. Arhitectura SMT astfel îmbunătăţită obţine accelerări de

performanţă importante faţă de una SMT clasică, spre exemplu de 16.51%

pentru 3 microfire simultane. Desigur că creşterea de performanţă adusă de

tehnicile de reutilizare şi predicţie a valorilor, scade odată cu creşterea

numărului de microthread-uri ce pot fi procesate simultan. Şi în acest caz,

consumul de energie per instrucţiune procesată scade semnificativ (cu până

la 25.94%). Consider că eficientizarea procesoarelor SMT prin tehnici

predictiv-speculative precum cele implementate şi prezentate de către autor

constituie o realizare remarcabilă a acestei lucrări. În fine, ultimul Capitol,

cel de-al optulea, sintetizează cele mai importante contribuţii originale

conţinute în lucrare şi sugerează în mod pertinent câteva căi posibile de

dezvoltare ulterioară a realizărilor prezentate. Lucrarea se încheie cu un

deosebit de util glosar explicativ al termenilor tehnici utilizaţi.

Câteva concluzii

În urma studierii şi analizării acestei monografii ştiinţifice pot concluziona

următoarele aspecte şi contribuţii originale, considerate relevante:

 Lucrarea domnului ing. Á. Gellért se referă la problematici actuale,

extrem de importante, privind metodele predictiv-speculative de

îmbunătăţire a actualelor arhitecturi superscalare respectiv cu fire

multiple de execuţie. S-a elaborat o sinteză critică valoroasă în

domeniul arhitecturii microprocesoarelor, cu evidenţierea principalelor

limitări actuale dar şi a oportunităţilor de cercetare.

 Autorul a descoperit o limitare importantă a performanţei actualelor

microprocesoare, constând într-o categorie de salturi condiţionate foarte

dificil predictibile şi a arătat că este necesară o mai adecvată

reprezentare a acestora în spaţiul atributelor (informaţiilor utilizate în

procesul) de predicţie.

Foreword (Prefaţă) 17

 A îmbunătăţit unele dintre cele mai performante predictoare actuale de

branch-uri şi a dezvoltat în mod sistematic predictoare originale, bazate

pe predicţia semnului condiţiei de salt.

 Tot referitor la problema salturilor condiţionate greu predictibile, a

dezvoltat 4 metrici de caracterizare a acestora din punct de vedere al

gradului lor de aleatorism, deosebit de utile pentru înţelegerea

comportamentului acestora, precum şi pentru îmbunătăţirea

performanţelor microarhitecturii.

 A îmbunătăţit în mod semnificativ performanţa şi consumul relativ de

energie al microprocesoarelor superscalare, prin predicţia valorilor

instrucţiunilor Load critice precum şi prin reutilizarea valorilor unor

instrucţiuni aritmetice de latenţă ridicată. Într-un mod analog a

îmbunătăţit şi performanţa arhitecturilor cu multithreading simultan.

 A dezvoltat şi a evaluat scheme de predicţie dinamică a registrelor

destinaţie ale instrucţiunilor, arătând în mod convingător avantajele

acestora în comparaţie cu schemele de predicţie centrate pe instrucţiuni,

deosebit de complexe.

 Autorul a dovedit abilităţi şi cunoştinţe remarcabile, atât în domeniul

arhitecturilor avansate de calcul cât şi în cel al ingineriei programării.

Numai aşa a putut crea, finalmente, simulatoarele complexe, care în

urma a sute de ore de rulare (până la un miliard de instrucţiuni maşină

simulate per benchmark!), au putut evalua performanţele complexelor

arhitecturi dezvoltate.

 Dl. Á. Gellért a publicat 17 articole ştiinţifice focalizate pe

problematica microarhitecturilor avansate în cadrul unor reviste ori

conferinţe internaţionale de real prestigiu. Dintre acestea, 5 au fost

publicate în reviste cotate ISI Thomson Reuters de mare exigenţă, fapt

absolut lăudabil pentru un tânăr cercetător.

În final, în baza argumentelor schiţate succint în analiza anterioară,

recomand în mod călduros această valoroasă şi originală monografie

tehnico-ştiinţifică tuturor celor interesaţi de cercetarea microarhitecturilor

avansate de calcul şi, în mod deosebit, masteranzilor, doctoranzilor şi

cercetătorilor.

Sibiu, 15 septembrie 2008 Prof. univ. dr. ing. Lucian N. VINŢAN

Membru (c.) al Academiei de Ştiinţe Tehnice din România

“The best way to predict the future

is to invent it”

Alan Kay

1. Introduction

The number of instructions that can be processed simultaneously in multiple

instruction issue (MII) microprocessors is limited by dependencies existing

between instructions. To eliminate these dependencies modern

architectures, some of them presented in Chapter 2 as prerequisites for this

work, rely heavily on speculation. The main goal of this work is to increase

instruction-level parallelism (ILP) and therefore the overall performance of

superscalar and multithreaded microarchitectures through advanced

dynamic anticipatory techniques like branch prediction, value prediction

and instruction reuse. This work brings original contributions in identifying

difficult-to-predict branches and improving their predictability, in

characterizing the randomness of their behavior, and in developing some

selectively applied value prediction and instruction reuse methods.

Branch instructions, appearing in high level program constructs like if,

switch, for, while, etc., are a major bottleneck in the exploitation of ILP,

since (in general-purpose code) conditional branches occur approximately

every 5 – 8 instructions [Hen03]. Therefore, almost all present-day multiple

instruction issue microprocessors are using advanced branch prediction

techniques in order to increase ILP. Several prediction methods have been

developed based on some well-known learning algorithms (Markovian,

neural, Bayesian, decision trees, support vector machine, etc.) simplified for

efficient hardware implementation. Through dynamic branch prediction

microprocessors are speculatively processing multiple basic blocks in

parallel and therefore their ability to increase ILP is stronger. In order to

improve performance, branches must be detected within the dynamic

instruction stream, and both the direction taken by each branch and the

branch target address must be correctly predicted. Furthermore, predictions

must be completed in time to fetch instructions from the branch target

address without interrupting the flow of new instructions to the processor

pipeline [Vin07]. In the case of misprediction, the CPU context must be

recovered and the correct paths have to be reissued. As instruction issue

width and the pipeline depth of MII processors are getting higher, accurate

dynamic branch prediction becomes more essential [Spr02]. Very high

Introduction 19

prediction accuracy is required because an increasing number of instructions

are lost before a branch misprediction can be corrected. As an example, the

performance of the Pentium 4 equivalent processor degrades by 0.45% per

additional misprediction cycle, and therefore the overall performance is very

sensitive to branch prediction. Taking into account that the average number

of instructions executed per cycle (IPC) grows non-linearly with the

prediction accuracy [Yeh92], it is very important to further increase the

accuracy achieved by present-day branch predictors. From a technological

point of view, modern high-end processors use quite large tables for branch

direction and target prediction [Sez02], and they are accessed every cycle

resulting in significant energy consumption, sometimes more than 10% of

the total chip power [Cha03]. Therefore, power consumption is another

important constraint of all present-day branch predictors.

The quality of a prediction model is highly dependent on the quality

of the available data. Especially the choice of the features to base the

prediction on is important. The vast majority of branch prediction

approaches rely on usage of a greater number of input features without

taking into account the real causes (indirect jumps and calls and, especially,

unbiased branches) that produce a lower accuracy and implicit lower

performance. In Chapter 3 we identified difficult-to-predict branches as

being unbiased branches that have a “random” dynamic behavior, and tried

to improve their predictability through context length extension. In Chapter

4 we showed that present-day branch predictors cannot accurately predict

these branches due to their limited prediction information (branch address,

local/global branch history, path). Therefore we improved several state-of-

the-art branch predictors with additional prediction information, namely the

previous branch condition or even a compressed branch condition history, in

order to improve their prediction accuracy. We also showed in Chapter 5
that sequences generated by unbiased branches are characterized by high

random degrees.

Long-latency instructions, especially critical Loads due to their

memory wall problem (the increasing gap between processor and memory

speeds), represent another source of ILP limitation. A solution to reduce the

number of cache misses consists in prefetching speculatively data from

memory to cache. Multithreading can also reduce the effects of the memory

wall by hiding memory latency through issuing into the pipelines

instructions from different idle threads. Value Prediction (VP) is another

technique that increases performance by eliminating true data dependency

constraints. VP architectures allow data dependent instructions to issue and

execute speculatively using the predicted value. The speculative executions

are validated when the correct values are known. If the value was correctly

20 Beyond the Limits of Modern Processors

predicted the critical path is reduced, otherwise the instructions executed

with wrong entries must be executed again. On the other hand, dynamic

instruction reuse is a non-speculative microarchitectural technique that

exploits the repetition of dynamic instructions with the same input values.

The main benefit of reusing long-latency instructions consists in unlocking

dependent instructions.

In Chapter 6 we developed a superscalar architecture that selectively

anticipates the values produced by long-latency instructions. We focused on

Multiply, Division and Loads with miss in the L1 data cache. Thus, we

implemented a Dynamic Instruction Reuse scheme for the Mul/Div

instructions and a simple Last Value Predictor for the critical Load

instructions. We also extended dynamic VP by introducing the concept of

register-centric prediction instead of instruction-centric prediction. The

register value prediction technique consists in predicting registers’ next

values based on the previously seen values. It executes the subsequent data

dependent instructions using the predicted values. In Chapter 7 we

evaluated a simultaneous multithreaded architecture enhanced with selective

instruction reuse and value prediction to anticipate the results of long-

latency instructions.

Finally, Chapter 8 concludes the book pointing out the original

contributions and suggests some further work directions.

Acknowledgments

First of all I express my sincere consideration and deep gratitude to my PhD

supervisor Professor Lucian VINŢAN for his responsible and valuable

scientific coordination and for his generous support. My full recognition to

my PhD co-supervisor Professor Theo UNGERER from the University of

Augsburg (Germany) for the useful discussions and for all his various

support. I express my gratitude to Dr. Adrian FLOREA for his continuous

help and his very useful advices. I am grateful to Dr. Colin EGAN from the

University of Hertfordshire (UK) for his research collaboration. Also my

consideration to the reviewers: Prof. Dr. Vladimir CREŢU, Prof. Dr. Sergiu

NEDEVSCHI and Prof. Dr. Nicolae ŢĂPUŞ.

This work was supported in part by the Romanian Agency for

Academic Research (CNCSIS) through the research grants TD-248/2007-

2008 and A-39/2007-2008. It was also partially carried out under the HPC-

EUROPA project (RII3-CT-2003-506079), with the support of the

European Community – Research Infrastructure Action under the FP6

“Structuring the European Research Area” Programme.

“When speculation has done its worst,

two and two still make four”

Samuel Johnson

2. Speculative Computer Architectures

All processors since about 1985 use pipelining in order to improve

performance by overlapping the execution of instructions. A pipeline acts

like an assembly line with instructions processed in phases. With simple

pipelining, only one instruction at a time is introduced into the pipeline, but

multiple instructions may be in different phases of execution concurrently.

In the case of superscalar processors, more than one instruction at a time can

be introduced into multiple pipelines to be executed simultaneously. This

potential execution overlap among independent instructions is called

instruction-level parallelism (ILP). There are some features of both

programs and processors that limit the amount of parallelism such as

structural hazards, data hazards and control stalls. In particular, to exploit

instruction-level parallelism it must be determined which instructions can be

executed in parallel. If two instructions are parallel and no structural hazards

exist, they can be executed simultaneously in a pipeline without causing any

stalls, assuming that the pipeline has sufficient resources. If two instructions

are dependent they are not parallel and must be executed in order. There are

three different types of dependences: data dependences, name dependences

and control dependences.

An instruction is data dependent if it uses the result produced by

another instruction. Data dependences can be overcome through hardware

techniques (dynamic instruction reuse, value prediction) and software

techniques (by reorganizing the code). When two dependent instructions are

close enough to change the order of access to the operand involved in the

dependence, a data hazard occurs. Considering two successive instructions i

and j, a RAW (read after write) data hazard occurs when instruction j tries

to read a source before i writes it, so j incorrectly gets the old value. A

WAW (write after write) data hazard occurs when instruction j tries to write

an operand before it is written by i. A WAR (write after read) data hazard

occurs when instruction j tries to write a destination before it is read by i.

Name dependences occur when two instructions use the same register

or memory location. Instructions involved in name dependence can be

executed simultaneously or reordered if the register or memory location

22 Beyond the Limits of Modern Processors

used by the instructions is changed so the instructions do not conflict. This

renaming can be more easily done for register operands (register renaming),

either statically by a compiler or dynamically by the hardware.

Control dependences are generated by branch instructions. An

instruction that is control dependent on a branch cannot be executed until

the branch direction is known. Control stalls can be eliminated or reduced

by a variety of hardware techniques (branch prediction) and software

techniques (static scheduling).

A major limitation of the simple pipelining techniques is that they all

use in-order instruction issue and execution. Instructions are issued in

program order and if an instruction is stalled in the pipeline, no later

instructions can proceed. Out-of-order execution introduces the possibility

of data hazards. Hennessy and Patterson in [Hen03] explore an important

technique, called dynamic scheduling, in which the hardware rearranges the

instruction execution in order to reduce the stalls. In a dynamically

scheduled pipeline, all instructions are dispatched in order, however, they

can be stalled or bypass each other in the issue stage and thus execute out of

order.

2.1. Speculative Architectures with Reorder Buffer

Branch prediction is a mechanism that reduces control stalls in order to

improve performance in a multiple instruction issue processor. Control

dependences are overcome by speculating on branch outcomes and

executing dependent instructions as if the predictions were correct.

Obviously it became necessary the integration of branch prediction into

dynamically scheduled processors. Predicting the outcomes of conditional

branches, more instructions can be fetched in parallel (a part of them are

fetched speculatively from the predicted path), increasing in this way the

execution window [Smi95]. The fetched instructions are analyzed for true

data dependences, issued to the functional units and executed out-of-order,

in parallel, based on the availability of the operands. Value prediction is

another technique that speculatively forwards predicted instruction results to

the dependent instructions. With speculative execution, the architectural

storage cannot be updated immediately when instructions complete

execution. The results must be held in a temporary status until the

architectural state can be updated in sequential program order.

Speculative Computer Architectures 23

2.1.1. Speculative Dynamic Scheduling with Reorder Buffer

The present-day out-of-order issue superscalar microprocessor model is

implemented as a speculative microarchitecture that actually fetches, issues

and executes instructions based on branch prediction using Tomasulo’s

algorithm or closely related algorithms and a structure called Reorder Buffer

(ROB). Figure 2.1 shows the hardware structure of the processor including

the ROB.

Instruction

queue

From instruction unit

Register

file

Reservation

stations

2

12

1

3

Adders Multipliers

Operation bus
Operand

buses

Common data bus (CDB)

Address unit
Address

Memory unit

Address

Reorder

buffer

Load

buffers

Store

data

Load data

Data

Reg

Store

address

Figure 2.1. Tomasulo’s architecture extended to support speculation

The hardware that implements Tomasulo’s algorithm [Tom67] can be

extended to support speculation, only if the bypassing of results, which is

needed to execute an instruction speculatively, is separated from the

completion of an instruction (that consists in updating the memory or

register file). Doing this separation, an instruction bypasses its results to

other instructions, without performing any CPU updates that cannot be

canceled. When the instruction is no longer speculative (after its writeback

stage), it updates the register file or memory; this phase is called instruction

commit. Separating the bypassing of results from instruction completion

makes possible avoiding imprecise exceptions in out-of-order execution,

preserving in this way exception behavior. An exception is imprecise if the

24 Beyond the Limits of Modern Processors

processor state when the exception raised is not exactly as in the case of

sequential execution.

Adding this commit phase to the instruction execution sequence, an

additional set of hardware buffers is required, which hold the results of

instructions that have finished execution but have not yet committed. The

reorder buffer provides the register renaming function and it is also used to

pass the results of speculatively executed instructions. The reservation

stations keep operations and operands only between the time they issue end

the time they begin execution.

Each ROB entry contains four fields: Type, Dest, Value and the Ready

field. The Type field indicates whether the instruction is a branch, a Store, or

a register operation (ALU operation or Load). The Dest field supplies the

register number for Loads and ALU operations or the memory address for

Stores, where the instruction result must be written. The Value field is used

to hold the value of the result until the instruction commits. The Ready field

indicates if the instruction has completed execution and, thus, the value is

ready. The ROB completely replaces the Store buffers. The ROB is usually

implemented as a circular FIFO queue having associative search facilities.

Each reservation station has the following eight fields:

 Op – the operation performed on the source operands (opcode);

 Qj, Qk – the ROB entries that will provide the source operands, a

value of zero indicating that the source operand is already

available in Vj, Vk, or that it is unnecessary;

 Vj, Vk – the values of the source operands; for Loads and Stores

the Vj field is used to hold the offset;

 A – holds the memory address for Loads or Stores: initially holds

the immediate field, after the address calculation holds the

effective address;

 Dest – supply the corresponding ROB entry number representing

the destination for the result produced by the execution unit.

 Busy – indicates if a reservation station is available or occupied.

The register file has a field Qi indicating the number of the ROB entry

that contains the operation whose result should be stored into the register.

The six steps involved in instruction execution are the following [Hen03]:

1. Fetch – fetches the next instruction into the instruction queue.

2. Dispatch – gets the next instruction from the instruction queue. If all

reservation stations are full or the ROB is full, then instruction dispatch

Speculative Computer Architectures 25

is stalled until both structures have available entries. If there is an empty

reservation station and the tail of the ROB is free, the instruction is sent

to the reservation station. The Busy bit of the allocated reservation

station is set and the Ready field of the ROB entry is reset. The source

registers are searched associatively in the Dest field of the ROB,

considering the last entry in the case of multiple hits, since the ROB

entries are allocated in order. If an operand value is available in the

ROB (Ready=1), it is written from the Value field into the reservation

station field Vj / Vk. If the operand value is not available (Ready=0), the

number of ROB entry that will provide the operand is written into the

reservation station field Qj / Qk. In the case of miss in the ROB the

operand value is written from the register set into the reservation station

field Vj / Vk. The number of ROB entry allocated for the value of the

result is sent into the Dest field of the reservation station. The

destination register number is written into the Dest field of the ROB

entry.

3. Issue – if an operand is not yet available, the common data bus (CDB) is

monitored until it is computed and when the operand is available on the

CDB it is placed into the corresponding reservation stations. In order to

avoid structural hazards, modern processors have multiple CDBs and a

multiported ROB. When all the operands are available, the instruction is

issued to the appropriate functional unit. By delaying instruction

execution until the operands are available, RAW dependences are

detected.

4. Execute – the corresponding functional unit executes the operation. In

the case of Loads and Stores the effective memory address is computed

in this stage. In the case of a taken branch, usually is calculated the

branch’s target address.

5. Writeback – when the result is available, it is written to the CDB

(together with the ROB entry number indicated by the Dest field of the

reservation station) and from there into the Value field of the

corresponding ROB entry, whose Ready field is set to 1. The Busy field

of the corresponding reservation station is reset. The result is also

written into field Vj / Vk of the reservation stations that are waiting for it.

In the case of a Store instruction if the value to be stored is available, it

is written into the Value field of the ROB entry allocated for that Store.

If the value to be stored is not available, the CDB is monitored, and

when it is received, the Value field of the ROB entry is updated.

6. Commit – the normal commit case occurs when an instruction reaches

the head of ROB having its result available (Ready=1) and if no

exception occurs. In this case, the result is written from the Val field of

26 Beyond the Limits of Modern Processors

the ROB entry into the destination register or memory location indicated

by the Dest field of the ROB entry and, after that, the instruction is

squashed from the ROB. Thus, the in order commit is guaranteed by the

in order dispatch, whereas the issue, execute and writeback stages can

be processed out of order. When an incorrectly predicted branch reaches

the head of the ROB, the ROB is flushed and the execution is restarted

with the correct successor of the branch. More precisely, there are

implemented two branch recovery strategies: refetch and selective

reissue [She03]. The obvious disadvantage of the refetch based recovery

is a severe misprediction penalty. The goal of selective reissue is to

reduce this penalty. With this approach only dependent instructions are

reissued in the case of misprediction. This requires a mechanism for

propagating misprediction information through the data flow graph to all

dependent instructions.

As it can be observed, in the case of speculative architectures is very

important when is performed the updating. Using the ROB, speculative

executions are possible because the register file or memory is updated with

the result of an instruction only when that instruction is no longer

speculative.

2.1.2. The Architecture of Sim-Outorder

After more than two decades, simulators have become an integral part of

computer architecture research and design process [Yi06]. Their most

important advantages, comparing with real processors, are low

implementation cost and development time, flexibility and extensibility,

allowing the architects to quickly evaluate the performance of a wide range

of architectures and to quantify the efficacy of every enhancement. In this

work we relied on some commonly used simulators like Simplesim [Bur97]

and the M-SIM [Sha05] which extends the Simplesim toolset with support

for concurrent execution of multiple threads and power consumption

evaluation. Both of them are written in C language and the sources are free

in order to be improved and enlarged by researchers.

The sim-outorder simulator from the Simplesim-3.0 toolset [Bur97] is

presented in Figure 2.2. It simulates a superscalar architecture that uses a

register update unit (RUU) in order to support out-of-order and speculative

execution. The RUU is a combination of reservation stations and ROB, and

is organized as a circular queue. Each RUU entry contains the following

fields:

Speculative Computer Architectures 27

 IR – stores the instruction bits.

 op – holds the opcode after the instruction is decoded in the

dispatch stage.

 PC – the instruction address.

 next_PC – the next instruction address.

 pred_PC – the next predicted instruction address.

 ea_comp – non-zero if the operation is an address computation

(the first operation in the case of Load and Store instruction

preceding the memory access).

 in_LSQ – non-zero if the Load/Store operation is in the LSQ.

 recover_inst – indicates when an instruction is the start of

misspeculation.

 dir_update – pointer to the branch predictor state entry.

 spec_mode – indicates if the instruction was fetched

speculatively.

 addr – holds the effective address for Load/Store instructions.

 tag – RUU slot tag, used to identify an operation in the RUU.

 queued – indicates that the operands are ready and the operation

was queued to the ready_queue.

 issued – indicates that the operation was issued for execution.

 completed – indicates that the operation has completed the

execution.

 onames – output logical register names.

 odep_list – dependency list containing a pointer to all dependent

RUU entries. These lists are used to limit the number of

associative searches in the RUU when operations complete the

execution and need to wake up dependent operations.

 idep_ready – indicates if the input operands are ready.

For Loads and Stores a Load/Store Queue (LSQ) is also used. The

LSQ has the same structure as the RUU. Load and Store instructions are

split in two operations: the effective address computation that is inserted

into the RUU and the Load/Store operation that is inserted into the LSQ and

is activated by the RUU when the address computation is finished. A

rename-table structure called Create Vector (CV) holds for each register the

last mapped RUU or LSQ entry that will write the result into that register.

The CV is divided into a speculative table (maintains the last speculative

state of the register file) and a non-speculative table (maintains the last non-

speculative state of the register file). The CV is used to handle instruction

28 Beyond the Limits of Modern Processors

dependencies: to construct the dependency lists (odep_list) and to squash

efficiently the RUU and LSQ structures if an exception occurs. An

instruction fetch queue (IFQ) is used to hold the instructions fetched from

memory. Each IFQ entry has the following fields: IR (holds instruction

bits), regs_PC (instruction address), pred_PC (next predicted instruction

address) and dir_update (pointer to the branch predictor state entry). A

ready queue (RQ) is used to hold operations whose operands are ready and

an event queue (EQ) holds operations during their execution. Each RQ and

EQ location contains only a pointer to the RUU or LSQ entry associated to

the operation.

The sim-outorder simulator uses a pipeline with five important stages

implemented in software: fetch, dispatch, issue, write back and commit. The

classical execution stage is distributed into the dispatch and issue stages as

we will detail further. In the software implementation of this superscalar

architecture the pipeline stages are executed sequentially and are not

overlapped leading in this way to synchronization problems. More exactly,

because one cycle of execution in the simulator corresponds to the

sequential iteration of all pipeline stages once, the effects of a certain stage

are “instantaneously” seen by the next pipeline stages too early, in the

current cycle, while they must be seen only in the next cycle. Therefore, in

order to eliminate these synchronization problems, the pipeline stages are

traversed in reverse order, and thus, the effects of a certain one-cycle

operation are visible correctly only in the next cycle (iteration).

All events (marked with ♦) appear in Figure 2.2 horizontally in

chronological order. The fetch, dispatch and commit stages are effectuated

in program order avoiding thus imprecise exceptions, while the other stages

might be executed out of order. The seven execution steps of sim-outorder

are the following:

1. Fetch (ruu_fetch) – as many instructions are fetched up

(MD_FETCH_INST) as one branch prediction and one instruction-cache

line support, without overflowing the instruction fetch queue (IFQ). The

instructions are inserted into the tail of the IFQ (fetch_data). If the

simulator is started with a branch predictor, the instructions are pre-

decoded in order to identify branches (MD_SET_OPCODE). When a

branch instruction occurs the next instruction is fetched from the address

pred_PC predicted using a certain pred branch predictor

(bpred_lookup).

Speculative Computer Architectures 29

(i
n

st
r.

)

M
E

M

(i
n

st
r.

)

IF
Q

ta
il

h
ea

d

(r
s

-
R

)

C
V

(r
s)

R
U

U

(r
s)

o
d
ep

_
li

st

ta
il

h
ea

d

cr
ea

to
r

(r
s)

L
S

Q

(r
s)

o
d
ep

_
li

st

ta
il

h
ea

d

cr
ea

to
r

(r
s)

R
Q ta
il

h
ea

d

ta
il

h
ea

d

(r
s)

E
Q

N
U

L
L

N
U

L
L

N
U

L
L

N
U

L
L

B
P

R
E

D

if

fr
ee

M
D

_
F

E
T

C
H

_
IN

S
T

()

(p
is

a.
h
)

if
 (

C
T

R
L

)

b
p
re

d
_

lo
o
k

u
p
()

F
E

T
C

H

ru
u
_
fe

tc
h

()

sp
ec

n
o
n

-

sp
ec

if

fr
ee

M
D

_
S

E
T

_
O

P
C

O
D

E
()

(p
is

a.
h
) al
l

o
n

ly
 L

D
/S

T

se
t

o
u

tp
u

t
d
ep

.

ru
u

_
in

st
al

l_
o

d
ep

()

al
l

o
n

ly
 L

D
/S

T

se
t

in
p
u

t
d

ep
.

ru
u

_
li

n
k

_
id

ep
()

o
n

ly
 L

D
/S

T

al
l

D
IS

P
A

T
C

H

ru
u
_
d
is

p
at

ch
()

F
U

al
l

if
 (

O
P

S
_

R
E

A
D

Y
()

)

re
ad

y
q
_

en
q
u

eu
e(

)

o
n

ly
 S

T

o
n

ly
 L

D

if
 (

O
P

S
_

R
E

A
D

Y
()

)

re
ad

y
q
_

en
q
u

eu
e(

)

L
S

Q
_
R

E
F

R
E

S
H

ls
q
_
re

fr
es

h
()

if
 (

S
T

)
co

m
p
le

te
d
=

1

el
se

ev
en

tq
_

q
u

eu
e_

ev
en

t(
la

t)

la
t

la
t

+
IS

S
U

E

ru
u
_
is

su
e(

)

R
E

L
E

A
S

E
_
F

U

ru
u
_
re

le
as

e_
fu

()

–

b
p
re

d
_

u
p
d
at

e(
)

if
 (

L
S

Q
[h

ea
d
].

co
m

p
le

te
d

&
 S

T
)

E
x

ec
u

te
 s

to
re

F
re

e
L

S
Q

[h
ea

d
]

if
 (

R
U

U
[h

ea
d
].

co
m

p
le

te
d

W
ri

te
 r

es
u

lt

F
re

e
R

U
U

[h
ea

d
]

if
 (

L
S

Q
[h

ea
d
].

co
m

p
le

te
d

&
 L

D
)

W
ri

te
 r

es
u

lt

F
re

e
L

S
Q

[h
ea

d
]

if
 (

C
T

R
L

)

C
O

M
M

IT

ru
u
_
co

m
m

it
()

if
 (

O
P

S
_

R
E

A
D

Y
()

)

re
ad

y
q
_

en
q
u

eu
e(

)

if
 (

o
p
.c

o
m

p
le

te
d
)

C
o

m
p
le

te
d
=

1

S
o

lv
e

o
u

tp
u

t
d
ep

.

F
re

e
C

VW
R

IT
E

B
A

C
K

ru
u
_
w

ri
te

b
ac

k
()

cr
ea

to
r

b
p
re

d
_

u
p
d
at

e(
)

(i
n

st
r.

)

M
E

M

(i
n

st
r.

)

IF
Q

ta
il

h
ea

d

(r
s

-
R

)

C
V

(r
s)

R
U

U

(r
s)

o
d
ep

_
li

st

ta
il

h
ea

d

cr
ea

to
r

(r
s)

L
S

Q

(r
s)

o
d
ep

_
li

st

ta
il

h
ea

d

cr
ea

to
r

(r
s)

R
Q ta
il

h
ea

d

ta
il

h
ea

d

(r
s)

E
Q

N
U

L
L

N
U

L
L

N
U

L
L

N
U

L
L

B
P

R
E

D

if

fr
ee

M
D

_
F

E
T

C
H

_
IN

S
T

()

(p
is

a.
h
)

if
 (

C
T

R
L

)

b
p
re

d
_

lo
o
k

u
p
()

F
E

T
C

H

ru
u
_
fe

tc
h

()

sp
ec

sp
ec

n
o
n

-

sp
ec

if

fr
ee

M
D

_
S

E
T

_
O

P
C

O
D

E
()

(p
is

a.
h
) al
l

o
n

ly
 L

D
/S

T

se
t

o
u

tp
u

t
d
ep

.

ru
u

_
in

st
al

l_
o

d
ep

()

al
l

o
n

ly
 L

D
/S

T

se
t

in
p
u

t
d

ep
.

ru
u

_
li

n
k

_
id

ep
()

o
n

ly
 L

D
/S

T

al
l

D
IS

P
A

T
C

H

ru
u
_
d
is

p
at

ch
()

F
U

F
U

al
l

if
 (

O
P

S
_

R
E

A
D

Y
()

)

re
ad

y
q
_

en
q
u

eu
e(

)

o
n

ly
 S

T

o
n

ly
 L

D

if
 (

O
P

S
_

R
E

A
D

Y
()

)

re
ad

y
q
_

en
q
u

eu
e(

)

L
S

Q
_
R

E
F

R
E

S
H

ls
q
_
re

fr
es

h
()

if
 (

S
T

)
co

m
p
le

te
d
=

1

el
se

ev
en

tq
_

q
u

eu
e_

ev
en

t(
la

t)

la
t

la
t

+
IS

S
U

E

ru
u
_
is

su
e(

)

R
E

L
E

A
S

E
_
F

U

ru
u
_
re

le
as

e_
fu

()

–

b
p
re

d
_

u
p
d
at

e(
)

if
 (

L
S

Q
[h

ea
d
].

co
m

p
le

te
d

&
 S

T
)

E
x

ec
u

te
 s

to
re

F
re

e
L

S
Q

[h
ea

d
]

if
 (

R
U

U
[h

ea
d
].

co
m

p
le

te
d

W
ri

te
 r

es
u

lt

F
re

e
R

U
U

[h
ea

d
]

if
 (

L
S

Q
[h

ea
d
].

co
m

p
le

te
d

&
 L

D
)

W
ri

te
 r

es
u

lt

F
re

e
L

S
Q

[h
ea

d
]

if
 (

C
T

R
L

)

C
O

M
M

IT

ru
u
_
co

m
m

it
()

if
 (

O
P

S
_

R
E

A
D

Y
()

)

re
ad

y
q
_

en
q
u

eu
e(

)

if
 (

o
p
.c

o
m

p
le

te
d
)

C
o

m
p
le

te
d
=

1

S
o

lv
e

o
u

tp
u

t
d
ep

.

F
re

e
C

VW
R

IT
E

B
A

C
K

ru
u
_
w

ri
te

b
ac

k
()

cr
ea

to
r

b
p
re

d
_

u
p
d
at

e(
)

Figure 2.2. The architecture of Sim-Outorder

30 Beyond the Limits of Modern Processors

2. Dispatch (ruu_dispatch) – gets the next instruction from the head of the

IFQ, decodes the instruction (MD_SET_OPCODE), and inserts it into

the tail of the RUU if it is free. For Loads and Stores the effective

address computation is inserted into the tail of the RUU, and the

Load/Store operation is inserted into the tail of the LSQ. If the

RUU/LSQ is full, then instruction dispatch is stalled until the structure

has available entries. The dispatched instructions are removed from the

IFQ. A pointer to the allocated RUU/LSQ entry (rs) is introduced into

the dependency list (odep_list) corresponding to the RUU/LSQ entries –

identified based on the CV – that will produce the input operands

(ruu_link_idep). The output register numbers are written into the

onames field and a pointer to the allocated RUU/LSQ entry (rs) is set to

all the output registers in the CV structure (ruu_install_odep). If all the

input operands are available, a pointer to the allocated RUU/LSQ entry

(rs) is inserted into the tail of the RQ (readyq_enqueue). Actually the

simulator “instantaneously” executes the operation in this stage, but

correctly simulates its latency through the write-back event in the next

stages. In the case of a Store instruction a pointer to the allocated LSQ

entry is also inserted into the tail of the RQ (Load operations are queued

into the RQ only in the LSQ-refresh stage).

3. Issue (ruu_issue) – tries to issue all instructions from the RQ

(ready_queue) to free functional units (FU) whose busy count is set to

the latency value corresponding to the issued operation. A writeback-

event is scheduled for each issued operation to the cycle obtained adding

its execution latency to the current cycle: a pointer to the corresponding

RUU/LSQ entry (rs) is inserted together with the scheduled writeback-

cycle (wb_cycle) into the EQ (eventq_queue_event). The EQ

(event_queue) is sorted from earliest to latest event. The issued

operations are evacuated from the RQ. The issue stage ends with the

execution of the operations at the functional units (the previously

presented Tomasulo’s architecture has an additional execute stage for

this operation). Thus, the execution is simulated by scheduling the

writeback-event to the cycle obtained by adding the corresponding

execution latency to the current cycle. Store operations are executed

only in the commit stage.

4. LSQ-refresh (lsq_refresh) – a pointer to each Load operation (rs) from

the LSQ whose operands are ready is inserted into the RQ

(readyq_enqueue). Store operations are inserted during the dispatch

stage.

5. Writeback (ruu_writeback) – in the case of a misprediction the

RUU/LSQ entries corresponding to speculatively fetched instructions

Speculative Computer Architectures 31

are squashed and the CV is reverted to the last non-speculative state. In

the normal writeback case, for each event from the EQ whose scheduled

writeback-cycle is less than or equal to the current execution cycle (the

event has already occurred), the result is written from the functional unit

(FU) to the RUU/LSQ, and the event is removed from the EQ. If the

RUU/LSQ entry afferent to the completed operation is still mapped in

the CV to the output registers, the corresponding CV entries are

invalidated (assigning NULL), because the construction of the

operation’s dependency list (odep_list) finished. Dependent operations

that occur in the future will get the result from the RUU/LSQ or from

the register file. Each RUU/LSQ entry that has a pointer in the

dependency list (odep_list) of the completed operation is updated with

the result, and if all its operands are ready, it is queued into the RQ – its

pointer (rs) is inserted into the tail of the RQ (readyq_enqueue).

6. FU-release (ruu_release_fu) – the busy count of each FU is

decremented by 1. An FU is free for another operation when its busy

count is 0.

7. Commit (ruu_commit) – the normal commit case occurs when an

instruction reaches the head of the RUU/LSQ and its result is available

(completed=TRUE). The results are written from the head of the

RUU/LSQ into the register file. If a Store instruction occurs in the head

of the LSQ, the Store data is written to the data cache. At the end of the

commit stage the head of the RUU/LSQ is freed and, in the case of

branch instructions, the used branch predictor pred is updated

(bpred_update).

In fact, instruction execution is done “instantaneously” in ruu_dispatch.

Thus, instructions flow down the pipeline only for timing evaluations.

Therefore, there is no need to actually store the result value into the

RUU/LSQ structure at the end of the writeback stage and there is no need to

update the register file in the commit stage because that’s already been done

in the dispatch stage.

2.1.3. Checkpoint Processing Architectures

Another technique that allows speculative execution consists in saving or

checkpointing the state of the processor at certain points in a history buffer

or a checkpoint, respectively [Smi95]. The architectural state of the

processor is updated as instructions execute and when a precise state is

needed, it is recovered from the history buffer. In this case, the commit

32 Beyond the Limits of Modern Processors

phase consists only in the evacuation from the buffer of the unneeded

processor states. The reorder buffer technique is more popular than the

checkpoint/history buffer method, because, besides providing a precise

state, it implements the register renaming function too.

The continuously increasing gap between processor and memory

speeds – commonly known as the memory wall – produces a serious

performance limitation of high-frequency microprocessors by main memory

access latencies. One approach to the memory wall problem was the cache

memory that exploits program locality to reduce the number of long-latency

accesses to the main memory. Another approach is the out-of-order

execution mechanism that can hide long operation latencies in superscalar

processors by executing independent instructions while dependent

instructions are waiting for their operands. For an L1 cache miss, these

independent instructions can often hide the L2 access latency, but the

approach is much less effective in the case of L2 cache misses. If the miss

latency cannot be hidden, the ROB is blocked until the Load instruction

completes. Cache misses often occur in bursts and, thus, when the ROB is

unblocked it is blocked again by another L2 miss. A solution to reduce the

number of L2 misses consists in prefetching speculatively data from

memory to cache. Multithreading can also reduce the effects of the memory

wall by hiding memory latency through issuing into the pipelines

instructions from different idle threads.

A different approach to tolerate very long memory latencies consists

in supporting a substantially increased number of in-flight instructions

[Cri05]. Processors that are able to maintain thousands of in-flight

instructions can hide the latency of memory operations by overlapping

memory accesses with the execution of independent instructions.

Unfortunately, supporting a high number of in-flight instructions typically

involves scaling up critical processor resources (reorder buffer, instruction

queue, physical register file, Load/Store queue) that is impossible in current

processor designs because of area, power and cycle time limitations. Cristal

et al. [Cri04b, Cri05] recently proposed Kilo-instruction Processors (KIP)

that are able to support a high number of in-flight instructions through an

intelligent management of the available resources instead of resource

enlargement. They showed in [Cri05] that most instructions either have a

short or a long flight-time, and, thus, they hold resources for a short or a

very long time, respectively. The long flight-time instructions are usually

blocked in the ROB because of long-latency memory operations. Kilo-

instruction Processors exploit the bimodal flight time distribution by giving

critical resources to the short-flight-time instructions and early releasing

resources used by long-flight-time instructions, reallocating them later.

Speculative Computer Architectures 33

Current superscalar processors rely on in-order instruction commit to

avoid imprecise exceptions, imposing thus important constraints to the use

of the critical processor resources. Cistal et al. showed in [Cri05] that all

these resources are highly underutilized and they changed the management

of these resources in order to improve performance. They proposed kilo-

instruction processors that combine multicheckpointing with techniques for

efficient management of the IQs and the physical register file.

In a conventional superscalar processor every decoded instruction

requires an entry in the reorder buffer (ROB) until the instruction commits.

The ROB keeps a copy of all in-flight instructions, and thus, the processor

can restore the correct architectural state at any instruction if an exception

occurs. Kilo-instruction processors reduce the size requirement of ROB

through checkpointing. A checkpoint is the state of the processor taken at a

specific instruction of the program being executed. The state of the

processor can be restored to that point if an exception occurs. The state of

the processor can be checkpointed for a subset of instructions, and, if there

is an exception, the processor can roll the state back to the closest

checkpoint prior to the instruction causing the exception. Using a relatively

small set of checkpoints for long flight-time instructions considerably

reduces ROB requirements, but, obviously, the cost is a longer recovery

time when a long-flight-time instruction suffers an exception.

Cristal et al. [Cri02] proposed selective checkpoints taken only when a

Load that misses in the L2 cache reaches the head of the ROB. After taking

such a checkpoint, the processor can early release the ROB resources, and

also the physical registers and LSQ slots used by instructions in the ROB.

Instructions independent of the Load with miss in L2 can then use these

resources. In the same way, Mutlu et al. [Mut03] create a checkpoint of the

architectural state when a Load that misses in the L2 cache reaches the head

of the ROB. But their architecture starts executing instructions in a special

speculative mode called runahead that invalidates the results of the Load

and all dependent instructions. Some of the independent instructions

executed in runahead mode might miss in the instruction-, data-, or unified

caches. The memory system overlaps their miss latencies with the latency of

the runahead-causing cache miss. When the runahead-causing Load

completes, the processor exits runahead mode by flushing the instructions

from its pipeline. It restores the checkpoint and resumes normal instruction

fetch and execution starting with the runahead-causing Load. Thus, when

the processor returns to normal mode, it can make faster progress without

stalling because it has already prefetched into the caches during runahead

mode some of the data and instructions needed during normal mode.

34 Beyond the Limits of Modern Processors

In [Cri04b, Cri04a] Cristal et al. replaced the ROB with a structure

called pseudo-ROB. Decoded instructions are inserted into the pseudo-ROB

in order. The processor removes instructions from the head of the pseudo-

ROB at a fixed rate even if they are incomplete. The processor state is

recoverable for any instruction from the pseudo-ROB and, therefore,

checkpoints are taken only when incomplete instructions reach the head of

the pseudo-ROB. This checkpointing mechanism is beneficial to alleviate

the impact of branch mispredictions. The authors show that over 90% of

mispredictions are caused by branches that are still in the pseudo-ROB and

therefore do not need to roll back to the previous checkpoint for recovering

the correct processor state, minimizing the misprediction penalty.

A multicheckpointing mechanism was proposed in [Akk03a, Akk03b]

by Akkary et al. in order to implement large instruction window processors

without requiring large structures. Rather than using a reorder buffer, they

use a substantially smaller checkpoint buffer for branch misprediction

recovery. Since checkpoints cannot be created at every branch, a branch

misprediction causes the re-execution of all instructions between the last

checkpointed instruction and the mispredicted branch. This re-execution

overhead can be minimized if checkpoints are created on branches with high

misprediction probability. Therefore, Akkary et al. use a confidence

estimation scheme – a table of 4-bit saturating counters indexed by XORing

the branch address with the global branch history – to select low-confidence

branches. Correct branch prediction increments the corresponding counter

while misprediction resets the counter to zero. Thus, they take a checkpoint

when a low-confidence branch reaches the decode stage. In addition, the re-

execution overhead is also minimized by checkpointing every 256th

instruction. To prevent the same branch to be mispredicted again, in the case

of re-execution from a checkpoint the branch outcome from the previous

aborted execution is used instead of a prediction. Furthermore, once a

branch misprediction is resolved and re-execution begins from a prior

checkpoint, a new checkpoint is taken on the mispredicted branch, allowing

the retirement of instructions between the two checkpoints. The checkpoints

are stored in a FIFO buffer. Each entry in the checkpoint buffer has a

counter that is used to determine when the corresponding checkpoint can be

freed. A counter is incremented when an instruction, associated with the

corresponding checkpoint, is allocated and decremented when the

instruction completes execution, the overflow being prevented by creating a

new checkpoint. A checkpoint is allocated only if a free entry is available in

the checkpoint buffer. If a low-confidence branch is fetched and a free entry

in the checkpoint buffer is not available, the processor continues fetch,

dispatch and execution without creating a checkpoint on that branch. A

Speculative Computer Architectures 35

checkpoint is reclaimed and all its associated instructions are retired when

the value of the corresponding counter is 0 – the last instruction belonging

to that checkpoint completes – and the next checkpoint is allocated. Their

mechanism enables fast branch misprediction recovery and they show that a

small number of checkpoints is sufficient for a large instruction window.

Their simulation results show that 8 checkpoints are sufficient to support a

2048-entry instruction window, and thus, usually, each checkpoint

corresponds to a group of hundreds of instructions.

Every decoded instruction requires an entry in the instruction queue

(IQ) until it is issued for execution. In [Cri04b] the authors show that

instructions are divided into two groups: instructions blocked for short time

in the IQ that are waiting for a functional unit or for results of short-latency

operations, but most instructions are blocked for long time, when they are

waiting for long-latency instructions to complete, such as Loads with miss

in L2 cache. Maintaining these instructions blocked for a long time in the

IQ, increases the probability of stalling the processor due to a full IQ. This

problem can be overcome by using multilevel IQs [Cri04b] that advantage

of different waiting times of instructions in IQs. When long latency

instructions – Loads without hit in the first or second level caches and all

instructions that depends on – reach the head of the pseudo-ROB, they are

removed from the IQ to a slower, but larger and less complex structure,

called Slow Lane Instruction Queue (SLIQ). Later, when the long-latency

operations are resolved, the dependent instructions are moved back from the

SLIQ to the IQ.

Every renamed instruction that generates a result requires a physical

register, which is assigned in the rename stage and it is released when the

next instruction that use the same logical register commits. An analyze

regarding the physical register file [Cri04b] shows that registers blocked for

a long time and dead registers constitute the largest fraction of allocated

registers. A large portion of registers are blocked for long time because the

corresponding instructions are waiting for the execution of long-latency

operations.

Cristal et al. [Cri04b] integrated into kilo-instruction processors an

aggressive register management mechanism, called ephemeral registers, that

allows dead registers to be released early and registers blocked for long time

to be allocated late. Instead of assigning physical registers to architectural

registers, their late register allocation mechanism assigns virtual tags, the

physical registers being only assigned when the instructions are issued for

execution. In order to implement the early register release technique, each

virtual tag has an associated counter. The counter is incremented each time

the source register of an instruction is renamed to that virtual tag and is

36 Beyond the Limits of Modern Processors

decremented each time the reader instruction is issued for execution. The

virtual tag and its associated physical register can be released when the

corresponding counter reaches zero and the register has been already

written.

Akkary et al. in [Akk03a] proposed another register release scheme

implemented by associating a counter to each physical register. A counter is

incremented each time the source operand of an instruction is mapped to the

corresponding physical register and is decremented each time an instruction

actually reads that physical register. A physical register can be released

when its counter is 0 and the logical register corresponding to that physical

register is renamed again. Since a checkpoint provides the ability to restore

the correct architectural state, physical registers must be released only after

the corresponding checkpoint is released. Using checkpoints as readers

guarantees that physical registers are not released until all checkpoints to

which they belong are released. Therefore, when a checkpoint is created, the

counters of all the physical registers belonging to the checkpoint are

incremented. Similarly, when a checkpoint is released, the counters of all

the physical registers that belong to the checkpoint are decremented. Thus,

the proposed register file mechanism performs comparable to a larger

conventional register file by significantly reducing the average lifetime of

the physical registers.

Memory instructions also require an entry in the Load/Store queue

(LSQ) until commit. The LSQ assures the program order commitment of all

Load and Store instructions, and, therefore, complex memory

disambiguation logic is necessary that compares the effective address of

each memory operation with the addresses of all previous in-flight memory

operations. In the memory disambiguation mechanism used by Cristal et al.

[Cri04b], if a Load is issued and an older Store must write the same memory

location, the Store result is forwarded to the Load. If the Store result is still

not ready, the Load is rejected and reissued again.

Akkary et al. [Akk03b] proposed a hierarchical Store queue

organization. When a new Store appears, it is inserted into a fast and small

first-level Store queue that holds the last executed Stores. If this first-level

Store queue is full, the space for the new Store is assured by removing the

oldest Store instruction into a larger and slower second-level Store queue

that holds it until commit. A membership test buffer is used to predict if a

certain Store instruction is buffered in the second-level Store queue. When a

Load instruction is issued, the first-level Store queue and the membership

test buffer are accessed. If the Load misses both the first-level Store queue

and the membership test buffer, the data is forwarded to the Load from

memory. If the Load hits the first-level Store queue, the data is forwarded to

Speculative Computer Architectures 37

the Load. If the Load misses the first-level Store queue, but hits the

membership test buffer, the second-level Store queue is accessed. If there is

a hit, the data is forwarded to the Load, but in the case of miss the data is

forwarded from memory with penalization. This hierarchical Store queue

organization with only a few hundreds of entries provides performance

close to a usual Store queue with thousands of entries, which is remarkable.

The performance of kilo-instruction processors on integer programs is

sometimes limited by hard-to-predict branches and pointer chasing. In

general, Loads become very critical when they drive a hard-to-predict

branch. Hopefully, the performance on these integer programs can be

improved, with selective checkpointing applied on long latency Loads and

hard-to-predict branches – identified in [Gel06a, Vin06] based on the

polarization index of branch instructions in different contexts, such as local

history, global history and path information. Selective checkpointing can be

applied on unbiased branch contexts in the same manner as Akkary et al.

[Akk03a] created checkpoints on low-confidence branches, and as Chappell

et al. [Cha02b] used microthreads only for branch instances likely to be

mispredicted.

