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Foreword (Prefaţă) 

Abstract: This book is focused on some advanced techniques in order to 

improve the actual superscalar and simultaneous multithreaded processor 

(SMT) paradigm. According to this the author proposes original branch 

prediction methods, selective dynamic instruction reuse and value 

prediction methods. These techniques are both revolutionary (critical path’s 

compression) and evolutionary (compatibility with the actual superscalar 

model). They try to avoid a fundamental limitation in the present day 

computing model, the Read after Write data dependence, thus the intrinsic 

program’s sequential execution. It is developed a valuable methodology 

to find and solve difficult predictable branches, meaning dynamic branches 

that are not predictable with the correlation information used by the actual 

prediction methods. Focalising on these branches with high entropy – in 

order to design some efficient specific predictors for them by using more 

suitable context information – the overall prediction accuracy increases 

with some percents, that is remarkable. Further, the author improved the 

processing time of some long latency arithmetic instructions through 

dynamic instruction reuse. Also he hides the long latency Load instructions’ 

execution through their dynamic value prediction, with important 

performance benefits. Very important for further commercial exploitations 

of these ideas, the author shows that the performance potential of these 

methods will compensate the additional complexity and power consumption 

required for effective implementation. All these interesting techniques were 

implemented through complex laborious simulations and they were 

integrated into complex superscalar and SMT architectures. The 

performance was evaluated through benchmarking and, based on these 

evaluations, the microarchitectures are iteratively improved. I highly 

appreciated the hybrid qualitative and quantitative research approach used 

by the author. As a consequence, I strongly recommend this valuable book 

for all those interested in Computer Architecture domain, especially 

graduated students, PhD students and researchers. 

Actualitatea şi oportunitatea lucrării 

Toate programele actuale care rulează pe un calculator – unele categorisite 

ca fiind “ultrasofisticate, adaptive, inteligente” etc. – se mapează şi se 

execută pe arhitecturile relativ simpliste ale maşinilor actuale. În fond, toate 
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aceste aplicaţii soft complexe sunt reductibile la o succesiune de operaţii 

simple, descrise prin codul obiect aferent. Acesta, în general, nu are 

cunoştinţă de semantica algoritmică a aplicaţiei ori de cea a corpurilor şi 

structurilor programului de nivel înalt. Acest fapt are repercursiuni 

defavorabile asupra execuţiei programelor. Din acest punct de vedere, 

hardware-ul a rămas în urma metodelor şi tehnicilor, tot mai rafinate, din 

cadrul ştiinţei calculatoarelor şi a ingineriei software. Complexitatea 

aplicaţiilor actuale din punct de vedere al rulării acestora pe maşină, provine 

deci din acumulări de natură cantitativă, procesarea fiind reductibilă la 

enorme succesiuni de operaţii binare de prelucrare (aritmetico-logice) sau/şi 

de transfer. Evident că această complexitate este uriaşă, având în vedere 

ierahizarea ei pe niveluri de abstractizare succesive, ele însele complexe şi 

care intercomunică (maşină hardware, microarhitectură, compilator, sistem 

de operare, maşină virtuală, aplicaţie software etc.). Actualmente, 

paradigma aceasta nu mai este eficientă, la interfaţa hardware-software 

apărând probleme extrem de subtile şi de dificile, unele abordate într-un 

mod realmente interesant în această lucrare. 

În particular, creşterea performanţelor microprocesoarelor actuale a 

vizat atât îmbunătăţiri tehnologice cât şi de tip conceptual, arhitectural. 

Desigur că între aceste două modalităţi de perfecţionare, aparent disjuncte, 

există interdependenţe profunde, care trebuie înţelese şi exploatate 

corespunzător. Ambele se supun unor limitări importante, unele considerate 

fundamentale. Astfel, microarhitecturile care exploatează paralelismul la 

nivel de instrucţiuni – prin pipelining şi prin tehnici de scheduling 

static/dinamic implementate în procesoare cu execuţii multiple ale 

instrucţiunilor (Multiple Instruction Issue Processors) – au devenit în 

ultimii 2-3 ani ceva mai puţin atractive datorită complexităţii baroce, a 

limitărilor pe aducerea şi respectiv pe execuţia instrucţiunilor (fetch 

bottleneck respectiv issue bottleneck), a “prăpastiei” temporale de 

comunicare microprocesor-memorie (memory wall) etc. Toate acestea au 

condus la explorarea unor arhitecturi novatoare, care să se focalizeze pe 

tehnici predictiv-speculative de procesare şi, respectiv, pe exploatarea 

paralelismului la nivelul unor fire de execuţie (multithreading, 

hyperthreading), cu implicaţii majore asupra compilatoarelor şi chiar asupra 

ingineriei programării. În plus, din punct de vedere tehnologic, frecvenţele 

de tact actuale, practic nu mai sunt scalabile, în principal datorită creşterii 

exponenţiale a densităţii de putere consumată în cip (nx100W/cm2). Prin 

urmare, în continuare, creşterea performanţelor poate fi obţinută, în 

principal, prin implementarea unor arhitecturi de procesoare de tip multicore 

şi manycore (sute şi mii de procesoare simple integrate per cip; există deja, 

spre exemplu, procesoare grafice comerciale cu 128 de core-uri pe un singur 
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cip.) Cum vor exploata aceste arhitecturi – propulsate mai mult de putinţe şi 

de neputinţe tehnologice decât de progrese ale calculului paralel (aşa cum ar 

fi fost natural) – paralelismul la nivelul instrucţiunilor, microfirelor, firelor 

şi task-urilor, deopotrivă? Cine şi cum va exploata paralelismul programelor 

secvenţiale, zdrobitor majoritare azi? Cum va fi influenţată perspectiva 

programatorului de către aceste microarhitecturi masiv-paralele şi care vor 

deveni ubicue în scurt timp? Iată doar câteva întrebări fundamentale, pe care 

tot mai multă lume şi le pune dar la care, actualmente, nimeni nu poate da 

un răspuns limpede şi complet, după cum o arată de altfel şi celebrul raport 

al Universităţii Berkley (K. Asanovic et al., The Landscape of Parallel 

Computing Research: A View from Berkeley, 2006). Rezumând, cercetarea 

din domeniul microarhitecturilor de calcul trece azi printr-o criză, potenţial 

fertilă, care se pare că va produce “a sea change in computing” după cum se 

exprima Paul Otellini, preşedintele companiei Intel (2005). Această carte 

ilustrează această criză într-un mod viu, autentic aşa cum numai cercetarea o 

poate face. 

În acest cadru, schiţat succint, se înscrie şi această monografie 

ştiinţifică a domnului ing. Á. Gellért. Ea s-a dezvoltat în cadrul unor 

cercetări desfăşurate în mod continuu – vreme de 15 ani, în domeniul 

microarhitecturilor de calcul avansate – de către grupul de cercetare condus 

de către subsemnatul şi activând la Universitatea “Lucian Blaga” din Sibiu 

(http://acaps.ulbsibiu.ro/research.php). În această periodă s-au publicat 

numeroase articole ştiinţifice în conferinţe şi reviste de prestigiu mondial, 

extrem de fertile inclusiv din punct de vedere al frecvenţei citărilor, s-au 

câştigat şi s-au finalizat numeroase granturi de cercetare şi s-au publicat 

cărţi şi monografii ştiinţifice focalizate pe domeniul arhitecturii 

microprocesoarelor. Dintre aceste cărţi, cităm mai jos câteva, considerate 

mai importante, tocmai pentru a sublinia continuitatea preocupărilor de 

publicare şi de diseminare a cercetărilor acestui grup precum şi cadrul 

natural în care această nouă monografie a apărut: 

 VINŢAN N. LUCIAN – Arhitecturi de procesoare cu paralelism la 

nivelul instrucţiunilor, Editura Academiei Române, Bucureşti, 2000 

 VINŢAN N. LUCIAN, FLOREA ADRIAN – Microarhitecturi de 

procesare a informaţiei, Editura Tehnică, Bucureşti, 2000 

 VINŢAN N. LUCIAN – Predicţie şi speculaţie în microprocesoarele 

avansate, Editura Matrix Rom, Bucureşti, 2002 

 FLOREA ADRIAN, VINŢAN N. LUCIAN – Simularea şi optimizarea 

arhitecturilor de calcul în aplicaţii practice, Editura Matrix Rom, 

Bucureşti, 2003. Această carte a obţinut Premiul “Tudor Tanasescu” al 

Academiei Române pe anul 2003, decernat în 23 decembrie 2005. 

http://acaps.ulbsibiu.ro/research.php
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 FLOREA ADRIAN – Predicţia dinamică a valorilor în 

microprocesoarele generaţiei următoare, Editura Matrix Rom, 

Bucureşti, 2005 

 VINŢAN N. LUCIAN – Prediction Techniques in Advanced 

Computing Architectures (în limba engleză), Matrix Rom Publishing 

House, Bucharest, 2007 

Această lucrare duce mai departe bagajul de cunoştinţe şi de realizări 

originale prezentate în aceste cărţi. Scopul ei principal constă în 

îmbunătăţirea paradigmei procesoarelor actuale, caracterizate de exploatarea 

paralelismelor la nivelul instrucţiunilor şi microfirelor (ILP – Instruction 

Level Parallelism şi TLP – Thread Level Parallelism), prin grefarea unor 

tehnici predictiv-speculative de execuţie. Acestea conduc la creşterea 

performanţei, atât prin exploatarea unor paralelisme suplimentare cât şi prin 

posibila compresare a căii critice aferente programului executat 

(contrazicând deci celebra lege a lui E. Amdahl). În acest scop autorul a 

implementat tehnici deosebit de actuale de predicţie dinamică a salturilor 

condiţionate (branches), a valorilor instrucţiunilor precum şi tehnici de 

reutilizare dinamică a instrucţiunilor. Aceste tehnici au fost evaluate în 

cadrul unor arhitecturi complexe de procesoare superscalare respectiv 

arhitecturi cu execuţii simultane ale microfirelor (procesoare SMT – 

Simultaneous Multithreading). Este important ca, în această perioadă în care 

cercetarea se axează masiv pe arhitecturile de tip multicore, să nu se 

neglijeze cercetările legate de exploatarea paralelismului în sistemele 

monoprocesor, întrucât progresele de aici pot conduce la eficientizarea 

paralelizării instrucţiunilor şi microfirelor din aşa-numitele programe 

secvenţiale. Din acest punct de vedere, această lucrare riscă, prezentând 

soluţii noi acolo unde mulţi cercetători credeau că acestea nu mai sunt 

posibile, domeniul ILP fiind practic unul saturat. 

Iată doar câteva argumente care mă determină să consider că această 

carte, înscrisă în cadrul generos al acestor dezvoltări ştiinţifice majore, 

abordează o tematică actuală, fiind deosebit de oportună în contextul 

preocupărilor cercetătorilor în ştiinţa şi ingineria calculatoarelor de pe întreg 

mapamondul. 

Analiza lucrării 

În Capitolul 2 se face o analiză actualizată a caracteristicilor 

microarhitecturilor cu execuţii predictiv-speculative ale instrucţiunilor. 

Astfel, se prezintă într-un mod sintetic cele mai importante şi mai recente 

scheme de predicţie dinamică a branch-urilor, respectiv de predicţie 
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dinamică a valorilor instrucţiunilor. Acestea din urmă se bazează pe fertilul 

principiu statistic de vecinătate a valorilor instrucţiunilor (Value Locality), 

enunţat pentru prima dată de Mike Lipasti et al. într-un articol din anul 

1996. Se remarcă în mod justificat faptul că, esenţial pentru refacerea 

contextului procesorului în cazul unei predicţii greşite dar şi pentru 

implementarea unui mecanism precis de tratare a evenimentelor de excepţie, 

este aşa numitul buffer de reordonare (ROB – ReOrder Buffer). Se 

analizează în mod exhaustiv funcţionarea acestuia, punctându-se în mod clar 

rolul său în execuţia speculativă a instrucţiunilor. Cercetări mai recente au 

arătat însă că ROB-ul (ca, de altfel, şi alte resurse ale microprocesorului) nu 

este scalabil şi că reprezintă deseori un blocaj în execuţie, limitând deci 

puternic numărul de instrucţiuni aflate în curs de procesare. Iată de ce 

autorul acestei lucrări analizează în mod aprofundat şi cercetări alternative, 

mai recente, bazate în special pe salvarea selectivă a contextului 

procesorului, determinată doar de anumite instrucţiuni critice 

(checkpointing). Astfel, prin scalabilizarea resurselor CPU (Central 

Processing Unit), se ajunge la microarhitecturi agresive, care permit 

procesarea simultană a mii de instrucţiuni, numite Kilo-instruction 

Processors. Acestea au fost dezvoltate în principal la Universitatea 

Politecnica din Barcelona de către un grup de cercetare în cadrul căruia a 

activat şi dl. ing. Á. Gellért, graţie unei burse de 6 săptămâni. De menţionat 

interesul deosebit manifestat de compania Intel de a integra aceste concepte 

arhitecturale în microprocesoarele comerciale. Tot aici se prezintă 

arhitectura simulatoarelor de arhitecturi superscalare cu execuţii out-of-

order din cadrul familiei SimpleSim respectiv a simulatoarelor de 

procesoare SMT din familia M-SIM. Ambele platforme au fost utilizate şi 

dezvoltate semnificativ de către autor în vederea efectuării cercetărilor sale. 

În capitolul următor se detectează în premieră, o categorie de branch-

uri practic impredictibile, cu repercursiuni extrem de negative asupra 

performanţei microprocesoarelor. Acestea sunt caracterizate de un grad 

redus de polarizare Taken/Not Taken în contextul dinamic utilizat (istorie 

locală, globală, informaţia de cale etc.) precum şi de o “dezordine” a 

secvenţei temporale de apariţie a tranziţiilor comportamentale. Astfel, 

procesul de învăţare a comportamentului acestor ramificaţii de program este 

practic compromis. Metodologia de identificare a acestor branch-uri 

speciale este una originală şi extrem de laborioasă, necesitând finalmente 

zeci de ore de simulare. Autorul sesizează în mod corect faptul că creşterea 

numărului de biţi aferent codificării contextului utilizat în predicţie precum 

şi creşterea dimensiunii contextului de reprezentare a branch-urilor 

dinamice, pot conduce la scăderea numărului de salturi dificil predictibile. 

Astfel, se arată că într-un context de istorie globală şi locală (GHR & LHR) 
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de 32 de biţi aceste branch-uri reprezintă în medie, pe benchmark-urile 

SPEC 2000 utilizate, cca. 17%, dar descreşte la cca. 6% dacă respectivul 

context este extins pe 56 de biţi. Această descoperire este una extrem de 

valoroasă întrucât arată că există o limită fundamentală în procesul de 

predicţie dinamică a branch-urilor, chiar şi la nivelul unei istorii codificate 

pe 56 de biţi, inutilizabilă practic în predictoarele markoviene de tip Two 

Level Adaptive, datorită complexităţii exponenţiale implicate. Tot aici, 

foarte interesant, se dărâmă un mit în cercetarea din domeniul branch 

prediction, care pretindea că informaţia de cale (path) aferentă branch-ului 

curent, fiind evident mai completă decât istoria de corelaţie globală, ar fi 

mult mai eficientă decât aceasta. În 1999 chiar subsemnatul sugera 

eficientizarea predictoarelor prin utilizarea informaţiei de cale într-un articol 

publicat la Milano în cadrul conferinţei Euromicro. După cum arată autorul 

într-un mod convingător, această afirmaţie este una relativ incorectă, 

întrucât la nivelul unor istorii cu adâncimea mai mare de 12 instanţe, istoria 

globală aproximează extrem de precis informaţia de cale. Astfel se arată 

pentru prima dată că utilizarea informaţiei de cale în cadrul predictoarelor 

de branch-uri îşi are sensul doar atunci când se utilizează istorii globale 

relativ scurte. Pe baza unui model analitic special dezvoltat, autorul arată că 

performanţa globală a procesorului, exprimată în numărul mediu de 

instrucţiuni/ciclu, are o creştere neliniară atât ca funcţie de lungimea istoriei 

contextului utilizat cât şi ca funcţie de acurateţea de predicţie a branch-

urilor, subliniind astfel importanţa deosebită a cercetării abordate. 