Pericàs et al. [Per06] introduced the execution locality concept, a

property that describes instructions as a function of the number of cycles

they wait in the queues until they issue. Thus, instructions depending on

cache misses have low execution locality, while the remaining instructions,

including those that depend only on cache hits, have high execution locality.

The small amount of low execution locality code causes stalls that

significantly reduce performance.

Decode

&

Rename

Integer

queue

FP

queue

Register

file

ALU

Reorder buffer (RB)

Integer

queue

FP

queue

Register

file

ALU

Checkpointing stack

Low locality

instruction buffer

Low locality

register file

Load

queue

Store

queue

Store buffer

Cache Processor (out-of-order) Address Processor

Memory Processor (in-order)

Decode

&

Rename

Decode

&

Rename

Integer

queue

FP

queue

FP

queue

Register

file

Register

file

ALUALU

Reorder buffer (RB)

Integer

queue

FP

queue

FP

queue

Register

file

Register

file

ALUALU

Checkpointing stackCheckpointing stack

Low locality

instruction buffer

Low locality

instruction buffer

Low locality

register file

Low locality

register file

Load

queue

Load

queue

Store

queue

Store buffer

Cache Processor (out-of-order) Address Processor

Memory Processor (in-order)

Figure 2.3. The Decoupled Kilo-Instruction Processor

Based on the observation that low execution locality code is very

decoupled from high execution locality code, Pericàs et al. proposed a

38 Beyond the Limits of Modern Processors

decoupled microarchitecture (Figure 2.3) that executes low latency

instructions on a Cache Processor and high latency instructions on a

Memory Processor. Thus, one pipeline, the out-of-order Cache Processor,

exploits instruction-level parallelism, while a second pipeline, the in-order

Memory Processor, exploits memory-level parallelism. The instructions are

fetched by the Cache Processor where they are waiting to be issued to the

functional units. If an instruction turns out – based on a timer – to have long

issue latency, it is moved from the Cache Processor into a Low Locality

Instruction Buffer (LLIB), where it is waiting until all long-latency Load

operations it depends on have finished. When the operands of a long latency

instruction are available, they are inserted into the Low Locality Register

File (LLRF). Long-latency Loads are executed in the address processor by

the LSQ. After a long latency Load completes, the value is kept in the

address processor. When the dependent instructions arrive to the head of the

LLIB and the Load value is available, they are moved to the Memory

Processor to be executed. For the recovery after mispredictions in the Cache

Processor an ROB structure is used. In the Memory Processor the recovery

is assured through selective checkpointing. Taking a checkpoint involves

copying the ready values from the architectural register file into a free entry

of the Checkpointing Stack. The state of the Memory Processor is restored

from the Checkpointing Stack if an exception occurs.

An important limitation of the above presented decoupled

microarchitecture consists in the serialization (in-order execution) of all

memory-dependent instructions within the Memory Processor, resulting in

about 10% performance loss. Therefore, Pericàs et al. in [Per07] have

further developed their decoupled microarchitecture presented in [Per06] by

allowing it to scale to multiple cores and multiple threads. This architecture,

with variable window size, uses multiple cores called Memory Engines that

can be shared among threads. Thus, their flexible multi-core architecture

consists of a set of Cache Processors, each one with a static partition of

Memory Engines, and a pool of Memory Engines that can be dynamically

assigned to different threads. Consequently, the proposed microarchitecture

has good potential to adapt to application mixes, because threads without

Memory Engine requirements can yield their resources to threads that

require more Memory Engines. Moreover, when there are fewer threads

than Cache Processors, the active threads can access the dynamic pool of

Memory Engines without competition. The evaluation results obtained on

the floating-point SPEC 2000 benchmarks by using 16 Memory Engines

show a considerable IPC speedup of 12% compared to the baseline

decoupled microarchitecture.

Speculative Computer Architectures 39

2.2. Advanced Dynamic Branch Prediction

Accurate branch prediction is increasingly important in today’s high

performance superscalar processor designs. A variety of basic branch

prediction techniques are presented in [Hen03] such as the branch

prediction buffer (BPB) or the branch target buffer (BTB). The goal of all

these mechanisms is to allow the processor to speculatively execute control

dependent instructions, thus avoiding stalls and extending the instruction-

level parallelism across multiple basic blocks.

The BPB and BTB predictors use only the recent behavior of a single

branch to predict the future behavior of that branch. Branch predictors that

use the behavior of other branches to make a prediction are called

correlating predictors or two-level predictors [Hen03], and they were

introduced independently by Yeh and Patt [Yeh92] and by Pan et al.

[Pan92]. Two-level predictors use two levels of branch history information

to make predictions. The first level is a branch history register (BHR) that

records the outcomes of the last k branches encountered. The second level is

a pattern history table (PHT) with entries having the same fields as a BTB

entry. The PHT is indexed using a concatenation of the lower portion from

branch’s PC with the BHR representing the context of the branch [Pan92].

After a branch is resolved, its outcome is shifted left into the BHR, and the

corresponding PHT entry is also updated.

In [Yeh92] there are presented three important alternative two-level

branch predictors and other variations are introduced in [Yeh93]. The

simplest two-level branch predictor called GAg (Figure 2.4), uses a global

BHR and a global PHT.

Tag

Pattern History Table (PHT)

Predicted PC

=

PChigh PClow BHR

Prediction bits

Predictable

branch

Yes

No Unpredictable

branch

Figure 2.4. Two-level branch predictor (GAg)

40 Beyond the Limits of Modern Processors

Since the outcomes of different branches update the same history register

and the same pattern history table, the information of both branch history

and pattern history is influenced by results of different branches. Initially all

these predictors did not have the tag checking mechanism, using only the

global/local histories as pointers to the prediction table; however, according

to [Vin00a], in Figure 2.4 we added this mechanism that reduces branch

interferences.

In order to reduce the branch interference, in [Yeh92] the authors

introduced a two-level branch prediction mechanism called PAg that uses a

per-address branch history table (PBHT) and a global pattern history table.

The PBHT consists of multiple local branch history registers, each of them

being associated to distinct static branch instructions. A local BHR records

the last k outcomes of the same static branch. Since all branches update the

same PHT, the pattern history interference still exists. In order to

completely remove the interference in both levels, in [Yeh92] the authors

proposed another two-level branch predictor called PAp that uses a per-

address branch history table and a per-address pattern history table. Thus,

the PAp scheme keeps separate history and pattern information for each

distinct static branch.

All two-level branch predictors presented in [Yeh92] use only global

or only local branch history information. The global branch history is used

to exploit correlation between the outcome of a branch and the outcomes of

other branches. In contrast, the local history exploits correlation between the

outcomes of a single branch. However, there exist branches that are not

predictable based only on global or local history. Therefore, in [Vin00a,

Cha02a] the authors introduced the two-level branch predictors, which

employ both the global and local branch history information simultaneously.

McFarling [McFar93] proposed a new technique that combines the

advantages of two different types of branch predictors. His technique uses

2-bit up-down counters to keep track of which predictor is currently more

accurate for each branch. The hybrid predictor uses the more accurate

component predictor to generate the prediction. He also describes a method

of increasing the usefulness of branch history by hashing it together with the

branch address, instead of concatenating it with the branch address as Pan

and Rahmeh have done in [Pan92]. McFarling demonstrated that the

eXclusive OR (XOR) of the branch address with the global history has more

information than either component alone. Combining a predictor that use

local branch history with a predictor that use global branch history hashed

together with branch address, he obtained a prediction accuracy of 98.1% on

the SPEC89 benchmarks [SPEC].

Speculative Computer Architectures 41

Hybrid predictors provide high prediction accuracy, but they must

bring data from several component prediction tables to compute a final

prediction. Unfortunately, this complexity adds more gate delay to the

process of making a prediction. Because the branch predictor is on the

critical path for fetching instructions, it must deliver a prediction in a single

cycle. Jiménez proposed in [Jim03b] an alternative predictor design that

completely hides prediction latency so that accuracy and hardware budget

are the only factors that affect the efficiency of the predictor. The key idea

is to organize the predictor so that a small set of candidate entries from the

prediction table is prefetched several cycles before the prediction is needed.

Because more possible target instructions are fetched and executed, when it

becomes known which entry from the prediction table must generate the

prediction, the final prediction can be selected in a single cycle.

Falcón et al. in [Fal04] introduced the prophet/critic hybrid branch

predictor, which has two component predictors that play the role of either

prophet or critic. The prophet is a conventional predictor that uses branch

history to predict the direction of the current branch. The critic uses both the

history and the future of the branch to give a critique of the prediction

provided by the prophet for the current branch. Thus, the critique is used to

generate the final prediction for the branch. In a conventional hybrid

predictor, both components are accessed in parallel. In the prophet/critic

hybrid predictor, although both prophet and critic predict the same branch,

the predictions are not initiated at the same time. The prophet generates the

prediction for the current branch in an early pipeline stage, and goes on

along the predicted path generating new predictions, thus providing branch

future. This allows the output of the prophet (branch future) to be used as

input to the critic, which provides its critique some cycles later. This

critique either agrees or disagrees with the prophet prediction, and

determines the final prediction for the branch. When the prophet mispredicts

a branch, the critic uses its future bits to train its prediction structures. When

the branch is encountered again, the critic uses the future bits as context to

identify if the prophet is likely to be wrong and should be overridden, thus

increasing the prediction accuracy.

Dynamic branch prediction with neural techniques was first proposed

by Vintan [Vin99a], exploring the use of learning vector quantization

(LVQ) method. In [Vin00b] Vintan analyzed the suitability for branch

prediction of the LVQ and a Multi-Layer Perceptron (MLP) with a single

intermediate layer using the backpropagation learning algorithm. The

author compared the performance of a two-level adaptive branch predictor

with the LVQ and MLP neural branch predictors. Both the classical and

neural schemes predicted based on the same information (PC, LHR, GHR).

42 Beyond the Limits of Modern Processors

While the LVQ predictor achieved results comparable to an equivalent

conventional predictor, both the statically pre-trained MLP and dynamically

trained MLP outperformed the two-level adaptive branch predictor. Taking

into account that all branches were predicted using only one global neural

predictor (LVQ or MLP) instead of a local neural predictor per branch, the

obtained results encouraged other researches in neural branch prediction

domain.

As a consequence Jiménez and Lin [Jim03a] proposed a two-level

scheme that uses fast per branch single-layer perceptrons instead of the

commonly used two-bit saturating counters. The branch address is hashed to

select the perceptron, which is used to generate a prediction based on global

branch history. The perceptron, one of the simplest neural networks, is a

natural choice for branch prediction because it can be efficiently

implemented in hardware. Other neural methods, such as backpropagation,

radial basis networks, Elman networks and Learning Vector Quantization,

were studied in [Ste01, Kim03, Ega03] but these methods are less attractive

because of excessive implementation costs. The single-layer perceptron

consists of one artificial neuron providing weighted connections between

several input units and one output unit. Figure 2.5 presents the structure of a

perceptron.

x11 x2 xn

y

w0 w1 w2 wn

Figure 2.5. The structure of a simple perceptron

A perceptron learns a target boolean function)...,,(1 nxxt of n inputs. In the

case of branch prediction, the ix are the bits of the branch history register,

and the target function predicts whether a particular branch will be taken.

Intuitively, a perceptron keeps track of positive and negative integer

correlations between branch history and the branch being predicted, each

weight iw representing the correlation between the output of an already

Speculative Computer Architectures 43

executed branch ix and the output of the branch being predicted (0w is the

bias weight). The output y of a perceptron is computed as

n

i

ii wxwy
1

0 (2.1)

The inputs are bipolar, thus each ix is either –1, meaning not taken or 1,

meaning taken. A negative output is interpreted as predict not taken while a

positive output is interpreted as predict taken.

Once the perceptron output y has been computed and the branch executed,

the following formula is used to train the perceptron:

nixtww

thentysignif

iii ...,,0,

)(

where t is the target behavior of the branch: -1 if the branch was not taken,

or 1 if it was taken. The weight iw is incremented when the branch outcome

agrees with ix , and it is decremented in the case of disagreement. Thus, for

a mostly agreed connection (positive correlation), the weight becomes large,

and when there is mostly disagreement (negative correlation), the weight

becomes negative with large magnitude. In both cases, the weight has a

large influence on the prediction. When there is a weak correlation, the

weight remains close to 0 contributing little to the output. Jiménez trained

the predictor using a special case of Rosenblatt’s perceptron learning rule

[Mit97]:

2)(
2

1
)(otWE (2.2)

For each input unit i, ,...,,1 ni calculate the error

i

iii

i xot
w

o
ot

w

ot
ot

w

WE
w

)()(

)(
)(

)(

 if ot the weights are not updated;

 if iii xtxttwot)(,1,1 for 5.0 ;

 if iii xtxttwot)(,1,1 for 5.0 .

Their predictor achieved increased accuracy by using long branch histories

without requiring exponential resources. Thus, for a 4KB hardware budget

44 Beyond the Limits of Modern Processors

they improved misprediction rates for the SPEC 2000 benchmarks [SPEC]

by 10.1%. In [Jim02] they developed a perceptron-based predictor that use

both local and global branch history in the prediction process, increasing the

accuracy by 14% over the McFarling-style hybrid predictor [McFar93]. In

[Jim01b] they compared the perceptron predictor with a Multi-Layer

Perceptron (MLP) using the backpropagation learning algorithm. At each

history length, the perceptron predictor was more accurate than the MLP.

Although backpropagation should be able to asymptotically exceed the

accuracy of the perceptron, the longer training time causes it to be slightly

less accurate overall.

Hunt et al. [Hun03] compared different perceptron-based predictors:

global predictors trained on global branch history, local predictors with each

of them trained on history of a single branch, and combined predictors that

use both local and global branch histories. They obtained the best prediction

accuracy of 96.41% with the combined predictor. They also demonstrated

that the perceptrons trained on bipolar data outperform the equivalent

systems trained on binary data.

In [Jim03c] Jiménez improved the previously presented neural

architecture obtaining prediction accuracy far superior to conventional

predictors but with a latency comparable to predictors from industrial

designs. He used a neural predictor that selects the vector of weights used to

generate prediction, according to the path leading up to a branch – based on

all branch addresses belonging to that path –, rather than according to the

branch address alone as the original perceptron does. Figure 2.6 depicts the

difference between the original perceptron and the path-based neural

predictor.

x1 x2 x3

y

x4x0

x1

x2

x3

y

x4

x0
Time

Figure 2.6. The output computation process with simple perceptron versus path-

based perceptron

Speculative Computer Architectures 45

This selection mechanism improves significantly the prediction accuracy,

because, due to the path information used in the prediction process, the

predictor is able to exploit the correlation between the output of the branch

being predicted and the path leading up to that branch. On the other hand,

the prediction latency of path-based neural predictors is lower (almost

completely hidden), because the computation of the output can begin far in

advance of the effective prediction, each step being processed as soon as a

new element of the path is executed. The most critical-timing operation is

the sum of the bias weight and the current partial sum. The path-based

neural predictor improves the instructions-per-cycle (IPC) rate of an

aggressively clocked microarchitecture by 16% over the original perceptron

predictor [Jim01a].

Seznec [Sez04] proposed an improved perceptron-based predictor

called redundant history skewed perceptron (RHSP). The author

demonstrated that the accuracy that can be achieved by a perceptron-based

predictor is significantly better than the one achieved by the original

perceptron predictor. This accuracy increase is allowed by the combination

of three techniques: use of a redundant history, pseudo-tagging, and

skewing. Their experiments showed that the use of a redundant history

introducing up to four bits to represent a branch significantly improves the

potential accuracy of the predictor. Pseudo-tagging is introduced in order to

decrease aliasing impact on the perceptron table by using a few bits of the

address as part of the input vectors. Thus, when several branches share a

perceptron, it will predict them correctly if it is able to linearly separate their

addresses. The skewing technique that also contributes to higher prediction

accuracy consists in splitting the table of perceptrons in distinct physical

tables. These distinct tables are indexed with different hashing functions.

Seznec also reduced the complexity of the computation and introduced the

ahead-pipelined RHSP that initiates prediction computation ahead. The

simulations showed lower prediction latency and the same prediction

accuracy.

Fern et al. [Fer04] proposed a dynamic decision tree (DDT) for

hardware prediction. The main idea of dynamic feature selection using DDT

is to provide branch prediction selecting and storing information about only

the most relevant features from the larger feature set. They use at each

decision tree node a correlation feature selector mechanism to select the

most predictive feature from a large set of candidate features. These

candidate features are the bits of the local and global branch history. The

correlation feature selector associates a signed counter to each feature in the

set. Thus, a large counter magnitude for a feature indicates its strongly

positive or negative correlation with the branch outcome. The correlation

46 Beyond the Limits of Modern Processors

feature selector is updated incrementing the counters for the features that

agree with the target outcome, and decrementing the remaining counters. In

the prediction process, the most correlated feature is selected from the set of

candidate features, including the constant feature. The purpose of the XOR

operations is to select either the value or its negation based on whether the

correlation counter indicates a positive or negative correlation.

Select

f1, f2, … fn

max.

counter

fsplit

MUX

MUX
use fsub

use fconst

child selection

fsub

right child predictionleft child prediction

Prediction

XORsign(csplit) fconst

XOR

1

sign(cconst)

Figure 2.7. Prediction process of an internal DDT node

The DDT maintains a summary information for each node indicating

whether the prediction should be made using a branch history feature, the

constant feature, or the prediction of the selected child. A child is chosen

based on the sign of the correlation between the selected feature and the

target outcome. Leaf nodes behave identically to internal nodes except they

do not have child predictors.

The DDT-based predictor is implemented using a prediction table.

Each location of the table stores the information of the nodes for a particular

tree. In prediction mode the prediction table is accessed with the lower-

order bits of PC, and the summary information for each node is read out.

The summary information at every node is used in conjunction with the

feature vector to select the decision to be made at that node: either to predict

based on a single feature or to pass the prediction to the appropriate child.

Once the parallel decision operations have occurred, the prediction process

Speculative Computer Architectures 47

identifies a single path of activated nodes from the root to one leaf. The only

operation that uses time proportional to the depth of the tree is the flow of

the prediction up the tree on the selected path from the leaf to the root.

When a target outcome is resolved the correlation feature selectors are

updated. The simulations on the SPEC’95 benchmarks [SPEC] indicated

that the DDT-based branch predictor performs comparable to conventional

two-level predictors with similar storage requirements. In domains with

many features the DDT has an advantage in terms of time over perceptrons,

because its prediction time depends only on tree depth and not on the

number of features.

Other state-of-the-art branch prediction schemes, more related with

our work, are presented in Chapter 4.

2.3. Dynamic Value Prediction

Value Prediction (VP) is a relatively new technique that is built on the

concept of value locality and increases performance by eliminating true data

dependencies. The main aim is to early predict instruction results during

their fetch or decode stages and to speculatively issue and execute data

dependent instructions using the predicted values. If the prediction is

incorrect, recovery mechanisms must be employed to squash speculative

results and reexecute all instructions that have already used the mispredicted

value. An important challenge of the VP technique is to compress the

program’s dynamic critical path and therefore to solve the so-called Issue

Bottleneck. If the predicted instructions do not belong to the critical path,

the technique is obviously not efficient in reducing the limitation of the

critical path. Therefore, the VP technique tries to avoid a fundamental

limitation in the present-day computing paradigm, the Read After Write

(RAW) data hazards, thus the intrinsic sequential program execution.

Lipasti et al. [Lip96a] first introduced Value Locality as the third facet

of the locality concept (temporal and spatial). They defined the value

locality as “the likelihood of the recurrence of a previously-seen value

within a storage location inside a computer system”. Measurements using

SPEC’95 benchmarks show that value locality on Load instructions is about

50% using a history of one (producing the same value like the previous one)

and 80%, using a history of 16 previous instances. Based on the dynamic

correlation between Load instruction addresses and the values being loaded,

Lipasti et al. proposed a new data-speculative micro-architectural technique

entitled Load Value Prediction that can effectively exploit value locality.

Load value prediction is useful only if it can be done accurately since

48 Beyond the Limits of Modern Processors

incorrect predictions can lead to increased structural hazards and longer

execution latency. Classifying the static Loads separately based on their

dynamic behavior (unpredictable, predictable and constants), the full

advantage of each case can be extracted. The cost of mispredictions can be

avoided by detecting the unpredictable Loads and also the cost of memory

access through identifying highly predictable Loads. The proposed Load

Value Prediction Unit consists of a direct mapped Load Value Prediction

Table (LVPT) for generating last value predictions, a direct mapped Load

Classification Table (LCT) that maintains 2-bit saturating counters in order

to classify Loads as unpredictable, predictable or constants and a Constant

Verification Unit (CVU) used for constant Loads. The CVU assures

coherence between the LVPT value and the real value from the main

memory. If a LVPT entry is classified as being constant, its LVPT index

and memory address are stored in the associative CVU table. Any entry

with data address matching a subsequent Store instruction is invalidated in

the CVU table, and the corresponding LCT counter transits into the

predictable state.

LVPT

Cache
Address

Predicted

 Value

Load PC

Actual

Value

Fetch

Disp

Ex1

Ex2

Comp

LCT

Predict?

Load Store

CVU

Verify?

Address

Figure 2.8. LVP Mechanism

The LVPT and LCT structures are indexed by the lower part of the PC and

simultaneously accessed in the fetch stage of the Load in order to generate a

value prediction and to determine whether or not a prediction should be

made, respectively. If the corresponding confidence counter is in the

unpredictable state, no prediction is generated. For Loads classified as

Speculative Computer Architectures 49

predictable, the LVPT is used to predict the value that was previously

loaded by that instruction from memory (last value prediction) and to

forward it to the dependent instructions. When the Load completes, the

predicted and actual values are compared, the LVPT and LCT are updated,

and the correct path is reexecuted in the case of misprediction (recovery).

For constant Loads that find a match in the CVU, accessing the

conventional memory system is completely avoided.

Lepak and Lipasti [Lep00a] introduced the Store locality concept and

Store prediction methods, with good results especially for multiprocessor

systems. Similarly with the approach of Load instructions, the Store value

locality was measured using PC (instruction-centric) or data address

(memory-centric). In both cases the value locality degree is between 30%

and 70%. The authors introduced the “silent Store” concept, meaning that a

Store writes the same value like its previous instance (34% – 68% of

dynamic Store instructions are silent Stores). Removing these Store

instructions at some points in the program’s execution (either statically at

compile time, or dynamically at run time), some potential benefit can be

gained in execution time and/or code size. They describe how is enhanced

the performance of uniprocessor programs by squashing silent stores: the

pressure on cache write ports and on Store queues is reduced and the data

bus traffic outside the processor chip is also decreased. The free silent Store

squashing concept is based on idle read port stealing to perform Store

verifies and aggressive Load/Store Queue to exploit temporal and spatial

locality for Store squashing [Lep00b].

In [Saz97] Sazeides and Smith developed an empirical classification

of value sequences produced by instructions. There are two kinds of value

predictability existing in programs: value repetition and value

computability. In order to capture these certain types of value predictability,

the authors have been proposed two distinct main categories of predictors:

computational and contextual. Two important characteristics were also

defined for understanding prediction behavior. One is the Learning Time

(LT), which is the number of values that have to be observed before the first

correct prediction. The second is the Learning Degree (LD), which is the

percentage of correct predictions following the first correct prediction.

Computational predictors are predicting the next value based on some

previous values in an algorithmic manner, therefore according to a

deterministic recurrence formula. The simplest computational predictors are

the last value predictors (LVP) that perform a trivial computational

operation: the identity function. The next value of a static instruction is

predicted as being the most recent value produced by that instruction. LVP

were used for the first time in [Lip96a] to predict Load values and in

50 Beyond the Limits of Modern Processors

[Lip96b] the value prediction process was extended to other instruction

types.

State Value

Predicted Value

Value History

 Table

 (VHT)

index Hash

Function

=

Prediction

Valid

Tag

PC

Tag

Figure 2.9. Last Value Predictor

The value history table is indexed by the instruction address. Each

entry in the prediction table has three fields: Tag, State and Value. The Tag

field stores the identity (the lower part of the PC) of the instruction that is

currently mapped to that entry, and the Value field stores the last result for

that instruction. The State field represents a saturating confidence counter

(automaton), which is incremented when the prediction is correct and is

decremented otherwise. The verification of the values generated by the

VHT is necessary. The state of the confidence counter will be changed

according to the comparison between the predicted and actual values.

In [Lip96b] Lipasti and Shen introduced another computational

predictor, the stride predictor, and Sazeides and Smith in [Saz97]

generalized the idea. A stride sequence is a value sequence in which the

next value can be computed by the immediate previous value and a stride.

Stride predictors in their simplest form predict the next value by adding the

most recent value to the difference of the two most recent values produced

by an instruction. The structure of the stride predictor is presented in Figure

2.10. The experimental results indicated that the performance of

computational prediction varies between instruction types indicating that its

performance can be further improved if the prediction function matches the

functionality of the predicted instruction.

Speculative Computer Architectures 51

Hash

Function

Tag State Value Stride

+=

Prediction

Valid

Predicted

Value

Value History

 Table

 (VHT)

index

Tag

PC

Figure 2.10. Stride Predictor

Figure 2.11 presents a generic scheme for a context-based predictor.

During the instruction fetch stage the context from VHT (Value History

Table) is addressed using the PC. This context will address the VPT (Value

Prediction Table). A location from VPT contains two fields: Val and Confid.

The Val field stores the last instruction value(s), and the Confid field stores

the confidence degrees attached to each value from the Val field.

Context

VHT

PC

ConfidVal

Predicted Value

VPT

Selector

Figure 2.11. A generic context-based predictor scheme

52 Beyond the Limits of Modern Processors

The value with the highest confidence is predicted only if this

confidence is greater than a certain threshold. Practically the scheme

represents a simplified feasible implementation of the generic PPM

predictor (because it counts the frequencies for each value following a

certain context). Obviously, there might be some interferences in the PHT.

An interesting solution in this sense is given in [Des02] where the authors

proposed to use a second hashing function, independent of the first one.

They use independent hashing as confidence mechanism for value

prediction. Figure 2.12 shows this hashing mechanism. The interferences

are strongly reduced with great benefits on prediction accuracy.

hash2

VHT

PC

Valuehash2

VPT

hash1

=

Confidence

Figure 2.12. Independent hashing

In [Wan97] Wang and Franklin introduced a two-level value predictor

for data value prediction (see Figure 2.13). The VHT has four fields: Tag,

LRU, Data Values, and Value History Pattern. The Data Values field stores

up to four most recent unique values. There is a statistical explanation for

using only the last four values: 15% – 45% of instructions produce only one

value in their last 16 dynamic instances and 28% – 67% produce maximum

four distinct values. The four values are associated with the binary encoding

{00, 01, 10, 11}. So long as the different instances of a static instruction

keep producing one of these four values, the next value can be predicted by

selecting one of the four outcomes. When a fifth unique value is produced,

it replaces from the Data Value field the least recently seen value, based on

the LRU field that keeps a counter for each stored value. The Value History

Pattern (VHP) field stores a 2p bit pattern representing the last p outcomes

Speculative Computer Architectures 53

of an instruction. Because there are four possible outcomes for an

instruction {00, 01, 10, 11}, two bits are required to store each outcome.

The VHP field is used to index a second prediction level, the Pattern History

Table (PHT). For each possible 2p bit pattern, four independent up/down

counter values {C0, C1, C2, C3} are stored in the PHT, representing a

condensed history of the previous outcomes of the pattern. When a

prediction is to be made, the maximum counter is determined from the

selected PHT entry, and the outcome corresponding to that counter is

predicted. If KCCCCCMAX),,,(3210 then the outcome of the MAX

circuit is the binary code of K on two bits. A prediction is furnished only if

the maximum counter value is greater than a specific threshold value. The

two-level predictor is updated as follows. The VHP field of the selected

VHT entry is shifted left by two bits and the new outcome is entered. The

counter from the selected PHT entry corresponding to the correct outcome

is incremented by 3, and all the other counters are decremented by 1.

LRU Data Values

Predicted

Value

Value History

Table

(VHT)

VHP

MUX

4:1

C0 C1 C2 C3

Pattern History

Table

(PHT)

MAX

2

2p

indexHash

Function

=

Prediction

Valid

Tag

PC

Tag LRU Data Values

Predicted

Value

Value History

Table

(VHT)

VHP

MUX

4:1

MUX

4:1

C0 C1 C2 C3

Pattern History

Table

(PHT)

MAX

2

2p

indexindexHash

Function

=

Prediction

Valid

Tag

PC

Tag

Figure 2.13. Two-level adaptive value predictor

The results of laborious simulations on SPEC benchmarks [SPEC]

pointed out that a single predictor cannot capture all the various types of

predictability patterns that occur in programs. This suggests that a hybrid

scheme might be useful for enabling high prediction accuracy at lower cost

[Wan97]. Although the hybrid value predictors can provide more correct

predictions than single predictors, they consume more hardware resources.

More important, they can waste the limited available hardware resources,

54 Beyond the Limits of Modern Processors

since every instruction being predicted occupies a unique entry in each of

the component predictors. In [Wan97] Wang and Franklin proposed a

hybrid of two-level and stride predictors, with a fixed prioritization of its

component predictors (Figure 2.14).

LRU Data Values

Value History

Table

(VHT)

VHP

MUX

4:1

Predicted

Value

C0 C1 C2 C3

Pattern History

Table

(PHT)

MAX

2

2p

State Stride

MUX

4:1 +

MUX

2:1

indexHash

Function

=

Prediction

Valid

Tag

PC

Tag LRU Data Values

Value History

Table

(VHT)

VHP

MUX

4:1

MUX

4:1

Predicted

Value

Predicted

Value

C0 C1 C2 C3

Pattern History

Table

(PHT)

MAX

22

2p

State Stride

MUX

4:1

MUX

4:1 +

MUX

2:1

MUX

2:1

indexindexHash

Function

=

Prediction

Valid

Tag

PC

Tag

Figure 2.14. Hybrid (two-level, stride) predictor

In the proposed hybrid predictor the two-level predictor has always

priority, thus the stride predictor is used only when the two-level predictor

does not make a prediction. In our opinion, this fixed prioritization is not

optimal but it is quite simple to be implemented; a dynamic prioritization

based on some confidences should be better, but in this case a dynamic

(adaptive) metapredictor should be necessary in order to select the best

predictor at a certain moment. Rychlik et al. in [Ryc98] combined a last-, a

stride-, and a two-level value predictor to an overall hybrid value predictor.

In order to efficiently use the hardware resources, they provided a dynamic

classification scheme that distributes instructions into proper component

predictors during run-time, but unfortunately, without prediction accuracy

improvements. Wang et al. [Wan99] modified the dynamic classification

scheme by reclassifying instructions after they cannot be predicted well by

their previously assigned component predictor. Their modification improved

this kind of hybrid value predictor.

Speculative Computer Architectures 55

Calder et al. [Cal99] proposed some selective techniques in order to

reduce the pressure on the prediction tables, by filtering the instructions that

accessed these resources. The ideal case is to select those dynamic

instructions that belong to the critical path. For simplicity, the authors

proposed a technique that gives priority for prediction to those instructions

that belong to the current longest data dependence chain from the

instruction window. Their results show that concentrating only on Loads, is

a reasonable filtering approach since Load latencies are responsible for most

of the critical paths in integer programs. It is also important to concentrate

on Store instructions that can provide significant gains, even if those

instructions are hard to predict. For prediction tables of 1024 entries they

report an average performance growth of about 11%, comparing with a

classical superscalar structure.

Gabbay and Mendelsohn [Gab98] developed a register-file predictor

that is the closest predecessor to our register value prediction technique

(presented in Chapter 6). They predict the destination value of a given

instruction according to the last previously seen value and the stride of its

destination register. They have also proposed a dedicated analytical model

for determining the speedup involved by a value prediction architecture.

Unfortunately the authors did not pursue further this particular idea by

systematically developing new register-centric predictors and evaluating

them through simulations.

Zhou et al. [Zho03] have studied a new type of value locality, named

computational locality in the global value history. They demonstrated that

value locality also exists in the global value history, which is the value

sequence produced by all dynamic instructions according to their execution

order. As a consequence, a novel predictor scheme, the so-called gDiff

predictor, is proposed to exploit one special and common case of this

computational locality, stride-based global locality. Thus, the gDiff predicts

based on the formula DXX knn , where D is the stride value.

Experiments show that very strong stride-based locality exists within global

value histories. Predicting all value-producing instructions, the gDiff can

achieve a prediction accuracy of 73%.

Other state-of-the-art value predictors, including our original register

value prediction techniques, are presented in Chapter 6.

“Prediction is very difficult,

especially about the future”

Niels Bohr

3. Finding Difficult-to-Predict Branches

Since the performances of modern speculative architectures highly depend

on branch prediction accuracy, we will further focalize on some branch

prediction limitations, namely, on hard-to-predict branches. Our first goal is

to identify difficult branches in the SPEC 2000 benchmarks [SPEC]. We

consider that a branch in a certain context is difficult-to-predict if it is

unbiased (the branch behavior is not sufficiently polarized for that certain

context) and the taken and not taken outcomes are non-deterministically

shuffled. The second goal is to improve prediction accuracy for branches

with low polarization rate, introducing new feature sets that will increase

their polarization rate and, therefore, their predictability.

3.1. Related Work

Representative hardware and compiler-based branch prediction methods

have been developed in recent years in order to increase instruction-level

parallelism. Branch prediction is an important component of modern

microarchitectures, despite of their deeper pipelines that increased

misprediction latency. Therefore, improvements in terms of branch

prediction accuracy are essential in order to avoid the penalties of

mispredictions. In this section we presented only the works that are most

closely related to our proposed novel approach.

Chang et al., introduced in [Cha94] a mechanism that classifies

branches into groups of highly biased (mostly-one-direction branches) and

unbiased branches, in an attempt to reduce the impact of aliasing. By

profiling, branches were classified according to their dynamic taken rate and

assigned to the most appropriate dynamic predictor. With their branch

classification model the authors showed that using a short history for the

biased branches and a long history for the unbiased branches improves the

performance of the global history Two-Level Adaptive Branch predictors.

In contrast to our work, the authors are classifying branches irrespective of

their attached context (local and global histories, etc.) involving thus an

Finding Difficult-to-Predict Branches 57

inefficient approach. Due to this rough classification the corresponding

predictors are not optimally chosen, simply because it is impossible to find

an optimal predictor for some classes.

Mahlke et al., proposed in [Mah94] a compiler technique that uses

predicated execution support to eliminate branches from an instruction

stream. Predicated execution refers to the conditional execution of an

instruction based on the value of a boolean source operand – the predicate

of the instruction. This architectural support allows the compiler to convert

conditional branches into predicate defining instructions, and instructions

along alternative paths of each branch into predicated instructions.

Predicated instructions are fetched regardless of their predicate value. Thus,

instructions whose predicate value is true are executed normally, whereas

instructions whose predicate is false are nullified. Predicated execution

offers the opportunity to improve branch handling in superscalar processors.

Eliminating frequently mispredicted branches may lead to a substantial

reduction in branch prediction misses, and as a result, the performance

penalties associated with the eliminated branches are removed. The authors

use compiler support for predicated execution based on a structure called

hyperblock. The goal of hyperblock formation is to group basic blocks

eliminating unbiased branches and leaving highly biased branches. They

selected the unbiased branches based on taken frequency distributions. Their

experimental results show that leaving only highly biased branches with

predicated execution support, the prediction accuracy is higher.

Nair has first introduced dynamic branch prediction based on path

correlation [Nair95]. The basic observation behind both pattern-based and

path-based correlation is that some branches can be more accurately

predicted if the path leading to these branches is known. Path-based

correlation attempts to overcome the performance limitations of pattern-

based correlation arising from pattern aliasing situations, where knowledge

of the path leading to a branch results in higher predictability than

knowledge of the pattern of branch outcomes along the path. Nair proposed

a hardware scheme which records the path leading to a conditional branch in

order to predict the outcome of the branch instruction more accurately. He

adapted a pattern-based correlation scheme, replacing the pattern history

register with a g-bit path history register which encodes the target addresses

of the immediately preceding p conditional branches. Ideally, all bits of the

target address should be used to ensure that each sequence of p addresses

has a unique representation in the register. Since such schemes are too

expansive to be implemented in hardware, Nair used a simplified scheme

which uses a subset of q bits from each of the target addresses. Limiting the

number of bits from the branch address could result path aliasing – the

58 Beyond the Limits of Modern Processors

inability of the predictor to distinguish two distinct paths leading to a

branch. Unfortunately, this path correlation scheme does not show any

significant improvement over pattern-based correlation [Nair95]. Nair’s

explanation for this is that for a fixed amount of hardware in the prediction

tables, path-based correlation uses a smaller history than pattern-based

correlation because the same number of bits represents fewer basic blocks in

the path history register than branch outcomes in the pattern history register.

Despite this, path based correlation is better than pattern-based correlation

on some benchmarks – especially when history information is periodically

destroyed due to context switches –, indicating that with a better hashing

scheme the pattern correlation schemes could be outperformed.

A quite similar approach is proposed by Vintan and Egan in [Vin99b]

– their paper represents the genesis of the original work presented in this

chapter. The authors illustrated, based on examples, how a longer history

could influence the behavior of a branch (changing it from unbiased to

biased). They also showed that path information could also reduce branch

entropy. The main contribution of this paper is related to the prediction

accuracy gain obtained by extending the correlation information available in

the instruction fetch stage. Based on trace-driven simulation the authors

proved for relatively short global branch history patterns, that a path-based

predictor overcomes a pattern-based predictor at the same hardware budget.

The main difference, comparing with Nair’s approach, is that here the

authors are using both the path- and history information in order to do better

predictions. They show that a scheme based on this principle performs

better than a classical GAp scheme, at the same level of complexity.

Particularly useful information has been gleaned regarding the interaction

between path length and the number of replacements required in the PHT.

Desmet et al. [Des04] proposed a different approach for branch

classification. They evaluated the predictive power of different branch

prediction features based on the Gini-index metric, which is used as

selection measure in the construction of decision trees. Actually, the Gini-

index is a metric of informational energy and in this case is used to identify

the branches with high entropy. In contrast to our work Desmet used as

input features both dynamic information (global and local branch history)

and static information (branch type, target direction, ending type of taken-

successor-basic-block). V. Desmet compared in her PhD thesis [Des06]

different branch prediction information, including local/global branch

history and path information, from the entropy point of view. An important

difference between our approach and Desmet’s is that we measured per

dynamic branch-context polarization and presented the average percentage

Finding Difficult-to-Predict Branches 59

of branch contexts having polarization less than 0.95, whereas Desmet

measured per branch entropy and presented the average entropy.

Yokota et al. present in [Yok08] the information entropy concept from

the branch prediction point of view. They proposed two entropy measures:

Branch History Entropy (BHe) representing the entropy of global branch

history and Branch Instruction Entropy (BIe) for local branch history. They

also defined the entropy of prediction function, called Table Entry Entropy

(TEe), as the entropy of the input sequence to a prediction function, and

Table Reference Entropy (TRe) representing the number of active table

entries determined based on the number of references. The authors

measured these entropies in every 1,000,000 branches time-window from

the SPEC 2000 benchmarks. They show that the BHe, BIe and TEe

entropies are correlated with prediction limits and can derive expected

prediction performance. Thus, BHe and BIe show prediction limits by

global and local history, while TEe shows theoretical limits on the predictor

organization.

In [Hei99a] the authors identified some program constructs and data

structures that create “hard to predict” branches. In order to accurately

predict difficult branches the authors find additional correlation information

beyond local and global branch history. In their approach the prediction

table is addressed by a combination between structural information, value

information and history of values that are tested in the condition of

respective branch. Unlike our work, Heil et al. did not use the path history

information in order to do better predictions. Using the proposed prediction

method based on data values significantly improves prediction accuracy for

some certain difficult branches but the overall improvements are quite

modest. However there are some unsolved problems: they tested only

particular cases of difficult branches, and also, they did not approach branch

conditions with two input values. Their final conclusion suggests that

researchers must focus on the strong correlation between instructions

producing a value and the branch condition that would be triggered by that

certain value.

Chappell et al. [Cha02b] investigated difficult-to-predict branches in a

Simultaneous Subordinate Micro-Threading (SSMT) architecture. The

authors defined a difficult path as having a terminating branch which is

poorly predicted when it executes from that path. A path represents a

particular sequence of control-flow changes. It is shown that between 70%

and 93.5% of branch mispredictions are covered by these difficult paths,

involving thus a significant challenge in the branch prediction paradigm.

The proposed solution in dealing with these difficult predictable branches

consists in dynamically constructing micro-threads that can speculatively

60 Beyond the Limits of Modern Processors

and accurately pre-compute branch outcomes, only along frequently

mispredicted paths. Obviously, micro-thread predictions must arrive in time

to be useful. Ideally, every micro-thread would complete before the fetch of

the corresponding difficult branch. By observing the data-flow within the

set of instructions guaranteed to execute each time the path is encountered,

it can be extracted a subset of instructions that will pre-compute the branch.

The proposed micro-architecture contains structures to dynamically identify

difficult paths (Path Cache), construct micro-threads (Micro-Thread

Builder) and communicate predictions to the main thread. The proposed

technique involves a realistic average speedup of up to 10%, but the average

potential speedup through perfect prediction of these difficult branches is

about 100%, suggesting the fertility of the idea. Unfortunately the authors

did not investigate why these paths, and their associated final branches, are

difficult to predict. In other words, a very important question is: why these

“difficult paths” frequently lead to mispredictions? We could hope that we

already gave the answer in our paper [Vin06], because these “difficult

branches” might be, at least partially, exactly the unbiased branches in the

sense defined by us during the paragraph 3.2. They could be more

predictable even in a single threaded environment, by sufficiently growing

history pattern length or extending prediction information, as we show in

this chapter. Thus, our hypothesis is that the SSMT environment represents

a sufficient solution in order to partially solve these difficult branches, as

the authors have shown, but not a necessary one.

Gao et al. have focused in [Gao08] on hard-to-predict branches that

depend on long-latency cache-missing Loads. These dependences involve

high-penalty mispredictions becoming serious performance obstacles and

causing significant performance degradation in executing instructions from

wrong paths. The authors describe the correlation existing between these

Load-dependent hard-to-predict branches and the addresses of the producer

Loads. This correlation is based on the observation that major data

structures from some memory-intensive applications (especially those with

heavy pointer chasing) tend to remain stable. If a branch is dependent on

such stable data, the Load address instead of the Load value is sufficient to

determine the branch outcome. Therefore, the branch can be solved once the

corresponding Load address is known, much earlier than the Load value.

The authors exploit the address-branch correlation through a dedicated

scheme consisting in the hardware that dynamically captures Load/Branch

pairs and in an Address-Branch Correlation Based Predictor (ABC). In the

ABC predictor, stable address-branch correlation information is maintained

within a prediction table. When a producer address is known, this prediction

table is accessed to see whether the address has stable correlation with a

Finding Difficult-to-Predict Branches 61

consumer branch. In the case of hit, the branch outcome is predicted and the

prediction is used as either a prioritized one when the branch has not been

fetched yet or an overriding one when the branch has already been fetched

based on the prediction of the primary branch predictor. The experimental

results performed on a set of memory-intensive SPEC 2000 benchmarks

show that augmenting a 16KB TAGE branch predictor with a 9KB ABC

predictor reduces the execution time by 6.3% and the energy consumption

by 5.2%.

Another class of hard-to-predict branches are indirect jumps, which

are used to implement common programming language constructs such as

virtual function calls, switch-case statements, polymorphism and interface

calls. Unfortunately, the prediction accuracy of indirect branches is still very

low because many indirect branches have multiple targets that are difficult

to predict even with specialized hardware. In [Flo05a, Flo04] Florea

extracted some typical features and corpus of procedural and object-oriented

applications or execution characteristics of desktop applications that

generate indirect jumps and calls. Starting from the necessity of

implementing new performing indirect branch prediction schemes, but

taking into account their hardware feasibility desiderate, the author showed

that a modified Target Cache structure, based on confidence mechanism and

indexed with extended global correlation information, represents a more

simpler and feasible solution that could replace the more complex PPM

(prediction by partial matching) predictor. He also determined based on

laborious simulations what is the optimum search pattern when different

contexts are used. Using profile information, Florea and Vintan developed

in [Flo05b] a hybrid predictor with arity-based selection that improves

indirect branch prediction accuracy reaching in average 93.77%, which is

comparable with a more complex multi-stage cascaded predictor.

Kim et al. proposed in [Kim07] a new technique for handling indirect

branches, called Virtual Program Counter (VPC) prediction, which seems to

be the first low-cost dynamic mechanism that uses the existing conditional

branch prediction hardware to predict the targets of indirect branches,

without requiring any program transformation or compiler support. The key

idea of the proposed Virtual Program Counter (VPC) technique is to treat an

individual indirect branch as a sequence of multiple virtual conditional

branches in order to predict them in hardware more accurately (using

history information). VPC prediction dynamically de-virtualizes an indirect

branch. Unlike compiler-based de-virtualization, VPC prediction can be

applied to any indirect branch regardless of the number and locations of its

targets. A main advantage is that in this way any existing conditional branch

predictor can be used instead of special predictors dedicated to indirect

62 Beyond the Limits of Modern Processors

branches (indirect jumps, indirect calls), maintaining thus low costs and

complexity. Therefore, further improving conditional branch prediction will

involve automatically improving VPC technique. The evaluations showed

that VPC prediction improves average performance by 26.7% compared to a

commonly used branch target buffer. Unfortunately, VPC prediction is a

multi-step iterative algorithm, therefore taking many (multiple) cycles. This

essential timing problem is not quite clearly solved in the paper.

3.2. Methodology of Identifying Unbiased Branches

Based on our previous work already published in [Gel06a, Vin06, Oan06,

Gel07c, Gel08c] we are presenting in this paragraph the methodology of

finding difficult-to-predict branches, as they are defined in our approach. As

we have already pointed out in Chapter 2, for each processed dynamic

branch, the prediction is achieved based on some binary context information

(local or global branch history, the path leading up to the branch, etc.). We

have statistically observed that some dynamic branches occurring in certain

contexts have a highly unbiased behavior. We consider that a branch in a

context is difficult-to-predict if it is unbiased – meaning that the branch

behavior (taken / not taken) is not sufficiently polarized for that certain

context (local branch history, global history, etc.) – and the taken and not

taken outcomes are shuffled. Therefore, we evaluate the impact of unbiased

branches on different commonly used features.

We called feature the binary context on p bits of prediction

information such as local history, global history or path. Each static branch

finally has associated k dynamic contexts in which it can appear (pk 2). A

context instance is a dynamic branch executed in the respective context. We

introduce the polarization index (P) of a certain branch context as follows:

5.0,

5.0,
),max()(

01

00

10
ff

ff
ffSP i

 (3.1)

where:

 kSSSS ...,,, 21 = set of distinct contexts that appear during all

branch instances;

 k = number of distinct contexts,
pk 2 , where p is the length of the

binary context;

Finding Difficult-to-Predict Branches 63

NTT

NT
f

NTT

T
f

 10 , , NT = number of not taken branch

instances corresponding to context Si, T = number of taken branch

instances corresponding to context Si, ki ...,,2,1)(, and

obviously 110 ff ;

 if kiSP i ...,,2,1)(,1)(, then the context iS is completely

biased (100%), and thus, the afferent branch is highly predictable;

 if kiSP i ...,,2,1)(,5.0)(, then the context iS is totally

unbiased, and thus, the afferent branch might be not predictable if

the taken and not taken outcomes are shuffled.

If the taken and not taken outcomes are grouped separately, even in

the case of a low polarization index, the branch is predictable. The unbiased

branches are not predictable only if the taken and not taken outcomes are

chaotically shuffled, because in this case, the predictors cannot learn their

behavior. We introduce the distribution index (shuffle degree) for a certain

branch context, defined as follows:

0,

),min(2

0,0

)(
t

t

t

i
n

TNT

n

n

SD (3.2)

where:

 nt = the number of branch outcome transitions, from taken to not

taken and vice-versa (10 or 01), in a certain context Si;

),min(2 TNT = maximum number of possible transitions;

 k = number of distinct contexts, pk 2 , where p is the length of the

binary context;

 if kiSD i ...,,2,1)(,1)(, then the behavior of the branch in

context Si is “contradictory” (unfavorable cases), and thus its

learning is impossible;

 if kiSD i ...,,2,1)(,0)(, then the behavior of the branch in

context Si is constant (favorable cases), and it can be learned.

As it can be observed in Figure 3.1, we want to systematically analyze

different feature sets used by different present-day branch predictors in

order to find and, hopefully, to reduce the list of unbiased branch contexts

(contexts with low polarization P).

64 Beyond the Limits of Modern Processors

GH
16 bits

LH
16 bits

GH
20 bits

LH
20 bits

GH
p bits

LH
p bits

U

U

U

U

U

Unbiased

branches

GH
16 bits

GH
16 bits

LH
16 bits

LH
16 bits

GH
20 bits

GH
20 bits

LH
20 bits

LH
20 bits

GH
p bits

GH
p bits

LH
p bits

LH
p bits

U

U

U

U

UUU

Unbiased

branches

Unbiased

branches

Figure 3.1. Reducing the number of unbiased branches through feature set

extension

We approached an iterative methodology: we evaluate and reduce the

number of unbiased branches by passing them through successive cascades

of different prediction contexts (feature sets). Gradually this list is shortened

by increasing the lengths of feature sets (from 16 to 28 bits) and reapplying

the algorithm. Thus, the final list of unbiased branches contains only the

branches that were unbiased throughout all their contexts, being therefore

identified as difficult-to predict. For the final list of unbiased branches we

will try to find new relevant feature sets in order to further improve their

polarization index and, therefore, the prediction accuracy.

This approach is more efficient than one which repeats each time the

algorithm on all branches. Beside producing some unpleasant aspects

related to simulation time (days / benchmark) and memory (gigabytes of

memory needed), the second method would prove even not very accurate.

This is because some of the branches that are not solved by a long context

can be solved by a shorter one. Through our iterative approach we avoided

the occurrence of false problems extending the context.

In [Oan06] we have studied the polarization of branches but using a

little different simulation methodology. We evaluated local history

concatenated with global history. The simulation methodology is presented

in Figure 3.2.

Finding Difficult-to-Predict Branches 65

LHR
16 bits

GHR
16 bits

LHR
16 bits

GHR
20 bits

LHR
20 bits

GHR
24 bits

LHR
24 bits

GHR
28 bits

LHR
28 bits

GHR
32 bits

LHR
32 bits

Remaining
unbiased branches

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

LHR
16 bits

GHR
16 bits

LHR
16 bits

GHR
20 bits

LHR
20 bits

GHR
24 bits

LHR
24 bits

GHR
28 bits

LHR
28 bits

GHR
32 bits

LHR
32 bits

Remaining
unbiased branches

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

Figure 3.2. Identifying unbiased branches by using the local history concatenated

with the global history

Figure 3.3 presents a suggestive example on how unbiased branch

contexts can be solved through their extension. We considered that a branch

context is unbiased if its polarization index (see relation (3.1)) is less than

0.95. The branch contexts with polarization greater than 0.95 are quite

predictable and will obtain relatively high prediction accuracies (around

95%). More details are presented in [Flo07a, Flo07b] on a real example

from the Stanford Perm benchmark.

0 1 1 0 1 0 1 0

Context (8 bits)

– 750 T and 250 NT P=0.75

0 0 1 1 0 1 0 1 0

1 0 1 1 0 1 0 1 0

– 500 T, 0 NT P=1.0

– 250 T, 250 NT P=0.5

Context (9 bits)

Context (9 bits)
Context extension

Context extension

0 1 1 0 1 0 1 0

Context (8 bits)

– 750 T and 250 NT P=0.75

0 0 1 1 0 1 0 1 0

1 0 1 1 0 1 0 1 0

– 500 T, 0 NT P=1.0

– 250 T, 250 NT P=0.5

Context (9 bits)

Context (9 bits)
Context extension

Context extension

Figure 3.3. The goal of context extension

In our experiments we concentrated only on benchmarks with a

percentage of unbiased branch context instances (obtained with relation

(3.3)), greater than a certain threshold (T=1%) considering that the potential

prediction accuracy improvement is not significant in the case of

66 Beyond the Limits of Modern Processors

benchmarks with percentage of unbiased context instances less than 1%. If

the percentage of unbiased branch contexts is 1%, even if they would be

solved, the prediction accuracy would increase with maximum 1%. This

maximum can be reached when the predictor solves all discovered difficult-

to-predict branches.

01.0
i

i

NB

NUB
T (3.3)

where NUBi is the total number of unbiased branch context instances on

benchmark i, and NBi is the number of dynamic branches on benchmark i

(therefore, the total number of branch context instances).

3.3. An Analytical Model for Determining Relative

IPC Speedup

High prediction accuracy is vital especially in the case of multiple

instruction issue processors. Further, we assume the analytical models

proposed in [Cha94, Vin07], a superscalar processor that ignores stalls like

cache misses and bus conflicts, focalizing only on the penalty introduced by

branch misprediction. Considering as Branch Penalty (BP) the average

number of cycles wasted for each dynamic instruction due to a branch

misprediction, the following relation can be written:

IRbApCBP)1([wasted clock / instruction] (3.4)

where we denoted:

C = number of penalty cycles wasted due to a branch misprediction;

Ap = prediction accuracy;

b = the ratio of branches (the number of branches reported to the total

number of instructions);

IR = the average number of instructions that are executed per cycle

(the superscalar factor of architecture; >1).

Further, we computed how many cycles the execution of each instruction

take for a real superscalar processor that includes a branch predictor:

BPCPICPI idealreal [clock cycle / instruction] (3.5)

where:

Finding Difficult-to-Predict Branches 67

CPIideal = the average number of cycles per instruction considering

perfect branch prediction)0%100(BPAp . It is

obvious that 1idealCPI .

CPIreal = the average number of cycles per instruction considering real

branch prediction

)0%100(idealreal CPICPIBPAp .

Therefore, the real processing rate (the average number of instructions

executed per cycle) results immediately from the following formula:

BPCPICPI
IR

idealreal

real

11

 [instruction / clock cycle] (3.6)

Relation (3.6) proves the non-linear correlation between processing rate (IR)

and prediction accuracy (Ap). With these metrics, we adapted the model to

our results. Further, we use the following notations:

x = the ratio of biased context instances;

x1 = the ratio of unbiased context instances.

Since Apglobal represents a weighted mean among prediction accuracies

applied both to biased and unbiased branches, it can be determined the

biased prediction accuracy Apbiased.

unbiasedbiasedglobal ApxApxAp)1((3.7)

Therefore, further we determined how much is influenced the branch

penalty (BP) by the growth of the context length and what is the speedup in

these conditions. For this, we softly modified Chang’s model (3.8) [Cha94]

by substituting Ap with our Apglobal, according to relation (3.7). Thus, the

penalty introduced by mispredicting biased branches is the term

xApbiased)1(, and it is)1(x by mispredicting unbiased branches

)0(unbiasedAp .

IRbApCBP)1((3.8)

)1(biasedApxIRbCBP (3.9)

A lower percentage of unbiased branches)1(x obtained by extending the

context length, leads to a reduction of branch penalty (BP) according to

(3.9), and implicitly to a greater IR according to (3.6). It can be written:

Context Length => x => BP => IR => Relative Speedup>0.

68 Beyond the Limits of Modern Processors

Relative Speedup 0
)16(

)16()(

IR

IRLIR
 (3.10)

We computed the relative IR speedup according to relation (3.10), where L

is the feature’s length, L {20, 24, and 28}.

3.4. Experimental Results

All simulation results are reported on 1 billion dynamic instructions

skipping the first 300 million instructions from the SPEC 2000 benchmarks

[SPEC] and on all instructions from the INTEL benchmarks [CBP04]. We

note with LH(p) a local history of p bits, GH(p) a global history of p bits,

LH(p)-GH(p) their concatenation, and PATH(p) a path consisting in p PCs.

3.4.1. Pattern-Based Correlation

We started our study evaluating the branch contexts from SPEC 2000

benchmarks [SPEC] on local branch history of 16 bits. In Table 3.1, for

each benchmark we presented the percentages of branch contexts with

polarization indexes belonging to five different intervals. The column

Dynamic Branches contains the number of all dynamic conditional branches

for each benchmark, whereas the Static Branches column contains the

number of static branches. For each benchmark we generated using relation

(3.1) a list of unbiased branch contexts, having polarization less than 0.95.

We considered that the branch contexts with polarization greater than 0.95

are predictable and will obtain relatively high prediction accuracies (around

0.95), therefore, in these cases we considered that the potential

improvement of the prediction accuracy is quite low.

SPEC

2000

Dynamic

Branches

Static

Branches
Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

bzip 42591123 211 15.86 16.50 8.58 6.94 52.12 11252986 26.42%

gzip 71504537 136 15.08 15.63 11.03 9.50 48.76 27692102 38.73%

mcf 118321124 370 10.06 10.50 8.17 8.52 62.74 6812313 5.76%

parser 85382841 1777 6.67 5.90 3.68 4.56 79.19 17589658 20.60%

twolf 70616018 239 14.49 12.72 6.92 5.34 60.54 31763071 44.98%

gcc 90868660 17248 3.06 2.68 1.72 2.30 90.24 9809360 10.80%

Average 79880717 3330 10.87 10.65 6.68 6.19 65.59 17486582 24.55%

Table 3.1. Polarization rates of branch contexts on local history of 16 bits

Finding Difficult-to-Predict Branches 69

The column Unbiased Context Instances contains – for each benchmark –

the number of unbiased context instances and their percentage reported to

all context instances (dynamic branches). As it can be observed in Table

3.1, the relatively high percentages of unbiased branches (at average

24.55%) show high improvement potential from the predictability point of

view.

We continue our work analyzing a global branch history of 16 bits

only on the local branch contexts that we have already found unbiased for

local branch history (see Table 3.1 – last column). In other words, we used a

dynamic branch in our evaluations only if its 16 bit local context is one of

the unbiased local contexts. In Table 3.2, for each benchmark we presented

again the percentages of branch contexts with polarization indexes

belonging to five different intervals.

SPEC

2000

Simulated

Dynamic

Branches

Simula-

ted Static

Branches

Polarization Rate (P) [%] Unbiased Context

Instances

(P<0.95)
[0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

bzip 11252986 26.42% 83 19.34 16.62 14.36 13.80 35.88 9969701 23.40%

gzip 27692102 38.73% 62 8.98 10.09 9.01 10.88 61.04 20659305 28.89%

mcf 6812313 5.76% 25 14.57 11.94 9.25 8.13 56.10 3887052 3.28%

parser 17589658 20.60% 707 6.87 6.98 5.71 6.18 74.26 11064817 12.95%

twolf 31763071 44.98% 132 8.46 7.43 6.39 9.89 67.83 22893014 32.41%

gcc 9809360 10.80% 4923 4.02 4.13 3.14 3.56 85.15 3563776 3.92%

Average 17486582 24.55% 988 10.37 9.53 7.97 8.74 63.37 12006278 17.48%

Table 3.2. Polarization rates of branch contexts on global history of 16 bits
evaluating only the unbiased local branch contexts of 16 bits from the SPEC 2000

benchmarks

The Simulated Dynamic Branches column contains the number of evaluated

dynamic branches and their percentages reported to all dynamic branches.

The Simulated Static Branches column represents the number of static

branches evaluated within each benchmark. We generated for each

benchmark using relation (3.1) a list of unbiased branch contexts on local

and global history of 16 bits, having polarization less than 0.95. The last

column contains the number of unbiased branch context instances and their

percentages reported to all dynamic branches. Analyzing comparatively

Tables 3.1 and 3.2, we observe that the global branch history reduced the

average percentage of unbiased branch context instances from 24.55% to

17.48%. The high percentages of unbiased branch context instances in the

case of bzip, gzip and twolf benchmarks represent a potential prediction

accuracy improvement.

70 Beyond the Limits of Modern Processors

We have also analyzed the XOR between the global branch history of

16 bits and the lower part of the branch address (PC bits 18 – 3). We used

again only the branch contexts we found unbiased for the previous feature

sets (local and global branch history of 16 bits). In other words, we used a

dynamic branch in our evaluations only if its 16-bit local context is one of

the unbiased local contexts (Table 3.1), and its 16-bit global context is one

of the unbiased global contexts (Table 3.2). As our simulations show

[Gel06a, Gel07c], this feature does not reduce the percentage of unbiased

branches (17.47%) more than the global branch history did (17.48%).

For the determined unbiased branch contexts we are analyzing now if

the taken and not taken outcomes are grouped separately. This is necessary,

because if the branch outcomes are not shuffled they are predictable using

corresponding two-level adaptive predictors, but if these outputs are

shuffled the branches are not predictable. We used relation (3.2) in order to

determine the distribution indexes for each unpredictable branch context per

benchmark. We evaluated only the unbiased dynamic branches obtained

using all their contexts of 16 bits. Table 3.3 shows for each benchmark the

percentages of branch contexts with distribution indexes belonging to five

different intervals in the case of local branch history, and in the same way,

Table 3.4 presents the distribution indexes in the case of global history.

Tables 3.3, 3.4 show that in the case of unbiased branch contexts, the

taken and not taken outcomes are not grouped separately, more, they are

highly shuffled.

SPEC

2000

Simulated

Dynamic

Branches

Simulated

Static

Branches

Distribution Rate (D) [%]
[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0]

bzip 9969752 23.40% 75 6.78 6.45 44.00 16.80 25.98

gzip 20659339 28.89% 51 5.10 5.38 38.70 20.98 29.85

mcf 3887069 3.28% 19 9.21 11.02 46.30 13.32 20.15

parser 11064250 12.95% 483 20.23 9.50 42.44 9.63 18.19

twolf 22893094 32.41% 110 14.63 5.81 43.42 16.71 19.43

gcc 3564489 3.91% 2553 39.07 9.11 33.32 6.00 12.50

Average 12006332 17.47% 548 15.83 7.87 41.36 13.90 21.01

Table 3.3. Distribution rates on local history of 16 bits evaluating only the
branches that were unbiased on all their 16 bit contexts (on local and global

history) in the SPEC 2000 benchmarks

The percentage of unbiased branch contexts having highly shuffled

outcomes (with distribution index greater than 0.4) is 76.3% in the case of

Finding Difficult-to-Predict Branches 71

local history of 16 bits (see Table 3.3), and 89.37% in the case of global

history of 16 bits (see Table 3.4).

SPEC

2000

Simulated

Dynamic

Branches

Simulated

Static

Branches

Distribution Rate (D) [%]
[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0]

bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13

gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31

parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50

twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75

gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15

Average 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79

Table 3.4. Distribution rates on global history of 16 bits evaluating only the

branches that have all their 16 bit contexts unbiased in the SPEC 2000 benchmarks

A distribution index of 1.0 means the highest possible alternation frequency

(with taken or not taken periods of 1). A distribution index of 0.5 means

again a high alternation, since, supposing a constant frequency, the taken or

not taken periods are only 2, lower than the predictors’ learning times. In

the same manner, periods of 3 introduce a distribution of about 0.25, and

periods of 5 generate a distribution index of 0.15, therefore we considered

that if the distribution index is lower than 0.2 the taken and not taken

outcomes are not highly shuffled, and the branch’s behavior could be

learned.

We continued our evaluations extending the lengths of feature sets

from 16 bits to 20, 24 and 28 bits, our hypothesis being that the longer

feature sets will increase the polarization index and, therefore, the prediction

accuracy. Table 3.5 shows the percentages of unbiased branch contexts after

each context length extension.

Benchmark 16 bits 20 bits 24 bits 28 bits

LH(16) GH(16) LH(20) GH(20) LH(24) GH(24) LH(28) GH(28)

bzip 26.42 23.40 15.24 14.62 9.98 8.92 6.40 5.35

gzip 38.73 28.89 24.82 24.07 19.23 18.85 14.95 14.55

mcf 5.76 3.28 2.66 2.58 2.22 2.17 1.83 1.81

parser 20.60 12.95 9.18 8.39 5.95 5.46 3.86 3.56

twolf 44.98 32.41 24.83 22.99 17.42 7.28 5.95 5.67

gcc 10.80 3.92 2.26 1.94 1.35 1.20 0.85 -

Average 24.55 17.48 13.17 12.43 9.36 7.31 6.60 6.19

Table 3.5. The percentages of unbiased context instances (P<0.95) from the SPEC

2000 benchmarks after each context length extension

72 Beyond the Limits of Modern Processors

As it can be observed, in the case of the gcc benchmark, extending the

feature set length to 28 bits, the percentage of the unbiased context instances

is less than the threshold T of 1% (see relation (3.3)), and thus we

eliminated it from our next evaluations. Therefore we consider that the

conditional branches from the gcc benchmark are not difficult to predict

using feature lengths of 28 bits. As a consequence, the results obtained with

the gcc benchmark are not included in the average results from the last two

columns. Despite of the feature set extension, the number of unbiased

dynamic branches remains still high (6.19%), and thus, it is obvious that

using longer feature sets is not sufficient. On the other hand, longer features

are not feasible to be exploited through classic branch prediction.

The global history solves at average 2.56% of the unbiased dynamic

branches not solved with local history (according to Figure 3.4). The

hashing between global history and branch address (XOR) behaves just like

the global history, and it does not improve further the polarization rate

[Gel06a, Gel07c].

6.19

17.48

0

5

10

15

20

25

30

16 bits 20 bits 24 bits 28 bits

Feature Set Length

U
n

b
ia

s
e
d

 C
o

n
te

x
t

In
s
ta

n
c
e
s

[%
] LH

GH

Figure 3.4. Reduction of average percentages of unbiased context instances

(P<0.95) in the SPEC 2000 benchmarks by extending the lengths of feature sets

In Figure 3.4 it can be also observed that increasing the branch history, the

percentage of unbiased dynamic branches decreases, suggesting a

correlation between branches situated at a large distance in the dynamic

instruction stream. The results also show that the “ultimative predictibility

limit” of history context-based prediction is approximatively 94%,

considering biased branches as perfectly predictable and unbiased branches

as completely unpredictable. A conclusion based on our simulation

methodology is that 94% of dynamic branches can be solved with prediction

Finding Difficult-to-Predict Branches 73

information of up to 28 bits (some of them are solved with 16 bits, others

with 20, 24 or 28 bits).

In [Oan06] we have studied the polarization of branches by evaluating

local history concatenated with global history, according to the

methodology presented in Figure 3.2. The evaluation results presented in

Table 3.6 and Figure 3.5 show that these longer contexts, due to their better

precision, have higher polarization index.

Benchmark LH(16)-

GH(0)

LH(16)-

GH(16)

LH(20)-

GH(20)

LH(24)-

GH(24)

LH(28)-

GH(28)

LH(32)-

GH(32)

bzip 26.42 12.83 7.53 4.70 3.08 2.10

gzip 38.73 24.58 17.84 12.67 9.12 6.16

mcf 5.76 3.09 2.44 2.09 1.78 1.49

parser 20.61 7.42 4.7 3.01 1.98 1.40

twolf 44.98 23.94 12.79 8.28 5.70 3.90

gcc 10.85 2.50 1.41 0.88 0.58 0.39

Average 24.56 12.39 7.80 6.15 4.33 3.01

Table 3.6. The percentages of unbiased context instances in the SPEC 2000

benchmarks, after each context length extension, obtained by using the local

history concatenated with the global history

0 16 20 24 28 32

16

20

24

28

32

0

5

10

15

20

25

Unbiased

Context

Instances [%]

GH

LH

Figure 3.5. The percentages of unbiased context instances in the SPEC 2000

benchmarks, after each context length extension, obtained by using the local

history concatenated with the global history

74 Beyond the Limits of Modern Processors

Comparing our results, it is obvious that a certain feature set LH(p)-GH(p)

from Table 3.6 is approximatively equivalent in terms of polarization rate

with feature set GH(p+4) from Table 3.5. In other words, the same

percentage of unbiased context instances is obtained for both LH(p)-GH(p)

and GH(p+4) feature sets, but the number of bits in the correlation

information is different: (p+p) bits of local and global history and (p+4) bits

of global history, respectively. Most of the present-day predictors cannot

use very long contexts and also cannot use dynamic reconfigurable history

lengths to get the full advantages of the iterative approach.

In [Flo07b] we have also detected – on all branches (non-iterative

simulation) – the unbiased context instances within the SPEC JVM98 (Java)

benchmarks, by extending the global branch history contexts from 8 to 32

bits. The percentage of unbiased branches decreased from 8.87% to 5.80%

in these object-oriented Java programs (see Figure 3.6). The reason of the

lower percentage of unbiased branches in the SPEC JVM98 benchmarks

could be the lower occurance of conditional branches in object-oriented

applications compared to procedural applications.

27.54

8.87

5.80

0

5

10

15

20

25

30

co
m

pr
es

s
db

ja
ck

ja
va

c
je

ss

m
pe

ga
ud

io
m

trt

ra
yt

ra
ce

A
ve

ra
ge

SPEC JVM98 Benchmarks

U
n

b
ia

s
e
d

 C
o

n
te

x
t

In
s
ta

n
c
e
s
 [

%
]

GH=8

GH=16

GH=24

GH=32

Figure 3.6. The percentages of unbiased context instances in the SPEC JVM98

benchmarks, after each context length extension of global branch history

Taking into account that increasing the prediction accuracy with 1%,

the IPC (instructions-per-cycle) is improved with more than 1% (it grows

non-linearly) [Yeh92], there are great chances to obtain considerably better

overall performances even if not all of the 6.19% difficult predictable

branches, from the SPEC 2000 benchmarks, will be solved. Therefore, we

consider that this 6.19% represents a significant percentage of unbiased

branch context instances, and in the same time a good improvement

Finding Difficult-to-Predict Branches 75

potential in terms of prediction accuracy and IPC. Focalising on these

unbiased branches – in order to design some efficient path-based predictors

for them [Nair95, Vin99b] – the overall prediction accuracy should increase

with some percents, that would be quite remarkable. The simulation results

also lead to the conclusion that as higher is the feature set length used in the

prediction process, as higher is the branch polarization index and hopefully

the prediction accuracy (Figure 3.4). A certain large context (e.g. 100 bits) –

due to its better precision – has lower occurrence probability than a smaller

one, and higher dispersion capabilities (the dispersion grows exponentially).

Thus, very large contexts can significantly improve the branch polarization

and the prediction accuracy, too. However, they are not always feasable for

hardware implementation. The question is: what feature set length is really

feasable for hardware implementation, and more important, in this case,

which is the solution regarding the unbiased branches? In our opinion, as

we’ll further show, a feasable solution in this case could be given by path-

based predictors.

3.4.2. Path-Based Correlation

The path information could be a solution for relatively short history contexts

(low correlations). Our hypothesis is that short contexts used together with

path information should replace significantly longer contexts, providing the

same prediction accuracy. A common criticism for most of the present two-

level adaptive branch prediction schemes consists in the fact that they used

insufficient global correlation information [Vin99b]. There are situations

when a certain static branch, in the same global history context pattern, has

different behaviors (taken / not taken), and therefore the branch in that

context is unbiased. If each bit belonging to the global history will be

associated during the prediction process with its corresponding PC, the

context of the current branch becomes more precise, and therefore its

prediction accuracy could be better. Our next goal is to extend the

correlation information with the path, according to the above idea [Vin99b].

Extending the correlation information in this way, suggests that at different

occurrences of a certain static branch with the same global history context,

the path contexts can be different.

We started our evaluations regarding the path, studying the gain

obtained by introducing paths of different lengths. The analyzed feature

consists of a global branch history of 16 bits and the last p PCs. We applied

this feature only to dynamic branches that we already found unbiased

(P<0.95) for local and global history of 16 bits.

76 Beyond the Limits of Modern Processors

SPEC

2000

GH(16) PATH(1) PATH(16) PATH(20) LH(20)

bzip 23.40 23.35% 22.16% 20.38% 15.24%

gzip 28.89 28.88% 28.17% 27.51% 24.82%

mcf 3.28 3.28% 3.28% 3.20% 2.66%

parser 12.95 12.89% 12.01% 10.95% 9.18%

twolf 32.41 32.41% 31.46% 27.10% 24.83%

gcc 3.92 3.91% 3.56% 3.02% 2.26%

Average [%] 17.48 17.45% 16.77% 15.36% 13.17%

Gain [%] 0.02% 0.70% 2.11% 4.30%

Table 3.7. The gain introduced by the path of different lengths (1, 16, 20 PCs)

versus the gain introduced by extended local history (20 bits), in the SPEC 2000

benchmarks

Column GH(16) from Table 3.7, presents for each benchmark the

percentage of unbiased contexts using a 16-bit global history. Columns

PATH(1), PATH(16) and PATH(20) present the percentages of unbiased

context instances obtained using a global history of 16 bits and a path of 1,

16 and 20 PCs, respectively. The last column presents the percentages of

unbiased context instances extending the local history to 20 bits (without

path). For each feature is presented the average gain opposite to the first

column. It can be observed that a path of 1 introduces a not significant gain

of 0.2%. Even a path of 20 introduces a gain of only 2.11% related to the

more significant gain of 4.30% introduced by an extended local branch

history of 20 bits. The results show (Table 3.7) that the path is useful only in

the case of short contexts. Thus, a branch history of 16 bits compresses well

the path information. In other words, a branch history of 16 bits spreads

well the different paths that lead to a certain dynamic branch.

We continue our work evaluating – on all branches (non-iterative

simulation) – the number of unbiased context instances (P<0.95) using as

prediction information paths of different lengths (p PCs) together with

global histories of the same lengths (p bits). The results are presented in

Figure 3.7 where they are compared with the results obtained using only

global history. Figure 3.7 shows again that the path is relevant for better

polarization rate and prediction accuracy only in the case of short contexts

and there is only marginal gain with longer history lengths (p bits), meaning

that a global branch history of more than 12 bits approximates very well the

longer path information (p PCs).

Finding Difficult-to-Predict Branches 77

15%

20%

25%

30%

35%

40%

45%

50%

55%

p=1 p=4 p=8 p=12 p=16 p=20 p=24

Context Length

U
n

b
ia

s
e
d

 C
o

n
te

x
t

In
s
ta

n
c
e
s

GH (p bits)

GH (p bits) + PATH (p

PCs)

Figure 3.7. The gain introduced by the path for different context lengths – SPEC

2000 benchmarks

Desmet shows in her PhD thesis [Des06] that complete path (all

branches) is more efficient than simple path (only conditional branches)

from the entropy point of view. This is in contradiction with our results

presented in Table 3.8, where we compared these types of path from the

unbiased branch percentage point of view. This contradiction can be

justified by observing the following differences between our measurements:

 Desmet measured per branch entropy and presented the average

entropy, while we measured per branch-context polarization and

presented the average percentage of branch contexts having

polarization less than 0.95;

 Desmet’s path consists in the PCs corresponding to the target

instructions (as Nair did), while our path consists in the PCs of

branches;

 Desmet uses short histories (p=1, 2, 5 PCs), whereas our evaluations

were generated on a larger interval (p=1, 4, 8, …, 24 PCs).

As we explain below, paradoxically, the simple path is more rich in

information than complete path (for the same number of PCs), justifying our

results presented in Table 3.8. Let’s consider the following sequence of

instructions:

... bne1 ... bne2 ... jr ... bne3 ... bne4 ... bne5=?

If we use a path history of 4 PCs (p=4), then:

 simple path = bne1, bne2, bne3, bne4;

 complete path = bne2, jr, bne3, bne4.

78 Beyond the Limits of Modern Processors

The unconditional branch jr brings less information, because it is always

taken, and therefore, between bne2 and bne3 through jr only one path is

possible, while through conditional branches two paths are possible. Thus,

the path consisting exclusively in conditional branches is better than

complete path (see Table 3.8).

Context p=1 p=4 p=8 p=12 p=16 p=20 p=24

GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23

GH (p bits) +

FullTargetPath (p PCs) 46.74 37.23 30.72 26.50 23.89 21.58 19.88

GH (p bits) +

FullPath (p PCs) 43.21 37.03 30.49 26.41 23.86 21.56 19.86

GH (p bits) +

CondTargetPath (p PCs) 45.13 36.41 29.76 25.56 23.18 20.77 19.09

GH (p bits) +

CondPath (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01

Table 3.8. Percentages of unbiased branches on the SPEC 2000 benchmarks

We also compared the path consisting in PCs of branches with the path

consisting in PCs of target instructions. The path of branch PCs is slightly

better, however the difference is quite unsignificant (see Table 3.8).

Further, we present some results obtained applying the same

methodology on Branch Prediction World Championship benchmarks –

proposed by Intel [CBP04, Loh05a]. We continue to evaluate – on all

branches using the non-iterative simulation – paths of different lengths (p

PCs) used together with global histories of the same lengths (p bits).

18.99%

17.23%

5%

10%

15%

20%

25%

30%

35%

p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32

Context Length

U
n

b
ia

s
e
d

 C
o

n
te

x
t

In
s
ta

n
c
e
s

GH (p bits)

GH (p bits) + PATH (p PCs)

Figure 3.8. The gain introduced by the path – Intel benchmarks

Finding Difficult-to-Predict Branches 79

As Figure 3.8 shows, the results produced (unbiased context instances ratio)

by the Intel benchmarks have the same profile like those obtained on the

SPEC 2000 benchmarks (Figure 3.7). Actually, rich contexts (long patterns)

reduce almost to zero the advantage introduced by using the path

information. The main difference observed, analyzing Figures 3.7 and 3.8,

consists in the different values of these ratios (much higher on SPEC

benchmarks) – due to their different characteristics and functions [Loh05a].

However, it must be mentioned that while the SPEC benchmarks were

simulated on 1 billion dynamic instructions the Intel benchmarks were

entirely simulated, but the total number of dynamic instructions is

significantly lower (under 30 million).

3.4.3. Evaluating Relative IPC Speedup Through an

Analytical Model

In our simulations presented in [Gel06a] we obtained using the gshare

predictor [McFar93] the global prediction accuracy Apglobal = 93.60% and

the accuracy of unbiased branch prediction Apunbiased = 72.2%. Thus,

according to formula (3.7), 722.01747.08253.0936.0 biasedAp ,

resulting that Apbiased = 0.9813. Obviously, predicting the unbiased branches

with a more powerful branch predictor having, to say, 95% prediction

accuracy, determines a gain proportional with ratio of unbiased context

instances:)1()722.095.0(xgainAccuracy . More than that, this

accuracy gain involves a processing rate speedup according to (3.4) and

(3.6). This gain justifies the importance and the necessity of finding and

solving difficult-to-predict branches.

19.61

49.35

57.94

0

10

20

30

40

50

60

70

20 24 28

Context Length

R
e
la

ti
v
e
 S

p
e
e
d

u
p

 [
%

]

Figure 3.9. The relative IR speedup for different increased context lengths reported

to the IR obtained on 16 bits

80 Beyond the Limits of Modern Processors

Figure 3.9 illustrates the relative IR speedup obtained, according to (3.10),

by extending the context. The baseline processor model has an IRideal of 4

[instruction / clock cycle] and incorporates a branch predictor with 98.13%

prediction accuracy for biased branches. The considered number of penalty

cycles wasted due to a branch misprediction in our model is 7. The ratio of

simulated branches (the number of simulated branches reported to the total

number of simulated instructions) is b=8% (see Table 3.1). Figure 3.9

illustrates not only the necessity of a greater number of prediction features

to improve the processor performance, but also the necessity of new

performing branch predictors that can consider a larger amount of

information in making predictions (but whose size does not scale

exponentially with the length of the input feature set).

3.5. Summary

We considered that a branch context is unbiased if its polarization index is

less than 0.95. In order to reduce the number of unbiased branches, we first

increased the lengths of the branch contexts (local/global histories, etc.). We

identified and decreased the number of unbiased branches in the SPEC 2000

benchmark suite [SPEC] by passing unbiased branches through successive

cascades of different prediction contexts – local history (LH) and global

history (GH) – by increasing history information (from 16 to 28 bits). Using

a global history context of 16 bits, about 17% of branches are unbiased and

unpredictable. This number decreases to about 6% if the context has 28 bits.

We consider that this value of 6% is still too high and further investigations

are required. The evaluation results also show that the “ultimate

predictability limit” of history context-based prediction is about 94%,

considering unbiased branches as completely unpredictable. A conclusion

based on our simulation results is that about 94% of dynamic branches can

be solved with prediction information of up to 28 bits. We have also

analyzed the path information and we concluded that a global branch history

of more than 12 bits compresses well the path information, and therefore,

the gain introduced by the path is not significant.

Summarizing the statistics reported on the SPEC 2000 benchmarks,

546 static branches generate 77,683,129 dynamic instances at average

(142,120 instances / static branch). Focalizing now on those detected

unbiased (with LH=28 bits and GH=28 bits), 113 static branches generate

4,376,664 dynamic instances at average (38,731 instances / static branch).

Therefore the unbiased branches are generated by few static branches

having many dynamic instances. As a consequence, taking into account the

Finding Difficult-to-Predict Branches 81

enormous number of dynamic unbiased branches per a static branch, an

adequate predictor has plenty of time to learn its behavior. The real problem

is to find the right prediction information that changes such unbiased

branches into biased ones.

The next chapter investigates the predictability of this remaining 6%

of identified unbiased branches and proposes some new, more correlated

prediction information in order to increase their prediction accuracy.

“The only relevant test of the validity of a hypothesis

is comparison of prediction with experience”

Milton Friedman

4. Predicting Unbiased Branches

In Chapter 3 we showed that the percentages of difficult branches are quite

significant (at average between 6% and 24%, depending on the different

used prediction contexts and their lengths). This chapter presents some

important present-day branch predictors and some condition-history-based

branch predictors proposed by us in [Gel07a, Gel07b, Gel07c, Gel08c], all

of them being used to evaluate, in terms of prediction accuracy, the

unbiased branches identified in Chapter 3.

4.1. Related Work

4.1.1. Branch Prediction Based on Data Value Information

In this section we analyze different proposed techniques that are exploiting

the correlation between data values and branch outcomes. An important

disadvantage of the approaches that are using the branch register values

directly is that these values are rarely available, and therefore, they must be

predicted. In general, value prediction is applied wisely due to the relatively

high misprediction cost and low prediction accuracy.

In [Che03] the authors proposed a new approach, called ARVI

(Available Register Value Information), in order to predict branches based

on partial register values along the data dependence chain leading up to the

branch. The authors show that for some branches the correlation between

such register value information and the branch’s outcome can be stronger

than either history or path information. Thus, the main idea behind the

ARVI predictor is the following: if the essential values in the data

dependence chain, that determine the branch’s condition, should be

identified, and those values have occurred in the past, then the branch’s

outcome should be known. If the values involved in the branch condition

are the same as in a prior occurrence then the outcome of the branch will be

the same, too. Thus, if the branch’s register values are available then a

Predicting Unbiased Branches 83

lookup table can provide the last branch’s outcome occurred with the same

values. Unfortunately, the branch’s register values are rarely available at the

time of prediction. However, if values are available for registers along the

dependence chain that leads up to the branch, then the predictor can use

these values to index into a table and reuse the last behavior of the branch

occurred in the same context. Therefore, instead of relying only on branch

history or path, the ARVI predictor includes data dependent registers as part

of the prediction information. The ARVI predictor uses a Data Dependence

Table (DDT) to extract the registers corresponding to instructions along the

data dependence chain leading up to the branch. The branch’s PC and the

identifiers of the data dependent registers are hashed together and used to

index the prediction table. The values of the data dependent registers are

hashed together and used as a tag to distinguish the occurrences of the same

path having different values in the registers. Thus, the ARVI predictor uses

both path and value-based information to classify branch instances. A two-

level predictor using ARVI at the second level achieves a 12.6% overall IPC

improvement over the state-of-the-art two level predictors, for the SPEC’95

integer benchmarks. In our opinion, if dynamic branches that are unbiased

in their branch history or path contexts [Vin06] are biased in their value

history context, the benefit could be remarkable. An analysis in this sense

will be effectuated in this chapter.

Z. Smith in his work [Smi98] showed on the SPEC’95 benchmarks

that the majority of mispredicted branches come from few static branches.

Therefore, he identified “bad” branches based on the distribution of

mispredictions – a function of the number of mispredictions per branch

using the gshare predictor with 12 history bits. An analysis of branches

having a relatively high number of mispredictions shows that they could be

really less predictable but without importance due to their relatively low

number of dynamic instances, and, on the other hand, some of them could

be predictable because the number of mispredictions is, however, far less

then the number of branch’s dynamic instances. Consequently, there is no

strong correlation between branch’s predictability or global prediction

accuracy and the distribution of mispredictions. In order to increase the

predictability of mostly mispredicted branches, Smith evaluated the

possibility to predict branch outcomes based on a value history. The idea is

to use a context-based predictor whose prediction table is indexed by a

register value instead of the XOR between the PC and global history as in

gshare. Only the first (non-immediate) branch operand is used as prediction

context, because, as the author shows, the majority of branches have the

second operand equal with zero. However, using both branch operands as

prediction information could be better. Using a history of only 2 values

84 Beyond the Limits of Modern Processors

together with the value of the outer loop counter (an iteration counter

associated to the enclosing loop’s branch), Smith obtained a branch

prediction accuracy of 93.4%.

In [Hei99b] the authors observed that many important branches that

are hard to predict based on branch history and path become easily

predictable if data-value information is used. First, they analyzed a

technique called speculative branch execution that uses a conventional data-

value predictor to predict the input values of the branch instruction and,

after that, executes the branch instruction using the predicted values. The

main disadvantage of this method consists in the relatively high prediction

latency, because the operand-value prediction is followed by the pre-

calculation of the branch’s condition. Therefore, they proposed a Branch

Difference Predictor (BDP) which simply holds a history of branch source

register differences and uses it in the prediction process. Consequently, the

value history information is used directly for branch prediction, reducing

thus the latency. Since branch outcomes are determined by subtracting the

two inputs, the branch source differences correlate very well with the branch

outcomes. The branch difference history is maintained per static branch in a

Value History Table (VHT) and it is retrieved using the branch’s PC. By

using branch differences, the number of patterns is very high, since a certain

static branch instruction may produce many values. Thus, predicting all

branches through this method leads either to excessive storage space

requirements or to significant table interference. Therefore, in their

prediction mechanism, only the difficult branches are predicted based on the

branch source differences using the Rare Event Predictor (REP), whereas

the majority of branches are predicted using a conventional predictor (e.g.

gshare). They considered that a branch is difficult if it is mispredicted by

the conventional predictor. When a branch instruction occurs, the VHT and

the REP are accessed in parallel with the PC and global branch history. If

the value difference history matches a REP tag, then the REP provides the

prediction. If the REP does not contain that certain pattern, the conventional

branch predictor generates the prediction. Their results show that the

majority of prediction accuracy improvement is gained by using a single

branch difference, while adding a second or third difference results in little

additional improvement. The BDP reduces the misprediction rate by up to

33% compared to gshare and up to 15% compared to Bi-Mode predictors, in

the SPEC’95 integer benchmarks. A first important difference between

Heil’s approach and ours is that we are focalizing on unbiased branches

identified in Chapter 3 (branches with low polarisation degree that tend to

shuffle between taken and not taken) instead of Heil’s difficult branches

(those mispredicted by a conventional predictor). However, the main

Predicting Unbiased Branches 85

difference is that we correlate branch outcome with the sign of the

condition’s difference whereas Heil et al. correlate it with the value of the

condition’s difference. As we’ll further show, using signs instead values

involves better prediction accuracies and less storage necessities.

Furthermore, we use a sign-history of up to 256 condition differences in

contrast to the value-history of up to 3 condition differences exploited in

[Hei99b]. Another important difference between the two approaches is the

architectural one, since we predict branches using some modified state-of-

the-art Markov and neural predictors.

Thomas et al. [Tho03] introduced new branch prediction information

that consists in affector branches. They identify for each dynamic branch

from a long global history, a set of branches called affectors, which control

the computation that directly affect the source operands of the current

dynamic branch. Since affectors have a direct effect on the outcome of a

future branch, they have a high correlation with that branch. The affector

information is represented as a bitmap having all bits corresponding to the

affector branches set to 1 and those of non-affectors set to 0. The affector

information is maintained based on runtime dataflow information for each

architectural register as entries in an Affector Register File (ARF). When

the processor encounters a conditional branch, all entries in the ARF are

shifted left by one bit and the least significant bit is made 0. When a

register-writing instruction occurs, the ARF entries corresponding to the

source registers are ORed together and written into the ARF entry of the

destination register with the least significant bit set to 1. Thus, the affector

information for the destination register is generated as a union of the

affector histories corresponding to the source registers, whereas the least

significant bit, set to 1, marks the last branch from the global history as an

affector. The affector branch information for a branch instruction is

inherited from the affector information corresponding to its source registers.

Therefore, when a prediction is to be made for a certain branch, the affector

information of its source registers are ORed together in order to determine

its affector branches. The authors also proposed different prediction

schemes that use the affector branch information.

Constantinides et al. [Con04] presented a method of detecting

instruction-isomorphism and its application to dynamic branch prediction. A

dynamic instruction is considered isomorphic if its component graph is

identical with the component graph of an earlier executed dynamic

instruction. The component graph of a dynamic instruction can include

information about the instruction, its dynamic data dependence graph and its

input data. Two cases of instruction isomorphism can be distinguished:

isomorphic-equality and pseudo-isomorphism. In the case of isomorphic

86 Beyond the Limits of Modern Processors

equality the instructions are isomorphic and they have the same outputs,

whereas in the pseudo-isomorphism case, the instructions are isomorphic

but their outputs are not equal. The isomorphism detection process is

preceded by component-graph transformations that may convert non-

isomorphism to isomorphic-equality by removing information from the

component graph that does not affect the outcome of the instruction. The

isomorphism detection mechanism contains four units: the Register-

Signature File (RSF), the Component Graph Encoding/Transformation

mechanism (CGET), the Memory Signature File (MSF) and the

Isomorphism Detection Table (IDT). The RSF is accessed with the source

register names to read the signatures – encoded component graphs. The

CGET takes the instruction’s source signatures and creates a new signature,

which represents the instruction’s encoded/transformed component-graph. If

the instruction writes to a register, the new signature is written into the RSF

entry corresponding to the destination register. To determine if an

instruction is isomorphic with a previously executed instruction, its

signature – produced by CGET – is used to access the IDT. The IDT also

returns the branch direction in the case of branch prediction. Isomorphism

detection must wait for decoded instruction information and, thus, the

isomorphic branch predictor has relatively high latency. Therefore,

Constantinides et al. proposed a hybrid branch prediction mechanism

composed by a fast conventional predictor and a slower isomorphic-based

predictor. The isomorphic prediction – available few cycles after the

conventional prediction – is used to validate and possibly override the

prediction provided by the conventional predictor.

In [Gon99] and [Gon01] González et al. introduced a branch

prediction through value prediction unit (BPVP) that pre-computes branch

outcomes by predicting their input values. Since, the accuracy of value

predictors is lower than that of the conventional branch predictors,

speculative branch pre-computation must be applied selectively. Therefore,

they proposed a hybrid branch prediction mechanism involving a correlating

branch predictor (e.g. gshare) and a BPVP that uses a conventional value

predictor. The value predictor is used together with an Input Information

Table (IIT) and an additional logic to detect the instructions that generate

the branch’s inputs. Each architectural register has an entry in the IIT that

stores the PC of the latest instruction having the corresponding register as

destination and the value computed speculatively by the latest compare

instruction having the corresponding register as destination. The compare

instructions are speculatively pre-executed according to their predicted

inputs and the speculative results are stored in the IIT. The mechanism has

different behaviors depending on the branch that is predicted. In the case of

Predicting Unbiased Branches 87

branches with inputs produced by arithmetic or Load instructions, the IIT is

accessed with the source register names to read the PCs of the latest

instructions that had as destination the branch’s source registers (detection

of the instructions that produces the branch inputs). The PCs are used to

access the value predictor that predicts the inputs of the branch. The

branch’s outcome is speculatively pre-computed based on the predicted

inputs. In the case of branches with inputs produced by compare

instructions, the IIT is accessed with the source register names to read the

comparison’s speculative result. The outcome of the branch is speculatively

pre-computed based on this speculative comparison result. The BPVP-

gshare predictor achieves a speedup of 8% over the 2bit-gshare predictor.

The instruction-centric value prediction within the BPVP should be replaced

with register-centric value prediction [Vin05a] (presented in Chapter 6),

reducing the complexity, hardware costs and power consumption. Thus,

branches should be pre-computed speculatively based on their input values

predicted with our most effective register-centric value predictor (a hybrid

of two-level and stride).

In [Rot99] call targets are correlated with the instructions that produce

them rather than with the call’s global history or the previous branch targets.

The proposed approach pre-computes virtual function call’s (v-call) targets.

V-call targets are hard to predict even through path-based schemes that

exploit the correlation between multiple v-calls of the same object

reference. Object oriented programming increases the importance of v-calls.

The proposed technique dynamically identifies the sequence of instructions

that computes a v-call target. Based on this instruction sequence is possible

to pre-calculate the target before the actual v-call is encountered. This pre-

calculation can be used to supply a prediction. The approach reduces v-call

target mispredictions with 24% over a path-based two level predictor.

In [Vin03] the authors proposed to pre-compute branches by

determining a branch outcome as soon that its operands are available. The

instruction that produced the last branch source operand would also trigger

the branch condition estimation. As soon as this operation completed, the

branch outcome could be immediately resolved. Similarly to branch history

prediction, branch information is cached into a “prediction table” (PT). Each

PT entry has the following fields: TAG (the lower part of the PC), PC1 and

PC2 (the PCs of the instructions that produced the branch operand values),

OPC (the opcode of the branch), nOP1 and nOP2 (the register names of the

branch operands), PRED (for the branch outcome) and a LRU field (Least

Recently Used). The register file has two additional fields for each register:

LP (the PC of the last producer) and RC (a reference counter which is

incremented by each instruction that modifies a register linked by a branch

88 Beyond the Limits of Modern Processors

instruction stored in the PT and is decremented when the corresponding

branch instruction is evicted from the PT). The PC of any non-branch

instruction that modifies at least one register is recorded into the

supplementary LP (Last Producer) field of its destination register. The first

issue of a particular branch in the program is predicted with a default value

(not taken). After the branch’s execution, a PT entry is allocated and

updated. Every time after a non-branch instruction – having the

corresponding RC field greater than 0 – is executed, the PC1 and PC2 fields

from the PT are searched upon its PC. When a hit occurs, the branch stored

in that PT entry is executed and the outcome is stored into the PRED bit.

When the branch is issued, its outcome is found in the PT, as it was

previously computed, and thus its behavior is perfectly known before

execution. Even though this concept would provide (almost) perfect

prediction accuracy, there was a heavy timing penalty in the case when a

branch instruction was dynamically executed immediately after the last

source operand has been computed, in fact this is a common case. Based on

the pre-computing branch concept [Vin03] Aamer et al. presented in

[Aam03] a study regarding the number of instructions occurred between the

execution of the instruction that produced the last operand of a branch and

the execution of that branch. Their simulations show that the average

distance between the last source producer and branch is less than the ideal

theoretical distance. If the operand producer instruction is too close to the

corresponding branch then the branch would have to postpone processing

for a few cycles, until the operand producer instruction is finished. For these

branches a BTB can be used, improving thus the performance. Thus, the

branch outcomes can be obtained far enough in advance so that some

performance improvement can be still achieved.

Aragón et al. presented in [Ara01] a new approach to improve branch

predictors: selective branch prediction reversal. The main idea is that many

branch mispredictions can be avoided if they are selectively reversed.

Therefore, they proposed a Branch Prediction Reversal Unit (BPRU) that

reverses predictions of branches likely to be mispredicted, based on the path

leading to the branch (including the PC of the input producers) and the

predicted values of the branch inputs. The BPRU uses the previously

presented BPVP-gshare hybrid branch predictor [Gon99] and a Reversal

Table (RT). Each entry of the RT stores a reversal counter implemented as

an up/down saturating counter, and a tag. When a branch is predicted, the

RT is accessed by hashing together the PCs of its input producers, the

predicted input values and the path leading to the branch. The most

significant bit of the counter indicates if the predicted branch outcome must

be reversed. When the correct branch outcome is available, the

Predicting Unbiased Branches 89

corresponding RT entry is updated by incrementing the reversal counter if

the preliminary branch outcome was correct and decrementing the counter

otherwise. The experimental results show average speedups of 6% over the

original BPVP-gshare and of 14% over the 2bit-gshare predictor.

4.1.2. State-of-the-Art Branch Predictors

Dynamic branch prediction with neural methods, was first introduced by

Vintan [Vin99a], and further developed by many researchers, especially by

Daniel Jiménez [Jim01a]. Despite the neural branch predictor’s ability to

achieve very high prediction rates and to exploit deep correlations at linear

costs, the associated complexity due to latency, large quantity of adder

circuits, area and power are still obstacles to the industrial adoption of this

technique. Anyway, the neural methods seem to be successful for future

microprocessors taking into account that they were already implemented in

Intel’s IA-64 simulators. Jiménez and Lin [Jim01a] proposed a two-level

scheme that uses fast single-layer perceptrons instead of the commonly used

two-bit saturating counters. The branch address is hashed to select the

perceptron, which is then used to furnish a prediction based on global

branch history. The perceptron’s prediction- and learning algorithm was

presented in Section 2.2.