Capitolul 4 urmează perfect logic, încercând să dea seamă asupra 

posibilităţilor practice de predicţie a acestor branch-uri problematice. În 

acest scop, se utilizează mai întâi în predicţia lor cele mai avansate 

predictoare prezentate în literatura de specialitate, unele dintre ele 

câştigătoare ale Campionatului mondial de branch prediction organizat de 

compania Intel. Astfel, autorul arată că cele mai bune performanţe pe 

branch-urile nepolarizate le-a obţinut un predictor neuronal (format din 

perceptroane simple), care utilizează în predicţie atât istoriile de corelaţie 

globală/locală cât şi informaţia de cale, propus de către Dr. Daniel Jiménez 

de la Rutgers University, unul dintre cei mai remarcabili cercetători în 

domeniu. Acest predictor ingenios exploatează faptul că pe anumite lungimi 

ale contextelor de predicţie, branch-urile sunt liniar separabile, în 

consecinţă el variind în mod adaptiv lungimea contextelor pe durata 

procesării. Din păcate, chiar şi acest predictor puternic este practic 

neputincios în faţa salturilor nepolarizate, obţinând o acurateţe a predicţiei 

medie de doar 77.30%. Fapt remarcabil, performanţa acestui predictor a fost 

îmbunătăţită de către dl. ing. Gellért prin introducerea unei noi informaţii-

atribut, anume valoarea condiţiei branch-ului anterior celui curent (care 
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poate fi efectiv branch-ul anterior sau o anterioară instanţă a branch-ului 

curent). Printr-un asemenea artificiu, acurateţea acestui predictor pentru 

salturile nepolarizate a crescut la 78.3%, oricum modestă. De remarcat, 

totuşi, că acest procent de creştere conduce la o creştere a acurateţii globale 

cu 0.53%, fapt notabil având în vedere că această fracţiune poate conduce la 

o creştere de câteva procente a performanţei globale. Interesant, pe 

benchmark-urile Java SPEC cel mai bun predictor a obţinut o acurateţe de 

cca. 81% pe aceste branch-uri, iar pe trace-urile Intel de cca. 89.1%, 

performanţă remarcabilă. Altfel, aşa cum era de aşteptat, per global toate 

aceste predictoare performante ating acurateţi de predicţie bune, de cca. 

93%-95% pe benchmark-urile SPEC 2000 utilizate. Toate aceste fapte 

constituie încă o confirmare a validităţii cercetărilor realizate de către autor 

în capitolul precedent, în care a identificat o problemă importantă. În 

continuarea lucrării, se remarcă un fapt simplu, anume că execuţia branch-

ului curent depinde în fond în mod determinist de valoarea semnului 

condiţiei de salt (+,-,0). Se arată că predicţia semnului condiţiei pe baza 

istoriei semnelor acesteia poate conduce la predictoare mai simple şi mai 

eficiente decât clasica istorie globală de tip Taken/Not Taken. Autorul 

proiectează într-un mod sistematic predictoare de condiţie care utilizează 

istoria semnelor. Astfel, el propune un predictor bazat pe istoria locală a 

semnelor aferente unui anumit branch, o schemă mai generală care 

utilizează câte un predictor local pentru fiecare pattern de istorie globală 

GHR şi respectiv o schemă locală care agreghează predicţiile a N 

predictoare Markov de ordinele 1, 2, ..., N. Totuşi, nici aceste predictoare 

sofisticate nu rezolvă în mod satisfăcător problema salturilor condiţionate 

nepolarizate, deşi, per global, ating acurateţi notabile. 

Desigur, utilitatea cea mai pragmatică a acestor cercetări 

fundamentale ar consta într-un predictor care să prezică branch-urile 

entropice cu o acurateţe foarte ridicată şi în timp real. În acest scop, trebuie 

ca acestea să fie reprezentate nu în spaţiul atributelor convenţionale (PC, 

istorie locală, globală, informaţia de cale etc.), ci într-un alt spaţiu, eventual 

de dimensiune superioară, în care ele să devina (mai) “cuminţi”, (mai) 

predictibile. Această abordare este, de altfel, comună multor probleme de 

predicţie/clasificare din ştiinţa calculatoarelor, ceea ce sugerează o unitate a 

cercetărilor diverselor sub-domenii, de care, cel mai adesea, nu suntem pe 

deplin conştienţi. Chiar dacă autorul nu a atins pe deplin dezideratul 

pragmatic al proiectării unui super-predictor de branch-uri, cercetarea sa 

incrementală este una valoroasă şi utilă. În mod indirect, există în această 

monografie şi un mesaj polemic la adresa empirismului devastator şi a 

utilitarismului în detrimentul cogniţiei, care caracterizează paradigma 

Computer Architecture de azi. Cei mai buni arhitecţi de microprocesoare se 
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luptă la Campionatul mondial de branch prediction (Intel) ca să 

predicţioneze cu 0.5% mai exact, fără să se întrebe însă de ce nu pot depăşi 

o anumită limită a acurateţei. Această lucrare arată într-un mod interesant şi 

inedit, că problema esenţială la ora actuală este alta, anume o mai adecvată 

reprezentare informaţională a branch-urilor dinamice. (Pe vremuri, 

inegalabilul matematician Carl Friedrich Gauss îi scria lui Farkas Bolyai că 

nu a publicat niciodată geometria sa neeuclidiană pentru că s-a temut de 

“urletele beoţienilor”. Păstrând proporţiile, constat că, totuşi, domnul Á. 

Gellért a fost mai curajos decât “Princeps Mathematicorum”, pentru că, 

iată, a publicat aceste cercetări, uşor neortodoxe!) 

Aşadar, în cazul acestor branch-uri nepolarizate, comportamentul lor, 

memorat ca o secvenţă de ‘0’ (Not_Taken) şi de ‘1’ (Taken), este 

impredictibil din punct de vedere al nevoilor inginereşti. De ce oare? În 

fond, ele sunt generate prin rularea unor programe cu acţiuni deterministe 

iar nu aleatoare. Or fi aceste branch-uri cvasi-aleatoare sau doar relativ 

impredictibile prin structurile şi informaţiile de context utilizate? De 

menţionat că nu există încă o paradigmă universală satisfăcătoare pentru 

şirurile aleatoare de simboluri, problema fiind de actualitate şi de interes 

pentru multe categorii de specialişti, nu doar pentru matematicieni. 

Definirea şi înţelegerea aleatorului sunt, deloc surprinzător, legate strâns de 

noţiuni precum cele de calculabilitate, entropie informaţională, algoritmi, 

teoria complexităţii, teoria infiniţilor actuali etc. Prezenţa ubicuă a 

aleatorului în ştiinţă şi în tehnologie, dar chiar şi în viaţa noastră de zi cu zi, 

trebuie acceptată ca atare, înţeleasă cât mai profund şi gestionată adecvat, cu 

implicaţii negative minimale. Altfel, aleatorul ne poate manipula în mod 

dăunător şi, uneori, chiar frustrant. În capitolul următor al acestei lucrări 

ştiinţifice se încearcă a se da un răspuns la asemenea întrebări şi probleme, 

prezentându-se câteva reflecţii asupra aleatorismului, cu scopul practic de a 

defini anumite metrici care să caracterizeze gradul de aleatorism al unei 

secvenţe de simboluri (binare). Aceste metrici ar putea explica în mod 

nuanţat comportamentul acestor salturi condiţionate. Relativ la problema 

salturilor condiţionate impredictibile, se dezvoltă următoarele 4 metrici de 

caracterizare a acestora din punct de vedere al gradului lor de aleatorism: 

1. Acurateţea predicţiei unui şir de simboluri printr-un predictor Markov 

cu legături ascunse (Hidden Markov Models – HMM), care ar putea 

defini un anumit grad de aleatorism al secvenţei, din punct de vedere 

practic. Astfel, în urma laborioaselor sale investigaţii autorul arată că un 

HMM de ordinul întâi, cu două stări ascunse, obţine acurateţile de 

predicţie cele mai ridicate. Totuşi, acurateţile obţinute pentru branch-

urile nepolarizate sunt modeste, arătând că nici măcar un astfel de 
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predictor de mare rafinament şi complexitate nu le poate anticipa 

comportamentul. Este posibil totuşi, să existe un predictor HMM mai 

performant, dar determinarea acestuia necesită timpi de calcul 

prohibitivi la nivelul tehnicii de care a dispus autorul. În schimb, pentru 

salturile polarizate, aceste predictoare generează acurateţi medii de 

predicţie de 98.43%, extrem de ridicate. 