A branch may be linearly inseparable as a whole, but it may be

piecewise linearly separable with respect to the distinct associated program

paths. More precisely, the path-based neural predictor combines path history

with pattern history, resulting superior learning skills to those of a neural

predictor that relies only on pattern history. To generate a path-based neural

prediction [Jim03c], the correlations of each component of the path are

aggregated. This aggregation is a linear function of the correlations for that

path. Since many paths are leading to a branch, there are many different

linear functions for that branch, and they form a piecewise-linear surface

separating paths that lead to predicted taken branches from paths that lead to

predicted not taken branches. The piecewise linear branch prediction

[Jim05], is a generalization of perceptron branch prediction [Jim01a], which

uses a single linear function for a given branch, and path-based neural

branch prediction [Jim03c], which uses a single global piecewise-linear

function to predict all branches. The piecewise linear branch predictors use

a piecewise-linear function for a given branch, exploiting in this way

different paths that lead to the same branch in order to predict – otherwise

linearly inseparable – branches. The piecewise linear branch predictors

90 Beyond the Limits of Modern Processors

exploit better the correlation between branch outcomes and paths, yielding

an IPC improvement of 4% over the path-based neural predictor [Jim05]. In

the weight selection mechanism of the idealized piecewise linear branch

predictor, the weight Wbpg corresponds to branch b (Bb 1), its global

history bit g (Gg 1) and the pth PC (Pp 1) from its path. The

Idealized Piecewise Linear Branch Predictor uses dynamically adjusted

history lengths [Jim05]. The predictor counts the number of static branches

whose bias magnitude, noted |W0|, exceeds 2. If this number exceeds 300,

then the predictor switches to lower global and local history lengths,

otherwise, it uses higher global and local history lengths. This heuristic is

applied after 300,000 branches have passed.

Related to Jiménez’s research, we gave an original interpretation of

his dynamically adjusting history length mechanism [Jim05], through our

previously introduced “unbiased branches” concept [Gel06a, Vin06,

Oan06]. Thus, his heuristics work as follows: if more than 300 “relatively

biased” branches are encountered (branches having |W0|>2), then it switches

to lower global/local history length. Otherwise (meaning that there were

encountered many “perfectly unbiased” branches, having |W0|≤2) it

switches to higher global/local history length. From our point of view, this

is justified by the fact that increasing history length reduces the number of

unbiased branches as we have already shown.

A conventional path-based neural predictor achieves high prediction

accuracy, but its very deeply pipelined implementation makes it both a

complex and power-intensive component, since for a history length of p it

uses – to store the weights – p separately indexed SRAM arrays organized

in a p-stage predictor pipeline. Each pipeline stage requires a separate row-

decoder for the corresponding SRAM array, inter-stage latches, control

logic and checkpointing support, all of this adding power and complexity to

the predictor. Loh and Jiménez proposed in [Loh05c] two techniques to

address this problem. The first decouples the branch outcome history length

from the path history length using shorter path history and a traditional long

branch outcome history. In the original path-based neural predictor, the path

history was always equal to the branch history length. The shorter path

history allows the reduction of the pipeline length, resulting in decreased

power consumption and implementation complexity. The second technique

uses the bias-weights to filter out highly-biased branches (mostly always

taken or mostly always not taken branches), and avoids consuming update

power for these easy-to-predict branches. For these branches the prediction

is determined only by the bias weight, and if it turns out to be correct, the

predictor skips the update phase which saves the associated power. The

Predicting Unbiased Branches 91

proposed techniques improve the prediction accuracy with 1%, and more

important, reduce power and complexity by decreasing the number of

SRAM arrays, and reducing predictor update activity by 4-5%. Decreasing

the pipeline depth to only 4-6 stages reduces the implementation complexity

of the path-based neural predictor.

Tarjan and Skadron introduced in [Tar05] the hashed perceptron

predictor, which merges the concepts behind the gshare [McFar93] and

path-based perceptron predictors [Jim03c]. The previous perceptron

predictors assign one weight per local-, global- or path branch history bit.

This means that the amount of storage and the number of adders increases

linearly with the number of history bits used to make a prediction. One of

the key insights of Tarjan’s work is that one-to-one ratio between weights

and number of history bits is not necessary. By assigning a weight not to a

single branch but a sequence of branches (hashed indexing), a perceptron

can work on multiple partial patterns making up the overall history. The

hashed indexing consists in XORing a segment of the global branch history

with a branch address from the path history. Decoupling the number of

weights from the number of history bits used to generate a prediction allows

the reduction of adders and tables almost arbitrarily. Using hashed indexing,

linearly inseparable branches which are mapped to the same weight can be

accurately predicted, because each table acts like a small gshare predictor

[McFar93]. The hashed perceptron predictor improves accuracy by up to

27.2% over a path-based neural predictor.

Loh and Jiménez introduced in [Loh05b] a new branch predictor that

takes the advantage of deep-history branch correlations. To maintain

simplicity, they limited the predictor to use conventional tables of saturating

counters. Thus, the proposed predictor achieves neural-class prediction rates

and IPC performance using only simple PHT (pattern history table)

structures. The disadvantage of PHTs is that their resource requirements

increase exponentially with branch history length (a history length of p

requires 2p entries in a conventional PHT), in contrast to neural predictors,

whose size requirements increase only linearly with the history length. To

deal with very long history lengths, they proposed a Divide-and-Conquer

approach where the long global branch history register is partitioned into

smaller segments, each of them providing a short branch history input to a

small PHT. A final table-based predictor combines all these per-segment

predictions to generate the overall decision. Their predictor achieves higher

performance (IPC) than the original global history perceptron predictor,

outperforms the path-based neural predictors, and even achieves an IPC rate

equal to the piecewise-linear neural branch predictor. Using only simple

92 Beyond the Limits of Modern Processors

tables of saturating counters, avoids the need for large number of adders,

and in this way, the predictor is feasible to be implemented in hardware.

Seznec recently developed perhaps the most powerful

idealistic/realistic branch predictors. His idealistic hybrid GTL predictor is

composed by three distinct branch predictors (TAGE, GEHL and Loop)

exploiting very deep history correlations and a metapredictor derived from

the skewed predictor [Sez07a]. The GEHL predictor is the main component

being the most accurate. In this chapter we also used it in predicting our

unbiased branches. In [Sez07b] is presented a realistic branch predictor

called L-TAGE consisting of a 13-component TAGE predictor and a Loop

predictor. Both these predictors won the 2nd Championship Branch

Prediction [CBP06] organized by Intel Co., obtaining, at average, 3.314

mispredictions/KI. Even if these predictors are the best known branch

predictors they are using the same limited prediction information (branch

address, global/local histories and path) that is insufficient for reducing

unbiased branches entropy and for accurately predicting them.

In [Gao06] the authors initially implemented a PPM-based branch

predictor using as context the global branch history. They associated a

signed saturating prediction counter ranging between [-4, 4] to each PC-

history pair. The counter was incremented if the branch outcome was taken

and decremented otherwise. When both the branch address and history

pattern were matched, the corresponding counter provided the prediction. In

the case of multiple matches for a branch with different history lengths, the

prediction counter afferent to the longest history was used. However, as

they show, the longest history match may not be the best choice, and,

therefore, they proposed another scheme called PPM with the confident

longest match that uses the prediction counter as a confidence measure. This

scheme generates a prediction only when the counter is a non-zero value.

The authors observed that in the case of multiple matches with different

history lengths, the counters may not agree with each other and different

branches may favor different history lengths. Thus, the most important

scheme introduced by Gao and Zhou in this paper, predicts branch outcomes

by combining multiple partial matches through an adder tree. The

Prediction by combining Multiple Partial Matches (PMPM) algorithm

selects up to L confident longest matches and sums the corresponding

counters to furnish a prediction. A bimodal predictor is used to predict

branches that are completely biased (either always taken or always not

taken) and the PMPM predictor is used to furnish a prediction when a

branch is not completely biased. The realistic PMPM predictor has seven

global prediction tables indexed by the branch address, global history and

path, and also has a local prediction table indexed by the branch address and

Predicting Unbiased Branches 93

local history. When the PMPM is accessed for prediction, up to four

counters from the global history tables are summed with the counter from

the local prediction table, if there is a hit. If the sum is zero, the bimodal

predictor is used. Otherwise the sign of the sum provides the prediction. The

prediction counter from the bimodal prediction table is always updated. The

prediction counter from the local prediction table is always updated in the

case of hit, while the counters of the global prediction tables that have been

included in the summation are updated only when the overall prediction is

wrong or the absolute value of the sum is less than a certain threshold. Their

results show that combining multiple partial matches provides higher

prediction accuracy than a single partial match, decreasing the average

misprediction rate to 3.41%. A first important difference between the

approach presented in [Gao06] and our branch difference prediction by

combining multiple partial matches developed in this chapter is that we are

focalizing on the unbiased branches identified in Chapter 3 (branches with

low polarisation degree that tend to shuffle between taken and not taken)

instead of “not fully biased” branches. The authors defined a “fully biased”

branch as a branch in a certain dynamic context having set its attached bias

counter to a maximum value (the counter is incremented each time that

branch has a biased behavior and decremented otherwise). Probably it

would be better to say “highly biased” branch instead of “fully biased”,

meaning that it was highly biased (maximum counter) during the “last”

processing period (maximum counter at the current prediction moment).

However, the main difference is that they used global branch history,

whereas we used global and local branch difference history. Another

important difference consists in how the multiple Markov predictions are

combined: we used majority vote (more efficient for our approach) instead

of the adder tree used by Gao and Zhou.

In [Sri06] the authors proposed a hybrid branch prediction scheme

that employs two PPM predictors, one predicts based on local branch

history and the other predicts based on global branch history. For both the

local and global PPM predictors, if the local and global history were not

matched, then shorter patterns are searched, and so on, until a match is

found. When a pattern match occurs, the outcome of the branch that

succeeded the pattern during its last occurrence is returned as prediction.

The two independent predictions are combined through a perceptron. The

output of the perceptron is computed as Y=W0 + W1PL + W2PG, where the

inputs PL and PG correspond to the predictions generated by the local and

global PPM predictor (-1 if not taken and +1 if taken), respectively. The

final prediction is taken if the output Y is positive and not taken if Y is

negative. The table of weights is indexed by the lower 20 bits of the

94 Beyond the Limits of Modern Processors

branch’s PC. The perceptron is updated by incrementing the weights whose

inputs match the branch outcome and decrementing those with mismatch.

The Neuro-PPM branch predictor achieves an average misprediction rate of

3%.

4.2. Branch Prediction Using State-of-the-Art

Predictors

4.2.1. The Perceptron-Based Branch Predictor

In [Jim02] Jiménez and Lin developed a perceptron-based predictor that

uses both local and global branch history information in the prediction

process. Figure 4.1 presents the architecture of their perceptron-based

branch predictor.

PC

Table of

Perceptrons

Selected Perceptron

Selected LHR

Local Branch

History Table

GHR

Prediction

LH GHPC

Table of

Perceptrons

Selected Perceptron

Selected LHR

Local Branch

History Table

GHR

Prediction

LH GH

Figure 4.1. The perceptron-based branch predictor

The lower part of the branch address (PC) selects a perceptron in the table

of perceptrons (weights’ matrix) and a local history register in the local

branch history table. Both local and global branch history are used as inputs

for the selected perceptron in order to generate a prediction.

Predicting Unbiased Branches 95

4.2.2. The Idealized Piecewise Linear Branch Predictor

The piecewise linear branch predictor (previously described in paragraph

4.1.2) has the same architecture as the perceptron-based branch predictor

(see Figure 4.1). The weight selection mechanism of the idealized piecewise

linear branch predictor is presented in Figure 4.2, where GH is the global

history, PC is the branch’s address and GA is the path – an array of the

addresses afferent to the last executed branches. Thus, the weight Wbpg

corresponds to branch b (Bb 1), its global history bit g (Gg 1) and

the pth PC (Pp 1) from its path.

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

PC

GA

GH

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

PC

GA

GH

Figure 4.2. The weight selection mechanism of the idealized piecewise linear

branch predictor

4.2.3. The Frankenpredictor

The Frankenpredictor [Loh05a] is a gskew-agree global history predictor

combined with a path-based neural predictor. The gskew-agree predictor

avoids interference by mapping potential conflicting branches to different

entries from three different tables. Three different predictions are provided,

the final prediction being furnished by taking majority vote. The agreement

approach uses a default BTFNT (backward taken forward not taken) static

prediction (bias) for each branch. The predictions (P1, P2 and P3) generated

by the selected pattern history table entries are further compared with the

bias. The neural predictor provides the ability of working with long branch

96 Beyond the Limits of Modern Processors

histories and it also provides the hybridization by including the predictions

of the gskew-agree predictor as additional bits in the perceptron’s input

vector – the agreement bits (A1, A2 and A3) provided by the three PHTs (Ai

is 1 if Pi agrees with the bias and 0 otherwise, 1≤i≤3) and the majority vote

(AM). The prediction mechanism of the Frankenpredictor is presented in

Figure 4.3.

PC

Table of

Perceptrons
Selected Perceptron

Gskew-agree

GHR

Prediction

GHA1

A2

A3

AM

PHT3

PHT2

PHT1

PC

Table of

Perceptrons
Selected Perceptron

Gskew-agree

GHR

Prediction

GHA1

A2

A3

AM

PHT3

PHT2

PHT1

Figure 4.3. The Frankenpredictor’s architecture

4.2.4. The O-GEHL Predictor

The Optimized GEometric History Length (O-GEHL) predictor [Sez05] uses

M distinct prediction tables indexed with hash functions of the branch

address and the global branch history. Distinct history lengths of up to 200

bits and a path history of up to 16 bits, consisting of one address bit per

branch, are used to index the prediction tables. Table T0 is indexed using the

branch address. The history lengths used to index tables Ti, Mi 1 , form

a geometric series:

)1()(1 LiL i (4.1)

The prediction tables store predictions as signed counters. To compute a

prediction, a single counter is read from each prediction table. The

prediction is computed as the sign of the sum S of the M counters. The

prediction is taken if S is positive and not taken otherwise. The final

prediction mechanism of the O-GEHL predictor is presented in Figure 4.4.

Predicting Unbiased Branches 97

+ Prediction = Sign+ Prediction = Sign

Figure 4.4. The O-GEHL prediction aggregation mechanism

4.3. Value-History-Based Branch Prediction with

Markov Models

The context-based predictor predicts the next value based on a particular

stored pattern (context) that is repetitively generated in the value sequence.

Theoretically they can predict any stochastic repetitive sequences. A context

predictor is of order k if its context information includes the last k values,

and, therefore, the search is done using this pattern of k values length. In

fact, in this case the prediction process is based on a simple Markov model

[Vin07]. A first order discrete Markov process may be described at any time

as being in one of a set of N distinct states }...,,,{ 21 NSSSS , as illustrated

in Figure 4.5.

S1 S2

S3

a12

a21

a22

a32

a23

a33

a13

a31

a11

Figure 4.5. A Markov chain with 3 states

98 Beyond the Limits of Modern Processors

A full probabilistic description of discrete Markov chain requires

specification of the current state as well as all the predecessor states (the

current state in a sequence depends on all the previous states). For the

special case of a discrete, first order, Markov chain, this probabilistic

description is truncated to just the current and predecessor state (the current

state depends only on the previous state):

][...],,[121 itjtktitjt SqSqPSqSqSqP
 (4.2)

where tq is the state at time t. Thus, for a first order Markov chain with N

states, the set of transition probabilities between states Si and Sj is }{ ijaA ,

where][1 itjtij SqSqPa , Nji ,1 , having the properties

0ija and 1
1

N

j

ija .

For a Markov chain of order R the probabilistic description is

truncated to the current and R previous states (the current state depends on R

previous states). The following example shows the necessity of using

superior order Markov models. If the sequence of states is

AAABCAAABCAAA, the Markov models of order 1 and 2 mispredict A,

and only a Markov model of order 3 predicts correctly the next state B. This

example is also presented in Figure 4.6.

Sequence: aaabcaaabcaaa?

9 2 2

a b c

0st order Markov

Prediction: a

6 2 0

a b c

1st order Markov

Predictione: a

Context a

3 2 0

a b c

2nd order Markov

Prediction: a

Context aa 0 2 0

a b c

3rd order Markov

Prediction: b

Context aaa

Sequence: aaabcaaabcaaa?

9 2 2

a b c

0st order Markov

Prediction: a

9 2 29 2 2

a b ca b c

0st order Markov

Prediction: a

6 2 0

a b c

1st order Markov

Predictione: a

Context a 6 2 0

a b c

1st order Markov

Predictione: a

Context a

3 2 0

a b c

2nd order Markov

Prediction: a

Context aa 3 2 0

a b c

2nd order Markov

Prediction: a

Context aa 0 2 0

a b c

3rd order Markov

Prediction: b

Context aaa 0 2 0

a b c

3rd order Markov

Prediction: b

Context aaa

Figure 4.6. Markov predictors of different orders

Value predictors that implement the “Prediction by Partial Matching”

algorithm (PPM) [Saz97, Jos97] represent an important class of context-

Predicting Unbiased Branches 99

based predictors. Mudge et al. [Mud96] demonstrates that all two-level

adaptive predictors implement special cases of the PPM algorithm that is

widely used in data compression. It seems that PPM provides the ultimate

predictability limit of two-level predictors. The PPM-based predictor

contains a set of simple Markov predictors, each one predicting the value

that followed the corresponding context with the highest frequency, as it can

be seen in Figure 4.6. In a complete-PPM predictor, if a prediction cannot

be furnished by the Markov predictor of order k, then the pattern length is

shortened and the Markov predictor of order 1k is used to furnish the

prediction and so on until either a prediction is furnished or the Markov

predictor is of the order 0.

Our second idea in order to reduce the number of unbiased branches,

after the feature set length extension (presented in Chapter 3), was to find

new relevant information that could reduce their entropy making them more

predictable. Representing the problem in a superior feature space dimension

is a general well-known method in solving many Computer Science

classification/prediction problems. Therefore, we predict the condition of

the current branch (B0) based on the conditions of the previous branches

(B1, B2, ..., Bh), with different PPM predictors. We use each branch

condition as the value or the sign of the difference between the operand

values (two approaches). Regarding the approach that uses only the signs of

the input differences, a value of 1 indicates that the corresponding branch

difference is positive, a -1 indicates a negative difference, while a 0

indicates equality between the branch inputs. The outcome of the current

branch B0 is determined speculatively based on its predicted condition

(difference).

But is it better to use only the signs of differences as history

information instead of the values of differences? Is this compressed branch

condition history more efficient than the most complete value history? The

number of distinct symbols that can occur in a value history is huge reported

to only three symbols that can appear in a sign history. Thus, the frequency

of symbols in a value history is very low. In the following example only a

Markov predictor of order 1 can be used for the value history, and it

generates a misprediction, while in the case of the sign history, even a

Markov predictor of order 5 can be used, which achieves the correct

prediction:

Value history: -126, -34, 7, -42, -28, 75, -829, -7982, 102, -542, -42, ?

Sign history: -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, ?

Obviously, through a sign history much deeper correlations can be exploited

than with a value history. A natural question is: are the sign histories better

100 Beyond the Limits of Modern Processors

than the simplest branch outcome histories (taken / not taken)? The

difference-sign history can be more efficient because, due to its additional

information, it can efficiently exploit shorter contexts, too. The following

example presents the situation for bgez:

Difference history: 138, 52, 47, 0, -591, 5783, 4, 702, 0, -35, 721, 5, 14, 0, ?

Sign history: +, +, +, 0, -, +, +, +, 0, -, +, +, +, 0, ?

Output history: T, T, T, T, NT, T, T, T, T, NT, T, T, T, T, ?

If after “0” statistically follows “-“ (and, in the case of bgez, “0” is

associated together with “+” to taken) a first order Markov can correctly

predict in the case of sign history, while, in the case of outcome history, the

Markov predictor must be of order 4 or higher for correct prediction.

Anyway, the simulation results will decide which type of branch condition

history is the most efficient.

4.3.1. Local Branch Difference Predictor

Figure 4.7 presents the speculative branch execution mechanism of our local

PPM branch-difference predictor. The Branch Difference History Table

(BDHT) maintains for each static branch the differences corresponding to

the branch’s last h dynamic instances (B1, B2, ..., Bh).

dif(Bh)

Branch Difference

History Table

Predicted

dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching

(PPM)

PC of B0

Pattern

length

Speculative

execution of B0

dif(Bh)

Branch Difference

History Table

Predicted

dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching

(PPM)

PC of B0PC of B0

Pattern

length

Speculative

execution of B0

Speculative

execution of B0

Figure 4.7. A local PPM-based branch-difference predictor

Predicting Unbiased Branches 101

The BDHT entry is selected by the branch address (PC of B0). The branch

differences from the selected BDHT entry are then used as inputs into the

complete-PPM predictor. The PPM predictor of order k (where k<h)

furnishes the predicted difference of the branch undergoing execution (B0).

Speculative execution of the branch B0 based on its predicted difference

only occures in the case that the considered pattern of length k is repeated in

the string of last h differences with a frequency greater than or equal to a

certain threshold value.

4.3.2. Combined Global-Local Branch Difference Predictor

Figure 4.8 presents the speculative branch execution mechanism using a

combined global and local PPM-based branch-difference predictor. The

Global History Register (GHR) contains the global history: the global

branch difference history or the global branch outcome history (two

different approaches). For each global history pattern, a distinct BDHT is

maintained. Thus, the BDHT is selected by the GHR. Each BDHT is

configured as a local BDHT and is accessed as described in Section 4.3.1.

Predicted

dif(B0)

Prediction by Partial Matching

(PPM)

PC of B0

Pattern

length

Speculative

execution of B0

GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Predicted

dif(B0)

Prediction by Partial Matching

(PPM)

PC of B0PC of B0

Pattern

length

Speculative

execution of B0

Speculative

execution of B0

GHR of B0GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Figure 4.8. A global-local PPM-based branch-difference predictor

102 Beyond the Limits of Modern Processors

4.3.3. Branch Difference Prediction by Combining Multiple

Partial Matches

Figure 4.9 presents the speculative branch execution mechanism using the

Branch-Difference Predicion by Combining Multiple Partial Matches

(BPCMP). An entry in the BDHT is accessed as described in Section 4.3.1,

but now the h branch differences are used as inputs into multiple Markov

predictors of different orders. Thus, the sign of the input difference (-1, 1, or

0) corresponding to the current branch (B0) is predicted using multiple

Markov predictors of orders ranging between [1, n], n<h (see Figure 4.9).

The final branch difference prediction is then furnished through majority

vote.

PC of B0

Branch Difference

History Table (BDHT)

dif(Bh) dif(B2) dif(B1)

Predicted

dif(B0)

(-1, 0, +1)

Speculative

execution of B0

Markov

ord. 1

Predicted

dif(B0)

(-1, 0, +1)

Predicted

dif(B0)

(-1, 0, +1)

Predicted

dif(B0)

(-1, 0, +1)

Voter

Markov

ord. k

Markov

ord. n

PC of B0PC of B0

Branch Difference

History Table (BDHT)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

Predicted

dif(B0)

(-1, 0, +1)

Speculative

execution of B0

Speculative

execution of B0

Markov

ord. 1

Markov

ord. 1

Predicted

dif(B0)

(-1, 0, +1)

Predicted

dif(B0)

(-1, 0, +1)

Predicted

dif(B0)

(-1, 0, +1)

Voter

Markov

ord. k

Markov

ord. k

Markov

ord. n

Markov

ord. n

Figure 4.9. Branch-difference prediction by combining multiple Markov predictors

We have also investigated a confidence-based voting mechanism. In

this case, each BDHT entry holds n saturated confidence counters, in the

range [-4, 4], which are associated with the n Markov predictors. A certain

Markov predictor of order k (1 kn) will furnish a value prediction if the

corresponding pattern occures at least once in the history of h values. In the

case of a correctly predicted branch, its confidence saturating counter is

incremented and decremented in the case of a misprediction. Each Markov

prediction is replicated as many times as the corresponding counter’s value

shows (only if this value is greater than zero). These multiple predictions

are then passed to the voter, which furnishes the most frequent value.

Predicting Unbiased Branches 103

4.4. Using Previous Branch Condition as Prediction

Information

In this section we tried to use the value of previous branch condition (PBC)

as prediction information, taking into account that it determines branch’s

behavior. A PBC value consists in the difference of the operand values

involved in the previous branch condition. Using only one branch condition

is in concordance with Heil’s observation in [Hei99b] that majority of

prediction accuracy improvement is gained by using a single branch

difference. First we evaluated the percentage of unbiased context instances

(having polarization P less than 0.95) using the PBC value together with the

global histories of p bits (1≤p≤24). Figure 4.10 compares the percentages of

unbiased branches using the global history (GH), the global history

concatenated with the path (GH + PATH), and the global history

concatenated with the value of the previous branch condition (GH + PBC).

15%

20%

25%

30%

35%

40%

45%

50%

p=1 p=4 p=8 p=12 p=16 p=20 p=24

Context Length

U
n

b
ia

s
e
d

 C
o

n
te

x
t

In
s
ta

n
c
e
s

GH (p bits)

GH (p bits) + PATH (p PCs)

GH (p bits) + PBC

Figure 4.10. The gain introduced by the previous branch condition (PBC) vs. the

path for different context lengths – SPEC 2000 benchmarks

The experimental results, presented in Figure 4.10, show that the PBC

value is more efficient than the path information: it decreased the

percentage of unbiased branches for all evaluated context lengths (1≤p≤24).

Therefore we could use this new prediction information in some state-of-

the-art branch predictors in order to increase prediction accuracy [Gel07a,

Gel07b, Gel07c, Gel08c].

104 Beyond the Limits of Modern Processors

4.4.1. The GAg Predictor Using Global PBC Value

We first analyzed a GAg scheme that uses the previous branch condition

(PBC) by XORing it with the GHR (as the Gshare XORed the PC with the

GHR). The predictor’s scheme is presented in Figure 4.11.

Global Pattern History Table (GPHT)

Predicted PC Prediction bits
W

L2size

PBC

W bits

XOR

GHR

W bits

Global Pattern History Table (GPHT)

Predicted PC Prediction bits
W

L2size

PBC

W bits

XORXOR

GHR

W bits

Figure 4.11. The GAg predictor using the previous branch condition (PBC)

4.4.2. The PAg Predictor Using Local PBC Value

We have also analyzed a PAg scheme that uses the local (per-address) PBC

value (previous branch condition) by XORing it with the LHR (local history

register). The predictor is presented in Figure 4.12.

W
Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size
W

XOR

PChigh PClow

log2L1size
LHR k

W bits

Per-address Branch

History Table (PBHT)

PBC k

W bits

WW
Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size

Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size
W

XORXOR

PChigh PClow

log2L1size

PChigh PClow

log2L1size
LHR k

W bits

Per-address Branch

History Table (PBHT)

PBC k

W bits

W

Figure 4.12. The PAg predictor using the local PBC value

Predicting Unbiased Branches 105

The Per-address Branch History Table (PBHT) maintains for each branch its

own Local History (LH) and its Previous Branch Condition (PBC) value.

4.4.3. The Piecewise Linear Branch Predictor Using PBC

Value

Further, we propose some improved idealized piecewise linear branch

predictors (see Figures 4.13 and 4.14) that use the previous global or local

branch condition (PBC) as additional prediction information. The global

history length is dynamically adjusted between 18 and 48 bits and the local

history length between 1 and 16 bits, as in [Jim05, Gel07a, Gel07b]. In both

schemes local and global branch histories together with the PBC value are

used as inputs for the selected perceptron in order to generate a prediction.

The three indexes used within the weight selection mechanism are obtained

through a hash function that uses three prime numbers, as follows [Jim04]:

 NWiPCPCindex i

i

GH mod1289381660509511387 1
 (4.3)

 NWjPCindex j

LH mod1289381511387 (4.4)

 NWkPCindex k

PBC mod1289381511387 (4.5)

with GHlengthi ,1 , LHlengthj ,1 , PBClengthLHlengthLHlengthk ,1

(PBClength is 32 in our case), and NW the total number of weights

(parameter varied in our simulations between 8590 and 30713). PCi-1

represents the previous (i-1)th branch’s PC, belonging to the path of the

current branch. Consequently, a certain prediction is generated using

(PBClengthLHlengthGHlength) number of selected weights. These

weights were selected from a table containing NW weights. The first two

relations were used according to Jimenez’s simulator proposals [Jim04]

while the third one was introduced by us, according to the new introduced

PBC information.

4.4.3.1 The Piecewise Linear Branch Predictor Using Global PBC

Value

Figure 4.13 presents the scheme of the perceptron-based branch predictor

that is using as additional prediction information the global previous branch

condition (PBC). The lower part of the branch address (PC) selects a

106 Beyond the Limits of Modern Processors

perceptron in the table of perceptrons and a local history register in the local

branch history table.

PC

Selected Perceptron

Selected LHR

Local Branch

History Table

Prediction

LH

Table of

Perceptrons

GHR

GH

PBC

PBCPC

Selected Perceptron

Selected LHR

Local Branch

History Table

Prediction

LH

Table of

Perceptrons

GHRGHR

GH

PBCPBC

PBC

Figure 4.13. Perceptron-based branch predictor using the global PBC value

4.4.3.2 The Piecewise Linear Branch Predictor Using Local PBC Value

Figure 4.14 presents a possible scheme of the perceptron-based branch

predictor that is using as prediction information local (per-address) previous

branch condition (PBC).

PC

Table of

Perceptrons

Selected Perceptron

LH & PBC

Local Branch

History Table

GHR

Prediction

LH & PBC GHPC

Table of

Perceptrons

Selected Perceptron

LH & PBC

Local Branch

History Table

GHR

Prediction

LH & PBC GH

Figure 4.14. Perceptron-based branch predictor using the local PBC value

Predicting Unbiased Branches 107

In Figure 4.14, the Local Branch History Table maintains for each branch its

Local History (LH) and its the Previous Branch Condition (PBC) value.

4.5. Experimental Results

The perceptron and our branch difference predictors were implemented by

extending the sim-bpred simulator provided in SimpleSim-3.0 [Sim]. We

also include the implementation of the unbiased branch selection

mechanism and, thus, the predictors can be evaluated on unbiased branches,

too. We have evaluated our predictors on SPEC 2000 benchmarks,

especially those that indicated a high percentage of unbiased branches

[Gel06a, Vin06]. The Championship Branch Prediction (CBP-1) simulators

afferent to the Frankenpredictor [Loh05a] and the Piecewise Linear Branch

Predictor [Jim05] were extended to work with the same unbiased branch

selection mechanism. In order to exploit these predictors we used the CBP-1

branch prediction framework which includes twenty traces (5 integer

programs, 5 floating point, 5 multimedia applications and 5 server

benchmarks) and a driver that reads the traces and calls the branch predictor

[CBP04]. The traces are approximately 30 million instructions long and

include both user and system codes. The two predictors were implemented

within the constraints of a storage budget of (64K + 256) bits.

All simulation results are reported on 1 billion dynamic instructions

skipping the first 300 million instructions from the SPEC 2000 benchmarks

[SPEC] and on all instructions from the INTEL benchmarks [CBP04]. We

note with LH(p)-GH(q) prediction information consisting in local history

(LH) of p bits, and global history (GH) of q bits. We also note with

PPM(tdim, hlen, plen, thres, htype) a complete-PPM branch-difference

predictor using a Branch Difference History Table (BDHT) of tdim entries,

a history length of hlen differences, a search pattern length of plen

(specifying the current state), a threshold of thres, and considering a history

of branch difference values or branch difference signs (htype=value/sign).

4.5.1. Evaluating State-of-the-Art Branch Predictors

In the first stage of this section, we have measured with present-day branch

predictors the prediction accuracy on all branches and on the final list of

unbiased branches identified in Chapter 3, using different local and global

history lengths.

108 Beyond the Limits of Modern Processors

4.5.1.1. Evaluating the Perceptron-Based Branch Predictor

Figure 4.15 shows comparatively the results obtained on the SPEC 2000

benchmarks with a simple perceptron-based predictor integrated into

Simplesim-3.0 [Sim]. We used a table of perceptrons with 256 entries.

92.58%

73.46%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

LH
(2

8)
-G

H
(0

)

LH
(0

)-
G
H
(2

8)

LH
(2

8)
-G

H
(2

8)

LH
(1

4)
-G

H
(1

4)

LH
(1

6)
-G

H
(0

)

LH
(0

)-
G
H
(1

6)

LH
(8

)-
G
H
(8

)

LH
(2

8)
-G

H
(4

0)

History

P
re

d
ic

ti
o

n
 a

c
c

u
ra

c
y

All

Unbiased

Figure 4.15. The average prediction accuracies obtained with the perceptron

predictor using different prediction information on the SPEC 2000 benchmarks

Figure 4.15 intends to find an optimal LH(p)-GH(q) configuration within an

enormous space of possible solutions. As Figure 4.15 shows, when we used

the best configuration of the perceptron predictor (a local history of 28 bits

and a global history of 40 bits – determined based on laborious simulations),

we obtained an average prediction accuracy of 92.58% on all branches and

of only 73.46% on the unbiased branches.

4.5.1.2. Evaluating the Idealized Piecewise Linear Branch Predictor

Figure 4.16 shows comparatively on the SPEC 2000 benchmarks the

prediction accuracies obtained with the Idealized Piecewise Linear Branch

Predictor (described in paragraph 4.2.2) on all branches and on the final list

of unbiased branches identified in Chapter 3 using the XOR between the

global history of 32 bits and the path of 32 PCs.

Predicting Unbiased Branches 109

94.92%

77.30%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip

m
cf

pa
rs

er

tw
ol

f

A
ve

ra
ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.16. The average prediction accuracies obtained with the Idealized

Piecewise Linear Branch Predictor on the SPEC 2000 benchmarks

We used the original Idealized Piecewise Linear Branch Predictor [Jim05]

whose global history length is dynamically adjusted between 18 and 48 bits

and its local history length between 1 and 16 bits. Even if the Idealized

Piecewise Linear Branch Predictor doesn’t solve satisfactory the unbiased

branches problem, it predicts them with an average accuracy of 77.3% that

is better than all the other simulated branch prediction schemes.

Figure 4.17 shows comparatively on the CBP-1 Intel benchmarks

[CBP04] the prediction accuracies obtained with the Idealized Piecewise

Linear Branch Predictor [Jim05] on all branches and on the final list of

unbiased branches. We used the same configuration as on the SPEC 2000

benchmarks.

0%

20%

40%

60%

80%

100%

dist-fp dist-int dist-mm dist-serv

Intel Benchmark Type

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.17. Average prediction accuracies obtained with the Idealized Piecewise

Linear Branch Predictor on the Intel benchmarks

110 Beyond the Limits of Modern Processors

The Idealized Piecewise Linear Branch Predictor provides a prediction

accuracy of 89.1% on the unbiased branches from the Intel benchmarks.

Although the CBP-1 Intel benchmark suite includes integer, floating-point,

multimedia and server applications, we are reserved regarding them due to

their shortness. Furthermore, the Second World Championship Branch

Prediction Competition (CBP-2) [CBP06] has used all the twelve

CPUintSPEC2000 benchmarks and eight JavaSPECjvm98 benchmarks,

which shows the weakness of the CBP-1 benchmark suite.

In [Flo07b] we have also evaluated on the SPEC JVM98 benchmarks

the fast path-based neural branch predictor [Jim03c] – a particular

configuration of the piecewise linear branch predictor – which uses a single

global piecewise-linear function to predict all branches. As Figures 3.6 and

4.18 show, the lower percentage of unbiased branches within the object-

oriented Java applications has a lower impact on the global prediction

accuracy (98.57%) and even unbiased branches are predicted more

accurately (80.51%).

98.57%

80.51%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

co
m

pr
es

s db ja
ck

ja
va

c
je

ss

m
pe

gau
di
o

m
trt

ra
yt
ra

ce

Ave
ra

ge

SPEC JVM98 benchmarks

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.18. Average prediction accuracies obtained with the Fast Path-Based

Neural Branch Predictor on the SPEC JVM98 benchmarks

4.5.1.3. Evaluating the Frankenpredictor

Figure 4.19 shows comparatively on the SPEC 2000 benchmarks the

prediction accuracies obtained with the Frankenpredictor (described in

paragraph 4.2.3) on all branches and on the unbiased branches identified in

Predicting Unbiased Branches 111

Chapter 3. For the Frankenpredictor we used a global history of 59 bits

[Loh05a].

94.18%

76.08%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip

m
cf

pa
rs

er

tw
ol

f

A
ve

ra
ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c

y

All

Unbiased

Figure 4.19. The average prediction accuracies obtained with the Frankenpredictor

on the SPEC 2000 benchmarks

Figure 4.20 shows comparatively on the CBP-1 Intel benchmarks [CBP04]

the prediction accuracies obtained with the Frankenpredictor on all branches

and on the final list of unbiased branches, using the same configuration as

on the SPEC 2000 benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

dist-fp dist-int dist-mm dist-serv

Intel Benchmark Type

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.20. The average prediction accuracies obtained with the Frankenpredictor

on the Intel benchmarks

112 Beyond the Limits of Modern Processors

We empirically found out that the behavior of difficult branches – as we

defined them – cannot be sufficiently learned neither by neural predictors.

Figures 4.16 – 4.20 confirm us again, that the unbiased branches, identified

in Chapter 3, are hard-to-predict with present-day branch predictors.

4.5.1.4. Evaluating the O-GEHL Predictor

We have also evaluated the Optimized GEometric History Length (O-

GEHL) predictor [Sez05], described in paragraph 4.2.4 (see Figure 4.4). We

used an 8-table O-GEHL predictor. The experimental results obtained on

the SPEC 2000 benchmarks are presented in Figure 4.21.

94.02%

75.25%

65%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip

m
cf

pa
rs

er

tw
ol
f

Ave
ra

ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 a

c
c

u
ra

c
y

All

Unbiased

Figure 4.21. The average prediction accuracies obtained with the O-GEHL

predictor on the SPEC 2000 benchmarks

As it can be observed, the neural branch predictors provided higher

prediction accuracy then the O-GEHL predictor (see comparatively Figures

4.16, 4.19 and 4.21).

4.5.2. Evaluating Markovian Value-History-Based Branch

Predictors

In this section we evaluate the Markovian value-history-based branch

predictors proposed and described in Section 4.3. We emphasize that our

Predicting Unbiased Branches 113

investigation is about the impact that unbiased branches have on dynamic

branch prediction and therefore realistic hardware costs and timings are out

of scope.

4.5.2.1. Evaluating Local Branch Difference Predictors

We set out to determine the optimal local branch difference predictor. We

asked ourselves five questions. Would the operand sign value difference

algorithm achieve better prediction accuracy than the operand value

difference? Which local history register length would provide the best

prediction accuracy? Which pattern length would achieve the best

prediction accuracy? What is the most suitable threshold value? What is the

ideal number of local BDHT entries?

In Figure 4.22 we answer the first two questions: What would be the

most suitable operand difference algorithm to use and, which history

register length achieves the best prediction accuracy? We evaluated the

impact of the unbiased branches (identified in Chapter 3) from the SPEC

2000 benchmarks using a complete PPM predictor with a local BDHT. We

considered an unlimited BDHT which ensured that every static branch had

its own entry thereby eliminating any possibility of collisions. The pattern

length was set to 3, the threshold value was set to 1, and the local history

register length was varied from 8 differences to 64.

60%

65%

70%

75%

80%

85%

90%

95%

LH
(8

)

LH
(1

6)

LH
(2

4)

LH
(3

2)

LH
(4

0)

LH
(4

8)

LH
(5

6)

LH
(6

4)

Local history

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All-Sign

All-Value

Unbiased-Sign

Unbiased-Value

Figure 4.22. The average prediction accuracies on the SPEC 2000 benchmarks,
using a PPM(tdim=unlimited, hlen=varied, plen=3, thres=1, htype=value and

sign) branch difference predictor with different local history lengths

114 Beyond the Limits of Modern Processors

Our results show that better prediction accuracy is achieved by the

difference signs rather than the difference values and that beyond a local

history register length of 24 differences there is only marginal improvement

in prediction accuracy. Consequently, the sign of the current branch

difference is better correlated with the signs of its previous differences

rather than with the values of those differences. But why is better to use

only the signs of differences as history information instead of the values of

differences? The number of distinct symbols that can occur in a value

history is huge reported to only three symbols that can appear in a sign

history. Thus, the frequency of symbols in a value history is very low.

Therefore, as we have shown in Section 4.3 based on examples, through a

sign history much deeper correlations can be exploited than with a value

history.

0.42%

95.64%

22.54%

6.68%
1.21% 2.73%

67.59%

3.19%

0%

20%

40%

60%

80%

100%

markov-0 markov-1 markov-2 markov-3

Markov predictors

U
s
a
g

e

Sign

Value

Figure 4.23. The average usage rates of Markov predictors using

PPM(tdim=unlimited, hlen=24, plen=3, thres=1, htype=sign and value) branch

difference predictors on all branches

Figure 4.23 compares the sign history with the value history in terms of

usage rate afferent to Markov predictors of different orders. We used the

optimal history length 24 and a pattern length of 3, and therefore, we

evaluated the usage rates corresponding to Markov predictors of orders 0, 1,

2 and 3. As Figure 4.23 shows, more often are used superior order Markov

predictors by using a sign history, and thus, deeper correlations can be

exploited. Therefore, we continued by evaluating different pattern lengths

using an unlimited BDHT, a sign history of 24 branch difference signs, and

a threshold of 1. In Figure 4.24 we answer the third question: Which pattern

length would achieve the best prediction accuracy? Our results confirm that

our original pattern length of 3 achieves the best prediction accuracy,

considering the optimal local history of 24 branch difference signs.

Predicting Unbiased Branches 115

88.66%

68.61%

65%

70%

75%

80%

85%

90%

1 2 3 4 5 6 7 8

Pattern length

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.24. Average prediction accuracies on SPEC 2000 benchmarks, using a

PPM(tdim=unlimited, hlen=24, plen=varied, thres=1, htype=sign) branch

difference predictor with different pattern lengths

88.66% 89.51%

68.61% 70.14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

LH(24)-P(3) LH(32)-P(4) LH(64)-P(5) LH(128)-

P(6)

LH(256)-

P(6)

PPM configuration

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.25. Average prediction accuracies on SPEC 2000 benchmarks using a
PPM(tdim=unlimited, hlen=varied, plen=varied, thres=1, htype=sign) branch

difference predictor exploring different local history lengths and pattern lengths

Figure 4.25 explores the space of local history lengths and pattern lengths

using a threshold of 1 and confirms that an acceptable choice (taking into

account a good accuracy/complexity trade-off report) is to use a history of

24 branch difference signs with a pattern length of 3.

116 Beyond the Limits of Modern Processors

65%

70%

75%

80%

85%

90%

95%

100%

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8

Threshold

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.26. Average prediction accuracies on SPEC 2000 benchmarks, using a

PPM(tdim=unlimited, hlen=24, plen=3, thres=varied, htype=sign) branch

difference predictor with different threshold values

Threshold Lost predictions [%]

T=1 0.00

T=2 7.59

T=3 13.37

T=4 17.31

T=5 20.50

T=6 23.40

T=7 25.13

T=8 26.98

Table 4.1. Average percentages of predictions lost with different thresholds

In Figure 4.26 we answer the fourth question: What is the most suitable

threshold value? We used an unlimited BDHT, a local history of 24 branch

difference signs, the pattern length was now set to 3 and the threshold value

varied. The threshold’s value means how many times the current search

pattern must be found in the history string in order to generate a prediction,

implementing thus a confidence degree (otherwise, no prediction is

generated). Our results show that prediction accuracy improves with an

increasing threshold value, but there is marginal, if any, benefit of

increasing the threshold value beyond 7. Strictly considering the confidence

metric, the experimental results presented in Figure 4.26 show that the

optimal threshold value is 7. However, in this case, the total number of

predictions decreases at average with 25.13% (see Table 4.1). Considering

T=1, the global prediction accuracy on unbiased branches A(T=1) is

68.61%. In contrast, considering T=7, the global accuracy A(T=7) is

Predicting Unbiased Branches 117

%64.58%33.78%87.74 whereas for T=2, A(T=2) it is

%75.65%16.71%41.92 . Therefore, from the global accuracy point of

view T=1 is optimal.

In Figure 4.27 we answer the final question: What would be the

optimal number of entries in the local BDHT? We used the same parameters

as Figure 4.26, and the number of entries in the local BDHT was varied

from 64 entries to 256 entries in increments of 64. We have also included an

unlimited local BDHT. Our experimental results show that the impact of the

so called 3Cs (capacity, collisions and cold-start) to be minimal with a 256

entry local BDHT and that there is minimal prediction accuracy gain by

increasing the number of entries beyond 256 entries where the increased

number of cold-start mispredictions may impact on prediction accuracy.

60%

65%

70%

75%

80%

85%

90%

95%

100%

64 128 192 256 unlimited

Local history entries

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All(T=7)

All(T=1)

Unbiased(T=7)

Unbiased(T=1)

Figure 4.27. Average prediction accuracies obtained on the SPEC 2000

benchmarks using a PPM(tdim=varied, hlen=24, plen=3, thres=1 and 7,

htype=sign) branch difference predictor with different BDHT sizes

The next step consists in speculatively executing branches based on

their predicted input differences. We investigated the branch prediction

accuracies of the individual SPEC 2000 benchmarks using our optimal local

branch difference predictor. We used the operand sign difference algorithm,

with a local history register length of 24-signs, a pattern length of 3, and we

used a local 256 entry BDHT. In our results we compare two threshold

values, 1 and 7. When the threshold value is 1, we achieve an average

branch prediction accuracy of 90.55% and the unbiased branches have an

average branch prediction accuracy of 71.76%. When the threshold value is

increased to 7, we achieve an average branch prediction accuracy of 96.43%

118 Beyond the Limits of Modern Processors

and the unbiased branches have a prediction accuracy of 79.69%. These

results show the significance of the threshold value on prediction accuracy

and the impact of unbiased branches. Consequently, unbiased branches in

this local context remain difficult-to-predict.

4.5.2.2. Evaluating Combined Global and Local Branch Difference

Predictors

We consider the high number of unbiased branches and their impact on

prediction accuracy to be due to their high degree of shuffling. To alleviate

the problem of shuffled branch behaviour of unbiased branches we have

developed a combined global and local branch difference predictor which

would convert an unbiased branch in a local context into a biased branch in

a global context, and therefore a difficult-to-predict branch in a local context

would be an easy-to-predict branch in a global context.

In our global and local branch difference predictor, each global history

pattern is used to point to its own local BDHT as described in paragraph

4.3.2 and shown in Figure 4.8. Consequently, we restrict the global history

register length to a maximum of 4 differences. The selected BDHT is

indexed by the PC, as in the local approach. First, we evaluated the

predictor by maintaining in the GHR (see Figure 4.8) the global branch

difference history: the signs of the inputs’ differences corresponding to the

previous h branches. The parameters of each of the local BDHTs were the

same as those of the optimal local BDHT determined in paragraph 4.5.2.1.

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 1 2 3 4

Global history length

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All(T=7)

All(T=1)

Unbiased(T=7)

Unbiased(T=1)

Figure 4.28. Average prediction accuracies on SPEC 2000 using a

PPM(tdim=256, hlen=24, plen=3, thres=1 and 7, htype=sign) branch difference

predictor varying the global branch difference history

Predicting Unbiased Branches 119

In Figure 4.28 the global history register length of 0 represents the optimal

local branch difference predictor whose results are provided in Figure 4.27,

with a 256 entry BDHT. With the combined global and local difference

predictor, as the global history register length is increased there is a

marginal improvement in prediction accuracy.

The next step consists in investigating the branch prediction

accuracies by speculatively executing branches based on their predicted

input differences. With a global history register length of 4 signs and a

threshold value of 1, the combined global and local branch difference

predictor achieves an average prediction accuracy of 92.33%, but the

unbiased branches only achieve an average prediction accuracy of 71.54%

showing a marginal improvement over the local branch difference predictor.

When the threshold value is increased to 7, the average prediction accuracy

improves to 97.44% and the average prediction accuracy of unbiased

branches is significantly better at 81.25%. Even though there is some

improvement in prediction accuracy, these results show that the impact of

unbiased branches still remains significant and therefore implies that

alternative approaches are required.

We also evaluated the predictor by maintaining in the GHR the global

branch outcome history (taken / not taken). Our simulation results show that

the confidence is slightly better on unbiased branches if we use the global

difference-sign history. As we have shown through an example in Section

4.3, the difference-sign history can be more efficient because, due to its

additional information, it can efficiently exploit shorter contexts, too.

4.5.2.3. Branch Difference Prediction by Combining Multiple Partial

Matches

Branch differences are predicted by five Markov predictors of orders

ranging between 1 and 5, the final prediction being provided through

majority voting (as described in Section 4.3.3 and shown in Figure 4.9).

Again, we use a 256 entry BDHT, a local branch difference history of 24

values, and we compare the prediction accuracy of two voting algorithms, a

simple voting algorithm and a confidence voting algorithm. Figure 4.29

shows that the average prediction accuracy of the confidence voting

algorithm is marginally better than the simple voting algorithm. The final

branch prediction accuracy, obtained using the speculative branch

differences generated by combining multiple partial matches through

confidence-based voting, was 91.59% on all branches and only 72.24% on

unbiased branches.

120 Beyond the Limits of Modern Processors

60%

65%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip

m
cf

pa
rs

er

tw
ol
f

Ave
ra

ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All-Simple-Voting

All-Conf-Voting

Unbiased-Simple-Voting

Unbiased-Conf-Voting

Figure 4.29. Branch difference prediction accuracies by combining multiple partial

matches through simple voting and confidence-based voting

We also studied the influence of the threshold’s value over the

prediction accuracy by combining multiple partial matches through

confidence-based voting, using a BDHT with 256 entries, and a local

history of 24 branch difference signs. In this case, the confidence-based

voting takes the majority, considering only Markov predictions found in the

history string after the considered pattern at least T (threshold) times.