2. Gradul de aleatorism aferent unei secvenţe binare S, definit ca produsul 

dintre entropia discretă E(S) şi respectiv gradul de amestecare aferent 

secvenţei, notat D(S) în lucrare. Chiar dacă metrica este discutabilă din 

punct de vedere teoretic, definirea riguroasă a aleatorismului unui şir 

fiind o problemă matematică deschisă, ea are utilitate practică în 

contextul acestei cercetări. Acest fapt este arătat în mod convingător de 

către dl. Gellért care obţine un “grad mediu de aleatorism” pentru 

branch-urile nepolarizate, măsurat pe 6 benchmark-uri SPEC 2000, de 

40%, comparat cu doar 9.16% pentru branch-urile normale. 

3. Rata de compresie a unei secvenţe de simboluri, obţinută prin algoritmi 

cunoscuţi de compresii fără pierderi (Huffman, Gzip), se constituie într-

o altă măsură a aleatorismului secvenţei. În cazul secvenţelor binare 

generate de salturile dificil predictibile, rata de compresie a acestora 

este mai mică decât în cazul celorlalte branch-uri, sugerând deci gradul 

ridicat de “aleatorism intrinsec” al comportamentului lor. Acest fapt 

este demonstrat cantitativ, într-un mod limpede de către autor, utilizând 

comportamente ale acestora de sute de mii de instanţe pentru un anumit 

context local-global considerat. 

4. În fine, complexitatea Kolmogorov a secvenţei de program maşină care 

generează salturile condiţionate impredictibile, constituie o altă metrică 

care le caracterizează comportamentul cvasi-aleator. Complexitatea 

Kolmogorov-Chaitin sau entropia algoritmică, este definită ca fiind 

lungimea celui mai scurt program (algoritm) care poate genera un 

anumit şir de simboluri si, evident, depinde de limbajul formal de 

descriere considerat. Astfel, complexitatea algoritmică a acestor salturi 

speciale ar trebui să fie mai mare decât a celorlalte salturi condiţionate. 

Acest fapt este arătat de către autor printr-un exemplu elocvent, în care 

comportamentul haotic al unui anumit branch este generat de programe 

complexe, cu multe ramificaţii binare, conţinând corpuri recursive. 

Cum complexitatea programelor creşte continuu, este de aşteptat ca 

numărul şi influenţa negativă a salturilor nepolarizate să crească şi ea. 

Deşi această metrică statică ar putea părea inadecvată în caracterizarea 

comportamentului unui salt dinamic, din punct de vedere practic 

utilitatea ei este evidentă, dupa cum autorul arată în mod convingător. 
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Evident că aleatorismul branch-urilor nepolarizate nu este în mod riguros 

unul nativ, intrinsec, ci unul determinat de haosul comportamentului 

dinamic al unor corpuri de program extrem de complexe. Din acest punct de 

vedere nici nu-i de mirare că există asemenea branch-uri cu un 

comportament ciudat, impredictibil. Determinarea cauzalităţilor 

deterministe concrete este însă cvasi-imposibilă, în contextul anterior schiţat 

al complexităţii uriaşe. Chiar dacă un branch este generat în urma unor 

constructe de program extrem de sofisticate, din cele, să zicem, 10 contexte 

dinamice distincte (de tip Global_hist, Local_hist, Path_hist etc.) în care el 

apare pe parcursul procesării, pot fi nepolarizate doar 2-3! Aici ciudăţeniile 

complexităţii aferente procesării run-time sunt mai greu explicabile 

calitativ. În orice caz, toate aceste metrici pot ajuta efectiv arhitectul de 

procesoare în evaluarea performanţelor modelelor simulate. Mai mult chiar, 

prin asemenea investigaţii interdisciplinare, rarissime în arhitectura 

calculatoarelor, autorul face practic invitaţia de a oferi soluţii revoluţionare 

acolo unde de zeci de ani se caută numai soluţii incrementale. 

În continuare autorul arată că aproximativ 29% dintre branch-uri sunt 

dependente de instrucţiuni având o latenţă de execuţie foarte ridicată, fapt 

care degradează semnificativ eficienţa procesării, în special prin creşterea 

semnificativă a timpului de refacere a contextului CPU în cazul predicţiilor 

greşite (context recovery). Pe de altă parte, aceste instrucţiuni critice, de 

mare latenţă (Load cu miss în cache, Mul, Div etc.), constituie o problemă 

redutabilă în sine. În Capitolul 6 autorul propune o soluţie originală pentru 

soluţionarea acestor probleme dificile. Astfel se dezvoltă o schemă de 

reutilizare dinamică a rezultatelor instrucţiunilor Mul şi Div augmentată 

prin detecţia unor operaţii triviale şi selectarea anticipată a rezultatului şi 

respectiv o schemă de predicţie dinamică a valorilor instrucţiunilor Load cu 

miss în L1-cache, bazată pe memorarea valorii lor anterioare. Deşi schemele 

de reutilizare şi predicţie sunt adaptări ale celor publicate în literatura de 

specialitate, ideea de a le grefa în cadrul unei arhitecturi superscalare 

complexe, simulate prin modificarea simulatorului M-SIM – care extinde 

cunoscutul mediu SimpleScalar, inclusiv prin facilităţi de procesare 

multithreading – este una originală şi valoroasă. Rezultatele cantitative 

confirmă importanţa acestor idei arhitecturale novatoare. Astfel, prin 

schemele concrete implementate, se obţin creşteri medii ale performanţei de 

până la 23.6%, respectiv reduceri ale consumului de energie relativ la rata 

de procesare (EDP – Energy Delay Product) de până la 34.5%. Tot aici se 

prezintă o altă dezvoltare originală, anume aceea a predicţiei valorilor 

registrelor destinaţie ale instrucţiunilor. Aşadar, procesul predictiv este 

focalizat în acest caz pe registrele CPU având grade mari de vecinătate ale 

valorilor şi nu pe instrucţiuni, aşa cum s-a propus în toate celelalte lucrări 
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din literatură. Prin implementarea acestor scheme de predicţie a valorilor în 

cadrul unor procesoare superscalare cu 8 căi, autorul raportează creşteri 

medii de performanţă de până la 17.3% faţă de o arhitectură superscalară 

clasică, ceea ce este remarcabil. În plus, acest concept implică 

implementarea doar a câtorva predictoare, comparativ cu miile de 

predictoare necesitate de conceptul predicţiei valorilor instrucţiunilor. 

În Capitolul 7 autorul studiază grefarea acestor scheme de reutilizare 

şi de predicţie a valorilor instrucţiunilor, în cadrul unei sofisticate arhitecturi 

cu microfire multiple de execuţie, de tip SMT. Aici paralelismul la nivel de 

instrucţiuni, exploatat de nucleul superscalar, se suprapune cu cel la nivelul 

firelor de execuţie, care permite execuţia simultană a până la 6 microfire 

distincte. Arhitectura SMT astfel îmbunătăţită obţine accelerări de 

performanţă importante faţă de una SMT clasică, spre exemplu de 16.51% 

pentru 3 microfire simultane. Desigur că creşterea de performanţă adusă de 

tehnicile de reutilizare şi predicţie a valorilor, scade odată cu creşterea 

numărului de microthread-uri ce pot fi procesate simultan. Şi în acest caz, 

consumul de energie per instrucţiune procesată scade semnificativ (cu până 

la 25.94%). Consider că eficientizarea procesoarelor SMT prin tehnici 

predictiv-speculative precum cele implementate şi prezentate de către autor 

constituie o realizare remarcabilă a acestei lucrări. În fine, ultimul Capitol, 

cel de-al optulea, sintetizează cele mai importante contribuţii originale 

conţinute în lucrare şi sugerează în mod pertinent câteva căi posibile de 

dezvoltare ulterioară a realizărilor prezentate. Lucrarea se încheie cu un 

deosebit de util glosar explicativ al termenilor tehnici utilizaţi. 

Câteva concluzii 

În urma studierii şi analizării acestei monografii ştiinţifice pot concluziona 

următoarele aspecte şi contribuţii originale, considerate relevante: 

 Lucrarea domnului ing. Á. Gellért se referă la problematici actuale, 

extrem de importante, privind metodele predictiv-speculative de 

îmbunătăţire a actualelor arhitecturi superscalare respectiv cu fire 

multiple de execuţie. S-a elaborat o sinteză critică valoroasă în 

domeniul arhitecturii microprocesoarelor, cu evidenţierea principalelor 

limitări actuale dar şi a oportunităţilor de cercetare. 

 Autorul a descoperit o limitare importantă a performanţei actualelor 

microprocesoare, constând într-o categorie de salturi condiţionate foarte 

dificil predictibile şi a arătat că este necesară o mai adecvată 

reprezentare a acestora în spaţiul atributelor (informaţiilor utilizate în 

procesul) de predicţie. 
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 A îmbunătăţit unele dintre cele mai performante predictoare actuale de 

branch-uri şi a dezvoltat în mod sistematic predictoare originale, bazate 

pe predicţia semnului condiţiei de salt. 

 Tot referitor la problema salturilor condiţionate greu predictibile, a 

dezvoltat 4 metrici de caracterizare a acestora din punct de vedere al 

gradului lor de aleatorism, deosebit de utile pentru înţelegerea 

comportamentului acestora, precum şi pentru îmbunătăţirea 

performanţelor microarhitecturii. 

 A îmbunătăţit în mod semnificativ performanţa şi consumul relativ de 

energie al microprocesoarelor superscalare, prin predicţia valorilor 

instrucţiunilor Load critice precum şi prin reutilizarea valorilor unor 

instrucţiuni aritmetice de latenţă ridicată. Într-un mod analog a 

îmbunătăţit şi performanţa arhitecturilor cu multithreading simultan. 

 A dezvoltat şi a evaluat scheme de predicţie dinamică a registrelor 

destinaţie ale instrucţiunilor, arătând în mod convingător avantajele 

acestora în comparaţie cu schemele de predicţie centrate pe instrucţiuni, 

deosebit de complexe. 

 Autorul a dovedit abilităţi şi cunoştinţe remarcabile, atât în domeniul 

arhitecturilor avansate de calcul cât şi în cel al ingineriei programării. 

Numai aşa a putut crea, finalmente, simulatoarele complexe, care în 

urma a sute de ore de rulare (până la un miliard de instrucţiuni maşină 

simulate per benchmark!), au putut evalua performanţele complexelor 

arhitecturi dezvoltate. 

 Dl. Á. Gellért a publicat 17 articole ştiinţifice focalizate pe 

problematica microarhitecturilor avansate în cadrul unor reviste ori 

conferinţe internaţionale de real prestigiu. Dintre acestea, 5 au fost 

publicate în reviste cotate ISI Thomson Reuters de mare exigenţă, fapt 

absolut lăudabil pentru un tânăr cercetător. 

În final, în baza argumentelor schiţate succint în analiza anterioară, 

recomand în mod călduros această valoroasă şi originală monografie 

tehnico-ştiinţifică tuturor celor interesaţi de cercetarea microarhitecturilor 

avansate de calcul şi, în mod deosebit, masteranzilor, doctoranzilor şi 

cercetătorilor. 

Sibiu, 15 septembrie 2008 Prof. univ. dr. ing. Lucian N. VINŢAN 

Membru (c.) al Academiei de Ştiinţe Tehnice din România 

 



 

 

“The best way to predict the future 

is to invent it” 

Alan Kay 

1. Introduction 

The number of instructions that can be processed simultaneously in multiple 

instruction issue (MII) microprocessors is limited by dependencies existing 

between instructions. To eliminate these dependencies modern 

architectures, some of them presented in Chapter 2 as prerequisites for this 

work, rely heavily on speculation. The main goal of this work is to increase 

instruction-level parallelism (ILP) and therefore the overall performance of 

superscalar and multithreaded microarchitectures through advanced 

dynamic anticipatory techniques like branch prediction, value prediction 

and instruction reuse. This work brings original contributions in identifying 

difficult-to-predict branches and improving their predictability, in 

characterizing the randomness of their behavior, and in developing some 

selectively applied value prediction and instruction reuse methods. 

Branch instructions, appearing in high level program constructs like if, 

switch, for, while, etc., are a major bottleneck in the exploitation of ILP, 

since (in general-purpose code) conditional branches occur approximately 

every 5 – 8 instructions [Hen03]. Therefore, almost all present-day multiple 

instruction issue microprocessors are using advanced branch prediction 

techniques in order to increase ILP. Several prediction methods have been 

developed based on some well-known learning algorithms (Markovian, 

neural, Bayesian, decision trees, support vector machine, etc.) simplified for 

efficient hardware implementation. Through dynamic branch prediction 

microprocessors are speculatively processing multiple basic blocks in 

parallel and therefore their ability to increase ILP is stronger. In order to 

improve performance, branches must be detected within the dynamic 

instruction stream, and both the direction taken by each branch and the 

branch target address must be correctly predicted. Furthermore, predictions 

must be completed in time to fetch instructions from the branch target 

address without interrupting the flow of new instructions to the processor 

pipeline [Vin07]. In the case of misprediction, the CPU context must be 

recovered and the correct paths have to be reissued. As instruction issue 

width and the pipeline depth of MII processors are getting higher, accurate 

dynamic branch prediction becomes more essential [Spr02]. Very high 
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prediction accuracy is required because an increasing number of instructions 

are lost before a branch misprediction can be corrected. As an example, the 

performance of the Pentium 4 equivalent processor degrades by 0.45% per 

additional misprediction cycle, and therefore the overall performance is very 

sensitive to branch prediction. Taking into account that the average number 

of instructions executed per cycle (IPC) grows non-linearly with the 

prediction accuracy [Yeh92], it is very important to further increase the 

accuracy achieved by present-day branch predictors. From a technological 

point of view, modern high-end processors use quite large tables for branch 

direction and target prediction [Sez02], and they are accessed every cycle 

resulting in significant energy consumption, sometimes more than 10% of 

the total chip power [Cha03]. Therefore, power consumption is another 

important constraint of all present-day branch predictors. 

The quality of a prediction model is highly dependent on the quality 

of the available data. Especially the choice of the features to base the 

prediction on is important. The vast majority of branch prediction 

approaches rely on usage of a greater number of input features without 

taking into account the real causes (indirect jumps and calls and, especially, 

unbiased branches) that produce a lower accuracy and implicit lower 

performance. In Chapter 3 we identified difficult-to-predict branches as 

being unbiased branches that have a “random” dynamic behavior, and tried 

to improve their predictability through context length extension. In Chapter 

4 we showed that present-day branch predictors cannot accurately predict 

these branches due to their limited prediction information (branch address, 

local/global branch history, path). Therefore we improved several state-of-

the-art branch predictors with additional prediction information, namely the 

previous branch condition or even a compressed branch condition history, in 

order to improve their prediction accuracy. We also showed in Chapter 5 
that sequences generated by unbiased branches are characterized by high 

random degrees.  