91.61%

91.23%

90.12%

71.51%

69.93% 70.24%

65%

70%

75%

80%

85%

90%

95%

T=1 T=2 T=3 T=4 T=5 T=6 T=7

Pattern length

P
re

d
ic

ti
o

n
 a

c
c

u
ra

c
y

All

Unbiased

Figure 4.30. Branch difference prediction accuracies by combining multiple partial

matches through confidence-based voting with different thresholds

Predicting Unbiased Branches 121

Threshold Lost predictions [%]

T=1 2,25

T=2 5,20

T=3 6,62

T=4 8,06

T=5 9,40

T=6 10,78

T=7 13,02

T=8 2,25

Table 4.2. Average percentages of predictions lost by using different thresholds

The experimental results presented in Figure 4.30 and Table 4.2 show that

the optimal threshold value is 2. Thus, the final branch prediction accuracy

by combining multiple partial matches through confidence-based voting

with a threshold of 2 is 73.05% on unbiased branches and 92.42% on all

branches.

77.30%

60%

65%

70%

75%

80%

85%

bzip gzip mcf parser twolf Average

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

Local PPM

Global-Local PPM

Multiple Markov

Perceptron

Piecewise

Frankenpredictor

O-GEHL

Figure 4.31. Branch prediction accuracies obtained using the perceptron-based

predictors, the O-GEHL predictor and the PPM-based predictors, only on unbiased

branches

Figure 4.31 shows again, that the unbiased branches identified in Chapter 3

cannot be accurately predicted even with condition-history-based Markov

predictors. The highest average prediction accuracy on the unbiased

branches, of 77.30%, was provided by the piecewise linear branch predictor.

122 Beyond the Limits of Modern Processors

4.5.3. Evaluating PBC-Based Branch Predictors

4.5.3.1 Evaluating the Global-PBC-Based GAg Predictor

Figure 4.32 presents the prediction accuracies obtained with the modified

GAg predictor on unbiased branches.

69.87%

67.0%

67.5%

68.0%

68.5%

69.0%

69.5%

70.0%

G
H
PC

16
(g

sh
ar

e)

G
H
PB

C
16

PB
C
4_

G
H
P
BC

12

PB
C
8_

G
H
P
BC

8

sh
ift

ed
_G

H
PB

C
16

sh
ift

ed
_P

B
C
4_

G
H
PBC

12

sh
ift

ed
_P

B
C
8_

G
H
PBC

8

PB
C
4_

G
H
12

si
gn

ed
_P

B
C
4_

G
H
PBC

12

Contexts

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

Figure 4.32. Average prediction accuracies of the modified GAg predictor on

unbiased branches

The following contexts have been used with the modified GAg predictor (in

Figure 4.32):

 GHPC16: the 16 least significant bits of the branch PC (shifted to

right by 3 bits) XORed with 16 bits of global history (gshare

predictor);

 GHPBC16: 16 least significant bits of PBC value XORed with 16

bits of global branch history;

 PBC4-GHPBC12: 4 least significant bits of PBC value concatenated

with the XOR between 12 least significant bits of PBC value and 12

bits of global branch history;

 PBC8-GHPBC8: 8 least significant bits of PBC value concatenated

with the XOR between 8 least significant bits of PBC value and 8

bits of global branch history;

Predicting Unbiased Branches 123

 Shifted-GHPBC16: the 16 least significant bits of PBC value

(shifted to right by 3 bits) XORed with 16 bits of global history;

 Shifted-PBC4-GHPBC12: 4 least significant bits of PBC value

(shifted to right by 3 bits) concatenated with the XOR between 12

least significant bits of PBC value (shifted to right by 3 bits) and 12

bits of global branch history;

 Shifted-PBC8-GHPBC8: 8 least significant bits of PBC value

(shifted to right by 3 bits) concatenated with the XOR between 8

least significant bits of PBC value (shifted to right by 3 bits) and 8

bits of global branch history;

 PBC4-GH12: 4 least significant bits of PBC value concatenated with

12 bits of global branch history;

 Signed-PBC4-GHPBC12: sign bit of PBC value (0 if positive, 1 if

negative) concatenated with 3 least significant bits of PBC value and

with the XOR between 12 least significant bits of PBC value and 12

bits of global branch history.

4.5.3.2 Evaluating the Local-PBC-Based PAg Predictor

Figure 4.33 presents the prediction accuracies obtained with the modified

PAg predictor on unbiased branches.

73.75%

71.0%

71.5%

72.0%

72.5%

73.0%

73.5%

74.0%

LH
16

 (P
ag

)

LH
PBC

16

PB
C
4_

LH
PB

C
12

PB
C
8_

LH
PB

C
8

sh
ift

ed
_L

H
PBC

16

sh
ift

ed
_P

B
C
4_

LH
PB

C
12

sh
ift

ed
_P

B
C
8_

LH
PB

C
8

PB
C
4_

LH
12

si
gn

ed
_P

B
C
4_

LH
PB

C
12

Contexts

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

Figure 4.33. Average prediction accuracies of the modified PAg predictor on

unbiased branches

124 Beyond the Limits of Modern Processors

The second level (GPHT) is indexed, depending on the used context, as

follows:

 LH16: the second level is indexed by 16 bits of local branch history

(PAg predictor);

 LHPBC16: 16 least significant bits of PBC value XORed with 16

bits of local branch history;

 PBC4-LHPBC12: 4 least significant bits of PBC value concatenated

with the XOR between 12 least significant bits of PBC value and 12

bits of local branch history;

 PBC8-LHPBC8: 8 least significant bits of PBC value concatenated

with the XOR between 8 least significant bits of PBC value and 8

bits of local branch history;

 Shifted-LHPBC16: 16 least significant bits of PBC value (shifted to

right by 3 bits) XORed with 16 bits of local history;

 Shifted-PBC4-LHPBC12: 4 least significant bits of PBC value

(shifted to right by 3 bits) concatenated with the XOR between 12

least significant bits of PBC value (shifted to right by 3 bits) and 12

bits of local branch history;

 Shifted-PBC8-LHPBC8: 8 least significant bits of PBC value

(shifted to right by 3 bits) concatenated with the XOR between 8

least significant bits of PBC value (shifted to right by 3 bits) and 8

bits of local branch history;

 PBC4-LH12: 4 least significant bits of PBC value concatenated with

12 bits of local branch history;

 Signed-PBC4-LHPBC12: sign bit of PBC value (0 if positive, 1 if

negative) concatenated with 3 least significant bits of PBC value and

with the XOR between 12 least significant bits of PBC value and 12

bits of local branch history.

4.5.3.3 Evaluating the Global-PBC-Based Piecewise Linear Branch

Predictor

Figure 4.34 presents the prediction accuracies obtained on all branches and

on the unbiased branches with our best proposed and implemented

predictor: the idealized piecewise linear branch predictor using the global

PBC value as additional prediction information. The first two bars represent

the prediction accuracies on all branches and on unbiased branches,

obtained with the idealized piecewise linear branch predictor (PW). The rest

of the bars were obtained using the PBC value (32 bits) as additional

Predicting Unbiased Branches 125

prediction information, varying the number of weights (from 8590 up to

30713).

94.92%
95.45%

77.30% 78.30%

75%

80%

85%

90%

95%

P
W

_8
59

0w

P
W

_P
B
C
_8

59
0w

P
W

_P
B
C
_1

25
30

w

P
W

_P
B
C
_1

57
20

w

P
W

_P
B
C
_2

05
73

w

P
W

_P
B
C
_3

07
13

w

Different size perceptron-based predictors

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

all_branches

unbiased

Figure 4.34. Average prediction accuracies obtained with piecewise linear branch

predictor on unbiased branches versus all branches, using the global PBC value as

additional prediction information

With the modified piecewise linear branch predictor we obtained a

prediction accuracy of 78.30% (see Figure 4.34) opposite to those obtained

with the modified GAg, 69.87% (see Figure 4.32) and the modified PAg,

73.75% (see Figure 4.33). This gain was probably obtained because both the

modified GAg and PAg predictors use a hashing between PBC value and

global/local branch history, while the modified piecewise linear branch

predictor uses the branch history and PBC value without hashing (by

concatenating them).

Analyzing comparatively the results presented in Figures 4.31 and

4.34 it can be observed how the PBC value determines the improvement of

unbiased branch prediction accuracy, overcoming with at least 1% the best

state of the art predictor’s performance. Even if the improvement seems less

significant, it is very clear how this small percentage contributes to the

global prediction accuracy (value that overcomes with more than 0.53% the

best state of the art predictor’s performance).

4.5.3.4 Evaluating the Local-PBC-Based Piecewise Linear Branch

Predictor

Figure 4.35 presents the prediction accuracies obtained with the perceptron-

based branch predictor that is using as prediction information local (per-

126 Beyond the Limits of Modern Processors

address) previous branch condition (PBC). Unfortunately, we have not

obtained any improvement with the local PBC approach opposite to the

global PBC approach, the accuracies being even lower.

77.79%

77.2%

77.3%

77.4%

77.5%

77.6%

77.7%

77.8%

P
W

_8
59

0w

P
W

_P
B
C
_8

59
0w

P
W

_P
B
C
_1

25
30

w

P
W

_P
B
C
_1

57
20

w

P
W

_P
B
C
_2

05
73

w

P
W

_P
B
C
_3

07
13

w

Predictor Configurations

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

Figure 4.35. Average prediction accuracies of the piecewise linear branch
predictor on unbiased branches, using the local (per-address) PBC value as

additional prediction information

Consequently, based on laborious simulations we showed that the

percentages of difficult branches are quite significant, depending on the

different used contexts and their lengths, giving a new research challenge

and a useful niche for branch prediction research. We showed that these

difficult predictable branches cannot be well-predicted using state of the art

predictors. They need some specific efficient predictors that are using some

new more relevant prediction information. Finding a new relevant context to

aggressively reduce the number of unbiased shuffled branches remains an

open problem. Computer Architects cannot therefore continue to expect a

prediction accuracy improvement with conventional predictors and

alternative approaches are necessary.

4.5.3.5 Prediction Accuracy Improvements with PBC

Figure 4.36 shows comparatively the prediction accuracies obtained on the

unbiased branches using predictors with and without PBC.

Predicting Unbiased Branches 127

78.30%

55%

60%

65%

70%

75%

80%

85%

bz
ip

gz
ip

m
cf

pa
rs

er

tw
ol
f

Ave
ra

ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y Gshare

GAg_global_PBC

PAg

PAg_local_PBC

piecewise

piecewise_local_PBC

piecewise_global_PBC

Figure 4.36. Prediction accuracy on unbiased branches using predictors with and

without the new PBC information

As Figure 4.36 depicts, all the evaluated branch predictors that are using the

PBC as additional prediction information are more accurate than the original

versions (without PBC).

4.6. Summary

We showed that the best state of the art branch predictors [CBP04, CBP06]

are obtaining very low prediction accuracies on unbiased branches, at

average about 70% [Gel07b, Gel07c, Gel08c]. The same predictors are

predicting a “normal” branch with accuracies ranging between 95% and

99%. These predictors are usually hybrid: Markovian, PPM-based, and

neural. The unbiased branches cannot be accurately predicted even with the

actual most powerful branch predictors. This fact is perfectly normal taking

into account that the problem consists in better representing the unbiased

branches in a new efficient feature space rather in finding better prediction

structures. The highest average prediction accuracy on the unbiased

branches, of 77.30%, was provided by the idealized piecewise linear branch

128 Beyond the Limits of Modern Processors

predictor [Jim05]. This low prediction rate is understandable taking into

account that even a neural predictor cannot effectively learn unbiased

branches. As a comparison, the same predictor obtained far better average

prediction accuracy, of 94.92%, on all branches.

We have also used the value of previous branch condition (PBC) as

additional prediction information in some state-of-the-art branch predictors

in order to increase their prediction accuracy. Our evaluations showed that

the PBC value improves the accuracy of idealized piecewise linear branch

predictor on unbiased branches with at least 1%. Even if the improvement

seems less significant, it is very clear how this small percentage contributes

to the global prediction accuracy, which increased with 0.53%.

“Anyone who considers arithmetical methods of producing

 random digits is, of course, in a state of sin”

John von Neumann

5. Validating Unbiased Branches Using

Random Degrees

As we stated out in the previous chapter, the unbiased branches behavior is

practically unpredictable. Why this? Are these special branches

unpredictable due to some relevant information misses or are they

“random”? However, they were obtained by compiling some deterministic

programs; therefore they were not randomly generated. But... what is

random? During this chapter we try to understand random strings of

symbols from a mathematical point of view in order to practically propose

some concrete metrics characterizing them. These metrics could help us to

better understand and analyze the unbiased branches behavior and their

potential predictability.

A pragmatic aim consists in finding some deterministic hidden

information that could reduce the unbiased branches’ entropy. This is

extremely difficult at least from two reasons: first, due to the enormous

complexity of the benchmarks’ dynamic behavior and, second, due to the

fact that the simulated object code obviously has far less semantics

comparing with the HLL program. However, we consider that our

developed random degrees could indicate the chance for uncovering this

new relevant infomation. A high random degree might indicate a huge

complexity and therefore, small chances to discover the right useful

information.

5.1. Related Work

This section presents a brief related work on characterizing random

sequences from a fundamental mathematical point of view and on

applications of Hidden Markov Models (HMM) in different Computer

Science areas.

130 Beyond the Limits of Modern Processors

5.1.1. What is a Random Sequence?

The questions are: is it possible to give an intrinsic or ontological definition

of a random string of symbols? Could generate a deterministic program a

“random” sequence? Mathematicians show that for strings it is only possible

to develop a notion of randomness degree, the difference between random

and nonrandom being therefore quite fuzzy [Vin08b].

There is a strong logic connection between the concept of randomness

and computability theory. It is natural to consider that any string of symbols

generated by an algorithm is not random (it could be perfectly predicted

through a predictor implementing that algorithm). For an in-depth rigorous

definition of randomness it is necessary to use the fertile Turing Machine

(TM) concept. Any binary input sequence in a TM belongs to the so-called

Finite Binary set (FB) and it codifies the input data. The TM can be in one

state belonging to the set }...{ 210 fqqqqQ , where 0q is the initial state

(start) and fq is the final state (stop). Depending on the current input

symbol)(ts and the current state q(t), the TM generates the new symbol

)1(ts and transits to a new state)1(tq . Thus, each step can be described

by }),1(),1(),(),({)(mtqtststqxTM t where },{ RLMm .

)(xTM t is also called instruction, and the entire instruction sequence

represents the program executed by the TM. For FBx , if the TM reaches

its final state, it generates the corresponding output sequence TM(x).

Therefore, from a formal point of view, a TM is a function

MSQSQf : .

The set of all TMs is a countable (infinite) set; therefore the TM set

can be put in a one-to-one correspondence with the natural number set (N).

This fact can be easily justified. Considering all the TMs with k instructions

(noted
kTM) it means that one can then order the machines by the

increasing size of the instruction set (
1kTM), involving that the (

kTM) set

is countable ...5,4,3,2k Therefore, taking into account that each

certain
kTM set contains a finite number of TMs it involves that the set of

all TMs is countable, too ...),...,,,(21 nTMTMTM . Thus, each TM defines a

partial function from the set of FB strings to itself. Alternatively, if the

function is defined for all strings in FB, then the function is said to be total.

Now each string in FB is a binary representation of a positive integer

through an encoding function NFBc : . A partial function NNf : is

Turing computable if there is a TM such that, for every n in the domain of f,

Validating Unbiased Branches Using Random Degrees 131

there is an input FBx with)(xcn for which the machine eventually

stops and such that the output)(xTM satisfies))(()(xTMcnf . From the

countability of the collection of all TMs, it follows immediately that the set

of partial Turing computable functions is a countable subset of the much

larger uncountable set of all partial functions from N to N. In this sense,

very few functions are Turing computable even if the number of these

computable functions is infinite (noted Alef 0 in G. Cantor’s mathematical

theory of actual infinites). This means that the Turing non-computable

function set is uncountable. It is well-known the Church-Turing thesis

saying that for any algorithm (finite steps procedure) there is an equivalent

TM [Vol02].

Returning to the random binary string’s definition problem, as we

already stated, it is obvious that such a string must not be generated through

an algorithm (i.e., Turing computable function). Thus, any random binary

string is generated by a non-computable Turing function. (Reciprocal,

mathematicians showed that there are some non-computable sequences that

are not random for sure!) Taking into account that the non-computable

Turing function set is an uncountable set it involves that the random binary

strings set is uncountable, too. Unfortunately this rigorous definition of a

random sequence is useless because it cannot effectively generate any

concrete random string. This is equivalent to say that majority of real

numbers are random even if it is not possible to generate at least one

example. Rigorously defining and effectively generating random sequences

seems to be an open problem for the actual mathematics and also for the

general studies related to cognitive and noetic behavior.

The practical idea of randomness as incompressibility was proposed

independently in the sixties of previous century by R. Solomonoff, A.

Kolmogorov, and G. Chaitin. The main intuition is that a string is random if

it cannot be “described” more efficiently than by giving the whole string

itself. Thus, a string is random if it is algorithmically incompressible or

irreducible. According to this view, a string is random if no computer

program of size substantially smaller than the string itself can generate or

describe it. This is the notion of program size algorithmic or Kolmogorov

complexity. Obviously, its concrete value depends on the particular formal

language that implements the generator algorithm. As a consequence of this

practical approach of randomness we propose the compression rate as a

random degree of a string of symbols.

132 Beyond the Limits of Modern Processors

5.1.2. Prediction with Hidden Markov Models

Rabiner in his work [Rab89] shows how HMMs can be applied to selected

problems in speech recognition. His paper presents the theory of HMMs

from the simplest concepts (discrete Markov chains) to the most

sophisticated models (variable duration, continuous density models, etc.).

He also illustrated some applications of the theory of HMMs to simple

problems in speech recognition, and pointed out how the techniques have

been applied to more advanced speech recognition problems.

Liu et al. in their work [Liu03], describe a HMM based framework for

hand gesture detection and recognition. The goal of gesture interpretation is

to improve human-machine communication and to bring human-machine

interaction closer to human-human interaction, making possible new

applications such as sign language translation. They present an efficient

method for extracting the observation sequence using the feature model and

Vector Quantization, and demonstrate that, compared to the classic

template-based methods, the HMM-based approach offers a more flexible

framework for recognition.

Machine Learning techniques based on HMMs have been also applied

to problems in computational biology and they can be used as mathematical

models of molecular processes and biological sequences. The goal of

computational biology is to elucidate additional information required for

drug design, medical diagnosis and medical treatment. The majority of

molecular data used in computational biology consists in sequences of

nucleotides corresponding to the primary structure of DNA and RNA, or

sequences of amino acids corresponding to the primary structure of proteins.

Birney in his work [Bir01] reviews gene-prediction HMMs and protein

family HMMs. The role of gene-prediction in DNA is to discover the

location of genes on the genome. HMMs have also been used in protein

profiling to discriminate between different protein families and predict a

new protein-family or subfamily. Yoon et al. in their work [Yoo04],

proposed a new method based on context-sensitive HMMs, which can be

used for predicting RNA secondary structure. The RNA secondary structure

results from the base pairs formed by the nucleotides of RNA. The context-

sensitive HMM can be viewed as an extension of the traditional HMM,

where some of the states are equipped with auxiliary memory. Symbols that

are emitted at certain states are stored in the memory, and they serve as the

context that affects the emission and transition probabilities of the model.

They demonstrated that the proposed model predicts the secondary structure

very accurately, at a low computational cost.

Validating Unbiased Branches Using Random Degrees 133

In our previous work [Gel06c] we focused on a Hidden Markov Model

(HMM) approach for context prediction in a ubiquitous computing

application. Our application predicts the next room based on the history of

rooms, visited by a certain person moving within an office building. We

introduced the HMM-based predictors and compared them with simple

Markov and neural predictors [Vin04b, Vin04c]. We evaluated these

predictors by some movement sequences of real persons, acquired from the

Smart Doorplates project developed at Augsburg University [Pet04]. The

experimental results show that HMMs outperform other implemented

prediction techniques such as Neural Networks and Markov predictors.

Predicting from all rooms excepting own room and using a HMM with 4-

state confidence automata, we obtained an average prediction accuracy of

84.81%, but the prediction accuracy measured on some local predictors

grew up to over than 92%.

5.2. Random Degree Metrics for Characterizing

Unbiased Branches Behavior

This section presents, based on our bibliographical research [Rab89,

Gam99, Cor01, and Vol02], some practical ideas proposed in [Vin08b] for

characterizing sequences generated by unbiased branches from the random

degree viewpoint.

5.2.1. Random Degree Metric Based on Hidden Markov

Models

New relevant information could reduce the string’s entropy and thus its

random degree. Unfortunately this information might be very difficult or

even impossible to be found. As a consequence we think it would be

interesting trying to predict a sequence using HMMs like those developed in

[Rab89, Gel06c]. A HMM is a doubly embedded stochastic process with an

underlying hidden stochastic process which can only be observed through

another set of stochastic processes that generate the sequence of observable

symbols. A generic HMM is illustrated in Figure 5.1, where qt is the hidden

state at time t, Ot is the observation at time t, A is the matrix of transition

probabilities between hidden states, and B is the matrix of observation

probabilities within each hidden state.

134 Beyond the Limits of Modern Processors

q1
q2 q3 qT

A A A A

B B B B

O1 O2 OTO3

Hidden State Sequence (Q):

Observation Sequence (O):

q1
q2 q3 qT

AA AA AA AA

BB BB BB BB

O1 O2 OTO3

Hidden State Sequence (Q):

Observation Sequence (O):

Figure 5.1. Hidden Markov Model

HMM predictors are very powerful adaptive stochastic models. Our

hypothesis is that HMMs could compensate relevant information miss-

knowledge through their hidden stochastic process. HMM’s prediction

accuracy might be considered as an ultimate prediction limit. Therefore, we

propose HMM prediction accuracy as another practical metric for

calculating the random degree associated with a sequence of symbols. Of

course, all these random degree metrics will be applied to our unbiased

branches behaviors in order to estimate how much random they are.

5.2.1.1. First Order HMMs

Elements of a First Order HMM

1. N – the number of hidden states, with }...,,,{ 110 NSSSS the set of

hidden states, and tq the hidden state at time t. N will be varied in order

to obtain the optimal value.

2. M – the number of observable states, with }...,,,{ 110 MVVVV the set

of observable states (symbols), and tO the observable state at time t.

3. A = }{ ija – the transition probabilities between the hidden states iS and

jS , where 1,0],[1 NjiSqSqPa itjtij .

4. B =)}({ kb j – the probabilities of the observable states kV in jS , where

10,10],[)(MkNjSqVOPkb jtktj .

5. π = }{ i – the initial hidden state probabilities, where

10],[1 NiSqP ii .

We also defined the following variables:

),...()(21 ittt SqOOOPi – the forward variable [Rab89],

representing the probability of the partial observation sequence until

time t, and hidden state iS at time t, given the model),,(BA .

Validating Unbiased Branches Using Random Degrees 135

),...()(21 itTttt SqOOOPi
 – the backward variable [Rab89],

representing the probability of the partial observation sequence from t+1

to the end T, given hidden state iS at time t and the model),,(BA .

),...,(),(211 Tjtitt OOOSqSqPji
 – the probability of being

in hidden state iS at time t, and hidden state jS at time t+1, given the

model),,(BA and the observation sequence.

),...()(21 Titt OOOSqPi – the probability of being in hidden

state iS at time t, given the model),,(BA and the observation

sequence.

 H – the history (the number of observations used in the prediction

process). In [Rab89] and [Sta04] the entire observation sequence is used

in the prediction process (H=T), but in some practical applications the

observation sequence increases continuously, therefore its limitation is

necessary. The last H observations can be stored in a left shift register.

 I – the maximum number of iterations in the adjustment process.

Usually the adjustment process ends when the probability of the

observation sequence does not increase anymore, but for a faster

adjustment, the number of iterations is limited.

Adjustment Process of a First Order HMM

1. Initialize),,(BA ;

2. Compute 1...,,0,1...,,0,...,,1),(),,(),(),(NjNiTtijiii tttt ;

3. Adjust the model),,(BA ;

4. If)(OP increases, go to 2.

The model parameters),,(BA are adjusted in order to maximize the

probability of the observation sequence. The model),,(BA can be

chosen such that)(OP is locally maximized using an iterative procedure,

or using gradient techniques. In this work we use the Baum-Welch iterative

method introduced by Baum et al. [Bau72]. The Baum-Welch algorithm –

identical to the Expectation Maximization (EM) method for this particular

problem – improves iteratively an initial model. If we define the current

model as),,(BA and use it to compute the reestimated model

),,(BA – through steps 3.5, 3.6 and 3.7 from the prediction algorithm

136 Beyond the Limits of Modern Processors

–, then, as it has been proven by Baum, the model is more likely than

model in the sense that)()(OPOP . Thus, if is used iteratively

in place of repeating the reestimation calculation, the probability of the

observation sequence can be improved until some limiting point is reached.

Rabiner show in [Rab89] that the same reestimation formulas can be

obtained using the techniques of Lagrange multipliers.

Initialization of the First Order Model

 The transition probabilities between the hidden states }{)(ijaNNA ,

are randomly initialized to approximately 1/N; the sum of each row’s

elements must be 1.

 The probabilities of the observable states)}({)(kbMNB j , are

randomly initialized to approximately 1/M; the sum of each row’s

elements must be 1.

 The initial hidden state probabilities π(1N) = }{ i are randomly set to

approximately 1/N, their sum being 1.

Prediction Algorithm Using a First Order HMM

1.) T=H (T is the length of the observation sequence);

2.) c=0 (c is the number of current iteration, its maximum is given by I);

3.) The model),,(BA is repeatedly adjusted based on the last H

observations
THTHT OOO ...,,, 21

 (the entire observation sequence if

H=T), in order to increase the probability of the observation sequence

)...(21 THTHT OOOP . In 3.1, 3.2 and 3.3 steps the denominators are

used in order to obtain a probability measure, and to avoid underflow.

As Stamp showed in [Sta04], underflow is inevitable without scaling,

since the probabilities tend to 0 exponentially as T increases.

3.1. Compute the forward variable in a recursive manner:

1,...,0,

)(

)(
)(

1

0

1

1
1

 Ni

Ob

Ob
i

N

i

HTii

HTii
HT

 , where)(1 iHT is

the probability of observation symbol 1HTO and initial hidden

state iS , given the model),,(BA ;

Validating Unbiased Branches Using Random Degrees 137

1,...,0,...,,2,

)()(

)()(

)(
1

0

1

0

1

1

0

1

NjTHTt

Obai

Obai

j
N

j

N

i

tjijt

N

i

tjijt

t

where)(jt is the probability of the partial observation sequence

until time t (tHT OO ...1), and hidden state jS at time t, given the

model),,(BA . Since, by definition,

),...()(21 jTTHTHTT SqOOOPj
,

the sum of the terminal forward variables)(jT gives the

probability of the observation sequence:

1

0

21)()...(
N

j

TTHTHT jOOOP .

3.2. Compute the backward variable in a recursive manner:

;1,...0,

)()(

1
)(

1

0

1

0

1

Ni

Obai

i
N

j

N

i

TjijT

T

1,...,0,1,...,1,

)()(

)()(

)(
1

0

1

0

11

1

0

11

NiHTTt

jOba

jOba

i
N

i

N

j

ttjij

N

j

ttjij

t

where)(it is the probability of the partial observation sequence

from t+1 to the end T (Ttt OOO ...21), given hidden state iS at

time t and the model),,(BA .

3.3. Compute :

1...,,0

,1...,,0,1...,,1,

)()()(

)()()(
),(

1

0

1

0

11

11

Nj

NiTHTt

jObai

jObai
ji

N

i

N

j

ttjijt

ttjijt

t

where),(jit is the probability of being in hidden state iS at time

t and in jS at time t+1, given the observation sequence

THTHT OOO ...21 and the model),,(BA .

138 Beyond the Limits of Modern Processors

3.4. Compute :

1

0

1...,,0,1...,,1),,()(
N

j

tt NiTHTtjii , where

)(it is the probability of being in the hidden state iS at time t,

given the model),,(BA and the observation sequence

THTHT OOO ...21
.

3.5. Adjust π:

)(1 iHTi – represents the expected number of times the

hidden state is iS at the initial time 1 HTt .

3.6. Adjust A:

1

1

1

1

)(

),(

T

HTt

t

T

HTt

t

ij

i

ji

a

 – represents the probability of transition from

hidden state iS to jS .

The numerator is the expected number of transitions from state iS

to jS , while the denominator is the expected number of transitions

from state iS to any state.

3.7. Adjust B:

1

1

1

1

)(

)(

)(
T

HTt

t

T

VO
HTt

t

j

j

j

kb kt

 – the probability of observation symbol kV

given that the model is in hidden state jS . The numerator is the

expected number of times the model is in hidden state jS and the

observation symbol is kV , while the denominator is the expected

number of times the model is in hidden state jS .

3.8. c=c+1;

if)]...(log[)]...(log[11 THTTHT OOPOOP and c<I then

go to 3.).

Validating Unbiased Branches Using Random Degrees 139

Since P would be out of the dynamic range of the machine

[Rab89], we compute the logarithm of P, using the following

formula [Sta04]:

T

HTt
N

j

N

i

tjijt

N

i

HTii

THT

ObaiOb

OOP
2

1

0

1

0

1

1

0

1

1

)()(

1
log

)(

1
log)]...(log[

4.) At current time T, the next observation symbol
1TO is predicted, using

the adjusted model),,(BA :

4.1. choose hidden state iS at time T, 1...,,0 Ni , maximizing

)(iT ;

4.2. choose next hidden state jS (at time 1T), 1...,,0 Nj ,

maximizing ija ;

4.3. predict next symbol kV (at time 1T), 1...,,0 Mk ,

maximizing)(kb j .

If the process continues, then 1 TT and go to 2.).

5.2.1.2. A Possible Generalization: Superior Order HMMs

In this paragraph we present a Hidden Markov Model of order R, 1R ,

based on our work published in [Gel06c]. There are multiple possibilities

for doing this but we present here only one we considered the most

appropriate due to its simplicity. The key of our proposed model is

represented by the so-called hidden super-states, a combination of R

primitive hidden states. Therefore, the main difference, comparing with a

first order HMM, consists in the fact that the stochastic hidden Markov

model is of order R instead of order one. This new model is justified

because we suppose that in some specific applications, there are longer

correlations within the hidden state model. In other words, we suppose that

the next hidden state is better determined by the current super-state rather

than by the current primitive state. As it can be further seen, the new

proposed model is similar with the well-known HMM of order one,

excepting the fact that the generic primitive hidden state becomes now a

generic super-state.

140 Beyond the Limits of Modern Processors

Elements of a Superior Order HMM

1. R – the order of HMM (a combination of R primitive hidden states form

a so called super-state).

2. N – the number of primitive hidden states (belonging to a HMM of

order 1), with }...,,,{
110

 RN
SSSS being the set of hidden super-states

and Sqt the hidden super-state at time t. The current super-state

determines the transition into the next one based on a super-state

transition matrix with restrictions (this transition matrix involve a non-

ergodic model, see example of Table 5.1). N will be varied in order to

obtain the optimal value.

3. M – the number of observable states, with }...,,,{ 110 MVVVV the set

of observable states (symbols), and tO the observable state at time t.

4. A = }{ ija – the transition probabilities between the hidden super-states

iS and jS , where 1,0],[1

R

itjtij NjiSqSqPa .

5. B =)}({ kb j – the probabilities of the observable states kV , considering

the current hidden super-state jS , where

10,10],[)(MkNjSqVOPkb R

jtktj .

6. π = }{ i – the initial hidden super-state probabilities, where

][1 ii SqP , 10 RNi .

In order to simplify the terminology, in the rest of this chapter we’ll refer to

the hidden super-states as simply hidden states.

We also define the following variables:

),...()(21 ittt SqOOOPi – the forward variable [Rab89],

representing the probability of the partial observation sequence until

time t, and hidden state iS at time t, given the model),,(BA .

),...()(21 itTttt SqOOOPi – the backward variable [Rab89],

representing the probability of the partial observation sequence from t+1

to the end T, given hidden state iS at time t and the model),,(BA .

),...,(),(211 Tjtitt OOOSqSqPji – the probability of being

in hidden state iS at time t, and hidden state jS at time t+1, given the

model),,(BA and the observation sequence.

Validating Unbiased Branches Using Random Degrees 141

),...()(21 Titt OOOSqPi – the probability of being in hidden

state iS at time t, given the model),,(BA and the observation

sequence.

 H – the history (the number of observations used in the prediction

process). In [Rab89] and [Sta04] the entire observation sequence is used

in the prediction process (H=T), but in some practical applications the

observation sequence increases continuously, therefore its limitation is

necessary. Thus, the last H observations can be stored in a left shift

register having a certain length.

 I – the maximum number of iterations in the adjustment process.

Usually the adjustment process ends when the probability of the last H

observations does not increase anymore, but for a faster adjustment, the

number of iterations is limited.

For a HMM of order R with N primitive hidden states, the transition

probabilities between the hidden states }{)(ij

RR aNNA , are stored in a

table with RN rows and RN columns but not all cells of the table are used;

there are only N consistent (possible) transitions from each state involving a

non-ergodic model. The following table, for example, corresponds to a

HMM of order 3 (R=3) with 2 primitive hidden states (N=2):

States

j

0 1 2 3 4 5 6 7

AAA AAB ABA ABB BAA BAB BBA BBB

i

0 AAA X X

1 AAB X X

2 ABA X X

3 ABB X X

4 BAA X X

5 BAB X X

6 BBA X X

7 BBB X X

Table 5.1. Consistent transitions for a HMM of order 3 (R=3), with 2 primitive

hidden states (N=2)

Only the consistent cells marked with “X” are used, because transitions are

possible only between states which end and start with the same)1(R

primitive hidden states. The consistent cells of the transition table are given

by the following formulas:

142 Beyond the Limits of Modern Processors

 For next hidden states (columns) 1...,,0 RNj , are consistent

only the current hidden states (rows)

11)1(...,,0

 RR NN

N

j
N

N

j
i ;

 For current hidden states (rows) 1...,,0 RNi , are consistent only

the next hidden states (columns)

1)mod(...,,)mod(11 NNNiNNij RR
.

The HMM of order R is similar with a first order HMM with the above state

transition restrictions.

Adjustment Process of a Superior Order HMM

1. Initialize),,(BA ;

2. Compute 1...,,0,1...,,0,...,,1),(),,(),(),(RR

tttt NjNiTtijiii ;

3. Adjust the model),,(BA ;

4. If)(OP increases, go to 2.

Initialization of the Superior Order Model

 The transition probabilities between the hidden states

}{)(ij

RR aNNA , are randomly initialized to approximately 1/N; the

sum of each row’s elements must be 1. The hidden state transition

probabilities are initialized for 1...,,0 RNi and

1)mod(...,,)mod(11 NNNiNNij RR .

 The probabilities of the observable states)}({)(kbMNB j

R , are

randomly initialized to approximately 1/M; the sum of each row’s

elements must be 1.

 The initial hidden state probabilities π(1)RN = }{ i are randomly set

to approximately 1/NR, their sum being 1.

Prediction Algorithm Using a Superior Order HMM

1.) T=H (T is the length of the observation sequence);

2.) c=0 (c is the number of current iteration, its maximum is given by I);

Validating Unbiased Branches Using Random Degrees 143

3.) The model),,(BA is repeatedly adjusted based on the last H

observations
THTHT OOO ...,,, 21

 (the entire observation sequence if

H=T), in order to increase the probability of the observation sequence

)...(21 THTHT OOOP
. In 3.1, 3.2 and 3.3 the denominators are used

in order to obtain a probability measure, and to avoid underflow. As

Stamp showed in [Sta04], underflow is inevitable without scaling, since

the probabilities tend to 0 exponentially as T increases.

3.1. Compute the forward variable in a recursive manner:

1,...,0,

)(

)(
)(

1

0

1

1
1

R

N

i

HTii

HTii
HT Ni

Ob

Ob
i

R

 , where)(1 iHT

is the probability of observation symbol
1HTO and initial hidden

state iS , given the model),,(BA ;

1,...,0,...,,2,

)()(

)()(

)(

1

0

)1(

0

1

)1(

0

1

1

1

1

1

R

N

j

NN
N

j

N
N

j
i

tjijt

NN
N

j

N
N

j
i

tjijt

t NjTHTt

Obai

Obai

j
R

R

R

R

R

where)(jt is the probability of the partial observation sequence

until time t (tHT OO ...1), and hidden state jS at time t, given

the model),,(BA . Since, by definition,

),...()(21 jTTHTHTT SqOOOPj ,

the sum of the terminal forward variables)(jT gives the

probability of the observation sequence:

1

0

21)()...(

RN

j

TTHTHT jOOOP .

3.2. Compute the backward variable in a recursive manner:

;1,...0,

)()(

1
)(

1

0

)1(

0

1

1

1

R

N

j

NN
N

j

N
N

j
i

TjijT

T Ni

Obai

i
R

R

R

144 Beyond the Limits of Modern Processors

,1,...,0,1,...,1,

)()(

)()(

)(
1

0

1)mod(

)mod(

11

1)mod(

)mod(

11

1

1

1

1

R

N

i

NNNi

NNij

ttjij

NNNi

NNij

ttjij

t NiHTTt

jOba

jOba

i
R R

R

R

R

where)(it is the probability of the partial observation sequence

from t+1 to the end T (Ttt OOO ...21), given hidden state iS at

time t and the model),,(BA .

3.3. Compute :

,1...,,1,

)()()(

)()()(
),(

1

0

1)mod(

)mod(

11

11

1

1

THTt

jObai

jObai
ji

R R

R

N

i

NNNi

NNij

ttjijt

ttjijt
t

,1)mod(...,,)mod(,1...,,0 11 NNNiNNijNi RRR

 where),(jit is the probability of being in hidden state iS at time

t and in jS at time t+1, given the observation sequence

THTHT OOO ...21
 and the model),,(BA .

3.4. Compute :

1)mod(

)mod(

1

1

1...,,0,1...,,1),,()(
NNNi

NNij

R

tt

R

R

NiTHTtjii ,

where)(it is the probability of being in hidden state iS at time t,

given the model),,(BA and the observation sequence

THTHT OOO ...21
.

3.5. Adjust π:

)(1 iHTi – represents the expected number of times the

hidden state is iS)1...,,0(RNi at the initial time

1 HTt .

3.6. Adjust A:

1

1

1

1

)(

),(

T

HTt

t

T

HTt

t

ij

i

ji

a

 – the probability of transition from hidden state

Validating Unbiased Branches Using Random Degrees 145

iS to jS , where 1...,,0 RNi and

1)mod(...,,)mod(11 NNNiNNij RR .

The numerator is the expected number of transitions from state iS

to jS , while the denominator is the expected number of transitions

from state iS to any state.

3.7. Adjust B:

1

1

1

1

)(

)(

)(
T

HTt

t

T

VO
HTt

t

j

j

j

kb kt

 – the probability of observation symbol kV

(1...,,0 Mk) given that the model is in hidden state jS

(1...,,0 RNj). The numerator is the expected number of times

the model is in hidden state jS and the observation symbol is kV ,

while the denominator is the expected number of times the model

is in hidden state jS .

3.8. c=c+1;

if)]...(log[)]...(log[11 THTTHT OOPOOP and c<I

then go to 3.).

Since P would be out of the dynamic range of the machine

[Rab89], we compute the log of P, using the following formula

[Sta04]:

T

HTt
N

j

NN
N

j

N
N

j
i

tjijt

N

i

HTii

THT

R
R

R

R

Obai
Ob

OOP
2

1

0

)1(

0

1

1

0

1

1
1

1

)()(

1
log

)(

1
log)]...(log[

4.) At time T, the next observation symbol 1TO is predicted, using the

adjusted model),,(BA :

4.1. choose hidden state iS at time T, 1...,,0 RNi , maximizing

)(iT ;

146 Beyond the Limits of Modern Processors

4.2. choose next hidden state jS (at time 1T),

1)mod(...,,)mod(11 NNNiNNij RR , maximizing ija ;

4.3. predict next symbol kV (at time 1T), 1...,,0 Mk ,

maximizing)(kb j .

If the process continues, then 1 TT and go to 2.).

As we previously emphasized, the prediction accuracy of a symbols

sequence provided by a HMM predictor could define the random degree of

that sequence. Obviously, it requires modifying the number of hidden states

for the HMM predictor in order to maximize the prediction accuracy.

Particularly, it is interesting to see whether this idealized powerful predictor

would successfully predict the sequences generated by unbiased branches.

An affirmative answer would mean that the relevant prediction information

exists but is hard to identify it, differing from one branch to another.

Otherwise, if the answer is negative, the intrinsic random degree

(determinist chaos) of these branches would be very significant.

5.2.2. Random Degree Metric Based on Discrete Entropy

Considering a sequence S of symbols belonging to the set

}...{ 21 kXXXX , another practical approach for characterizing the

randomness of S might be based on its entropy:

0)(log)()(
1

2

k

i

XiPXiPSE (5.1)

Obviously its maximum (k2log) is obtained for symbols of equal

probabilities in S. Therefore, we propose a random degree (RD) for a

branch’s binary output sequence given by the formula

]log,0[)()()(2 kSESDSRD (5.2)

where D(S) represents the shuffle degree (distribution index) and it was

defined in formula (3.2). A high RD value might involve a high random

degree. Of course, our proposed RD(S) is not theoretically perfect. As an

example, the sequence 01010101010101... maximizes both D and E but

despite of this fact it is very deterministic and, therefore, very predictable.

Validating Unbiased Branches Using Random Degrees 147

5.2.3. Random Degree Metric Based on Compression Rate

The compression rate of a symbols sequence (or the space saving due to its

compression), provided by the well-known lossless compression algorithms

such as Huffman and Gzip, could represent another effective metric for

characterizing the random degree of that sequence.

Huffman proposes an entropic encoding greedy algorithm, effective

and very useful in lossless compression, commonly used as final

compression stage. The basic idea is to map an alphabet to a representation

for that alphabet, composed of variable length strings, so that symbols with

a higher occurance probability have a smaller representation than those that

occur less often.

The kernel of the Gzip utility is the DEFLATE algorithm [Deu96],

that represents a combination between the LZ77 algorithm [Ziv77]

(dictionary encoding technique) and the Huffman algorithm (statistical

encoding technique). The compression is performed in two successive

stages: i) the identification and replacement of duplicate strings with

pointers (LZ77) and ii) replacement of the previously obtained symbols with

new, weighted symbols based on frequency of use (Huffman).

In order to evaluate the compression rate of the sequences generated

by biased and unbiased branches behavior, we used the following two

metrics:

%100
SizeCompressed

SizeedUncompress
RatenCompressio (5.3)

%1001

SizeedUncompress

SizeCompressed
SavingSpace (5.4)

In our opinion, the compression rate and obviously, the space saving of

sequences generated by unbiased branches behavior should be lower than

those obtained for sequences generated by biased branches.

5.2.4. Random Degree Metric Based on Kolmogorov

Complexity

The Kolmogorov-Chaitin complexity (or program size algorithmic

complexity) of code sequence that generates unbiased branches could be a

useful metric for describing the random degree. According to this metric,

the length of the shortest program for a universal Turing Machine that

148 Beyond the Limits of Modern Processors

correctly reproduces the observed data is a measure of complexity [Kol65].

A sequence X has Kolmogorov complexity K(X) equal to the length of the

shortest program p for a (prefix) universal Turing Machine U that produces

X and then halts:

)(min)(
)(:

plXK
XpUp

 (5.5)

where l(p) is the length of p in bits. Kolmogorov complexity identifies a

sequence X as random if)()(XKXl is small: random sequences are those

that are irreducibly complex. Thus, the unbiased branches complexity

should be higher than the other conditional branches complexity.

Nevertheless, the Kolmogorov complexity has a static nature while it tries to

characterize the dynamic behavior of a certain branch. On the other hand,

this metric is the single one that emphasizes the semantic complexity of the

generator code sequence.

5.3. Evaluation Results

Like in the previous chapters, we used six difficult predictable SPEC 2000

benchmarks and simulated one billion dynamic instructions for each one,

skipping the first 300 million instructions. It was considered a 16-bit global

history (GH) context for each branch. We selected from each benchmark

strongly unbiased contexts having low polarization indexes

])565.0,501.0[)((SP and strongly biased contexts with high polarization

indexes])997.0,979.0[)((SP that were very frequently processed

(hundreds of thousands instances per a certain context). The polarization

index was defined in formula (3.1). As an example, for the gzip benchmark

we selected the unbiased context {PC= 4198960, GH=5904, P =0.565,

135533 instances} and the biased context {PC= 4195032, GH= 8135, P

=0.980, 140396 instances}. Each context has associated a binary string

representing its behavior (taken / not taken). This binary string represents

the input sequence for the HMM predictor used by us in paragraph 5.3.1.

During the paragraph 5.3.2 we calculated the random degrees associated to

the same binary strings. In paragraph 5.3.3 we calculated the compression

rates corresponding to the same branches behaviors.

Validating Unbiased Branches Using Random Degrees 149

5.3.1. Random Degree Evaluation with HMMs

During this paragraph we considered a per branch local history of 64 bits.

Using a longer history significantly complicated our developed HMM

predictors and grew up the computing time. Anyway, our proposed metric is

quantitatively very relevant. Figure 5.2 presents the prediction accuracies

obtained on strongly unbiased branches using a first order HMM predictor

(R=1) for different numbers of possible hidden states (N). For the majority

of the benchmarks considering two hidden states generate the best

accuracies.

65.03%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

bz
ip

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol
f

A
ve

ra
ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

N=1

N=2

N=3

N=4

Figure 5.2. Prediction accuracy on unbiased branches using a first order HMM

Figure 5.3 is similar but for a second order HMM predictor (R=2). Only on

the gcc benchmark the prediction accuracy grows as far as N grows. All our

developed second order HMM predictors are worser, at average, than a first

order HMM with two hidden states (R=1, N=2), which is the best evaluated

configuration. As it can be seen, the average prediction accuracy obtained

using the optimal HMM (R=1, N=2) is far greater on biased contexts than

on unbiased contexts.

150 Beyond the Limits of Modern Processors

66.58%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

bz
ip

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol
f

Ave
ra

ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

N=2

N=3

N=4

N=6

Figure 5.3. Prediction accuracy on unbiased branches using a second order HMM

Figure 5.4 comparatively presents, for unbiased and biased branches, the

average prediction accuracies obtained by our determined quasi-optimal

HMM (R=1, N=2). There is a significant difference between the average

prediction accuracy on biased branches (98.43%) and on unbiased branches

(65.03%).

98.43%

65.03%

40%

50%

60%

70%

80%

90%

100%

bz
ip

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol
f

A
ve

ra
ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Biased (R=1, N=2)

Unbiased (R=1, N=2)

Figure 5.4. Prediction accuracies using the best evaluated HMM (R=1, N=2)

Validating Unbiased Branches Using Random Degrees 151

As we expected, the HMM predictor obtains an excellent average prediction

accuracy on biased branches showing its high prediction power. As far as

we know, we are the first researchers investigating HMMs as an ultimate

branch prediction limit. Unfortunately even these powerful predictors

cannot accurately predict unbiased branches. This fact suggests that

unbiased branches are “intrinsic random” in some way, being generated by

very complex program structures as we will further show.

5.3.2. Random Degree Evaluation Based on Discrete Entropy

In this paragraph we considered as the random degree of a binary sequence

RD(S), the product between discrete entropy E(S) and shuffle degree D(S)

associated to S. Thus,)()()(SESDSRD . Figures 5.5, 5.6 and 5.7 show

statistical results concerning the entropy, shuffle degree and random degree

of the biased and unbiased binary sequences obtained through the

previously exposed methodology.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip gcc mcf parser bzip2 tw olf Average

SPEC 2000 Benchmarks

Distribution

Entropy

Random Degree

Figure 5.5. Characterizing biased sequences from entropy, shuffle degree and

random degree viewpoint

Regarding Figure 5.6 we notice that the entropy is mainly responsible for

the higher random degree of unbiased branches, the role of shuffle degree

being minor in this case.

152 Beyond the Limits of Modern Processors

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip gcc mcf parser bzip2 tw olf Average

SPEC 2000 Benchmarks

Entropy

Distribution

Random Degree

Figure 5.6. Characterizing unbiased sequences from entropy, shuffle degree and

random degree perspectives

9.16%

40.00%

0%

10%

20%

30%

40%

50%

60%

70%

gz
ip

gc
c

m
cf

pa
rs

er

bz
ip
2

tw
ol

f

Ave
ra

ge

SPEC 2000 Benchmarks

R
a
n

d
o

m
 D

e
g

re
e

RD Biased

RD Unbiased

Figure 5.7. The random degree of biased and unbiased branches

Since our initial supposition was that biased branch sequences should

have a lower random degree, the simulation results confirm that the

considered RD(S) metric represents a good measure for random degree of

binary sequences. A random degree around 40% shows that respective

unbiased branch is difficult or, practically, even impossible to be accurately

predicted.