Long-latency instructions, especially critical Loads due to their 

memory wall problem (the increasing gap between processor and memory 

speeds), represent another source of ILP limitation. A solution to reduce the 

number of cache misses consists in prefetching speculatively data from 

memory to cache. Multithreading can also reduce the effects of the memory 

wall by hiding memory latency through issuing into the pipelines 

instructions from different idle threads. Value Prediction (VP) is another 

technique that increases performance by eliminating true data dependency 

constraints. VP architectures allow data dependent instructions to issue and 

execute speculatively using the predicted value. The speculative executions 

are validated when the correct values are known. If the value was correctly 
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predicted the critical path is reduced, otherwise the instructions executed 

with wrong entries must be executed again. On the other hand, dynamic 

instruction reuse is a non-speculative microarchitectural technique that 

exploits the repetition of dynamic instructions with the same input values. 

The main benefit of reusing long-latency instructions consists in unlocking 

dependent instructions.  

In Chapter 6 we developed a superscalar architecture that selectively 

anticipates the values produced by long-latency instructions. We focused on 

Multiply, Division and Loads with miss in the L1 data cache. Thus, we 

implemented a Dynamic Instruction Reuse scheme for the Mul/Div 

instructions and a simple Last Value Predictor for the critical Load 

instructions. We also extended dynamic VP by introducing the concept of 

register-centric prediction instead of instruction-centric prediction. The 

register value prediction technique consists in predicting registers’ next 

values based on the previously seen values. It executes the subsequent data 

dependent instructions using the predicted values. In Chapter 7 we 

evaluated a simultaneous multithreaded architecture enhanced with selective 

instruction reuse and value prediction to anticipate the results of long-

latency instructions.  

Finally, Chapter 8 concludes the book pointing out the original 

contributions and suggests some further work directions. 
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“When speculation has done its worst, 

two and two still make four” 

Samuel Johnson 

2. Speculative Computer Architectures 

All processors since about 1985 use pipelining in order to improve 

performance by overlapping the execution of instructions. A pipeline acts 

like an assembly line with instructions processed in phases. With simple 

pipelining, only one instruction at a time is introduced into the pipeline, but 

multiple instructions may be in different phases of execution concurrently. 

In the case of superscalar processors, more than one instruction at a time can 

be introduced into multiple pipelines to be executed simultaneously. This 

potential execution overlap among independent instructions is called 

instruction-level parallelism (ILP). There are some features of both 

programs and processors that limit the amount of parallelism such as 

structural hazards, data hazards and control stalls. In particular, to exploit 

instruction-level parallelism it must be determined which instructions can be 

executed in parallel. If two instructions are parallel and no structural hazards 

exist, they can be executed simultaneously in a pipeline without causing any 

stalls, assuming that the pipeline has sufficient resources. If two instructions 

are dependent they are not parallel and must be executed in order. There are 

three different types of dependences: data dependences, name dependences 

and control dependences.  

An instruction is data dependent if it uses the result produced by 

another instruction. Data dependences can be overcome through hardware 

techniques (dynamic instruction reuse, value prediction) and software 

techniques (by reorganizing the code). When two dependent instructions are 

close enough to change the order of access to the operand involved in the 

dependence, a data hazard occurs. Considering two successive instructions i 

and j, a RAW (read after write) data hazard occurs when instruction j tries 

to read a source before i writes it, so j incorrectly gets the old value. A 

WAW (write after write) data hazard occurs when instruction j tries to write 

an operand before it is written by i. A WAR (write after read) data hazard 

occurs when instruction j tries to write a destination before it is read by i. 

Name dependences occur when two instructions use the same register 

or memory location. Instructions involved in name dependence can be 

executed simultaneously or reordered if the register or memory location 
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used by the instructions is changed so the instructions do not conflict. This 

renaming can be more easily done for register operands (register renaming), 

either statically by a compiler or dynamically by the hardware. 

Control dependences are generated by branch instructions. An 

instruction that is control dependent on a branch cannot be executed until 

the branch direction is known. Control stalls can be eliminated or reduced 

by a variety of hardware techniques (branch prediction) and software 

techniques (static scheduling). 

A major limitation of the simple pipelining techniques is that they all 

use in-order instruction issue and execution. Instructions are issued in 

program order and if an instruction is stalled in the pipeline, no later 

instructions can proceed. Out-of-order execution introduces the possibility 

of data hazards. Hennessy and Patterson in [Hen03] explore an important 

technique, called dynamic scheduling, in which the hardware rearranges the 

instruction execution in order to reduce the stalls. In a dynamically 

scheduled pipeline, all instructions are dispatched in order, however, they 

can be stalled or bypass each other in the issue stage and thus execute out of 

order. 

2.1. Speculative Architectures with Reorder Buffer 

Branch prediction is a mechanism that reduces control stalls in order to 

improve performance in a multiple instruction issue processor. Control 

dependences are overcome by speculating on branch outcomes and 

executing dependent instructions as if the predictions were correct. 

Obviously it became necessary the integration of branch prediction into 

dynamically scheduled processors. Predicting the outcomes of conditional 

branches, more instructions can be fetched in parallel (a part of them are 

fetched speculatively from the predicted path), increasing in this way the 

execution window [Smi95]. The fetched instructions are analyzed for true 

data dependences, issued to the functional units and executed out-of-order, 

in parallel, based on the availability of the operands. Value prediction is 

another technique that speculatively forwards predicted instruction results to 

the dependent instructions. With speculative execution, the architectural 

storage cannot be updated immediately when instructions complete 

execution. The results must be held in a temporary status until the 

architectural state can be updated in sequential program order. 
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2.1.1. Speculative Dynamic Scheduling with Reorder Buffer 

The present-day out-of-order issue superscalar microprocessor model is 

implemented as a speculative microarchitecture that actually fetches, issues 

and executes instructions based on branch prediction using Tomasulo’s 

algorithm or closely related algorithms and a structure called Reorder Buffer 

(ROB). Figure 2.1 shows the hardware structure of the processor including 

the ROB. 

 

Instruction

queue

From instruction unit

Register

file

Reservation

stations

2

12

1

3

Adders Multipliers

Operation bus
Operand

buses

Common data bus (CDB)

Address unit
Address

Memory unit

Address

Reorder

buffer

Load

buffers

Store

data

Load data

Data

Reg

Store

address

 

Figure 2.1. Tomasulo’s architecture extended to support speculation 

The hardware that implements Tomasulo’s algorithm [Tom67] can be 

extended to support speculation, only if the bypassing of results, which is 

needed to execute an instruction speculatively, is separated from the 

completion of an instruction (that consists in updating the memory or 

register file). Doing this separation, an instruction bypasses its results to 

other instructions, without performing any CPU updates that cannot be 

canceled. When the instruction is no longer speculative (after its writeback 

stage), it updates the register file or memory; this phase is called instruction 

commit. Separating the bypassing of results from instruction completion 

makes possible avoiding imprecise exceptions in out-of-order execution, 

preserving in this way exception behavior. An exception is imprecise if the 
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processor state when the exception raised is not exactly as in the case of 

sequential execution. 

Adding this commit phase to the instruction execution sequence, an 

additional set of hardware buffers is required, which hold the results of 

instructions that have finished execution but have not yet committed. The 

reorder buffer provides the register renaming function and it is also used to 

pass the results of speculatively executed instructions. The reservation 

stations keep operations and operands only between the time they issue end 

the time they begin execution. 

Each ROB entry contains four fields: Type, Dest, Value and the Ready 

field. The Type field indicates whether the instruction is a branch, a Store, or 

a register operation (ALU operation or Load). The Dest field supplies the 

register number for Loads and ALU operations or the memory address for 

Stores, where the instruction result must be written. The Value field is used 

to hold the value of the result until the instruction commits. The Ready field 

indicates if the instruction has completed execution and, thus, the value is 

ready. The ROB completely replaces the Store buffers. The ROB is usually 

implemented as a circular FIFO queue having associative search facilities. 

Each reservation station has the following eight fields:  

 

 Op – the operation performed on the source operands (opcode); 

 Qj, Qk – the ROB entries that will provide the source operands, a 

value of zero indicating that the source operand is already 

available in Vj, Vk, or that it is unnecessary; 

 Vj, Vk – the values of the source operands; for Loads and Stores 

the Vj field is used to hold the offset; 

 A – holds the memory address for Loads or Stores: initially holds 

the immediate field, after the address calculation holds the 

effective address; 

 Dest – supply the corresponding ROB entry number representing 

the destination for the result produced by the execution unit. 