Validating Unbiased Branches Using Random Degrees 153

5.3.3. Random Degree Evaluation Based on Compression

Rate

Further we transformed into extended ASCII files the binary behavior

sequences generated by unbiased and biased branches, obtained through the

methodology exposed in paragraph 5.3. We grouped 8-bit sequences and

generated the corresponding ASCII codes. We compressed these files using

the Gzip utility [Gzip] and an own developed application that implements

the Huffman encoding [Cor01].

We based our statistics on two commonly used metrics in data

compression, presented in paragraph 5.2.3. In Figure 5.8, we illustrate the

space savings obtained by compressing biased and unbiased branches using

the previously described algorithms (Gzip and Huffman).

90.37%

83.78%

19.15%

5.52%

-10%

10%

30%

50%

70%

90%

gz
ip gc

c
m

cf

par
se

r

bzi
p2

tw
ol

f

A
ve

ra
ge

SPEC 2000 Benchmarks

S
p

a
c
e
 S

a
v
in

g Gzip-Biased

Huffman-Biased

Gzip-Unbiased

Huffman-Unbiased

Figure 5.8. Space savings using the Gzip and Huffman algorithms

From the previous chart we can extract the following conclusions:

first, the space saving obtained through unbiased branches compression

(19.15% with Gzip) is significantly lower than that obtained through biased

branches compression (90.37% with Gzip). The second conclusion refers to

the ascendancy of the Gzip algorithm toward the Huffman algorithm that is

understandable taking into account that the Huffman encoding represents the

final stage of the Gzip compression. However, it can be observed that the

space saving on the twolf benchmark becomes negative (-0.29%) even if the

Gzip compression algorithm is used. The LZ77 algorithm’s influence is

almost inexistent leading to the conclusion that is impossible to find many

154 Beyond the Limits of Modern Processors

repetitive patterns. Actually, we obtained similar results in [Gel07b], where

we have shown that using some hybrid Markov predictors, the unbiased

branches prediction accuracy is very low.

Since the Huffman encoding is very effective for strings characterized

by low entropy symbols, the negative space saving values on four SPEC

benchmarks also illustrates the lack of repetitive pattern from unbiased

sequences and the impossibility to predict them with higher accuracy using

Markov predictors. The negative compression is caused by the necessity to

store the encoding and decoding information in addition to the encoded

sequence (header that contains the mapping of each distinct symbol from

the input sequence into the new result symbol).

5.3.4. Random Degree Evaluation Based on Kolmogorov

Complexity

Starting from several computationally intensive and heavily recursive

Stanford benchmarks [Ste96], we give a code sequence example that will

generate after execution some unpredictable sequences of unbiased branches

[Rad07, Flo07a]. Further we partially present the C and Hatfield Superscalar

Architecture (HSA) assembly code of the Perm benchmark that generates a

suite of permutations. First, we focused on the most important unbiased

branch from the Perm benchmark (having PC=58) that exhibits an

unpredictable behavior even if its context length is very long (53 bits of

global history). Actually, the percentage of unbiased branches (1.53%) from

the whole Perm program is exclusively due to the branch from PC=58.

Permute (int n){
 int k;
 pctr = pctr+1;

 if(n != 1) // the first branch instruction analyzed (PC=35)
 {
 Permute(n-1);

 for(k = n-1; k >= 1; k--) // the second branch instruction analyzed (PC=58)
 {
 Swap(&permarray[n], &permarray[k]);

 Permute(n-1);
 Swap(&permarray[n], &permarray[k]);
 };

 }
}

_Permute:
 SUB SP, SP, #128
 ST 0(SP), RA

 ST 8(SP), R17
 ST 12(SP), R18
 ST 16(SP), R19

Validating Unbiased Branches Using Random Degrees 155

 ST 20(SP), R20
 MOV R20, R5
 LD R13, _pctr

 ADD R13, R13, #1
 ST _pctr, R13
 EQ B1, R20, #1

BT B1, L8 (#0) # after compiling process this branch has the address 35 (PC=35)
ADD R17, R20, #-1

 MOV R5, R17

 BSR RA, _Permute (#0)
 MOV R18, R17
 LES B1, R18, #0

 BT B1, L8 (#0)
 ASL R13, R20, #2
 MOV R7, #_permarray

 ADD R19, R13, R7
 ASL R13, R18, #2
 ADD R17, R13, R7

L12: MOV R5, R19
 MOV R6, R17
 BSR RA, _Swap (#0)

 ADD R5, R20, #-1
 BSR RA, _Permute (#0)
 MOV R5, R19

 MOV R6, R17
 BSR RA, _Swap (#0)
 ADD R17, R17, #-4

ADD R18, R18, #-1
 GTS B1, R18, #0

BT B1, L12 (#0) # after compiling process this branch has the address 58 (PC=58)

L8: LD R17, 8(SP)
LD R18, 12(SP)
LD R19, 16(SP)

LD R20, 20(SP)
LD RA, 0(SP)
ADD SP, SP, #128

MOV PC, RA (#0)

We developed a particular fast path-based perceptron (FPBP) predictor

[Rad07] with a global history length of 53 bits and 100 entries. FPBP

predicted the branch 58, in its unbiased contexts, with 65.91% accuracy.

The number of FPBP mispredictions was 286. The complete PPM predictor

exploits the recursive character of Perm benchmark. The prediction

accuracy (PA) obtained by our developed PPM using a global context

length of 500 bits and a search pattern of 30 bits, on the branch 58, is

94.30%. As far as this solution is unfeasible for hardware implementation,

we tried a simplified PPM, but the result was dissatisfactory (PA=79.85%).

The global prediction accuracy provided by the complete PPM was 98.41%,

lower than that generated by the FPBP predictor (99.04%). Actually, from

869 PPM mispredictions, the branch 58 generates 287. Thus, we can

conclude that both PPM and FPBP predictors do not succeed to accurately

predict an unbiased branch. The high prediction accuracy (94.30%) on the

156 Beyond the Limits of Modern Processors

branch 58 provided by the PPM is actually centered on the whole behavior

of the branch and not only on its unbiased context.

As we have already pointed out, the length of the shortest program for

a universal Turing machine that correctly reproduces the observed data is a

measure of complexity [Gam99]. Thus, analyzing the behavior of the branch

58 from the Kolmogorov complexity perspective (we noted it K(58)), it can

be observed that the minimal length of machine-code that generates this

unbiased branch is equal with the Permute routine length (measured in

instructions). This happens because, in order to reach the branch 58, the

Permute routine should completely execute at least once (due to recursive

call).

Thus, K(58)=42 HSA instructions or 8 C instructions. We must

mention that the whole assembly program has 108 instructions and the rest

of subroutines are not recursive and consist of array initialization, variables

interchange, and simple repetitive program structures. Among the other

conditional branches only one (PC=35) proved to be unbiased for shorter

global history length (≤32 bits). However, increasing the global history

length to 53 bits the branch 35 became fully biased, and, therefore

predictable. Analyzing the Kolmogorov complexity of branch 35 we

calculated K(35)=12 HSA instructions or 3 C instructions. It involves that

K(35)<K(58). This happens because the test of the branch 35 does not

require the complete execution of the Permute routine. Therefore, the

complexity of the code sequence that generates the unbiased branch (58)

induces a determinist chaos, frequently occurred in many science domains.

In addition, based on the analysis of many integer recursive benchmarks we

have reasons to believe that recurrence combined with some certain

conditional branches will generate branches with unbiased behavior and

thus with high Kolmogorov complexity. Such examples occur in the link

lists or trees cases where the address of an element is tested and followed by

a recurrent call of the same function to test the next element in the tree.

5.4. Summary

Our experiments proved that all these four developed random degree

metrics are converging at the same point. The unbiased branches are not

quite “completely random”. They are “almost random” due to programs

complexity. They generate a deterministic chaos. For example, RD is 1 for a

“completely random” branch, but as we pointed out in paragraph 5.2, it is

about 0.40 for unbiased branches and 0.09 for biased branches (Figure 5.7).

The space saving is 0 for a “completely random” branch, and in our

Validating Unbiased Branches Using Random Degrees 157

experiments it was about 0.83 for biased branches and 0.05 for unbiased

branches using the Huffman compression algorithm (Figure 5.8). The HMM

predictor also obtains an excellent average prediction accuracy on biased

branches (98.43%) showing its significant prediction power while the

average prediction accuracy on unbiased branches is limited to 65.03%

(Figure 5.4). Moreover, the Kolmogorov complexity of an unbiased branch

is higher than the Kolmogorov complexity of any conditional branch

belonging to the same programs. As a conclusion, using these random

degree metrics, the computer architect would understand whether these

difficult branches are or are not predictable.

“We learn as we do and we do

 as well as we have learned”

Vernon B. Brooks

6. Selective Instruction Reuse and Value

Prediction in a Superscalar Architecture

In the previous chapters we have shown that unbiased branches cannot be

accurately predicted irrespective of the prediction information type used in

the state-of-the-art branch predictors [Vin06, Gel07b]. Furthermore, the

behavior sequences generated by these difficult branches are characterized

by high random degrees. Since the overall performance of modern

superscalar processors is seriously affected by misprediction recovery, these

difficult branches represent a source of important performance penalties. As

we pointed out in [Gel06b], 28.68% of branches are dependent on long-

latency instructions (critical Loads, Multiply, Division), and 5.61% are

unbiased and dependent on a previously committed long-latency instruction.

Such hard-to-predict branches that depend on critical Loads (with miss in

the L2 data cache) occur in pointer chasing applications based on linked list

traversal:

while (node) // Branch
node = nodenext // Load

Since the branch from the above example depends on the Load, a branch

misprediction cannot be solved until the Load returns the value. If the Load

has a high L2 cache miss rate, the misprediction penalties of the branch will

have significant impact on the overall performance. For example, the

average misprediction penalty of such a branch, measured as the latency

between fetching the branch instruction and resolving the misprediction, is

about 540 cycles, considering a L2 cache miss penalty of 300 cycles

[Gao08]. Thus, the forementioned dependences involve high-penalty

mispredictions becoming serious performance obstacles and causing

significant performance degradation in executing instructions from wrong

paths. Therefore, the negative impact of branches, and especially of

unbiased branches, over global performance should be seriously attenuated

by anticipating the results of long-latency instructions, including critical

Loads. On the other hand, hiding instructions long latencies in a pipelined

superscalar processor represents an important challenge itself. Therefore, in

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 159

this chapter we present based on [Gel08c, Gel08b, Vin05a] some original

anticipatory methods developed for superscalar architectures.

6.1. Related Work

The idea of dynamic instruction reuse was first introduced by Sodani and

Sohi in [Sod97]. Dynamic instruction reuse is a non-speculative

microarchitectural technique that exploits the repetition of dynamic

instructions. The main idea is that if an instruction or an instruction chain is

reexecuted with the same input values, its output value will be the same.

The authors introduced different schemes that maintain the inputs and the

results of previously executed instructions in a hardware structure called

Reuse Buffer. With instruction reuse the number of executed dynamic

instructions is reduced and the critical path might be compressed. According

to the authors’ simulations on the SPEC’95 benchmarks, at average 26% of

dynamic instructions are reusable. This quite high reuse degree is

understandable taking into account that less than 20% of the static

instructions are generating more than 90% of dynamic instructions. These

useful statistics are qualitatively justified due to the fact that programs are

written in a compact (loops, recurrence, inheritance, etc.) and generic

manner (the programs have to operate on a variety of data structures). There

are some important differences between our approach and Sodani’s. We

reuse only Mul and Div instructions and, although we use the same Sv

scheme that track operand values for each instruction, our scheme does not

require all fields of Sodani’s Sv scheme. Since we do not reuse Load

instructions, we renounce to the Address and Mem Valid fields. This reduces

the hardware cost with benefits on power consumption, too. Another

difference refers to the moment when the instructions are reused: in contrast

with Sodani’s approach, the Reuse Buffer (RB) is accessed in our

architecture during the issue stage, because most of the Mul/Div instructions

found in the RB in the dispatch stage do not have their operands ready.

Richardson introduced Instruction Memoization [Ric93], a technique

that consists in storing the inputs and outputs of long-latency operations and

reusing the output if the same inputs are encountered again. The memo table

is accessed in parallel with the first computation cycle, and the computation

halts in the case of hit. Thus, memoing reduces a multi-cycle operation to

one-cycle when there is a hit in the memo table. In [Bro00] the authors

proposed a memoing technique in order to save power. Brooks et al. used

memo tables in parallel with the floating-point and integer multipliers, the

floating-point adder, and the floating-point divider. Their experimental

160 Beyond the Limits of Modern Processors

results show an average speedup of 1.7% and an average power

consumption improvement of 5.4%.

Citron and Feitelson in [Cit02] compare different instruction reuse

techniques, including Instruction Reuse (IR) and Instruction Memoization

(IM). The authors splat the Lookup Table into several smaller tables for

floating-point instructions, Loads, multi-cycle integer instructions (Multiply

and Division) and all other single-cycle instructions. Each table contained

256 entries. They used IM only for multi-cycle operations. The evaluation

results (reuse degree and speedup) obtained on the SPEC’95 benchmarks

show that only floating-point applications can benefit from instruction

reuse.

Golander and Weiss present in [Gol07] different instruction reuse

methods for Checkpoint Processors. In checkpoint microarchitectures a

misspeculation initiates the rollback, in which the latest safe checkpoint

preceding the point of misprediction is recovered, and after that the

reexecution of the entire code segment between the recovered checkpoint

and the mispredicting instruction (selective reissue). The authors proposed

two instruction reuse methods for normal execution and other two methods

for reexecution after a misprediction. The Trivial method identifies trivial

arithmetic operations having one of the inputs a neutral element, or both

operands with the same magnitude. The hardware for detecting trivial

computations and selecting the result consists in comparators for the input

operands and selectors for the writeback. In our simulator, we implemented

the Trivial method proposed by Golander. The SelReuse method uses a

small fully associative reuse cache for long latency arithmetic operations.

As the authors are showing, an 8-entry cache is sufficient for reusing most

of the available results. The RbckReuse method is used for all instruction

types from reexecuted paths, excepting control-flow instructions. Finally,

the RbckBr method is used for the branch instructions from reexecuted

paths. The reuse structure maintains only the branch outcome and relies on

the BTB for the branch target address. A reuse approach that combines all

the four methods briefly presented above requires an area of 0.87 mm2 and

consumes 51.6 mW. It achieves an average IPC speedup of 2.5% for the

SPEC 2000 integer benchmarks, of 5.9% for the floating point benchmarks,

and an improvement in energy-delay product of 4.80% and 11.85%,

respectively.

Based on the dynamic correlation between Load instruction addresses

and the values the Loads produce, Lipasti et al. [Lip96a] proposed a new

data-speculative micro-architectural technique entitled Load Value

Prediction that can effectively exploit value locality to collapse true data

dependencies (exceeding thus the dataflow limit and enhancing the

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 161

instruction-level parallelism), reduce average memory latency and

bandwidth requirement and provide measurable performance gains. Their

Load Value Prediction Unit was presented in Chapter 2. In [Lip96b], Lipasti

and Shen extended the prediction of Load values predicting all integer and

floating point register values. An important difference between our value

prediction approach and Lipasti’s is that we selectively predict Load

instructions generating a miss in L1 cache. Thus, we attenuate the

misprediction cost and reduce the hardware cost of the speculative micro-

architecture. Moreover, since less hardware is required, there is also less

power consumption.

Tullsen and Seng in [Tul99] proposed a technique entitled register-

value prediction that identifies instructions which produce values that are

already in the register file. Therefore, the corresponding results are

predicted using the values belonging to the register file. Mainly, this

technique uses the previous value in the instruction’s destination register as

a prediction for the new result, in a static or dynamic manner. An important

advantage of this prediction scheme is that it does not require storage for

values. For dynamic prediction, only a table of confidence counters is used,

which is indexed by the instruction PC. Thus, the confidence counters are

associated with instructions indicating which of them have high register

value reuse. This technique produced speedups of up to 11% for the

SPECint95 benchmarks and up to 13% for SPECfp95 benchmarks. In

contrast to our register-centric approach [Vin05a, Vin05b, Gel03], this

approach is an instruction-centric one.

In [Sen04] the authors defined register value locality as the probability

that the next value produced by an instruction to be the value already stored

in the destination register. In contrast, in our work [Vin05a] we define it as

the probability that the next value of the destination register belongs to the

previous k values stored in that register. Therefore, our original register

value prediction technique consists in predicting the next value of a register

based on the previously seen values. In [Sen04] the authors used perceptron-

based predictors to perform a limited form of register value prediction: their

scheme predicts if the value written to a register will be the same as the

current value. The proposed predictor uses a table of perceptrons. For a

certain instruction the perceptron is selected with the lower bits of the

instruction address. The input of the perceptron is the global history of the

most recent committed instructions, where a value of 1 indicates that the

corresponding instruction was redundant and a -1 indicates otherwise. They

demonstrate that for a given size predictor, a perceptron based predictor

performs better than a saturating counter based register value predictor

[Tul99] – for an 8KB hardware budget the speedup is 8.1%.

162 Beyond the Limits of Modern Processors

A. Thomas and D. Kaeli in their work [Tho04] improve the two-level

value prediction schemes, presented in [Wan97], by using perceptrons

instead of confidence counters in the second level. For counter-based

predictors, the number of counters grows exponentially with the value

history length and, therefore, the history is limited. The main advantage of

the perceptron-based predictor is that its size grows linearly with the value

history length and, thus, longer value histories can be used for prediction.

The perceptron-based predictors achieved considerably better prediction

accuracy – 93.55% at average – but without IPC improvement due to their

higher prediction and update latency.

R. Thomas et al. [Tho01] improved instruction-centric value

prediction by using a dynamic dataflow inherited speculative context

(DDISC) for hard-to-predict instructions. The DDISC consists in a

compression of the PCs and the predicted values of the predictable source

producer instructions. The context is determined by assigning a signature to

each node in the dataflow graph. The signature of a predictable instruction

is its value predicted by a conventional predictor. The signature of

unpredictable non-Load instructions is inherited from the signatures of its

operand producers. In the case of multiple operands, the signature of

unpredictable non-Load instructions is the XOR of the signatures of their

operand producers. The signature of unpredictable Load instructions is

inherited from the signature of the preceding Store instruction that wrote the

value into the same memory location. The DDISC for a certain instruction is

obtained by rotating its calculated signature by a value determined by the

PC (e.g. the last five bits of the PC). Their simulation results show that

introducing dataflow-based contexts the prediction accuracy improvement

ranges from 35% to 99%.

Mutlu et al. presented in [Mut06] a new hardware technique named

address-value delta (AVD) prediction, able to parallelize dependent cache

misses. They observed that some Load instructions exhibit stable

relationships between their effective addresses and data values, due to the

regularity of allocating structures in the memory by the program, which is

sometimes accompanied by the regularity in the program’s input data. In

order to exploit these regular memory allocation patterns, the authors

proposed an AVD structure that maintains the Load instructions having a

stable address-value difference (delta). Each entry of the AVD table consists

in the following fields: Tag (the upper bits of the Load’s PC), AVD (the

address-value delta corresponding to the last occurrence of that Load) and

Conf (a saturating counter that records the confidence of AVD). The Conf

field is used to avoid predictions for Loads with an unstable AVD. If a Load

instruction having a stable AVD occurs with a cache miss, its data value is

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 163

predicted by subtracting the stable delta from its effective address. This

prediction enables the preexecution of dependent instructions, including

Loads with cache miss. The experimental results show that integrating a 16-

entry AVD predictor into a runahead processor improves the average

execution time of pointer-intensive applications by 14.3%.

Liao and Shieh proposed in [Lia02] a new scheme that combines

value prediction and instruction reuse. The main idea consists in predicting

operand values if they are not available and speculatively reusing

instructions if the predicted operands match the values from the Reuse

Buffer (RB). Obviously, instructions must be correctly reexecuted in the

case of misprediction. If the operands of an instruction are ready and their

values match the value fields of the corresponding RB entry, the result is

guaranteed to be correct, and therefore the execution is non-speculative. The

simulations on the SPEC’95 benchmarks showed that this scheme provides

an average speedup of 8.9%.

In [Cha08] the authors proposed a hardware-based method, called

Early Load, in order to hide the Load-to-Use latency (the latency that

instructions wait for their operands produced by Load instructions) with

little additional hardware costs. The key idea is to make use of the time that

instructions are waiting in the instruction queue to load the data early,

before the Loads are effectively executed, by pre-decoding instructions

during the fetch stage. Thus, instead of using previous instances (values) of

the current Load instruction Chang et al. are using an earlier executed-

instance (value) of the current Load instance. In this way, the chance to be a

correct value seems to increase. They use a small table, called Early Load

Queue (ELQ) that records Load instructions and the early loaded data. The

proposed scheme allows Load instructions to load data from memory before

the execution stage. Obviously, a detection method assures the correctness

of the early operation before the Load enters into the execution stage. If the

corresponding ELQ entry is valid in the Load’s dispatch stage, the

execution of the Load instruction is completely avoided and all dependent

instructions get the data from the ELQ. Unfortunately this method does not

work for out-of-order speculative architectures whereas our technique does.

Also, it works only for very small instruction queues. The experimental

results showed that this scheme can achieve a performance improvement of

11.64% on the Dhrystone benchmark and of 4.97% on the MiBench

benchmark suite.

164 Beyond the Limits of Modern Processors

6.2. Anticipating Long-Latency Instructions Results

Our main objective is to develop a superscalar architecture that selectively

anticipates the values produced by high-latency instructions. We will focus

on Multiply, Division and Loads with miss in the L1 data cache. The

reusability degree of Mul and Div instructions, measured with an unlimited

Reuse Table, was 28.9% on the integer benchmarks and 61.9% on the

floating-point benchmarks [Gel08a]. These instructions would be solved by

a Dynamic Instruction Reuse scheme. The reusability degree of Load values

was 77.4% on the integer benchmarks and 76.4% on the floating-point

benchmarks [Gel08a]. However, an additional Reuse Buffer for Load Value

(Data) Reuse is not necessary, because a similar reuse mechanism is already

provided by the existing L1 and L2 data caches. Therefore, the Load

instructions with miss in the L1 data cache (selective approach) would be

solved through value prediction.

6.2.1. Selective Dynamic Instruction Reuse

For the Mul and Div instructions we will use the Sv reuse scheme. The

information about instructions is maintained in a direct mapped Reuse

Buffer (RB). The RB is accessed during the issue stage, because most of the

Mul/Div instructions found in the RB during the dispatch stage do not have

their operands ready (91.5% on the integer benchmarks and 64.6% on the

floating-point benchmarks). An additional RB access in the dispatch stage

does not have sense due to the insignificant expected performance gain

obtained with supplementary costs. Each RB entry has the following fields:

Tag (the higher part of the PC), SV1 and SV2 (the source values of the

Mul/Div instruction), Result (the output value of the Mul/Div instruction).

Since we do not reuse Loads with this scheme, the Address and Mem Valid

fields used in [Sod97] are unnecessary. In this way, our implemented

structure is simpler and more cost effective (from hardware budget and

power consumption point of view) than the initial scheme proposed by

Sodani and Sohi.

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 165

Sv Reuse Buffer (RB)

PC of MUL / DIV

Tag SV1 SV2 Result

Sv Reuse Buffer (RB)

PC of MUL / DIV

Tag SV1 SV2 Result

Figure 6.1. Reuse scheme for Mul & Div instructions

If a certain Mul/Div instruction is found in the RB, a reuse test is

generated. If the actual operand values, taken from the ROB, match the SV1

and SV2 fields from the selected RB entry, the instruction is not sent to a

functional unit, its result value being already available for dependent

instructions. Every non-reused Mul/Div instruction updates the RB in the

commit stage: writes the tag, the source values and the result into the

corresponding RB entry. From the power consumption point of view, the

Reuse Buffer was modeled as a cache array structure using the same power

models as the other array structures are using. Obviously, the main benefit

of reusing long-latency instructions consists in unlocking dependent

instructions (see Figure 6.2). In Figures 6.2, 6.4 and 6.9, all stages except

the execute stage are a single cycle length; the execute stage has variable

length, depending upon the latency of the executing instruction (see Table

6.1).

Fetch Decode Issue Execute Commit

RB
Lookup (PC, V1, V2) Result (if hit)

Fetch Decode Issue Execute Commit

RB
Lookup (PC, V1, V2) Result (if hit)

Figure 6.2. Pipeline with Reuse Buffer (RB)

We also detected trivial operations implementing a technique first

introduced in [Ric93] by Richardson. We considered the following

operations: V*0, V*1, 0/V, V/1 and V/V. A simple hardware scheme for

detecting trivial computations and selecting the result is presented in

[Gol07] and consists in comparators for the input operands and selectors for

the write-back. If during the dispatch stage, a Mul instruction is detected

166 Beyond the Limits of Modern Processors

with an operand value of 0 or 1, the result is provided by the detector,

avoiding the functional unit allocation and execution. In the same manner, if

a Div instruction is detected with the first operand being 0, the second

operand 1, or with identical operands, the result is provided by the detector

being thus available at the end of the dispatch stage. The Reuse Buffer is

accessed during the issue stage for the reuse test only if the Mul/Div

operation is not detected in the dispatch stage as being trivial.

6.2.2. Selective Load Value Prediction

We will integrate into our architecture a simple Last Value Predictor used

only for Loads with miss in the L1 data cache (selective approach). In this

way, the implemented structure is more efficiently used; the collisions

number will be lower against the approach that predicts all Load

instructions, having tables of the same size. The information about Load

instructions is maintained in a direct mapped Load Value Prediction Table

(LVPT). The LVPT is accessed during the issue stage, only if the current

Load instruction involves a miss in the L1 data cache (critical Load). Each

LVPT entry has the following fields: Tag (the higher part of the PC),

Counter (a 2-bit saturating confidence counter with two unpredictable and

two predictable states), and Value (the Load instruction’s result).

Load Value Prediction

Table (LVPT)

PC of Load with miss

in L1 Data Cache

Tag Counter Value

Load Value Prediction

Table (LVPT)

PC of Load with miss

in L1 Data Cache

Tag Counter Value

Figure 6.3. The Last Value Predictor architecture

In the case of a hit in the LVPT, the corresponding Counter is

evaluated. If the confidence counter is in an unpredictable state, the Load is

executed without prediction. Otherwise the Value from the selected LVPT

entry is speculatively forwarded to the dependent instructions. In the commit

stage, when the real value is available, in the case of misprediction, a

recovery is necessary in order to squash speculative results and selectively

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 167

re-execute the dependent instructions with the correct values (see Figure

6.4). We considered in our simulations a value prediction latency of one

cycle and, in the misprediction case, a recovery taking 7 cycles.

Fetch Decode Issue Execute Commit

LVPT
If Load with miss

in L1 Data Cache

Predicted Value

Misprediction Recovery

Fetch Decode Issue Execute Commit

LVPT
If Load with miss

in L1 Data Cache

Predicted Value

Fetch Decode Issue Execute Commit

LVPT
If Load with miss

in L1 Data Cache

Predicted Value

Misprediction Recovery

Figure 6.4. Pipeline with Load Value Predictor

During the commit stage, every critical Load updates the LVPT: only

the Counter field in the case of correct prediction or the Value and the

Counter fields in the case of misprediction. In the case of miss in the LVPT,

the Tag and the Value are inserted into the selected entry, and the Counter is

reset (strongly unpredictable state).

6.2.3. Simulation Methodology

We developed a cycle-accurate execution driven simulator derived from the

M-SIM simulator [Sha05] supporting the unmodified, statically linked

Alpha AXP binaries as well as the power estimation as supplied by the

Wattch framework [Bro00]. M-SIM extends the SimpleScalar toolset

[Bur97] with accurate models of the pipeline structures, including explicit

register renaming, and support for the concurrent execution of multiple

threads. We modified M-SIM to incorporate our superscalar architecture

with selective instruction reuse and value prediction in order to measure the

relative IPC speedup and relative energy-delay product gain when the

results of long-latency instructions are anticipated.

All simulation results are generated on the SPEC 2000 benchmarks

[SPEC] and are reported on 1 billion dynamic instructions, skipping the first

300 million instructions. We evaluated seven integer benchmarks (bzip, gcc,

gzip, mcf, parser, twolf, vpr) and six floating-point benchmarks (applu,

equake, galgel, lucas, mesa, mgrid). Table 6.1 presents some important

parameters of the simulated architecture:

168 Beyond the Limits of Modern Processors

Execution Latencies

Execution unit Number of units Operation latency

intALU 4 1

intMULT / intDIV 1 3 / 20

fpALU 4 2

fpMULT / fpDIV 1 4 / 12

Superscalarity Fetch / Decode / Issue / Commit width = 4

Branch predictor bimodal predictor with 2048 entries

Caches and Memory

Memory unit Access Latency

4-way associative L1 data cache, 32 KB 1 cycle

8-way associative unified L2 data cache,
512 KB

6 cycles

Memory 100 cycles

Resources

Register File: 32 INT / 32 FP

Reorder Buffer (ROB): 128 entries

Load/Store Queue (LSQ): 48 entries

Table 6.1. Parameters of the simulated architecture

For the relative IPC speedup calculation we used the following formula:

%100

base

baseimproved

IPC

IPCIPC
SpeedupIPC (6.1)

where baseIPC and improvedIPC are the instructions executed per cycle with

the baseline and improved architectures, respectively.

The power consumption measurements are generated using an 80 nm

CMOS technology. Figure 6.5 presents the structure of the simulator.

Cycle-Level

Performance

Simulator

Hardware

Configuration

SPEC

Benchmark

Power Models

Hardware Access Counts

Performance

Estimation

Power

Estimation
Cycle-Level

Performance

Simulator

Hardware

Configuration

SPEC

Benchmark

Power ModelsPower Models

Hardware Access Counts

Performance

Estimation

Power

Estimation

Figure 6.5. The structure of the simulator

As Figure 6.5 shows, the simulator generates both performance and

power consumption estimation. The detailed power modeling methodology,

used in the simulator, is presented in [Bro00]. The dynamic power

consumption in CMOS microprocessors is defined as:

faVCP ddd 2 (6.2)

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 169

where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply

voltage, and f is the clock frequency. Vdd and f depend on the assumed

process technology. The activity factor a indicates how often clock ticks

lead to switching activity on average. The power consumption of the

modeled units highly depends on the internal capacitances of the circuits.

From the capacitance point of view, there are three categories of

architectural structures: array structures, content-associate memories, and

complex logic blocks. The first two categories are used to model the caches,

branch predictors, the reorder buffer, the register renaming table, and the

register file, while the last category is used to model functional units.

For the energy measurements, we used the Energy-Delay Product, a

widely used metric [Gon96, Bro00, Gol07]:

2IPC

PowerTotal
EDP (6.3)

The Energy-Delay Product (EDP) represents the processor’s total power,

divided by the squared IPC. In other words, the EDP is the energy

consumption relative to the processor’s global performance (IPC). The EDP

Gain represents the relative energy-delay product improvement. After each

architectural improvement we determined the EDP Gain based on:

%100

base

improvedbase

EDP

EDPEDP
GainEDP (6.4)

where, baseEDP is the energy-delay product of the baseline architecture,

whereas improvedEDP is the energy-delay product of the improved

architecture. Thus, a positive value of the EDP Gain means an improvement

of the relative energy consumption.

6.2.4. Experimental Results

Figure 6.6 presents the reuse degrees obtained with and without detecting

trivial operations. An RB of 1024 entries provides on the integer

benchmarks a reuse degree of 17.2%, compared with the reusability degree

of 28.9% (the upper limit obtained with an unlimited RB). It was more

efficient for the floating-point benchmarks, where we obtained a reuse

degree of 54.8% with an RB of 2048 entries, compared with the reusability

degree of 61.9% (through an unlimited RB). As Figure 6.6 shows, trivial

operations detection improves significantly the reuse degree.

170 Beyond the Limits of Modern Processors

0%

10%

20%

30%

40%

50%

60%

70%

16 32 64 128 256 512 1024 2048

RB entries

R
e
u

s
e
 D

e
g

re
e

INT - RB

INT - RB & Trivial

FP - RB

FP - RB & Trivial

Figure 6.6. Reuse degrees obtained for different RB sizes with and without trivial

operation detection

Table 6.2 presents the reuse degrees, the IPC, and the power

consumption obtained, on the integer and floating-point SPEC 2000

benchmarks, by using the Sv reuse scheme together with the Trivial

Operation Detector for the Mul and Div instructions. The Reuse Degree

columns represent the percentage of reused Mul and Div instructions across

all the evaluated integer and floating-point benchmarks. The IPC represents

the average executed instructions per cycle. The RB Power column shows

the additional dynamic power dissipated by the RB for each evaluated size

in mW and in percentages reported to the total processor power.

RB

entries

SPEC 2000 integer SPEC 2000 floating-point RB Power

Reuse Degree [%] IPC Reuse Degree [%] IPC [mW] [%]

0 – 1.6857 – 2.0410 0 0.000

16 25.8 1.6881 36.8 2.0612 7.2 0.008

32 27.4 1.6862 37.3 2.0613 12.7 0.014

64 28.1 1.6862 40.5 2.0747 16.3 0.018

128 28.2 1.6862 42.5 2.0752 28.8 0.031

256 28.2 1.6862 45.8 2.0787 38.4 0.042

512 28.5 1.6862 50.6 2.0828 70.2 0.077

1024 29.0 1.6862 56.9 2.0863 99.6 0.109

2048 29.0 1.6862 62.8 2.0888 178.8 0.195

Table 6.2. Reuse degree, IPC and power consumption obtained with the RB and

Trivial Operation Detector on the SPEC 2000 benchmarks

The very low IPC gain measured on the integer benchmarks is

justified because only about 11 million instructions were reused from a total

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 171

of 7 billion across all the integer benchmarks. Moreover, reusing Mul/Div

instructions belonging to wrong speculated paths frequently involves issuing

some long latency Loads. These critical instructions would not be executed

without successful reuse.

Although the RB structure dissipates additional dynamic power,

reusing long-latency instructions increases the IPC and therefore lowers the

relative energy consumption (see Figure 6.7). We determined the energy-

delay product for the architecture without RB and for the architecture with

RB of different sizes, based on relation (6.3). The EDP Gain represents the

relative energy-delay product improvement determined based on relation

(6.4) for each RB size.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

16 32 64 128 256 512 1024 2048

RB entries

EDP Gain

IPC Speedup

Figure 6.7. Relative IPC speedup and relative energy-delay product gain on the

SPEC 2000 floating-point benchmarks with RB and Trivial Operation Detection

The speedup is insignificant in the case of the integer benchmarks, due to

the significantly lower number of Mul and Div instructions. Consequently,

the energy-delay product is better only for RB sizes between 16 and 128

entries, but the improvement is insignificant. These results are in

concordance with Citron [Cit02] who also remarked the poor evaluation

results (reuse degrees and speedups) obtained on the SPEC’95 integer

benchmarks. Therefore a significant benefit of Mul/Div instructions reuse is

achieved only for floating-point applications.

Table 6.3 presents the prediction accuracy, the IPC, and the power

consumption obtained by evaluating our developed architecture with

Mul/Div Reuse Buffer of 1024 entries and Trivial Operation Detector for

the Mul and Div instructions and with Last Value Predictor for critical Load

instructions. The PA columns represent the prediction accuracy of critical

172 Beyond the Limits of Modern Processors

Loads. The IPC represents the average instructions per cycle. The LVPT

Power column shows the additional dynamic power dissipated by the LVPT

for each evaluated size in mW and in percentages reported to the total

processor power.

LVPT entries SPEC 2000 integer SPEC 2000 floating-point LVPT Power

PA IPC PA IPC [mW] [%]

0 (no RB, LVP) – 1.6857 – 2.0410 0 0.000

16 94.0 1.7066 99.7 2.1873 6.4 0.007

32 93.5 1.7094 99.8 2.2333 8.7 0.009

64 92.6 1.7245 99.8 2.3533 14.6 0.016

128 91.0 1.7318 99.7 2.3915 19.9 0.022

256 88.7 1.7351 99.5 2.4378 33.6 0.037

512 88.1 1.7387 99.3 2.4484 48.0 0.052

1024 87.1 1.7456 99.2 2.5241 84.9 0.092

2048 87.2 1.7460 99.1 2.5320 128.1 0.139

Table 6.3. Prediction accuracy, IPC and power consumption obtained with an RB

of 1024 entries, the Trivial Operation Detector and the LVPT

Figure 6.8 presents the relative IPC speedup and the relative energy-

delay product improvement for the integer and floating-point benchmarks.

0%

5%

10%

15%

20%

25%

30%

35%

40%

16 32 64 128 256 512 1024 2048

LVPT entries

FP - EDP Gain

FP - IPC Speedup

INT - EDP Gain

INT - IPC Speedup

Figure 6.8. Relative IPC speedup and relative energy-delay product gain with a
Reuse Buffer of 1024 entries, the Trivial Operation Detector, and the Load Value

Predictor

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 173

We determined the energy-delay product for the architecture without RB

and LVPT and for the architecture with an RB of 1024 entries and LVPTs

of different sizes, based on relation (6.3). The EDP Gain represents the

relative energy-delay product improvement determined based on relation

(6.4) for each LVPT size. As it can be observed, the optimal LVPT size is

1024.

Both IPC speedup and EDP gain are significantly higher on the

floating-point benchmarks compared to the integer benchmarks (see Figure

6.8). This difference occurs because the number of critical Loads is more

than twice higher in the floating-point benchmarks. The difference is further

accentuated by the percentage of predicted critical Loads (classified as

predictable by LVPT confidence counters) which is 85% on the floating-

point benchmarks and only 40% on the integer benchmarks [Gel08a].

Finally, the difference is also slightly increased by the higher prediction

accuracy obtained on the floating-point benchmarks.

We also measured the memory traffic reduction as the percentage of

correctly predicted Loads reported to the total number of memory accesses.

Our evaluations show an average memory traffic reduction of 1.58% on the

integer benchmarks and of 10.93% on the floating-point benchmarks, which

are in concordance with our energy consumption estimations.

The selective instruction reuse approach proposed by Golander and

Weiss (presented in paragraph 6.1) achieves an average IPC speedup of

2.5% on the SPEC 2000 integer benchmarks, of 5.9% on the floating point

benchmarks, and an improvement in energy-delay product of 4.80% and

11.85%, respectively. In comparison, our improved superscalar architecture

achieves an average IPC speedup of 3.5% on the integer SPEC benchmarks,

23.6% on the SPEC floating-point benchmarks, and an improvement in

energy-delay product of 6.2% and 34.5%, respectively.

6.3. Contributions to Dynamic Value Prediction:

CPU Context Prediction

The main aim of this section consists in focalizing dynamic value prediction

to the CPU context [Vin05a, Vin05b]. The idea of attaching a value

predictor to each CPU register (register-centric predictor) instead of an

instruction or memory-centric predictor is original and could involve new

architectural techniques for improving performance and reducing the

hardware cost of speculative microarchitectures. In an earlier work [Flo02],

Florea et al. performed several experiments to evaluate the value locality

174 Beyond the Limits of Modern Processors

exhibited by MIPS general-purpose integer registers. The results obtained

on some special registers ($at, $sp, $fp, $ra) were quite remarkable (90%

value locality degree) leading to the conclusion that value prediction might

be successfully applied at least on these favorable registers.

Whether the prediction process has been instruction (producer) or

memory-centered with great complexity and timing costs, by implementing

the well known value prediction schemes [Lip96a, Saz99] centered on the

CPU’s registers will reduce the hardware cost. However, there are some

disadvantages. Addressing the prediction tables with the instructions’

destination register name (during the decode stage) instead of the Program

Counter will cause some interference. However, we have proved that, with a

sufficiently large history a hybrid predictor could eliminate this problem and

achieve very high prediction accuracy (85.44% at average on eight MIPS

registers using SPEC’95 benchmarks and 73.52% on 16 MIPS registers

using SPEC 2000 benchmarks). The main benefit of the proposed VP

technique consists in unlocking the subsequent dependent instructions.

6.3.1. Register Value Predictors

Statistical results based on simulation have proved that commonly used

programs are characterized by strong value repetitions [Lip96a, Sod00]. The

main causes for this phenomenon are: data and code redundancy, program

constants, and the compiler routines that resolve virtual function calls,

memory aliases, etc. The register value locality is frequently met in

programs and shows the number of times each register is written with a

value that was previously seen in the same register and dividing by the total

number of dynamic instructions having this register as their destination field

[Flo02, Gel03].

As we observed in [Vin05a, Gel03], the value locality on some

registers is remarkable high (90%), and this predictability naturally leads us

to the idea of implementing value prediction on these favorable registers.

Dynamic value prediction on registers represents a new technique that

allows the speculative execution of the read after write dependent

instructions by predicting the values of the destination registers during

second half of the instruction’s decode stage (see Figure 6.9). The Value

Prediction Table (VPT) is accessed with the name of the destination

register. The register’s next value is predicted based on the last values

belonging to that register. In the case of a valid prediction, the VPT will

forward the predicted value to the subsequent corresponding RAW

dependent instructions. After execution, when the real value is known, it is

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 175

compared with the predicted value. If the value was correctly predicted the

critical path might be reduced. In the case of a misprediction the

speculatively executed dependent instructions are re-issued for execution

(recovery).

Fetch Decode Issue Execute Commit

RVP
Rdest Predicted Value

Misprediction Recovery

Fetch Decode Issue Execute Commit

RVP
Rdest Predicted Value

Misprediction Recovery

Figure 6.9. The implementation of the register value prediction mechanism in the

pipeline structure of a general microarchitecture

In [Vin05a, Gel03] we developed and simulated several different

basic value predictors, such as the last value predictor, the stride value

predictor, the context-based predictor and hybrid value predictors to capture

certain type of value predictabilities from the SPEC benchmarks and to

obtain higher prediction accuracy. All these predictors were adapted to our

proposed prediction model.

6.3.1.1. Last Value Predictors

The last value predictors (see Figure 6.10) predict the next value as the

same as the last value stored in the corresponding register.

State Val

Predicted value

Value History

 Table

 (VHT)

index
Rdest

Figure 6.10. Last value predictor

176 Beyond the Limits of Modern Processors

Each register used in the prediction mechanism has an entry in the VHT. In

this way the number of entries in the prediction table is the same as the

number of logical registers. Each entry of the prediction table has its own

automaton in the State field (a 2-bit saturating confidence counter with two

unpredictable and two predictable states). The last value from the Val field

is predicted only if the automaton is in a predictable state. Obviously, it is

necessary to verify the value generated by the value history table (VHT).

The automaton’s state will be changed according to the comparison between

the predicted and actual values. The Val field is also updated.

6.3.1.2. Stride Predictors

In this case, considering that 1nv and 2nv are the most recent values, the

new value nv will be calculated using the recurrence formula:

)(211 nnnn vvvv , where)(21 nn vv is the stride of the sequence.

Figure 6.11 shows the structure of this predictor.

State Val Str1 Str2

+
Predicted
 value

Value History

 Table

 (VHT)

index
Rdest

Figure 6.11. Stride predictor

The Str1 and Str2 fields keep the last two strides. Each time a register

is used as destination, its current stride is computed: ValVStr , where V

is the actual value of that register and Val is its last value stored in the VHT.

The automaton is incremented if the prediction is correct otherwise it is

decremented. If 21 StrStr , the predicted value is calculated adding the

stride Str2 to the value stored in the VHT’s Val field. If the automaton is in

the predictable state, the prediction is furnished.

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 177

6.3.1.3. Context-Based Predictors

The context-based predictors predict the value that will be stored in a

register based on the last values stored in that register. A context is a finite

sequence of values with repeated appearance as in a Markov chain. The

Prediction by Partial Matching (PPM) algorithm has been already presented

in Section 4.3. A PPM-based predictor furnishes the value that followed the

considered context with the highest frequency. Obviously, the predicted

value depends on the context length. A longer context frequently drives to

higher prediction accuracy but sometimes it can behave as noise.

State V1 V2

Predicted
 value

Value History

 Table

 (VHT)

index
Rdest

V4V3

PPM

Figure 6.12. Structure of a context-based PPM predictor

Figure 6.12 shows the structure of the context-based predictor. Each entry

from the VHT has an associated automaton that is incremented when the

prediction is correct and is decremented in the case of a misprediction. The

fields V1, V2, …, V4 store the last four values associated with each register

(considering that the predictor works with a history of four values). If the

automaton is in the predictable state, it predicts the value that follows the

context with the highest frequency.

6.3.1.4. Hybrid Predictors

It has been shown that a single type of predictor does not offer the best

results. Some types of value sequences generated in programs are better

predicted with a certain predictor, and others, with another type of predictor

[Wan97]. Therefore, it is natural to consider the idea of hybrid prediction:

two or more value predictors working together dynamically in the prediction

178 Beyond the Limits of Modern Processors

process. Figure 6.13 shows a hybrid predictor composed of a context-based

PPM predictor and a stride predictor. The context-based predictor always

has priority, as in [Wan97]. In this way the value generated by the stride

predictor is only used if the context-based predictor cannot generate a

prediction.
State Str1 LRU V3

Predicted
 value

Value History

 Table

 (VHT)

index
Rdest

V2V1 V4

PPM

MUX 4:1

+

MUX

 2:1

Str2

Figure 6.13. Hybrid predictor (PPM & stride)

LRU Data Values

Value History

Table

(VHT)

VHP

MUX

4:1

Predicted

Value

C0 C1 C2 C3

Pattern History

Table

(PHT)

MAX

2

2p

State Stride

MUX

4:1 +

MUX

2:1

index
Rdest

LRU Data Values

Value History

Table

(VHT)

VHP

MUX

4:1

MUX

4:1

Predicted

Value

Predicted

Value

C0 C1 C2 C3

Pattern History

Table

(PHT)

MAX

22

2p

State Stride

MUX

4:1

MUX

4:1 +

MUX

2:1

MUX

2:1

index
Rdest

index
Rdest

Figure 6.14. Hybrid predictor (two-level & stride) with fixed prioritization

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 179

Figure 6.14 presents the hybrid predictor composed of a 2-Level predictor

and a Stride predictor adapted for register-centric prediction. It has the same

functionality as the instruction-centric approach [Wan97] presented in

Section 2.3, but it is indexed with the destination register name instead of

the PC. This fixed prioritization used in Figures 6.13 and 6.14 seems not to

be optimal. Probably a dynamic prioritization based on some confidences

should be better (the predictor having the highest confidence degree will

have priority).

LRU Data Values

Value History

Table

(VHT)

VHP

MUX

4:1

Predicted

Value

C0 C1 C2 C3

Pattern History

Table

(PHT)

MAX

2

2p

Stride

MUX

4:1 +

MUX

2:1

index
Rdest

C2Lev CStr LRU Data Values

Value History

Table

(VHT)

VHP

MUX

4:1

MUX

4:1

Predicted

Value

Predicted

Value

C0 C1 C2 C3

Pattern History

Table

(PHT)

MAX

22

2p

Stride

MUX

4:1

MUX

4:1 +

MUX

2:1

MUX

2:1

index
Rdest

index
Rdest

C2Lev CStr

Figure 6.15. Hybrid predictor (two-level & stride) with adaptive prioritization

The adaptive hybrid predictor presented in Figure 6.15 uses a saturating

confidence counter for each component predictor: C2Lev for the 2-Level

predictor and CStr for the Stride predictor. Thus, it dynamically selects the

most confident predictor. Other adaptive neural metapredictors have been

proposed and evaluated in [Vin04a], but with less efficiency mainly due to

the complexity of the backpropagation learning algorithm. Some simplified

perceptron-based metapredictors might be more efficient and feasible for

hardware implementation

180 Beyond the Limits of Modern Processors

6.3.2. Simulation Methodology

We developed a cycle-accurate execution driven simulator derived from the

sim-outorder simulator of the SimpleScalar toolset [Sim]. The baseline

superscalar processor supports out-of-order instruction issue and execution.

We modified it to incorporate our proposed register value predictors. Table

6.4 shows the configuration of the baseline processor used to obtain the

results.

To perform our evaluation, we collected results from different

versions of SPEC benchmarks: five integer (li, go, perl, ijpeg, compress)

and three floating-point (swim, hydro, wave5) SPEC’95 benchmarks. We

simulated seven benchmarks (gzip, b2zip, parser, crafty, gcc, twolf and mcf)

from the CINT SPEC 2000 set.

The number of instructions fast forwarded through before starting our

simulations is 400 million. We used the –fastfwd option in SimpleScalar/

PISA 3.0 to skip over the initial part of execution in order to concentrate on

the main body of the programs. Results are then reported by simulating each

program for 500 million committed instructions.

Processor

Core

Fetch / Decode / Issue Width 8 instruction / cycle

Reorder Buffer Size 128 entries

Load-Store Queue 64 entries

Integer ALUs 8 units, 1-cycle latency

Integer Multiply / Divide 4 units, 3 / 12-cycle

latency

Predictors
Hybrid branch predictor

gshare with 16K entries,

14 bit history, bimodal

with 16K entries.

Branch and Value misprediction 7-cycle latency

Memory
Memory Access 60-cycles latency

Memory Width 32 bytes

Caches

Level-one data cache

4-way set associative,

64 KB, 1-cycle hit

latency

Level-one instruction cache
direct mapped, 128 KB,

1-cycle hit latency

Level-two cache (unified)

4-way set associative,

1024 KB, 10-cycle hit

latency

Table 6.4. Machine configuration for baseline architecture

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 181

6.3.3. Experimental Results

Starting with a minimal superscalar architecture, we studied how the

simulator’s performance will be affected by the variation of its parameters.

We now present the results obtained with a hybrid of PPM and stride

register value predictor. Each register has associated a 4-state confidence

automaton. A prediction is made only if the automaton is in one of the two

predictable states. In Figures 6.16 and 6.17, respectively, each bar

represents the average of register value prediction accuracy obtained for

eight SPEC’95 benchmarks and for seven integer SPEC 2000 benchmarks,

respectively.

0

10

20

30

40

50

60

70

80

90

100

r1 r2 r3 r4 r5 r6 r7 r8 r9

r1
0

r1
1

r1
2

r1
3

r1
4

r1
5

r1
6

r1
7

r1
8

r1
9

r2
0

r2
1

r2
2

r2
3

r2
4

r2
5

r2
9

r3
0

r3
1

MIPS Registers

P
re

d
ic

ti
o
n

 A
cc

u
ra

cy
 [

%
]

Figure 6.16. Register value prediction using a hybrid predictor (PPM, stride), a

history of 256 values, and a pattern of 4 values (SPEC’95 simulation results)

0

10

20

30

40

50

60

70

80

90

100

r1 r2 r3 r4 r5 r6 r7 r8 r9

r1
0

r1
1

r1
2

r1
3

r1
4

r1
5

r1
6

r1
7

r1
8

r1
9

r2
0

r2
1

r2
2

r2
3

r2
4

r2
5

r2
9

r3
0

r3
1

MIPS Registers

P
re

d
ic

ti
o
n

 A
cc

u
ra

cy
[%

]

Figure 6.17. Register value prediction using a hybrid predictor (PPM, stride), a

history of 256 values, and a pattern of 4 values (SPEC 2000 simulation results)

182 Beyond the Limits of Modern Processors

In Figures 6.16 and 6.17 we calculated the prediction accuracy (PA) using

the following formula:

n

i

k

k

k

iVRef

iCPV

RPA

1

n

1i

)(

)(

)((6.5)

where n = number of benchmarks (8 for SPEC’95 and 7 for SPEC 2000), k

= register number,)(iCPV k = number of correctly predicted values for

register kR (on benchmark i), and)(iVRef k = the total number of dynamic

instructions that have register kR as their destination (on benchmark i).

In the next investigations, we are focusing only on the predictable

registers which have prediction accuracy higher than a certain threshold

(60% and 80%, respectively), measured using the PPM-based hybrid

predictor on the SPEC benchmarks. As it can be seen in Figures 6.16 and

6.17 the registers having a prediction accuracy higher than 60% are: 1, 5, 7–

13, 15, 18–20, 22, 29–31 on SPEC’95, and, 1, 6–8, 10–16, 18–25, 29–31 on

SPEC 2000. The statistic results on the SPEC’95 benchmarks exhibit a

using degree of 19.36% for these 17 registers. This means that 19.36% of

instructions use one of these registers as a destination. The equivalent

average result on SPEC 2000 is 13.24% using 22 general purpose registers.

In Figures 6.18 and 6.19 we compared the previously presented value

prediction techniques: last value prediction (Figure 6.10), stride prediction

(Figure 6.11), PPM prediction (Figure 6.12) and PPM-based hybrid

prediction (Figure 6.13).

8.59% 18.65%

71.19%

78.25%

0%

20%

40%

60%

80%

100%

co
m
pr
es
s9
5

hy
dr
o2
d

ijp
eg pe

rl

sw
im

w
av
e5 li go

A
ve
ra
ge

SPEC'95 Benchmarks

P
re

d
ic

ti
o
n

 A
cc

u
ra

cy
 [

%
]

LastValue

Stride

PPM

PPM-Stride

Figure 6.18. Prediction accuracy on 17 favorable registers (PA>60%) on SPEC’95

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 183

We used in the prediction process only the 17 favorable registers on the

SPEC’95 benchmarks and 22 favorable registers on the SPEC 2000

benchmarks. The PPM and the hybrid predictors use a history of 256 values

and a search pattern of 4 values.

11.46%

20.40%

62.84%

72.93%

0%

20%

40%

60%

80%

100%

B
zi
p

gz
ip

cc
1

cr
af
ty

m
cf

pa
rs
er

tw
ol
f

A
ve
ra
ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 [
%

]

LastValue

Stride

PPM

PPM-Stride

Figure 6.19. Prediction accuracy using 22 favorable registers (PA>60%) on the

SPEC 2000 benchmarks

These results (see Figures 6.18 and 6.19) represent the global

prediction accuracies of the favorable registers for each benchmark. The

hybrid predictor synergy can be observed. It involves an average prediction

accuracy of 78.25% on the SPEC’95 benchmarks and 72.93% on the SPEC

2000 benchmarks.

Now we will try a more elitist selection considering only the registers

with prediction accuracy higher than 80% (see Figures 6.20 and 6.21).

8.43% 17.48%

77.04%

85.44%

0%

20%

40%

60%

80%

100%

co
m
pr
es
s9
5

hy
dr
o2
d
ijp
eg

pe
rl

sw
im

w
av
e5 li go

A
ve
ra
ge

SPEC'95 Benchmarks

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 [
%

]

LastValue

Stride

PPM

PPM-Stride

Figure 6.20. Prediction accuracy on 8 favorable registers (PA>80%) on SPEC’95

184 Beyond the Limits of Modern Processors

The selection is again based on Figures 6.16 and 6.17. We can observe that

there are 8 registers that fulfill this condition (1, 10–12, 18, 29–31) on the

SPEC’95 benchmarks and 16 registers (1, 8, 11–15, 20–25, 29–31) on the

SPEC 2000 benchmarks (registers 1, 29–31 are included even if they do not

fulfill this condition because they exhibit a high degree of value locality

[Vin05a] and they also have special functions). The global using rate of

these registers is 10.58% on the SPEC’95 benchmarks, and 9.01% on the

SPEC 2000 benchmarks.

12.37%

19.72%

70.24%

73.52%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip

gz
ip cc

1

cr
af

ty
m

cf

pa
rs
er

tw
ol

f

A
ve

ra
ge

SPEC 2000 Benchmarks

P
re

d
ic

ti
o
n

 a
cc

u
ra

cy
 [

%
]

LastValue

Stride

PPM

PPM-Stride

Figure 6.21. Prediction accuracy using 16 favorable registers (PA>80%) on the

SPEC 2000 benchmarks

Figures 6.20 and 6.21 emphasize, for each benchmark, the global

prediction accuracy obtained with the implemented predictors using 8 and

16 selected registers, respectively (threshold over 80%, according to the

previous explanations). Each bar represents the prediction accuracy for a

certain benchmark, measured by counting the number of times when

prediction is accurate for any of the favorable registers and dividing by the

total number when these registers are written. The simulation results offered

by the last value predictor are relatively close to the stride predictor’s

results. The best average prediction accuracy was obtained with the hybrid

predictor 85.44%, which was quite remarkable (on some benchmarks over

96%).

Figures 6.22 and 6.23 show the speedup obtained compared to the

baseline processor when using each register value predictor.

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 185

1.47

3.38

15.58
17.30

0

5

10

15

20

25

30

35

co
m

pr
es

s9
5

ijp
eg pe

rl li go

A
ve

ra
ge

SPEC'95 Benchmarks

S
p

e
e

d
u

p
 [

%
]

LastValue

Stride

PPM

PPM-Stride

Figure 6.22. Speedup over baseline machine using 8 favorable registers (SPEC’95)

3.80
6.33

11.14
13.58

0

5

10

15

20

25

bz
ip

2

cr
af

ty
cc

1
gz

ip
m

cf

pa
rs

er

tw
ol

f

A
ve

ra
ge

SPEC 2000 Benchmarks

S
p

e
e

d
u

p
 [

%
]

LastValue

Stride

PPM

PPM-Stride

Figure 6.23. Speedup over baseline machine using 16 favorable registers (SPEC

2000)

Finally, in Figures 6.24 and 6.25 we have compared the PPM-based hybrid

predictor (PPM-Stride) with the two-level-based hybrid predictors: 2Lev-

Stride with fixed prioritization (presented in Figure 6.14) and 2Lev+Stride

with adaptive prioritization (presented in Figure 6.15), both using a history

of 32 values and a pattern of 4 values.

186 Beyond the Limits of Modern Processors

0

10

20

30

40

50

60

70

80

90

100
R

0
1

R
0
2

R
0
3

R
0
4

R
0
5

R
0
6

R
0
7

R
0
8

R
0
9

R
1
0

R
1
1

R
1
2

R
1
3

R
1
4

R
1
5

R
1
6

R
1
7

R
1
8

R
1
9

R
2
0

R
2
1

R
2
2

R
2
3

R
2
4

R
2
5

R
2
9

R
3
0

R
3
1

A
v
e
ra

g
e

MIPS Registers

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 [

%
]

2Lev-Stride

2Lev+Stride

PPM-Stride

Figure 6.24. Comparing the hybrid predictors on the SPEC’95 benchmarks

0

10

20

30

40

50

60

70

80

90

100

R
0

1

R
0

2

R
0

3

R
0

4

R
0

5

R
0

6

R
0

7

R
0

8

R
0

9

R
1

0

R
1

1

R
1

2

R
1

3

R
1

4

R
1

5

R
1

6

R
1

7

R
1

8

R
1

9

R
2

0

R
2

1

R
2

2

R
2

3

R
2

4

R
2

5

R
2

9

R
3

0

R
3

1

A
v
e
ra

g
e

MIPS Registers

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

 [
%

]

2Lev-Stride

2Lev+Stride

PPM-Stride

Figure 6.25. Comparing the hybrid predictors on the SPEC 2000 benchmarks

Figures 6.24 and 6.25 show that the hybrid predictor with adaptive

prioritization composed of a two-level and a stride predictor is comparable

to or even outperforms the PPM-based hybrid predictor, at significantly

lower implementation cost and complexity.

Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 187

6.4. Summary

In this chapter we have presented and evaluated a superscalar architecture

that selectively anticipates the values produced by high-latency instructions.

As we pointed out, about 28% of branches (more than 5% being unbiased)

are dependent on long-latency instructions. Therefore, our goal was to

attenuate the negative impact of branches, and especially of unbiased

branches, over global performance. We developed a Reuse Buffer and a

Trivial Operation Detector for Mul and Div instructions and a simple Last

Value Predictor for critical Load instructions, and we integrated all these

structures into the M-SIM simulator [Sha05].

The experimental results, performed on the SPEC 2000 benchmarks,

show a significant speedup and improved energy consumption for the

proposed architecture. Using a Reuse Buffer of 1024 entries together with

the Trivial Operation Detector improves the IPC with 2.2% and reduces the

relative energy consumption with 4% on the floating-point benchmarks.

Predicting critical Load instructions through an additional Last Value

Predictor, improves the IPC with 3.5% on the integer benchmarks and with

23.6% on the floating-point benchmarks. This significant speedup lowers

the relative energy consumption (EDP) with 6.2% on the integer

benchmarks and with 34.5% on the floating-point benchmarks.

Consequently, applying some well-known techniques selectively on long-

latency instructions provides serious performance gain and significantly

reduces energy consumption within the simulated architecture.

Finally, we have introduced and studied the register value prediction

concept. As we discussed, the intention of the register value prediction is to

reduce the unfavorable effect of the RAW dependencies, by reducing the

wait times of the subsequent dependent instructions. Also, the prediction

focused on registers instead of instructions is advantageous because fewer

predictors are needed, thus significantly saving complexity and costs. We

proposed to exploit the value locality on registers using different prediction

techniques. We used the hybrid predictor presented in Figure 6.13 to select

the favorable registers. We continued after that with the evaluation of the

predictors using registers with prediction accuracy higher than 60%. The

best results were obtained with the hybrid predictor: an average prediction

accuracy of 78.25% and a using rate of 19.36%. We then tried a more elitist

selection of the registers and we continued the evaluation of the predictors

using only the registers with prediction accuracy higher than 80%. The best

results were obtained again with the hybrid predictor: an average prediction

accuracy of 85.44% (on some benchmarks with over 96%) and a using rate

188 Beyond the Limits of Modern Processors

of 10.58%. Also, considering an 8-issue out-of-order superscalar processor,

simulations show that register-centric value prediction produces average

speedups of 17.30% for the SPECint95 benchmarks and 13.58% for the

SPECint2000 benchmarks. We also showed that the PPM-based hybrid

predictor is outperformed by the less complex but adaptive two-level-based

hybrid predictor.

“Entities should not be

multiplied unnecessarily”

William of Ockham

7. Enhancing the Simultaneous

Multithreading Paradigm with Selective

Instruction Reuse and Value Prediction

In the previous chapter we improved a superscalar microarchitecture with

selective instruction reuse and value prediction techniques focalized on

long-latency instructions. We obtained significant IPC speedups and

energy-delay product gains, proving the necessity of these techniques for

higher instruction-level parallelism. A very important question is: would

these techniques improve even multithreading architectures? Additionally a

multithreaded processor would naturally hide the long instructions latencies,

including the memory-wall, and also some of the branches’ problems. This

chapter answers the question by evaluating a simultaneous multithreaded

architecture enhanced with selective instruction reuse and value prediction

to anticipate the results of long-latency instructions.

7.1. Related Work

This section presents an overview of several multithreading approaches,

focalizing then on Simultaneous Multithreading architectures, used and

enhanced during this chapter. With multithreading multiple threads can

share the functional units of a single processor [Hen03]. To support

multithreading, the processor must be able to maintain the independent state

of each thread in separate resource copies. The hardware also must support

quick context switches between threads.

7.1.1. Multithreading Architectures

There are two different multithreaded architecture designs [Ung02, Ung03]:

implicit- and explicit multithreaded processors. Implicit multithreaded

superscalar processors aim at a low execution time of a single program,

190 Beyond the Limits of Modern Processors

while explicit multithreaded processors aim at a low execution time of a

multithreaded workload.

Implicit multithreaded processors concurrently execute several threads

from a single sequential program. The threads in such architectures

represent contiguous regions of the static or dynamic instruction sequence

that can be obtained with or without the help of the compiler. Multiscalar

processors, first introduced by Gurindar Sohi, divide a single-threaded

program into tasks that are distributed to different parallel processing units.

The multiscalar model supports control speculation and data dependence

speculation. If a control speculation turns out to be incorrect, the speculative

thread and all its successor threads are discarded. Data dependence

speculation occurs when a thread loads data from memory with the

expectation that the predecessor threads will not store a value to the same

memory location. Trace processors partition a processor into distinct cores

and divide the program into traces that are collected by a trace cache. They

solved the so called fetch bottleneck limitation [Vin07]. One core of the

processor executes the current trace while the other cores execute future

traces speculatively.

Explicit multithreaded processors are able to execute threads of

several processes concurrently. A classification of explicit multithreaded

processors that issue instructions from a single thread per cycle,

distinguishes between fine-grained and coarse-grained multithreading

[Hen03], while an explicit multithreading technique that issue instructions

from multiple threads per cycle is simultaneous multithreading. In fine-

grained multithreading (interleaved multithreading) threads are switched

after each instruction fetch, interleaving in this way their execution. More

exactly, an instruction from a certain thread enters in the pipeline after the

retirement of the previous instruction of that thread. Thus, the processor

must be able to switch threads every clock cycle. Interleaved multithreading

partially eliminates control and data dependences between instructions in

the pipeline, leading to a simple and fast pipeline. Memory latency is

tolerated by not scheduling a thread until the memory operation has

completed. In order to completely hide pipeline hazards this model requires

at least as many threads as many stages are in the pipeline. The key

disadvantage of fine-grained multithreading is that it slows down the

execution of the individual threads because they are delayed by instructions

from the other active threads. This deficiency can be overcome with the

dependence lookahead technique and the interleaving technique [Ung02].

The dependence lookahead technique, by using additional opcode bits,

allows the compiler to state the number of instructions directly following in

program order that are not data- or control-dependent on the instruction

Enhancing the SMT Paradigm with Selective Instruction Reuse and Value Prediction 191

being executed. Thus, the instruction scheduler can feed non-data- and non-

control-dependent instructions of the same thread successively into the

pipeline. The interleaving technique uses caching and full pipeline

interlocks. With caching not all memory references are long latency

operations. Using full pipeline interlocks, a certain context is not limited to

only one instruction in the pipeline. Instructions are issued switching each

cycle between available contexts. Contexts become unavailable when they

encounter a long-latency operation and become available again when that

operation completes. Thus, even a single context is supported in the

pipeline.

In the case of coarse-grained multithreading (blocked multithreading),

threads are switched only when stalls occur, and thus, it does not slow down

the execution of the individual threads (single-thread performance is similar

to that of superscalar processors). Instructions are issued from a single

thread and the pipeline is emptied if a stall occurs. The disadvantage of

coarse-grained multithreading consists in the start-up pipeline costs, since

the thread that is executed after the stall must fill again the pipeline. Coarse-

grained multithreading can be classified based on the event that triggers a

context switch into static and dynamic models [Ung02]. In static models the

context switch is encoded by the compiler and occurs each time the same

instruction is executed in the instruction stream. The advantage of static

models is that context switching can be triggered in the fetch stage of the

pipeline. The static model with explicit switching uses an additional

instruction for triggering context switches. In static models with implicit

switching, a context switch decision depends on the class of the fetched

instruction. Instruction classes that cause context switch include Load, Store

and, obviously, branch instructions. In dynamic models the context switch is

triggered by dynamic events. Usually, all instructions between the fetch

stage and the stage that triggers the context switch are discarded, leading to

a higher context switch overhead. Several dynamic models are presented in

[Ung02]. The switch-on-cache-miss dynamic model switches the context if

a Load or Store instruction misses in the cache. These switches are detected

in a late stage of the pipeline and, therefore, a large number of subsequent

instructions that are already in the pipeline must be discarded, increasing the

context switch overhead. The switch-on-signal dynamic model switches the

context if a specific signal occurs, such as interrupt request, trap or message

arrival. The switch-on-use dynamic model switches the context when an

instruction tries to use the still missing value of a Load. This model is

implemented by adding a valid bit to each register, the bit being cleared

when a Load to the corresponding register is issued and set when the result

is available. A context switch occurs only if a thread needs a value from a

192 Beyond the Limits of Modern Processors

register whose valid bit is still cleared. The conditional-switch dynamic

model couples an explicit instruction with a condition, the context being

switched only if the condition is fulfilled. Such conditional-switch

instruction can be used after a group of Load instructions, the switch being

ignored if all Loads hit the cache and performed otherwise.

In [Ung02] the nanothreading and microthreading coarse-grained

techniques are also presented. The nanothreading approach uses a

nanothread that executes in the same register set and the same page as the

main thread. When a stall occurs in the main thread, the processor

automatically begins fetching instructions from the nanothread. Usually the

nanothread focuses on simple tasks that can be done asynchronously to the

main thread, such as prefetching data into a buffer. In the DanSoft

processor, nanothreading is used to fetch both sides of a branch. A static

three-bit branch prediction scheme is used. In the case of the states with low

branch prediction confidence (the middle four of the eight states) the

processor fetches instructions from both paths. If the branch is misprediced

in the main thread, the path executed by the nanothread is used, generating a

misprediction penalty of only one to two cycles. The microthreading

technique is similar to the nanothreading, but the number of threads is not

restricted to only two. The threads share the same register set and the same

run-time stack. A disadvantage of both nanothreading and microthreading

techniques is that the compiler has to schedule registers to each active

thread, since all threads share the same register set.

7.1.2. Simultaneous Multithreading

Combining the superscalar instruction issue with the multithreading

approach, naturally leads to the idea of issuing instructions from several

active threads in parallel. Latencies that occur in the execution of single

threads are bridged by issuing operations of the remaining threads.

Simultaneous multithreading (SMT) uses the resources of a multiple-issue

processor to simultaneously exploit both thread-level parallelism (TLP) and

instruction-level parallelism (ILP). In SMT processors [Egg97], TLP can

come from either multithreaded programs or independent programs within a

workload, whereas ILP comes from each single program or thread. SMT is

motivated because it successfully exploits both types of parallelism and

therefore uses resources more efficiently, increasing instruction throughput

and speedup. Thus, instructions from multiple threads are issued

simultaneously in a single clock cycle. In the case of out-of-order processors

with dynamic scheduling, register renaming provides a large set of virtual

Enhancing the SMT Paradigm with Selective Instruction Reuse and Value Prediction 193

registers that can be used to hold the register sets of multiple threads. The

independent commitment of instructions from different threads can be

supported if a separate reorder buffer is used for each thread.

A classification of SMT processors can be made based on their

resource organization [Ung02]. In architectures with resource sharing,

instructions from different threads share all resources: the fetch buffer, the

physical registers that provide the renaming function for all register sets, the

instruction window and the reorder buffer. The architectures with resource

replication actually replicate all internal buffers of a superscalar processor,

each buffer being associated to a specific thread. The issue unit is able to

issue instructions from different instruction windows simultaneously to the

execution units. The threaded multipath execution model, which exploits

existing hardware of a SMT processor to execute simultaneously alternate

paths of a conditional branch, is also presented in [Ung02]. Therefore,

additional hardware is introduced into SMT processors to test for unused

resources (hardware threads). If the hardware detects processor threads that

are not processing useful instructions, the prediction confidence estimator is

used to decide if only one path of a conditional branch should be followed

(high prediction confidence), or both paths should be followed

simultaneously (low prediction confidence).

In SMT architectures some processor structures (i.e. instruction queue,

physical register files, execution units, caches) are shared among the

threads, and others (ROBs, Load/Store Queues, branch predictors) are

private to each thread [Bar08]. The different characteristics and

requirements of every thread within a SMT environment can unbalance

resource allocation and some threads will consume more resources than

others. The overall performance of a SMT processor depends on how shared

resources are distributed among threads. There are several possible policies

to distribute the resource entries (distribution policies) and to select the

instructions that will leave the resource at each cycle (scheduling policies).

The most flexible scheme for distributing the entries of a resource is the

dynamic distribution policy under which any instruction from any thread

can compete for any free entry. The distribution of resources can also be

static: each resource is partitioned and each thread has a private access to

one partition. This completely prevents starvation and ensures a fair access

to the common resources for all threads. However, the performance may not

be optimal in this case because some threads may be slowed down due to a

lack of resources whereas other threads might underuse their allocated

partition. Static partitioning is widely used to share instruction queues

among threads, due to its easier implementation. Besides distribution policy,

shared resources are also controlled by a scheduling policy that arbitrates

194 Beyond the Limits of Modern Processors

between threads to select the instructions that can leave the resource. The

most common scheme is the very simple Round-Robin policy, which

switches between threads in a circular way, regardless of their behavior. The

ICOUNT policy is another possible strategy, which is based on dynamic

priorities reevaluated at each cycle to reflect the number of instructions per

thread present in the pre-issue pipeline stages. Instructions of several

threads can be fetched simultaneously, with the constraint that the thread

with the highest priority is satisfied first.

Liu and Gaudiot proposed in [Liu08] a resource sharing control

technique on both the Instruction Fetch Queue (IFQ) and Reorder Buffer

(ROB) structures in order to improve the performance of SMT processors.

The research is important taking into account that the power of SMT lies in

its ability to issue and execute instructions from different threads at every

clock cycle. The authors are developing four distinct sharing control

schemes, built on the well-known ICOUNT policy. They observed that

controlling the resource sharing of either IFQ or ROB alone can only

provide very limited performance improvement. On the other hand,

controlling the resource sharing of both IFQ and ROB together could

achieve significant performance gain.

Marcuello et al. in [Mar99] analyzed the performance of speculative

multithreaded processors with different value predictors. The thread

speculation logic of a Clustered Speculative Multithreaded processor is

responsible for detecting those parts of a sequential program that can be

executed by different threads. This architecture considers the beginning of

loops as quasi-independent control points. Thus, each speculative thread

corresponds to a different iteration of a loop, called loop trace. The value

prediction is focused on trace input or output values, since these values flow

through inter-thread dependences. The instruction-based predictors correlate

their predictions with previous values of the same instruction whereas trace-

based predictors correlate predictions with previous values of the same

instruction within the same trace. The authors proposed a value predictor,

called increment predictor, and evaluated its performance within a particular

microarchitecture that implements the speculative multithreading paradigm.

The increment predictor predicts every trace output value as the value of

that storage location at the beginning of the trace plus an increment. This

increment is computed as the difference between the values at the end and at

the beginning of the trace. The predicted increment is updated when a new

increment has been seen twice in a row. Their 1 KB trace-oriented

increment predictor, with its prediction accuracy of 73%, outperforms the

trace-adapted versions of the last value, stride and context-based predictors.

Enhancing the SMT Paradigm with Selective Instruction Reuse and Value Prediction 195

Martin et al. show in their work [Mar01] that multithreaded pointer

manipulation can generate erroneous results when value prediction is

implemented without considering memory consistency correctness.

Therefore, only verifying prediction correctness by comparing the predicted

and actual values is not always sufficient. In a TLP system, unlike in a

single-threaded uniprocessor, it is possible for a value prediction to be

incorrect at the time of the prediction but “correct” by the time the predicted

value is verified, since another thread or processor could have modified the

value between prediction and verification. When multiple threads or

processors concurrently access a logically shared memory, the definition of

correctness becomes more complicated. Thus, speculative TLP

implementations must ensure that value prediction does not cause

consistency model violations.

An important impediment in developing large-scale SMT

architectures is the register file size required by a large number of contexts.

In [Red03] Redstone et al. introduce and evaluate the mini-thread concept, a

simple extension of SMT that increases thread-level parallelism without

register file size increase. A mini-threaded SMT architecture adds additional

per-thread state to each hardware context. Using this hardware, an

application can exploit more thread-level parallelism within a context, by

creating multiple mini-threads that use their own per-thread state, but share

the context’s architectural register set. Their experimental results show that

adding mini-threads improves performance by an average of 38% (and a

maximum of 66%) on a 2-context SMT.

Ramírez et al. proposed in [Ram08] runahead threads to exploit

memory-level parallelism while reducing resource contention in SMT

processors. Runahead execution is a mechanism whose goal is to bring

speculative data and instructions into the caches, and it was also used in

[Mut03] within checkpointing architectures (see paragraph 2.1.3). The

technique presented in [Ram08] applies runahead execution to any running

thread when a long-latency Load is pending. Thus, when a thread undergoes

a long-latency Load, it turns into a runahead thread and operates in

speculative mode. With runahead threads, memory-bound threads can

advance speculatively (instead of stalling) by using different resources for

short times without disturbing the other threads. Their evaluations show that

runahead threads improve throughput by 83% over static fetch policies.

In [Sub08] Subramaniam et al. studied the interaction between long-

latency stalls caused by ambiguous memory dependences and SMT

processing. A thread that encounters a stalling condition (e.g. a cache miss)

can potentially tie up many of the shared resources for the entire latency of

the stall. This effectively reduces the number of critical resources available

196 Beyond the Limits of Modern Processors

to the non-stalled threads. If the stall timings are predictable, then this

information can be directly exploited by the SMT fetch unit to better

manage the shared processor resources. Therefore, the authors proposed a

technique called proactive exclusion which stops the SMT to fetch from a

thread (avoiding thus resource allocation) when a memory dependence is

predicted, before the stalling condition has been occurred. In order to

mitigate delaying such threads, they introduced the so called early parole

mechanism that exploits the predictability of dependence delays and restarts

fetching from an excluded thread in an anticipatory manner such that the

instructions arrive to the out-of-order execution units just as the original

dependence resolves. Their simulations show that a fetch policy which

combines these two techniques yields a 16.9% throughput improvement on

a 4-way SMT processor that supports speculative memory disambiguation.

7.2. Selective Instruction Reuse and Value Prediction

in SMT Architectures

As a final objective of our research, we quantified the impact of our

developed Selective Instruction Reuse and Load Value Prediction

techniques in a simultaneous multithreaded architecture (SMT) that involves

per thread Reuse Buffers and LVP tables [Gel08c, Vin08a].

We developed a cycle-accurate execution driven simulator derived

from the M-SIM simulator [Sha05] supporting the unmodified, statically

linked Alpha AXP binaries as well as the power estimation as supplied by

the Wattch framework [Bro00]. M-SIM supports single threaded execution

(superscalar mode) as well as the multithreaded mode in which multiple

threads of control are executed simultaneously, according to the

Simultaneous Multithreaded (SMT) model [Egg 97].

Fetch

Unit

Branch

Predictor
PC I-Cache Decode

Issue

Queue

Rename

Table

Physical

Register

File

ROB

LVPT

Functional

Units

LSQ

D-Cache

RB

Fetch

Unit

Fetch

Unit

Branch

Predictor

Branch

Predictor

Branch

Predictor
PCPC I-CacheI-Cache Decode

Issue

Queue

Issue

Queue

Rename

Table

Rename

Table

Rename

Table

Physical

Register

File

Physical

Register

File

ROB

LVPT

Functional

Units

LSQ

Functional

Units

Functional

Units

LSQLSQ

D-CacheD-Cache

RBRB

Figure 7.1. SMT architecture enhanced with selective instruction reuse and value

prediction

Enhancing the SMT Paradigm with Selective Instruction Reuse and Value Prediction 197

In the SMT mode, some processor structures (i.e. issue queue, physical

register files, functional units, caches) are shared among the threads, and

others (rename tables, ROBs, Load/Store Queues, branch predictors) are

private to each thread. Figure 7.1 presents a SMT architecture enhanced

with our selective instruction reuse and value prediction methods proposed

in Section 6.2.

Threads maintain separate PC counters, but share the fetch unit and I-

Cache. Threads also share the available bandwidth in the front end,

including fetch, decode and renaming. The M-SIM implements the well

known ICOUNT fetch policy (briefly described in paragraph 7.1.2), by

default, fetching from up to two threads per cycle. The M-SIM has

implemented separate branch predictors per thread, which was shown in

[Ram03] as providing the best performance for multithreaded processors.

The Reorder Buffers (ROB) as well as our Reuse Buffers (RB) and Load

Value Prediction Tables (LVPT) are private. Each thread maintains its own

rename table because it has its own set of architectural registers. After

renaming, instructions from all threads are dispatched into the shared Issue

Queue. In the Issue Queue, instructions from all threads participate in

instruction wakeup and compete for the issue bandwidth in selection.

Instructions that are selected for issue continue to register file access. There

are separate integer and floating-point physical register files, both being

shared among threads. After register file access is complete, instructions

begin execution on the functional units, which are also shared. Loads and

Stores access the shared data cache. In order to maintain the correct

ordering of memory accesses, the Load/Store Queue (LSQ) is used. The M-

SIM uses separate LSQs per thread, so that an unresolved address from one

thread does not prevent Loads in other threads from issuing. After

execution, instructions write back to the register files. Commitment is done

in order for each thread.

Our Reuse Buffers and Load Value Prediction Tables have the same

structures as in Section 6.2 (see Figures 6.1 and 6.3). The RB and LVPT

were implemented in sim-outorder.c within the M-SIM through the

following structures:

struct RBLocation
{

md_addr_t tag; // the higher part of the buffered instruction's PC
qword_t srcval1; // first source value
qword_t srcval2; // second source value
qword_t res; // result value

};

198 Beyond the Limits of Modern Processors

struct RBLocation rbuff[10][10000]; // maximum 10 threads and
// 10,000 entries per thread

struct LVPTLocation
{

md_addr_t tag; // the higher part of the Load instruction's PC
byte_t counter; // 2-bit saturating counter
qword_t value; // Load value

};

struct LVPTLocation lvpt[10][10000]; // maximum 10 threads and

// 10,000 entries per thread

The context identifier (context_id) is maintained for each instruction in the

Reorder Buffer (ROB_entry). The private resources are selected for

instructions belonging to each thread based on this identifier.

7.3. Simulation Methodology

Table 7.1 presents some important parameters of the simulated architecture:

Execution Latencies

Execution unit Number of units Operation latency

intALU 4 1

intMULT / intDIV 1 3 / 20

fpALU 4 2

fpMULT / fpDIV 1 4 / 12

Superscalarity Fetch / Decode / Issue / Commit width = 4

Branch predictor bimodal predictor with 2048 entries

Caches and

Memory

Memory unit Access Latency

4-way associative L1 data cache, 32 KB 1 cycle

8-way associative unified L2 data

cache, 512 KB

6 cycles

Memory 100 cycles

Resources

Register File: 32 INT / 32 FP

Reorder Buffer (ROB): 128 entries

Load/Store Queue (LSQ): 48 entries

Table 7.1. Parameters of the simulated architecture

The dynamic power consumption measurements are generated using an 80

nm CMOS technology:

faVCP ddd 2
 (7.1)

Enhancing the SMT Paradigm with Selective Instruction Reuse and Value Prediction 199

where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply

voltage, and f is the clock frequency. Vdd and f depend on the assumed

process technology. The activity factor a indicates how often clock ticks

lead to switching activity on average. For the energy measurements, we

used the Energy-Delay Product, a widely used metric [Gon96, Bro00,

Gol07]:

2IPC

PowerTotal
EDP (7.2)

The Energy-Delay Product (EDP) represents the processor’s total power,

divided by the squared IPC.

All simulation results are generated on the SPEC 2000 benchmarks

[SPEC] and are reported on 1 billion dynamic instructions, skipping the first

300 million instructions. For the superscalar architecture we evaluated seven

integer benchmarks (bzip, gcc, gzip, mcf, parser, twolf, vpr) and six

floating-point benchmarks (applu, equake, galgel, lucas, mesa, mgrid). In

SMT mode, the M-SIM runs multiple benchmarks as different threads in

parallel. Therefore, we combined benchmarks into groups of 2, 3 or 6

depending on the simulated SMT architecture. Thus, we used {bzip, gcc},

{gzip, parser}, {twolf, vpr}, {applu, equake}, {galgel, lucas}, {mesa,

mgrid} for our 2-way SMT, {bzip, gcc, gzip}, {parser, twolf, vpr}, {applu,

equake, galgel}, {lucas, mesa, mgrid} for the 3-way SMT, and {bzip, gcc,

gzip, parser, twolf, vpr}, {applu, equake, galgel, lucas, mesa, mgrid} for the

6-way SMT.

7.4. Experimental Results

We measured the IPC and the dynamic power consumption of the proposed

SMT architecture by varying the number of threads. Figures 7.2 and 7.3

present the IPC obtained by evaluating our developed superscalar and SMT

architectures with and without Reuse Buffer and Load Value Predictor.

According to our previous results obtained with the enhanced superscalar

architecture (presented in paragraph 6.2.4), we optimally sized the RB and

the LVPT to 1024 entries.

200 Beyond the Limits of Modern Processors

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

1 2 3 6

Threads

IP
C SMT

SMT with RB & LVPT

Figure 7.2. IPC obtained with and without RB & LVPT on the integer SPEC 2000

benchmarks

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

1 2 3 6

Threads

IP
C SMT

SMT with RB & LVPT

Figure 7.3. IPC obtained with and without RB & LVPT on the floating-point

SPEC 2000 benchmarks

Figures 7.2 and 7.3 show that the RB and LVPT structures improve

the IPC on all evaluated architectural configurations (superscalar and SMT).

As far as concern floating-point benchmarks, the highest improvement was

Enhancing the SMT Paradigm with Selective Instruction Reuse and Value Prediction 201

obtained with one thread, and as the number of threads grows, the IPC

improvement becomes lower (see Figure 7.3). With fewer threads, the ten

shared functional units (see Table 7.1) are underused and therefore the

selective instruction reuse and value prediction techniques have an

important improvement potential. With a higher number of threads, the

same ten functional units are highly used by the SMT engine, thus both the

instruction reuse and value prediction mechanisms becoming less important.

Therefore, especially on floating-point benchmarks, with six threads we

obtained the best IPC but the lowest relative IPC speedup (see Figures 7.3

and 7.4).

Finally, we evaluated, for different number of threads, the IPC

speedup and the EDP gain of a SMT architecture enhanced with Selective

Instruction Reuse and Value Prediction against a classical SMT architecture.

The IPC speedups obtained with our superscalar (one thread) and SMT

architecture (2, 3 and 6 threads) are presented in Figure 7.4, whereas Figure

7.5 presents the EDP gains achieved with the same architectures.

0%

5%

10%

15%

20%

25%

1 2 3 6

Threads

IP
C

 S
p

e
e
d

u
p

FP

INT

Figure 7.4. Relative IPC speedup (enhanced SMT vs. classical SMT) by varying

the number of threads

As Figures 7.4 and 7.5 depict, the RB and LVPT structures achieved IPC

speedups and EDP gains on all the simulated configurations. The best

improvements on the integer benchmarks have been obtained with 2

threads: an IPC speedup of 5.95% and an EDP gain of 10.44%. Although,

on the floating-point benchmarks, we obtained the highest improvements

with the enhanced (LVP+Reuse) superscalar architecture, the SMT with 3

threads also provides an important IPC speedup of 16.51% and an EDP gain

of 25.94%.

202 Beyond the Limits of Modern Processors

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 6

Threads

E
D

P
 G

a
in

FP

INT

Figure 7.5. Relative energy-delay product gain (enhanced SMT vs. classical SMT)

for different number of threads

Analyzing Figures 7.2 and 7.3 we can observe the advantage of SMT

architectures against the superscalar architecture irrespective these are

enhanced or not with selective instruction reuse and value prediction

mechanisms.

7.5. Summary

In this chapter we have studied the impact of selective instruction reuse and

value prediction in a Simultaneous Multithreaded architecture. We used

these methods to anticipate the results of long-latency instructions (Mul,

Div, Load), as we did in Chapter 6 within a superscalar architecture. Thus,

we integrated the Reuse Buffer and Last Value Predictor structures into the

M-SIM simulator [Sha05]. We implemented private RBs and LVPTs for

each thread. Our simulation results, performed on the SPEC 2000

benchmarks, show that the IPC is better on all evaluated SMT

configurations, when the RB and LVPT structures are used. However, as the

number of threads grows, the IPC speedup tends to become less significant,

because the shared functional units are better exploited by the SMT engine

even without RB and LVPT. We measured the highest IPC with the six-

threaded enhanced SMT architecture: 2.29 on the integer SPEC 2000

benchmarks and 2.88 on the floating-point benchmarks.

“The strongest arguments prove nothing so long

as the conclusions are not verified by experience”

Roger Bacon

8. Conclusions and Further Work

The main contributions of this work can be summarized as follows: a

systematic methodology of identifying difficult-to-predict branches,

dedicated predictors designed to improve the prediction accuracy of

unbiased branches, random degree metrics developed to characterize the

randomness of sequences produced by unbiased branches, and selective

dynamic value prediction and instruction reuse methods integrated into

superscalar and simultaneous multithreaded architectures. This chapter

presents some quantitative and qualitative conclusions regarding the

important experimental results obtained within this book and emphasizes

some possible further work directions.

First, we have shown that unbiased branches are hard to predict if

their outcomes, in the considered prediction contexts (branch address, local

or global branch history, path), tend to chaotically shuffle between taken

and not taken. We identified through laborious simulations these difficult-

to-predict branches in the SPEC 2000 benchmarks, and partially solved

them through context length extension. However, about 6% of branches

could not be solved even with the longest evaluated correlation information

(28 bits), their polarization degrees remaining still unacceptably low (less

than 0.95). Despite some branches are path-correlated, a global branch

history of more than 12 bits approximates very well the longer path

information. Thus, the path is useful only in the case of short contexts, for

longer contexts its gain being insignificant. In other words, a sufficiently

long branch history might be viewed as a good “compression” of the most

complete path information. We also concluded that current state-of-the-art

branch predictors correlate either insufficient information or wrong

information in the prediction of unbiased branches. Even one of the most

effective predictors, the idealized piecewise linear branch predictor

developed by Jiménez, only achieved a prediction accuracy of 77.3% on the

unbiased branches, leading us to consider alternative approaches. Therefore,

we improved several state-of-the-art branch predictors with additional

prediction information. Thus, we developed and evaluated some PPM-based

value predictors that are using a compressed branch condition history whose

204 Beyond the Limits of Modern Processors

digits were -1, 0, or 1, depending on the sign of the difference between the

operand values implied in each considered past branch. Unfortunately, even

these idealistic predictors, able to exploit the correlation between branch

outcome and branch condition history, could not improve the predictability

of unbiased branches.

We have analyzed comparatively the percentages of unbiased

branches obtained using the global history, the global history concatenated

with the path, and the global history concatenated with a new prediction

information, namely, the previous branch condition (PBC) represented as a

32-bit difference between the operand values of the previous dynamic

branch. The evaluations showed that the previous branch condition is more

efficient than the path information: it decreased the percentage of unbiased

branches for all the evaluated context lengths. Therefore we additionally

used local (per-address) or global PBC value, hashed together with the

local/global branch history, integrated in some conventional branch

predictors like the GAg and PAg, and in some state-of-the-art neural branch

predictors. The piecewise linear branch predictor improved with the global

PBC value was the most efficient, according to our evaluations.

Nevertheless, even this powerful predictor achieved a modest 78.3%

average prediction accuracy on the unbiased branches, whereas its global

average prediction accuracy was 95.45% overcoming the original piecewise

linear branch predictor (the best state of the art branch predictor) with

0.53%. However, this modified piecewise linear branch predictor

significantly outperformed the modified GAg and PAg predictors. This gain

was probably obtained because both the improved GAg and PAg predictors

used a hashing between the PBC value and the global/local branch history,

whereas the modified piecewise linear branch predictor used the branch

history and PBC value without hashing (by concatenating them).

Other very powerful general predictors like our developed HMM,

have predicted unbiased branches with an average accuracy of only 65.03%.

Since the impact of unbiased branches significantly restricts the global

accuracy, predicting them still represents a hard challenge for computer

architects. This means that accurate prediction of unbiased branches remains

an open problem and such branches will continue to limit the ceiling of

dynamic branch prediction. Moreover, taking into account that these

difficult branches are generated by very complex program structures, we

expect that their negative influence will be even more significant in the

future.

At this moment there is not a universally accepted paradigm for

effectively defining random strings of symbols. Not surprisingly,

understanding randomness is closely related with strong mathematical

Conclusions and Further Work 205

concepts like computability and algorithms, information theory and

complexity, actual infinites theory, etc. The problem is therefore open and

of great interests in many fields of science. We showed that unbiased

branches could be understandable in more depth using this interdisciplinary

methodological frame. We developed four metrics that are defining the

random degree of a string of symbols. These metrics are based on: HMM-

based predictability, discrete entropy, compression rate and Kolmogorov

complexity associated to the code sequence that generates unbiased

branches. The proposed random degree metrics could practically help the

computer architect to better understand if a certain branch predictor should

be improved. All these four developed metrics are converging at the same

point. They are showing how much “intrinsic randomness” a string of

symbols and, particularly, the sequences produced by unbiased branches

contain. If some difficult-to-predict branches are not intrinsic random with

our metrics, according to our experience, their prediction accuracy could be

further improved by the researcher. Unfortunately, if these branches are

intrinsic random, the answer is a pessimistic one, generating a strong

limitation in Computer Architecture. Since the future applications

complexity will increase (object oriented programs, design patterns,

complex project management, virtual machines, etc.), we expect that also

the number and therefore the influence of unbiased branches will further

increase.

Our statistics show that about 28% of branches are dependent on long-

latency instructions. Moreover, 5.61% of branches are unbiased and depend

on long-latency instructions, too. These dependences involve high-penalty

mispredictions becoming serious performance obstacles and causing

significant performance degradation in executing instructions from wrong

paths. Therefore, the negative impact of (unbiased) branches over global

performance should be seriously attenuated by anticipating the results of

long-latency instructions, including critical Loads. On the other hand, hiding

long execution latencies in a pipelined superscalar processor represents an

important challenge itself. Therefore, we developed a superscalar

architecture that selectively anticipates the values produced by high-latency

instructions. We have focused on Multiply, Division and Loads with miss in

L1 data cache, implementing a Dynamic Instruction Reuse scheme for the

Mul/Div instructions and a simple Last Value Predictor for the critical Load

instructions. Our improved architecture achieved an average IPC speedup of

3.5% on the integer SPEC 2000 benchmarks, of 23.6% on the floating-point

benchmarks, and an improvement in energy-delay product of 6.2% and

34.5%, respectively. Actually, this lower energy consumption shows the

efficiency of our anticipatory techniques in a superscalar architecture. We

206 Beyond the Limits of Modern Processors

have also demonstrated that there is a dynamic correlation between the

names of the destination registers and the values stored in these registers.

Therefore we extended dynamic value prediction by introducing the

register-centric prediction concept instead of instruction-centric prediction.

This register-centric approach is advantageous because fewer predictors are

needed, thus reducing complexity and costs. We developed several different

basic value predictors, such as the last value predictor, the stride value

predictor, context-based predictors and hybrid value predictors to capture

certain type of value predictabilities from the SPECint95 and the

SPECint2000 benchmarks. All these predictors were adapted to our

proposed prediction model. The evaluations showed that the hybrid

predictors have best exploited the value locality concept. Moreover, the

hybrid predictor with counter-based adaptive prioritization composed of a

two-level and a stride predictor outperformed the PPM-based hybrid

predictor, at significantly lower implementation cost and complexity.

Considering an 8-issue out-of-order superscalar processor, the register

centric value prediction achieves average speedups of 17.30% on the

SPECint95 benchmarks and 13.58% on the SPECint2000 benchmarks.

After we have shown the utility of selectively anticipating long-

latency instructions in superscalar architectures, it was natural to analyze the

efficiency of these methods in multithreaded environments. Thus, we have

studied the impact of dynamic instruction reuse and value prediction,

applied selectively on Mul/Div instructions and on critical Loads, in a

Simultaneous Multithreaded (SMT) architecture. We implemented private

Mul/Div Reuse Buffers (RB) and Load Value Prediction Tables (LVPT) for

each thread. Our simulations performed on the SPEC 2000 benchmarks

showed higher IPC on all evaluated SMT configurations, when the RB and

LVPT structures were used. With fewer threads, the shared functional units

are underused and therefore the selective instruction reuse and value

prediction techniques have an important improvement potential. However,

as the number of threads grows the IPC speedup decreases, because the

shared functional units are better exploited due to the higher thread-level

parallelism (TLP) and therefore the RB and LVPT structures become less

important. We measured the highest IPC of 2.29 on the integer and 2.88 on

the floating-point benchmarks with our six-threaded enhanced SMT

architecture. However, the best improvements on the SPEC integer

applications have been obtained with 2 threads: an IPC speedup of 5.95%

and an EDP gain of 10.44%. Although, on the SPEC floating-point

programs, we obtained the highest improvements with the enhanced

superscalar architecture, the SMT with 3 threads also provides an important

IPC speedup of 16.51% and an EDP gain of 25.94%. As a conclusion,

Conclusions and Further Work 207

applying some well-known anticipatory techniques selectively on long-

latency instructions provides serious performance gain and significantly

reduces energy consumption in superscalar and even in multithreaded

architectures.

Finally, we highlight some interesting research topics that need to be

further investigated in the future. Since accurate prediction of unbiased

branches still remains an open problem, we consider that the use of more

prediction contexts (some relevant HLL code information) is required to

further improve prediction accuracies. Perhaps an alternative mechanism

might be to hand-shake scheduler support with dynamic branch prediction.

The idea of the scheduler would be to remove as many branch instructions

(especially unbiased branches) from the static code as possible and leave the

remaining branches to be dynamically predicted. Yet another alternative

could be to pursue the concepts of micro-threading where small fragments

of code (e.g. both branch paths) are executed concurrently and the branch

problem is no longer a major concern. It would be also useful to quantify

the unbiased branch ceiling in multicore architectures. Also, understanding

and exploring instruction reuse and value prediction benefits in a multicore

architecture might be another very important challenge.

“Experimental science is the queen of sciences

and the goal of all speculation”

Roger Bacon

References

[Aam03] Aamer M., Lux K., Mistry R., Mulholland B., Efficiency of Pre-

Computed Branches, Technical Report, University of Pennsylvania, USA,

2003.

[Akk03a] Akkary H., Rajwar R., Srinivasan S.T., Checkpoint Processing

and Recovery: Towards Scalable Large Instruction Window Processors,

Proceedings of the 36th International Symposium on Microarchitecture,

ACM Press, 2003.

[Akk03b] Akkary H., Rajwar R., Srinivasan S.T., Checkpoint Processing

and Recovery: An Efficient, Scalable Alternative to Reorder Buffers, IEEE

Micro, Vol. 23, No. 6, 2003.

[Ara01] Aragón J.L., González J., García J.M., González A., Selective

Branch Prediction Reversal by Correlating with Data Values and Control

Flow, Proceedings of the International Conference on Computer Design:

VLSI in Computers & Processors, 2001.