 Busy – indicates if a reservation station is available or occupied. 

 

The register file has a field Qi indicating the number of the ROB entry 

that contains the operation whose result should be stored into the register. 

The six steps involved in instruction execution are the following [Hen03]: 

 

1. Fetch – fetches the next instruction into the instruction queue. 

2. Dispatch – gets the next instruction from the instruction queue. If all 

reservation stations are full or the ROB is full, then instruction dispatch 
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is stalled until both structures have available entries. If there is an empty 

reservation station and the tail of the ROB is free, the instruction is sent 

to the reservation station. The Busy bit of the allocated reservation 

station is set and the Ready field of the ROB entry is reset. The source 

registers are searched associatively in the Dest field of the ROB, 

considering the last entry in the case of multiple hits, since the ROB 

entries are allocated in order. If an operand value is available in the 

ROB (Ready=1), it is written from the Value field into the reservation 

station field Vj / Vk. If the operand value is not available (Ready=0), the 

number of ROB entry that will provide the operand is written into the 

reservation station field Qj / Qk. In the case of miss in the ROB the 

operand value is written from the register set into the reservation station 

field Vj / Vk. The number of ROB entry allocated for the value of the 

result is sent into the Dest field of the reservation station. The 

destination register number is written into the Dest field of the ROB 

entry.  

3. Issue – if an operand is not yet available, the common data bus (CDB) is 

monitored until it is computed and when the operand is available on the 

CDB it is placed into the corresponding reservation stations. In order to 

avoid structural hazards, modern processors have multiple CDBs and a 

multiported ROB. When all the operands are available, the instruction is 

issued to the appropriate functional unit. By delaying instruction 

execution until the operands are available, RAW dependences are 

detected. 

4. Execute – the corresponding functional unit executes the operation. In 

the case of Loads and Stores the effective memory address is computed 

in this stage. In the case of a taken branch, usually is calculated the 

branch’s target address. 

5. Writeback – when the result is available, it is written to the CDB 

(together with the ROB entry number indicated by the Dest field of the 

reservation station) and from there into the Value field of the 

corresponding ROB entry, whose Ready field is set to 1. The Busy field 

of the corresponding reservation station is reset. The result is also 

written into field Vj / Vk of the reservation stations that are waiting for it. 

In the case of a Store instruction if the value to be stored is available, it 

is written into the Value field of the ROB entry allocated for that Store. 

If the value to be stored is not available, the CDB is monitored, and 

when it is received, the Value field of the ROB entry is updated. 

6. Commit – the normal commit case occurs when an instruction reaches 

the head of ROB having its result available (Ready=1) and if no 

exception occurs. In this case, the result is written from the Val field of 
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the ROB entry into the destination register or memory location indicated 

by the Dest field of the ROB entry and, after that, the instruction is 

squashed from the ROB. Thus, the in order commit is guaranteed by the 

in order dispatch, whereas the issue, execute and writeback stages can 

be processed out of order. When an incorrectly predicted branch reaches 

the head of the ROB, the ROB is flushed and the execution is restarted 

with the correct successor of the branch. More precisely, there are 

implemented two branch recovery strategies: refetch and selective 

reissue [She03]. The obvious disadvantage of the refetch based recovery 

is a severe misprediction penalty. The goal of selective reissue is to 

reduce this penalty. With this approach only dependent instructions are 

reissued in the case of misprediction. This requires a mechanism for 

propagating misprediction information through the data flow graph to all 

dependent instructions. 

 

As it can be observed, in the case of speculative architectures is very 

important when is performed the updating. Using the ROB, speculative 

executions are possible because the register file or memory is updated with 

the result of an instruction only when that instruction is no longer 

speculative. 

2.1.2. The Architecture of Sim-Outorder 

After more than two decades, simulators have become an integral part of 

computer architecture research and design process [Yi06]. Their most 

important advantages, comparing with real processors, are low 

implementation cost and development time, flexibility and extensibility, 

allowing the architects to quickly evaluate the performance of a wide range 

of architectures and to quantify the efficacy of every enhancement. In this 

work we relied on some commonly used simulators like Simplesim [Bur97] 

and the M-SIM [Sha05] which extends the Simplesim toolset with support 

for concurrent execution of multiple threads and power consumption 

evaluation. Both of them are written in C language and the sources are free 

in order to be improved and enlarged by researchers. 

The sim-outorder simulator from the Simplesim-3.0 toolset [Bur97] is 

presented in Figure 2.2. It simulates a superscalar architecture that uses a 

register update unit (RUU) in order to support out-of-order and speculative 

execution. The RUU is a combination of reservation stations and ROB, and 

is organized as a circular queue. Each RUU entry contains the following 

fields: 
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 IR – stores the instruction bits. 

 op – holds the opcode after the instruction is decoded in the 

dispatch stage. 

 PC – the instruction address. 

 next_PC – the next instruction address. 

 pred_PC – the next predicted instruction address. 

 ea_comp – non-zero if the operation is an address computation 

(the first operation in the case of Load and Store instruction 

preceding the memory access). 

 in_LSQ – non-zero if the Load/Store operation is in the LSQ. 

 recover_inst – indicates when an instruction is the start of 

misspeculation. 

 dir_update – pointer to the branch predictor state entry. 

 spec_mode – indicates if the instruction was fetched 

speculatively. 

 addr – holds the effective address for Load/Store instructions. 

 tag – RUU slot tag, used to identify an operation in the RUU. 

 queued – indicates that the operands are ready and the operation 

was queued to the ready_queue. 

 issued – indicates that the operation was issued for execution. 

 completed – indicates that the operation has completed the 

execution. 

 onames – output logical register names. 

 odep_list – dependency list containing a pointer to all dependent 

RUU entries. These lists are used to limit the number of 

associative searches in the RUU when operations complete the 

execution and need to wake up dependent operations. 

 idep_ready – indicates if the input operands are ready. 

 

For Loads and Stores a Load/Store Queue (LSQ) is also used. The 

LSQ has the same structure as the RUU. Load and Store instructions are 

split in two operations: the effective address computation that is inserted 

into the RUU and the Load/Store operation that is inserted into the LSQ and 

is activated by the RUU when the address computation is finished. A 

rename-table structure called Create Vector (CV) holds for each register the 

last mapped RUU or LSQ entry that will write the result into that register. 

The CV is divided into a speculative table (maintains the last speculative 

state of the register file) and a non-speculative table (maintains the last non-

speculative state of the register file). The CV is used to handle instruction 
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dependencies: to construct the dependency lists (odep_list) and to squash 

efficiently the RUU and LSQ structures if an exception occurs. An 

instruction fetch queue (IFQ) is used to hold the instructions fetched from 

memory. Each IFQ entry has the following fields: IR (holds instruction 

bits), regs_PC (instruction address), pred_PC (next predicted instruction 

address) and dir_update (pointer to the branch predictor state entry). A 

ready queue (RQ) is used to hold operations whose operands are ready and 

an event queue (EQ) holds operations during their execution. Each RQ and 

EQ location contains only a pointer to the RUU or LSQ entry associated to 

the operation. 

The sim-outorder simulator uses a pipeline with five important stages 

implemented in software: fetch, dispatch, issue, write back and commit. The 

classical execution stage is distributed into the dispatch and issue stages as 

we will detail further. In the software implementation of this superscalar 

architecture the pipeline stages are executed sequentially and are not 

overlapped leading in this way to synchronization problems. More exactly, 

because one cycle of execution in the simulator corresponds to the 

sequential iteration of all pipeline stages once, the effects of a certain stage 

are “instantaneously” seen by the next pipeline stages too early, in the 

current cycle, while they must be seen only in the next cycle. Therefore, in 

order to eliminate these synchronization problems, the pipeline stages are 

traversed in reverse order, and thus, the effects of a certain one-cycle 

operation are visible correctly only in the next cycle (iteration). 