[Bar08] Barre J., Rochange C., Sainrat P., A Predictable Simultaneous

Multithreading Scheme for Hard Real-Time, The 21st International

Conference on Architecture of Computing Systems, TU Dresden, Germany,

February 2008.

[Bau72] Baum L.E., An Inequality and Associated Maximization Technique

in Statistical Estimation for Probabilistic Functions of Markov Processes,

Inequalities, Vol. 3, 1972.

[Bir01] Birney E., Hidden Markov Models in Biological Sequence Analysis,

IBM Journal of Research and Development, Volume 45, Numbers 3/4,

2001.

[Bro00] Brooks D., Tiwari V., Martonosi M., Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations, Proceedings of the

27th International Symposium on Computer Architecture, Vancouver, June

2000.

References 209

[Bur97] Burger D., Austin T., The SimpleScalar Tool Set, Version 2.0,

(ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar), Technical Report,

University of Wisconsin, Madison, USA, June 1997.

[Cal99] Calder B., Reinman G. and Tullsen D., Selective Value Prediction,

Proceedings of the 26th International Symposium on Computer

Architecture, pages 64-74, May 1999.

[CBP04] The 1st JILP Championship Branch Prediction Competition (CBP-

1), http://www.jilp.org/cbp, 2004.

[CBP06] The 2nd Journal of Instruction-Level Parallelism Championship

Branch Prediction Competition (CBP-2), Orlando, Florida, USA, (2006),

http://camino.rutgers.edu/cbp2/.

[Cha94] Chang P.-Y., Hao E., Yeh T.-Y., Patt Y.N., Branch Classification:

a New Mechanism for Improving Branch Predictor Performance,

Proceedings of the 27th International Symposium on Microarchitecture, San

Jose, California, 1994.

[Cha02a] Chang M.-C., Chou Y.-W., Branch Prediction using Both Global

and Local Branch History Information, IEE Proceedings – Computer and

Digital Techniques, Vol. 149, No. 2, United Kingdom, March 2002.

[Cha02b] Chappell R., Tseng F., Yoaz A., Patt Y., Difficult-Path Branch

Prediction Using Subordinate Microthreads, The 29th Annual International

Symposia on Computer Architecture, Alaska, USA, May 2002.

[Cha03] Chaver D., Pinuel L., Prieto M., Tirado F., Huang M., Branch

Prediction On Demand: An Energy-Efficient Solution, Proceedings of the

International Symposium on Low Power Electronics and Design, pages 390-

395, Seoul, Korea, August 2003.

[Cha08] Chang S.C., Li W.Y.H., Kuo Y.J., Chung C.P., Early Load: Hiding

Load Latency in Deep Pipeline Processor, Proceedings of the Asia-Pacific

Computer Systems Architecture Conference, Taiwan, August 2008.

[Che03] Chen L., Dropsho S., Albonesi D.H., Dynamic Data Dependence

Tracking and its Application to Branch Prediction, The 9th International

Symposium on High-Performance Computer Architecture, February 2003.

[Cit02] Citron D., Feitelson D., Revisiting Instruction Level Reuse,

Proceedings of the Workshop on Duplicating, Deconstructing, and

Debunking (WDDD), May 2002.

[Con04] Constantinides K., Sazeides Y., A Hardware-Based Method for

Dynamically Detecting Instruction-Isomorphism and its Application to

ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar-3.0
http://www.jilp.org/cbp
http://camino.rutgers.edu/cbp2/

210 Beyond the Limits of Modern Processors

Branch Prediction, The 2nd Value Prediction and Value-Based Optimization

Workshop, Boston, Massachusetts, October 2004.

[Cor01] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to

Algorithms, Section 16.3, pages 385–392, Second Edition, MIT Press and

McGraw-Hill, 2001

[Cri02] Cristal A., Valero M., Gonzalez A., Llosa J., Large Virtual ROBs by

Processor Checkpointing, Technical Report, Computer Architecture

Department, University Politècnica of Catalunya, Barcelona, Spain, 2002.

[Cri04a] Cristal A., Ortega D., Llosa J., Valero M., Out-of-order Commit

Processors, Proceedings of the 10th International Symposium on High

Performance Computer Architecture, February 2004.

[Cri04b] Cristal A., Santana O., Valero M., Towards Kilo-instruction

Processors, ACM Transactions on Architecture and Code Optimization,

Vol. 1, No. 4, December 2004.

[Cri05] Cristal A., Santana O., Cazorla F., Galluzzi M., Ramírez T., Pericàs

M., Valero M., Kilo-instruction Processors: Overcoming the Memory Wall,

IEEE Micro, Vol. 25, No. 3, 2005.

[Des02] Desmet V., Goeman B., Bosschere K., Independent Hashing as

Confidence Mechanism for Value Predictors in Microprocessors,

Proceedings of the 8th International EuroPar Conference on Parallel

Processing, Augsburg, Germany, August 2002.

[Des04] Desmet V., Eeckhout L., De Bosschere K., Evaluation of the Gini-

index for Studying Branch Prediction Features. Proceedings of the 6th

International Conference on Computing Anticipatory Systems (CASYS),

AIP Conference Proceedings, Vol. 718, 2004.

[Des06] Desmet V., On the Systematic Design of Cost-Effective Branch

Prediction, PhD Thesis, Ghent University, Belgium, 2006.

[Deu96] Deutsch P., DEFLATE Compressed Data Format Specification

version 1.3, Aladdin Enterprises, Network Working Group, RFC 1951,

pages 1-15, 1996.

[Ega03] Egan C., Steven G., Quick P., Anguera R., Vintan L., Two-Level

Branch Prediction using Neural Networks, Journal of Systems Architecture,

Vol. 49, Elsevier, December 2003.

[Egg97] Eggers S. Emer J., Levy H., Lo J., Stamm R., Tullsen D.,

Simultaneous Multithreading: A Platform for Next-Generation Processors,

IEEE Micro, Vol 17, Issue 5, September 1997.

References 211

[Fal04] Falcón A., Stark J., Ramirez A., Lai K., Valero M., Prophet/Critic

Hybrid Branch Prediction, Proceedings of the 31st Annual International

Symposium on Computer Architecture, München, Germany, June 2004.

[Fer04] Fern A., Givan R., Falsafi B.,Vijaykumar T.N., Dynamic Feature

Selection for Hardware Prediction, Journal of Systems Architecture, Vol.

XX, Elsevier, 2004.

[Flo02] Florea A., Vintan L., Sima D., Understanding Value Prediction

through Complex Simulations, Proceedings of the 5th International

Conference on Technical Informatics, University “Politehnica” of

Timisoara, Romania, October, 2002.

[Flo04] Florea A., Vintan L., Mihu Z.I., Understanding and Predicting

Indirect Branch Behavior, Studies in Informatics and Control, Vol.13, No.

1, National Institute for Research and Development in Informatics,

Bucharest, March 2004.

[Flo05a] Florea A., The dynamic values prediction in the next generation

microprocessors, MatrixRom Publishing House, Bucharest, 2005.

[Flo05b] Florea A., Vintan L., Advanced techniques for improving indirect

branch prediction accuracy, Proceedings of 19th European Conference on

Modelling and Simulation, Riga, Latvia, June 2005.

[Flo06] Florea A., Gellert A., Memory Wall — A Critical Factor in Current

High-Performance Microprocessors, Science and Supercomputing in

Europe, ISBN 978-88-86037-19-8, Barcelona, Spain, 2006.

[Flo07a] Florea A., Radu C., Calborean H., Crapciu A., Gellert A., Vintan

L., Designing an Advanced Simulator for Unbiased Branches Prediction,

Proceedings of 9th International Symposium on Automatic Control and

Computer Science, ISSN 1843-665X, Iasi, 2007.

[Flo07b] Florea A., Radu C., Calborean H., Crapciu A., Gellert A., Vintan

L., Understanding and Predicting Unbiased Branches in General-Purpose

Applications, Bulletin of the Polytechnic Institute of Iasi, Tom LIII (LVII),

Fasc. 1-4, Section IV, ISSN 1220-2169, 2007.

[Gab98] Gabbay F., Mendelsohn A., Using Value Prediction To Increase

The Power Of Speculative Execution Hardware, ACM Transactions On

Computer Systems, Vol 16, Nr. 3, 1998.

[Gam99] Gammerman A., Vovk V., Kolmogorov Complexity: Sources,

Theories and Applications, The Computer Journal, Vol.42, No. 4, pages

252-255, 1999.

212 Beyond the Limits of Modern Processors

[Gao06] Gao H., Zhou H., PMPM: Prediction by Combining Multiple

Partial Matches, The 2nd Journal of Instruction-Level Parallelism

Championship Branch Prediction Competition (CBP-2), Orlando, Florida,

USA, December 2006.

[Gao08] Gao H., Ma Y., Dimitrov M., Zhou H., Address-Branch

Correlation: A Novel Locality for Long-Latency Hard-to-Predict Branches,

Proceedings of the 14th International Symposium on High-Performance

Computer Architecture, Salt Lake City, Utah, February 2008.

[Gel03] Gellert A., Contributions to speculative execution of instructions

by dynamic register value prediction, MSc Thesis, University “Lucian

Blaga” of Sibiu, Computer Science Department, 2003 (in Romanian,

supervisor Prof. L. Vintan).

[Gel06a] Gellert A., Prediction Methods Integrated into Advanced

Architectures, 1st PhD Report, Computer Science Department, "Lucian

Blaga" University of Sibiu, January 2006.

[Gel06b] Gellert A., Florea A., Finding and Solving Difficult Predictable

Branches, Science and Supercomputing in Europe, ISBN 978-88-86037-19-

8, Barcelona, Spain, 2006.

[Gel06c] Gellert A., Vintan L., Person Movement Prediction Using Hidden

Markov Models, Studies in Informatics and Control, Vol. 15, No. 1, ISSN

1220-1766 (IEE INSPEC), National Institute for Research and

Development in Informatics, Bucharest, March 2006.

[Gel07a] Gellert A., Integration of Some Advanced Prediction Methods into

Speculative Computing Systems, 2nd PhD Report, Computer Science

Department, "Lucian Blaga" University of Sibiu, March 2007.

[Gel07b] Gellert A., Florea A., Vintan M., Egan C., Vintan L., Unbiased

Branches: An Open Problem, Twelfth Asia-Pacific Computer Systems

Architecture Conference (ACSAC’07), Seoul, Korea, August 2007; Lecture

Notes in Computer Science, Advances in Computer Systems Architecture,

vol. 4697, pp. 16-27, ISSN 0302-9743 (Print) 1611-3349 (Online),

Springer-Verlag Berlin / Heidelberg, 2007 (ISI Thomson Journals).

[Gel07c] Gellert A., Vintan L., Florea A., A Systematic Approach to

Predict Unbiased Branches, ISBN 978-973-739-516-0, “Lucian Blaga”

University Press, Sibiu, Romania, 2007

(http://webspace.ulbsibiu.ro/arpad.gellert/html/Unb_Br_Book.pdf).

http://webspace.ulbsibiu.ro/arpad.gellert/html/Unb_Br_Book.pdf

References 213

[Gel08a] Gellert A., Developing and Improving the Performances of Some

Predictive Architectures, 3rd PhD Report, Computer Science Department,

"Lucian Blaga" University of Sibiu, April 2008.

[Gel08b] Gellert A., Florea A., Vintan L., Exploiting Selective Instruction

Reuse and Value Prediction in a Superscalar Architecture, Revised version

submitted to Journal of Systems Architecture, July 2008 (ISI Thomson

Journals).

[Gel08c] Gellert A., Advanced Prediction Methods Integrated Into

Speculative Computer Architectures, PhD Thesis, Computer Science

Department, “Lucian Blaga” University of Sibiu, November 2008.

[Gol07] Golander A., Weiss S., Reexecution and Selective Reuse in

Checkpoint Processors, HiPEAC Journal, 2007.

[Gon96] Gonzalez R., Horowitz M., Energy Dissipation in General Purpose

Microprocessors, IEEE Journal of Solid State Circuits, Vol. 31, No. 9,

September 1996.

[Gon99] González J., González A., Control-Flow Speculation through

Value Prediction for Superscalar Processors, International Conference on

Parallel Architecture and Compilation Techniques, 1999.

[Gon01] González J., González A., Control-Flow Speculation through

Value Prediction, IEEE Transactions on Computers, Vol. 50, No. 12,

December 2001.

[Gzip] http://www.gzip.org/.

[Hei99a] Heil T., Smith Z., Smith J.E., Using Data Values to Predict

Branches, Proceedings of the 26th Annual International Symposium on

Computer Architecture, 1999.

[Hei99b] Heil T.H., Smith Z., Smith J.E., Improving Branch Predictors by

Correlating on Data Values, Proceedings of the 32nd International

Symposium on Microarchitecture, November 1999.

[Hen03] Hennessy J., Patterson D., Computer Architecture: A Quantitative

Approach, Morgan Kaufmann Publishers, Third Edition, 2003.

[Hun03] Hunt S.P., Egan C., Shafarenko A., A Simple Yet Accurate Neural

Branch Predictor, Proceedings of the IASTED International Conference on

Artificial Intelligence and Application (AIA), Malaga, Spain, September

2003.

http://www.gzip.org/

214 Beyond the Limits of Modern Processors

[Jim01a] Jiménez D., Lin C., Dynamic Branch Prediction with Perceptrons,

In Proceedings of the Seventh International Symposium on High

Performance Computer Architecture (HPCA-7), January 2001.

[Jim01b] Jiménez D., Lin C., Perceptron Learning for Predicting the

Behavior of Conditional Branches, Proceedings of the INNS-IEEE

International Joint Conference on Neural Networks (IJCNN), Washington

DC, July 2001.

[Jim02] Jiménez D., Lin C., Neural Methods for Dynamic Branch

Prediction, ACM Transactions on Computer Systems, Vol. 20, New York,

USA, November 2002.

[Jim03a] Jiménez D., Lin C., Dynamic Branch Prediction with Perceptrons,

Proceedings of the 7th International Symposium on High Performance

Computer Architecture, January 2001.

[Jim03b] Jiménez D., Reconsidering Complex Branch Predictors,

Proceedings of the 9th International Symposium on High Performance

Computer Architecture, February 2003.

[Jim03c] Jiménez D., Fast Path-Based Neural Branch Prediction,

Proceedings of the 36th Annual International Symposium on

Microarchitecture, December 2003.

[Jim04] Jiménez D., Idealized Piecewise Linear Branch Prediction,

Championship Branch Prediction (CBP-1), 2004,

http://www.jilp.org/cbp/Agenda-and-Results.htm.

[Jim05] Jiménez D., Idealized Piecewise Linear Branch Prediction, Journal

of Instruction-Level Parallelism, April 2005.

[Jos97] Joseph D., Grunwald D., Prefetching using Markov Predictors,

Proceedings of the 24th International Symposium on Computer Architecture,

pages 252-263, June 1997.

[Ken07] Kennedy M., Design of Double Precision IEEE-754 Floating-Point

Units, MSc Thesis, Griffith University, March 2007.

[Kim03] Kim S., Branch Prediction using Advanced Neural Methods,

Technical Report, University of California, Berkeley, 2003.

[Kim07] Kim H., Joao J., Mutlu O., Lee C.J., Patt Y.N., Cohn R., VPC

Prediction: Reducing the Cost of Indirect Branches via Hardware-Based

Dynamic Devirtualization, Proceedings of the 34th Annual International

Symposium on Computer Architecture (ISCA07), San Diego, CA, June

2007.

http://www.jilp.org/cbp/Agenda-and-Results.htm

References 215

[Kol65] Kolmogorov A.N., Three Approaches to the Quantitative Definition

of Information, Problems of Information Transmission, 1965.

[Lep00a] Lepak K.M., Lipasti M.H., On the Value Locality of Store

Instructions, Proceedings of the 27th Annual International Symposium on

Computer Architecture, Vancouver, June 2000.

[Lep00b] Lepak K.M., Lipasti M.H., Silent Stores for Free, Proceedings of

the 33rd Annual ACM/IEEE International Symposium on Microarchitecture

(MICRO33), California, USA, 2000.

[Lia02] Liao C.H., Shieh J.J., Exploiting Speculative Value Reuse Using

Value Prediction, Seventh Asia-Pacific Computer Systems Architecture

Conference, Melbourne, Australia, February 2002.

[Lip96a] Lipasti M.H., Wilkerson C.B., Shen J.P., Value Locality and Load

Value Prediction, Proceedings of the 7th International Conference on

Architectural Support for Programming Languages and Operating Systems,

pages 138-147, October 1996.

[Lip96b] Lipasti M. H., Shen J.P., Exceeding the Dataflow Limit via Value

Prediction, Proceedings of the 29th Annual ACM/IEEE International

Symposium on Microarchitecture, December 1996.

[Liu03] Liu N., Lovell B.C., Gesture Classification Using Hidden Markov

Models and Viterbi Path Counting, Proceedings of the Seventh International

Conference on Digital Image Computing: Techniques and Applications,

Sydney, Australia, December 2003.

[Liu08] Liu C., Gaudiot J.L., Resource Sharing Control in Simultaneous

MultiThreading Microarchitectures, Proceedings of the Asia-Pacific

Computer Systems Architecture Conference, Taiwan, August 2008.

[Loh05a] Loh G.H., Deconstructing the Frankenpredictor for

Implementable Branch Predictors, Journal of Instruction-Level Parallelism,

April 2005.

[Loh05b] Loh G.H., Jiménez D., A Simple Divide-and-Conquer Approach

for Neural-Class Branch Prediction, Proceedings of the 14th International

Conference on Parallel Architectures and Compilation Techniques (PACT),

St. Louis, MO, USA, September 2005.

[Loh05c] Loh G.H., Jiménez D., Reducing the Power and Complexity of

Path-Based Neural Branch Prediction, 5th Workshop on Complexity

Effective Design (WCED5), Madison, WI, USA, June 2005.

216 Beyond the Limits of Modern Processors

[Mah94] Mahlke S.A., Hank R.E., Bringmann R.A., Gyllenhaal J.C.,

Gallagher D.M., Hwu W.-M.W., Characterizing the Impact of Predicated

Execution on Branch Prediction, Proceedings of the 27th International

Symposium on Microarchitecture, San Jose, California, December 1994.

[Mar99] Marcuello P., Tubella J., González A., Value Prediction for

Speculative Mutithreaded Architectures, Proceedings of the 32nd

International Symposium on Microarchitecture, November 1999.

[Mar01] Martin M., Sorin D., Cain H., Hill M., Lipasti M., Correctly

Implementing Value Prediction in Microprocessors that Support

Multithreading or Multiprocessing, Proceedings of the 34th Annual

ACM/IEEE International Symposium on Microarchitecture, Austin, Texas,

December 2001.

[McFar93] McFarling S., Combining Branch Predictors, WRL Technical

Note TN-36, Digital Equipment Corporation, June 1993.

[Mit97] Mitchell T., Machine Learning, McGraw-Hill, 1997.

[Mud96] Mudge T.N., Chen I.K., Coffey J.T., Limits to Branch Prediction,

Technical Report, Electrical Engineering and Computer Science

Department, University of Michigan, Ann Arbor, Michigan, USA, January

1996.

[Mut03] Mutlu O., Stark J., Wilkerson C., Patt Y.N., Runahead Execution:

An Effective Alternative to Large Instruction Windows, IEEE Micro, Vol.

23, No. 6, 2003.

[Mut06] Mutlu O., Kim H., Patt Y.N., Address-Value Delta (AVD)

Prediction: A Hardware Technique for Efficiently Parallelizing Dependent

Cache Misses, IEEE Transactions on Computers, Vol. 55, No. 12,

December 2006.

[Nair95] Nair R., Dynamic Path-Based Branch Correlation, IEEE

Proceedings of MICRO-28, 1995.

[Oan06] Oancea M, Gellert A., Florea A., Vintan L., Analyzing Branch

Prediction Contexts Influence, Advanced Computer Architecture and

Compilation for Embedded Systems, (ACACES 2006), ISBN 90 382 0981

9, pages 5-8, L’Aquila, Italy, July 2006.

[Pan92] Pan S., So K., Rahmeh J.T., Improving the Accuracy of Dynamic

Branch Prediction Using Branch Correlation, ASPLOS-V International

Conference, Boston, October 1992.

References 217

[Per06] Pericàs M., Cristal A., González R., Jiménez D., Valero M., A

Decoupled Kilo-Instruction Processor, Proceedings of the 12th International

Symposium on High Performance Computer Architecture, February 2006.

[Per07] Pericàs M., Cristal A., Cazorla F., González R., Jiménez D., Valero

M., A Flexible Heterogeneous Multi-Core Architecture, Proceedings of the

16th International Conference on Parallel Architectures and Compilation

Techniques, Brasov, Romania, September 2007.

[Pet04] Petzold J., Augsburg Indoor Location Tracking Benchmarks,

Technical Report 2004-9, Institute of Computer Science, University of

Augsburg, Germany, 2004, http://www.informatik.uni-

augsburg.de/skripts/techreports/.

[Rab89] Rabiner L.R., A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition, Proceedings of the IEEE, Vol 77, No.

2, February 1989.

[Rad07] Radu C., Calborean H., Crapciu A., Gellert A., Florea A., An

Interactive Graphical Trace-Driven Simulator for Teaching Branch

Prediction in Computer Architecture, The 6th EuroSim Congress on

Modeling and Simulation, 2007, Ljubljana, Slovenia.

[Ram03] Ramsay M., Feucht C., Lipasti M., Exploring Efficient SMT

Branch Predictor Design, Workshop on Complexity Effective Design,

2003.

[Ram08] Ramírez T., Pajuelo A., Santana O., Valero M., Runahead Threads

to Improve SMT Performance, Proceedings of the International Symposium

on High Performance Computer Architecture, 2008.

[Red03] Redstone J., Eggers S., Levy H., Mini-threads: Increasing TLP on

Small-Scale SMT Processors, Proceedings of the Ninth International

Symposium on High Performance Computer Architecture (HPCA-9), 2003.

[Ric93] Richardson S., Exploiting trivial and redundant computation,

Proceedings of the 11th Symposium on Computer Arithmetic, July 1993.

[Rot99] Roth A., Moshovos A., Sohi G., Improving Virtual Function Call

Target Prediction via Dependence-Based Pre-Computation, Proceedings of

the International Conference on Supercomputing, 1999.

[Ryc98] Rychlik B., Faistl J., Krug B., Kurland A., Jung J., Velev M. and

Shen J., Efficient and Accurate Value Prediction Using Dynamic

Classification, Technical Report, Department of Electrical and Computer

Engineering, Carnegie Mellon Univ., 1998.

http://www.informatik.uni-augsburg.de/skripts/techreports/
http://www.informatik.uni-augsburg.de/skripts/techreports/

218 Beyond the Limits of Modern Processors

[Saz97] Sazeides Y., Smith J.E., The Predictability of Data Values,

Proceedings of the 30th Annual International Symposium on

Microarchitecture, December 1997.

[Saz99] Sazeides Y., An analysis of value predictability and its application

to a superscalar processor, PhD Thesis, University of Wisconsin-Madison,

1999.

[Sen04] Seng J.S., Hamerly G., Exploring Perceptron-Based Register Value

Prediction, The 2nd Value-Prediction and Value-Based Optimization

Workshop (in conjunction with ASPLOS 11 Conference), Boston, USA,

2004.

[Sez02] Seznec A., Felix S., Krishnan V., Sazeides Y., Design Tradeoffs for

the Alpha EV8 Conditional Branch Predictor, Proceedings of the 29th

International Symposium on Computer Architecture, Anchorage, AK, USA,

May 2002.

[Sez04] Seznec A., Revisiting the Perceptron Predictor, Technical Report,

IRISA, May 2004.

[Sez05] Seznec A., Genesis of the O-GEHL branch predictor, Journal of

Instruction-Level Parallelism, April 2005.

[Sez07a] Seznec A., The Idealistic GTL Predictor, Journal of Instruction-

Level Parallelism, No. 9, May, 2007.

[Sez07b] Seznec A., The L-TAGE Branch Predictor, Journal of Instruction-

Level Parallelism, No. 9, May, 2007.

[Sha05] Sharkey J., Ponomarev D., Ghose K., M-SIM: A Flexible,

Multithreaded Architectural Simulation Environment, Technical Report CS-

TR-05-DP01, Department of Computer Science, State University of New

York at Binghamton, October 2005.

[She03] Shen J.P., Lipasti M.H., Modern Processor Design. Fundamental

of Superscalar Processors, Beta Edition, McGraw-Hill Co, 2003.

[Shi01] Shivakumar P., Jouppi N.P., Cacti 3.0: An Integrated Timing,

Power, and Area Model, WRL Research Report, Aug 2001, USA.

[Sim] The SimpleSim Tool Set,

ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar.

[Smi95] Smith J., Sohi G., The Microarchitecture of Superscalar

Processors, Proceedings of the IEEE, Vol. 83, December 1995.

ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar-3.0

References 219

[Smi98] Smith Z., Using Data Values to Aid Branch-Prediction, MSc

Thesis, Wisconsin-Madison, USA, December 1998.

[Sod97] Sodani A., Sohi G., Dynamic Instruction Reuse, Proceedings of the

24th Annual International Symposium on Computer Architecture

(ISCA’97), Denver, 1997.

[Sod00] Sodani A., Dynamic Instruction Reuse, PhD Thesis, University of

Wisconsin-Madison, USA, 2000.

[SPEC] SPEC 2000, The SPEC benchmark programs, http://www.spec.org.

[Spr02] Sprangle E., Carmean D., Increasing Processor Performance by

Implementing Deeper Pipelines, Proceedings of the 29th Annual

International Symposium on Computer Architecture, Anchorage, Alaska,

May 2002.

[Sri06] Srinivasan R., Frachtenberg E., Lubeck O., Pakin S., Cook J.,

Neuro-PPM Branch Prediction, The 2nd Journal of Instruction-Level

Parallelism Championship Branch Prediction Competition (CBP-2),

Orlando, Florida, USA, December 2006.

[Sta04] Stamp M., A Revealing Introduction to Hidden Markov Models,

January 2004, http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf.

[Ste96] Steven G., Collins R., A Superscalar Architecture to Exploit

Instruction Level Parallelism, Proceedings of the Euromicro Conference,

Prague, 1996.

[Ste01] Steven G., Egan C., Anguera R., Vintan L., Dynamic Branch

Prediction using Neural Networks, Proceedings of International Euromicro

Conference DSD ‘2001, pages 178-185, Warsaw, Poland, September 2001.

[Sub08] Subramaniam S., Prvulovic M., Loh G., PEEP: Exploiting

Predictability of Memory Dependences in SMT Processors, International

Symposium on High Performance Computer Architecture 2008.

[Tar05] Tarjan D., Skadron K., Merging Path and GshareIndexing in

Perceptron Branch Prediction, ACM Transactions on Architecture and

Code Optimization, Vol. 2, No. 3, September 2005.

[Tho01] Thomas R., Franklin M., Using Dataflow Based Context for

Accurate Value Prediction, Proceedings of the International Conference on

Parallel Architectures and Compilation Techniques, 2001.

[Tho03] Thomas R., Franklin M., Wilkerson C., Stark J., Improving Branch

Prediction by Dynamic Dataflow-based Identification of Correlated

http://www.spec.org/
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

220 Beyond the Limits of Modern Processors

Branches from a Large Global History, Proceedings of the 30th International

Symposium on Computer Architecture, June 2003.

[Tho04] Thomas A., Kaeli D., Value Prediction with Perceptrons, The

Second Value Prediction and Value-Based Optimization Workshop, Boston,

USA, October 2004.

[Tom67] Tomasulo R., An Efficient Algorithm for Exploiting Multiple

Arithmetic Units, IBM Journal, Vol. 11, 1967.

[Tul99] Tullsen D.M., Seng J.S., Storageless Value Prediction using Prior

Register Values, Proceedings of the 26th International Symposium on

Computer Architecture, May 1999.

[Ung02] Ungerer T., Robic B., Silc J., Multithreaded Processors, The

Computer Journal, Vol. 45, No. 3, 2002.

[Ung03] Ungerer T., Robic B., Silc J., A Survey of Processors with Explicit

Multithreading, ACM Computing Surveys, Vol. 35, No. 1, March 2003.

[Vin99a] Vintan L., Iridon M., Towards a High Performance Neural

Branch Predictor, Proceedings of the International Joint Conference on

Neural Networks, Washington DC, USA, July 1999.

[Vin99b] Vintan L., Egan C., Extending Correlation in Branch Prediction

Schemes, International Euromicro’99 Conference, Milano, Italy, September

1999.

[Vin00a] Vintan L., Instruction Level Parallel Architectures (in Romanian),

Romanian Academy Publishing House, Bucharest, 2000.

[Vin00b] Vintan L., Towards a Powerful Dynamic Branch Predictor,

Romanian Journal of Information Science and Technology, Romanian

Academy Publishing House, Bucharest, 2000.

[Vin03] Vintan L., Sbera M., Mihu I.Z., Florea A., An Alternative to Branch

Prediction: Pre-Computed Branches, ACM SIGARCH Computer

Architecture News, Vol.31, Issue 3, ACM Press, NY, USA, June 2003.

[Vin04a] Vintan L., Gellert A., Florea A., Register value prediction using

metapredictors, Proceedings of the 8th International Symposium on

Automatic Control and Computer Science, Iasi, October 2004.

[Vin04b] Vintan L., Gellert A., Petzold J., Ungerer T., Person movement

prediction using neural networks, Technical Report 2004-10, Institute of

Computer Science, University of Augsburg, Germany, April 2004,

(http://www.informatik.uniaugsburg.de/skripts/techreports/)

http://www.informatik.uniaugsburg.de/skripts/techreports/

References 221

[Vin04c] Vintan L., Gellert A., Petzold J., Ungerer T., Person Movement

Prediction Using Neural Networks, Proceedings of the KI2004 International

Workshop on Modeling and Retrieval of Context (MRC 2004), Vol-114,

ISSN 1613-0073, Ulm, Germany, September 2004.

[Vin05a] Vintan L., Florea A., Gellert A., Focalising Dynamic Value

Prediction to CPU’s Context, IEE Proceedings. Computers & Digital

Techniques, Vol. 152, No. 4, Stevenage, UK, July 2005 (ISI Thomson

Journals).

[Vin05b] Vintan L., Gellert A., Florea A., Value prediction focalized on

CPU registers, Advanced Computer Architecture and Compilation for

Embedded Systems, (ACACES 2005), Academia Press, ISBN 90 382 0802

2, pages 181-184, Ghent, Belgium, July 2005.

[Vin06] Vintan L., Gellert A., Florea A., Oancea M., Egan C.,

Understanding Prediction Limits through Unbiased Branches, Eleventh

Asia-Pacific Computer Systems Architecture Conference (ACSAC’06),

Shanghai, China, September 2006; Lecture Notes in Computer Science,

Advances in Computer Systems Architecture, vol. 4186, pp. 480-487, ISSN

0302-9743, ISBN-13 978-3-540-40056, Springer-Verlag Berlin /

Heidelberg, 2006 (ISI Thomson Journals).

[Vin07] Vintan L., Prediction Techniques in Advanced Computing

Architectures (in English), MatrixRom Publishing House, Bucharest, 2007.

[Vin08a] Vintan L., Florea A., Gellert A., Forcing Some Architectural

Ceilings of the Actual Processor Paradigm, Invited Paper, The 3rd

Conference of The Academy of Technical Sciences from Romania (ASTR),

Cluj-Napoca, November 2008.

[Vin08b] Vintan L., Florea A., Gellert A., Random Degrees of Unbiased

Branches, Proceedings of the Romanian Academy, Series A, No. 3, 2008

(ISI Thomson Journals).

[Vol02] Volchan S.B., What Is a Random Sequence?, The American

Mathematical Monthly, 109, January 2002.

[Wan97] Wang K., Franklin M., Highly Accurate Data Value Prediction

using Hybrid Predictors, Proceedings of the 30th Annual ACM/IEEE

International Symposium on Microarchitecture, December 1997.

[Wan99] Wang Y., Lee S., and Yew P. Decoupling Value Prediction on

Trace Processors, Proceedings of the 6th International Symposium on High

performance Computer Architecture, 1999.

222 Beyond the Limits of Modern Processors

[Yeh92] Yeh T.-Y., Patt Y.N., Alternative Implementations of Two-Level

Adaptive Branch Prediction, Proceedings of the 19th Annual International

Symposium on Computer Architecture, Gold Coast, Australia, May 1992.

[Yeh93] Yeh T.-Y., Patt Y.N., A Comparison of Dynamic Branch

Predictors that use Two Levels of Branch History, Proceedings of the 20th

Annual International Symposium on Computer Architecture, San Diego,

California, May 1993.

[Yi06] Yi J.J., Lilja D.J., Simulation of Computer Architectures: Simulators,

Benchmarks, Methodologies and Recommendations, IEEE Transactions on

Computers, Vol. 55, No. 3, pages 268-280, March 2006.

[Yok08] Yokota T., Ootsu K., Baba T., Potentials of Branch Predictors –

from Entropy Viewpoints, Proceedings of the 21st International Conference

on Architecture of Computing Systems, TU Dresden, Germany, February

2008.

[Yoo04] Yoon B., Vaidynathan P.P., RNA Secondary Structure Prediction

Using Context-Sensitive Hidden Markov Models, Proceedings of

International Workshop on Biomedical Circuits and Systems, Singapore,

December 2004.

[Zho03] Zhou H., Flanagan J., Conte T., Detecting Global Stride Locality in

Value Streams, Proceedings of the 30th Annual International Symposium on

Computer Architecture, San Diego, California, June 2003.

[Ziv77] Ziv J., Lempel A., A Universal Algorithm for Sequential Data

Compression, IEEE Transactions on Information Theory, Vol. IT-23, No. 3,

pages 337-343, 1977.

“The Fast drives out the Slow

 even if the Fast is wrong”

William Kahan

Glossary

Benchmark: is a program (execution driven simulation) or a program’s

trace (trace driven simulation) used for evaluations. In this work we

used the SPEC 2000 benchmark suite, the SPEC JVM98 benchmarks,

Stanford benchmarks, and the CBP-1 traces.

Basic Block: sequence of instructions that occur between two consecutive

branches and are not the targets of branch instructions.

Biased branch: mostly always taken or mostly always not taken branch

(mostly-one-direction branch). The behavior (taken / not taken) of a

biased branch is polarized.

Biased branch context: the branch behavior (taken / not taken) is polarized

for that certain context (local branch history, global history, path, etc.).

Branch difference: represents the value or the sign of the difference

between the branch’s inputs. Regarding the sign of the inputs’

difference, a value of 1 indicates that the corresponding branch

difference is positive, a value of -1 indicates a negative difference, while

a 0 indicates equality between the branch’s inputs.

Branch difference predictor: the branch outcomes are predicted based on

branch difference histories.

Branch polarization: measured through the polarization index (P).

Branch prediction: is the prediction of the direction (taken / not taken)

and/or the target address (next PC) of a branch instruction.

Checkpointing architecture: allows speculative execution by saving or

checkpointing the state of the processor at certain points in a history

buffer or a checkpoint, respectively.

Chip-level multiprocessor (CMP): see multicore architecture.

Complete-PPM predictor: see Prediction by Partial Matching (PPM).

Compression rate: a commonly used metric in data compression,

representing the uncompressed size divided to the compressed size, as

follows.

%100
SizeCompressed

SizeedUncompress
RatenCompressio

224 Beyond the Limits of Modern Processors

Confidence automaton: saturated counter that indicates the confidence of a

certain prediction. The prediction is generated only if the confidence

automaton is in a predictable state.

Context: the context of length p represents the last p elements from the

correlation information used in order to make a prediction. In the case of

branch prediction the correlation information is the branch history (e.g.

local or global branch history) or the path leading to the branch, and a

context of length p consists in the last p bits from the branch history or

in the last p PCs from the path.

Context instance: is a dynamic branch executed in the respective context.

Critical Load: a Load instruction with miss in both cache levels.

Distribution (index): the distribution index of a certain branch context is

computed as follows.

0,

),min(2

0,0

)(
t

t

t

i
n

TNT

n

n

SD , where

 nt = the number of branch outcome transitions, from taken to not

taken and vice-versa, in context Si;

),min(2 TNT = maximum number of possible transitions;

 k = number of distinct contexts, pk 2 , where p is the length of the

binary context;

 if kiSD i ...,,2,1)(,1)(, then the behavior of the branch in

context Si is “contradictory” (the most unfavorable case), and thus its

learning is impossible;

 if kiSD i ...,,2,1)(,0)(, then the behavior of the branch in

context Si is constant (the most favorable case), and it can be

learned.

Dynamic branch: is an instance of a static branch during program’s

execution.

Dynamic branch prediction: the branches are predicted with hardware

techniques.

Dynamic learning: is the run-time prediction process when the outputs of

the predictor are used to generate predictions and to adjust the prediction

structures.

Dynamic power consumption: see power consumption.

Energy-Delay Product (EDP): a widely used metric, representing the

processor’s total power, divided by the squared IPC, as follows:

Glossary 225

2IPC

PowerTotal
EDP

Entropy: considering a sequence S of symbols belonging to the set

X={X1X2 ... Xk}, the entropy of S is 0)(log)()(
1

2

k

i

XiPXiPSE .

Obviously its maximum (k2log) is obtained for symbols of equal

probabilities in S.

Feature (set): is the binary context on p bits of prediction information such

as local history, global history or path. Each static branch finally has

associated k dynamic contexts in which it can appear (pk 2).

Gain: is the factor which gives the improvement of the quality, with a

certain metric.

Global branch history (GH): the outcome sequence (taken / not taken)

generated by the previous dynamic branches.

Hidden Markov Model (HMM): is a doubly embedded stochastic process

with an underlying stochastic process that is not observable (it is

hidden), but it can be observed through another set of stochastic

processes that produce the sequence of observations.

Hidden super-state: see super-state.

Hidden state: is a state in a Hidden Markov Model (HMM).

Instruction-level parallelism (ILP): is a measure of how many instructions

can be processed simultaneously in multiple instruction issue (MII)

microarchitectures.

Kolmogorov complexity: a sequence X has Kolmogorov complexity K(X)

equal to the length of the shortest program p for a universal Turing

Machine U that produces X and then halts:

)(min)(
)(:

plXK
XpUp

 ,

where l(p) is the length of p in bits. Kolmogorov complexity identifies a

sequence X as random if)()(XKXl is small: random sequences are

those that are irreducibly complex.

Local branch history (LH): the outcome sequence (taken / not taken)

generated by the previous dynamic instances of a certain static branch

instruction.

Markov chain: in the case of a first order Markov chain the probabilistic

description is truncated to just the current and predecessor state.

][...],,[121 itjtktitjt SqSqPSqSqSqP , where tq is

the state at time t. Thus, for a first order Markov chain with N states, the

226 Beyond the Limits of Modern Processors

set of transition probabilities between states Si and Sj is }{ ijaA , where

][1 itjtij SqSqPa , Nji ,1 , having the properties 0ija

and 1
1

N

j

ija . For a Markov chain of order R the probabilistic

description is truncated to the current and R previous states.

Markov predictor: the prediction is generated based on the state transition

probabilities of a Markov chain.

Memory wall: is the continuously increasing gap between processor and

memory speeds. The memory wall produces a serious performance

limitation of high-frequency microprocessors by main memory access

latencies.

Multicore architecture: combines two or more independent cores into a

die, or more dies packaged together.

Multithreaded processor: is a microarchitecture that exploits thread-level

parallelism (TLP), by executing instructions from multiple threads

simultaneously or concurrently.

Observable state: an observation produced by the stochastic process of the

corresponding hidden state in a Hidden Markov Model.

Path: is a prediction information consisting in the sequence of branch PCs

or target PCs leading up to a certain dynamic branch instruction. The

path can include all branch instruction types or exclusively conditional

branches.

Path-based correlation: means using the path information leading up to a

certain dynamic branch in order to determine (predict) the outcome of

that branch.

Pattern-based correlation: means using branch outcome history (e.g. local

branch history, global branch history) in order to determine (predict)

the outcome of a certain dynamic branch.

Polarization (index): the polarization index (P) of a certain branch context

is computed as follows.

5.0,

5.0,
),max()(

01

00

10
ff

ff
ffSP i

 , where

 kSSSS ...,,, 21 = set of distinct contexts that appear during all

branch instances;

 k = number of distinct contexts,
pk 2 , where p is the length of the

binary context;

Glossary 227

NTT

NT
f

NTT

T
f

 10 , , NT = number of “not taken” branch

instances corresponding to context Si, T = number of “taken” branch

instances corresponding to context Si, ki ...,,2,1)(, and

obviously 110 ff ;

 if kiSP i ...,,2,1)(,1)(, then the context iS is completely

biased (100%), and thus, the afferent branch is highly predictable;

 if kiSP i ...,,2,1)(,5.0)(, then the context iS is totally

unbiased, and thus, the afferent branch is not predictable if the taken

and not taken outcomes are shuffled.

Power Consumption: the dynamic power consumption is the main source

of power dissipation in CMOS microprocessors and it is defined

as faVCP ddd 2
, where C is the capacitance, Vdd is the supply

voltage, f is the clock frequency, and the activity factor a indicates how

often clock ticks lead to switching activity on average.

Prediction accuracy: the percentage or ratio of correct predictions reported

to the total number of predictions.

Prediction by Partial Matching (PPM): is a context-based prediction

algorithm. The PPM predictor contains a set of simple Markov

predictors. It predicts the value that followed the context with the

highest frequency. In the case of complete-PPM predictor, if a

prediction cannot be generated with the Markov predictor of order k,

then the pattern length is shortened and the Markov predictor of order k-

1 tries to predict and so on.

Previous branch condition (PBC): the difference between the operand

values implied in the previous branch condition. The global PBC is the

previous branch condition difference. The local PBC is the previous per-

address branch condition difference.

Primitive (hidden) state: is a (hidden) state in a first order Hidden Markov

Model.

Program counter (PC): is a register in the processor (also called

instruction pointer) which indicates the memory address of the next

fetched instruction within a program.

Simultaneous multithreading (SMT): uses the resources of a multiple-

issue processor to exploit both thread-level parallelism (TLP) and

instruction-level parallelism (ILP). Instructions from multiple threads

are issued simultaneously in a single clock cycle, and thus, the available

resources are better utilized.

228 Beyond the Limits of Modern Processors

Space saving: a commonly used data compression metric, computed as

follows.

 %1001

SizeedUncompress

SizeCompressed
SavingSpace

Speculative architecture: is a microprocessor that allows speculative

execution to reduce the execution time of conditional branches and long-

latency instructions by predicting their results.

Speculative execution: instruction execution based on predicted values or

predicted branch outcomes.

Static branch: a certain branch instruction from a program.

Static branch prediction: the branches are predicted statically by the

compiler. Static branch predictors are used in processors where the

expectation is that branch behavior is highly predictable at compile-

time. It is especially useful for the global static scheduling methods.

Static learning: means that before effective run-time prediction process, the

predictor is trained based on some patterns. In the static learning process

the outputs of the predictor are used only to adjust the prediction

structures.

Super-state: in the case of Hidden Markov Models of order R a

combination of R primitive hidden states form a super-state.

Superscalar processor: is a microarchitecture that exploits instruction-

level parallelism (ILP) by introducing more than one instruction at a

time into multiple pipelines to be executed simultaneously.

Thread-level parallelism (TLP): means processing instructions from

multiple threads simultaneously or concurrently within multithreaded

microarchitectures. TLP can be extracted from either sequential

programs or multithreaded workloads.

Unbiased branch: a branch whose behavior (taken / not taken) is not

sufficiently polarized.

Unbiased branch context: the branch behavior (taken / not taken) is not

sufficiently polarized for that certain context (local branch history,

global history, path, etc.).

	Foreword (Prefaţă)
	1. Introduction
	2. Speculative Computer Architectures
	2.1. Speculative Architectures with Reorder Buffer
	2.1.1. Speculative Dynamic Scheduling with Reorder Buffer
	2.1.2. The Architecture of Sim-Outorder
	2.1.3. Checkpoint Processing Architectures

	2.2. Advanced Dynamic Branch Prediction
	2.3. Dynamic Value Prediction

	3. Finding Difficult-to-Predict Branches
	3.1. Related Work
	3.2. Methodology of Identifying Unbiased Branches
	3.3. An Analytical Model for Determining Relative IPC Speedup
	3.4. Experimental Results
	3.4.1. Pattern-Based Correlation
	3.4.2. Path-Based Correlation
	3.4.3. Evaluating Relative IPC Speedup Through an Analytical Model

	3.5. Summary

	4. Predicting Unbiased Branches
	4.1. Related Work
	4.1.1. Branch Prediction Based on Data Value Information
	4.1.2. State-of-the-Art Branch Predictors

	4.2. Branch Prediction Using State-of-the-Art Predictors
	4.2.1. The Perceptron-Based Branch Predictor
	4.2.2. The Idealized Piecewise Linear Branch Predictor
	4.2.3. The Frankenpredictor
	4.2.4. The O-GEHL Predictor

	4.3. Value-History-Based Branch Prediction with Markov Models
	4.3.1. Local Branch Difference Predictor
	4.3.2. Combined Global-Local Branch Difference Predictor
	4.3.3. Branch Difference Prediction by Combining Multiple Partial Matches

	4.4. Using Previous Branch Condition as Prediction Information
	4.4.1. The GAg Predictor Using Global PBC Value
	4.4.2. The PAg Predictor Using Local PBC Value
	4.4.3. The Piecewise Linear Branch Predictor Using PBC Value
	4.4.3.1 The Piecewise Linear Branch Predictor Using Global PBC Value
	4.4.3.2 The Piecewise Linear Branch Predictor Using Local PBC Value

	4.5. Experimental Results
	4.5.1. Evaluating State-of-the-Art Branch Predictors
	4.5.1.1. Evaluating the Perceptron-Based Branch Predictor
	4.5.1.2. Evaluating the Idealized Piecewise Linear Branch Predictor
	4.5.1.3. Evaluating the Frankenpredictor
	4.5.1.4. Evaluating the O-GEHL Predictor

	4.5.2. Evaluating Markovian Value-History-Based Branch Predictors
	4.5.2.1. Evaluating Local Branch Difference Predictors
	4.5.2.2. Evaluating Combined Global and Local Branch Difference Predictors
	4.5.2.3. Branch Difference Prediction by Combining Multiple Partial Matches

	4.5.3. Evaluating PBC-Based Branch Predictors
	4.5.3.1 Evaluating the Global-PBC-Based GAg Predictor
	4.5.3.2 Evaluating the Local-PBC-Based PAg Predictor
	4.5.3.3 Evaluating the Global-PBC-Based Piecewise Linear Branch Predictor
	4.5.3.4 Evaluating the Local-PBC-Based Piecewise Linear Branch Predictor
	4.5.3.5 Prediction Accuracy Improvements with PBC

	4.6. Summary

	5. Validating Unbiased Branches Using Random Degrees
	5.1. Related Work
	5.1.1. What is a Random Sequence?
	5.1.2. Prediction with Hidden Markov Models

	5.2. Random Degree Metrics for Characterizing Unbiased Branches Behavior
	5.2.1. Random Degree Metric Based on Hidden Markov Models
	5.2.1.1. First Order HMMs
	5.2.1.2. A Possible Generalization: Superior Order HMMs

	5.2.2. Random Degree Metric Based on Discrete Entropy
	5.2.3. Random Degree Metric Based on Compression Rate
	5.2.4. Random Degree Metric Based on Kolmogorov Complexity

	5.3. Evaluation Results
	5.3.1. Random Degree Evaluation with HMMs
	5.3.2. Random Degree Evaluation Based on Discrete Entropy
	5.3.3. Random Degree Evaluation Based on Compression Rate
	5.3.4. Random Degree Evaluation Based on Kolmogorov Complexity

	5.4. Summary

	6. Selective Instruction Reuse and Value Prediction in a Superscalar Architecture
	6.1. Related Work
	6.2. Anticipating Long-Latency Instructions Results
	6.2.1. Selective Dynamic Instruction Reuse
	6.2.2. Selective Load Value Prediction
	6.2.3. Simulation Methodology
	6.2.4. Experimental Results

	6.3. Contributions to Dynamic Value Prediction: CPU Context Prediction
	6.3.1. Register Value Predictors
	6.3.1.1. Last Value Predictors
	6.3.1.2. Stride Predictors
	6.3.1.3. Context-Based Predictors
	6.3.1.4. Hybrid Predictors

	6.3.2. Simulation Methodology
	6.3.3. Experimental Results

	6.4. Summary

	7. Enhancing the Simultaneous Multithreading Paradigm with Selective Instruction Reuse and Value Prediction
	7.1. Related Work
	7.1.1. Multithreading Architectures
	7.1.2. Simultaneous Multithreading

	7.2. Selective Instruction Reuse and Value Prediction in SMT Architectures
	7.3. Simulation Methodology
	7.4. Experimental Results
	7.5. Summary

	8. Conclusions and Further Work
	References
	Glossary