All events (marked with ♦) appear in Figure 2.2 horizontally in 

chronological order. The fetch, dispatch and commit stages are effectuated 

in program order avoiding thus imprecise exceptions, while the other stages 

might be executed out of order. The seven execution steps of sim-outorder 

are the following: 

 

1. Fetch (ruu_fetch) – as many instructions are fetched up 

(MD_FETCH_INST) as one branch prediction and one instruction-cache 

line support, without overflowing the instruction fetch queue (IFQ). The 

instructions are inserted into the tail of the IFQ (fetch_data). If the 

simulator is started with a branch predictor, the instructions are pre-

decoded in order to identify branches (MD_SET_OPCODE). When a 

branch instruction occurs the next instruction is fetched from the address 

pred_PC predicted using a certain pred branch predictor 

(bpred_lookup). 
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Figure 2.2. The architecture of Sim-Outorder 
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2. Dispatch (ruu_dispatch) – gets the next instruction from the head of the 

IFQ, decodes the instruction (MD_SET_OPCODE), and inserts it into 

the tail of the RUU if it is free. For Loads and Stores the effective 

address computation is inserted into the tail of the RUU, and the 

Load/Store operation is inserted into the tail of the LSQ. If the 

RUU/LSQ is full, then instruction dispatch is stalled until the structure 

has available entries. The dispatched instructions are removed from the 

IFQ. A pointer to the allocated RUU/LSQ entry (rs) is introduced into 

the dependency list (odep_list) corresponding to the RUU/LSQ entries – 

identified based on the CV – that will produce the input operands 

(ruu_link_idep). The output register numbers are written into the 

onames field and a pointer to the allocated RUU/LSQ entry (rs) is set to 

all the output registers in the CV structure (ruu_install_odep). If all the 

input operands are available, a pointer to the allocated RUU/LSQ entry 

(rs) is inserted into the tail of the RQ (readyq_enqueue). Actually the 

simulator “instantaneously” executes the operation in this stage, but 

correctly simulates its latency through the write-back event in the next 

stages. In the case of a Store instruction a pointer to the allocated LSQ 

entry is also inserted into the tail of the RQ (Load operations are queued 

into the RQ only in the LSQ-refresh stage). 

3. Issue (ruu_issue) – tries to issue all instructions from the RQ 

(ready_queue) to free functional units (FU) whose busy count is set to 

the latency value corresponding to the issued operation. A writeback-

event is scheduled for each issued operation to the cycle obtained adding 

its execution latency to the current cycle: a pointer to the corresponding 

RUU/LSQ entry (rs) is inserted together with the scheduled writeback-

cycle (wb_cycle) into the EQ (eventq_queue_event). The EQ 

(event_queue) is sorted from earliest to latest event. The issued 

operations are evacuated from the RQ. The issue stage ends with the 

execution of the operations at the functional units (the previously 

presented Tomasulo’s architecture has an additional execute stage for 

this operation). Thus, the execution is simulated by scheduling the 

writeback-event to the cycle obtained by adding the corresponding 

execution latency to the current cycle. Store operations are executed 

only in the commit stage. 

4. LSQ-refresh (lsq_refresh) – a pointer to each Load operation (rs) from 

the LSQ whose operands are ready is inserted into the RQ 

(readyq_enqueue). Store operations are inserted during the dispatch 

stage. 

5. Writeback (ruu_writeback) – in the case of a misprediction the 

RUU/LSQ entries corresponding to speculatively fetched instructions 
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are squashed and the CV is reverted to the last non-speculative state. In 

the normal writeback case, for each event from the EQ whose scheduled 

writeback-cycle is less than or equal to the current execution cycle (the 

event has already occurred), the result is written from the functional unit 

(FU) to the RUU/LSQ, and the event is removed from the EQ. If the 

RUU/LSQ entry afferent to the completed operation is still mapped in 

the CV to the output registers, the corresponding CV entries are 

invalidated (assigning NULL), because the construction of the 

operation’s dependency list (odep_list) finished. Dependent operations 

that occur in the future will get the result from the RUU/LSQ or from 

the register file. Each RUU/LSQ entry that has a pointer in the 

dependency list (odep_list) of the completed operation is updated with 

the result, and if all its operands are ready, it is queued into the RQ – its 

pointer (rs) is inserted into the tail of the RQ (readyq_enqueue). 

6. FU-release (ruu_release_fu) – the busy count of each FU is 

decremented by 1. An FU is free for another operation when its busy 

count is 0. 

7. Commit (ruu_commit) – the normal commit case occurs when an 

instruction reaches the head of the RUU/LSQ and its result is available 

(completed=TRUE). The results are written from the head of the 

RUU/LSQ into the register file. If a Store instruction occurs in the head 

of the LSQ, the Store data is written to the data cache. At the end of the 

commit stage the head of the RUU/LSQ is freed and, in the case of 

branch instructions, the used branch predictor pred is updated 

(bpred_update). 

 

In fact, instruction execution is done “instantaneously” in ruu_dispatch. 

Thus, instructions flow down the pipeline only for timing evaluations. 

Therefore, there is no need to actually store the result value into the 

RUU/LSQ structure at the end of the writeback stage and there is no need to 

update the register file in the commit stage because that’s already been done 

in the dispatch stage. 

2.1.3. Checkpoint Processing Architectures 

Another technique that allows speculative execution consists in saving or 

checkpointing the state of the processor at certain points in a history buffer 

or a checkpoint, respectively [Smi95]. The architectural state of the 

processor is updated as instructions execute and when a precise state is 

needed, it is recovered from the history buffer. In this case, the commit 
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phase consists only in the evacuation from the buffer of the unneeded 

processor states. The reorder buffer technique is more popular than the 

checkpoint/history buffer method, because, besides providing a precise 

state, it implements the register renaming function too. 

The continuously increasing gap between processor and memory 

speeds – commonly known as the memory wall – produces a serious 

performance limitation of high-frequency microprocessors by main memory 

access latencies. One approach to the memory wall problem was the cache 

memory that exploits program locality to reduce the number of long-latency 

accesses to the main memory. Another approach is the out-of-order 

execution mechanism that can hide long operation latencies in superscalar 

processors by executing independent instructions while dependent 

instructions are waiting for their operands. For an L1 cache miss, these 

independent instructions can often hide the L2 access latency, but the 

approach is much less effective in the case of L2 cache misses. If the miss 

latency cannot be hidden, the ROB is blocked until the Load instruction 

completes. Cache misses often occur in bursts and, thus, when the ROB is 

unblocked it is blocked again by another L2 miss. A solution to reduce the 

number of L2 misses consists in prefetching speculatively data from 

memory to cache. Multithreading can also reduce the effects of the memory 

wall by hiding memory latency through issuing into the pipelines 

instructions from different idle threads. 

A different approach to tolerate very long memory latencies consists 

in supporting a substantially increased number of in-flight instructions 

[Cri05]. Processors that are able to maintain thousands of in-flight 

instructions can hide the latency of memory operations by overlapping 

memory accesses with the execution of independent instructions. 

Unfortunately, supporting a high number of in-flight instructions typically 

involves scaling up critical processor resources (reorder buffer, instruction 

queue, physical register file, Load/Store queue) that is impossible in current 

processor designs because of area, power and cycle time limitations. Cristal 

et al. [Cri04b, Cri05] recently proposed Kilo-instruction Processors (KIP) 

that are able to support a high number of in-flight instructions through an 

intelligent management of the available resources instead of resource 

enlargement. They showed in [Cri05] that most instructions either have a 

short or a long flight-time, and, thus, they hold resources for a short or a 

very long time, respectively. The long flight-time instructions are usually 

blocked in the ROB because of long-latency memory operations. Kilo-

instruction Processors exploit the bimodal flight time distribution by giving 

critical resources to the short-flight-time instructions and early releasing 

resources used by long-flight-time instructions, reallocating them later. 



Speculative Computer Architectures 33 

Current superscalar processors rely on in-order instruction commit to 

avoid imprecise exceptions, imposing thus important constraints to the use 

of the critical processor resources. Cistal et al. showed in [Cri05] that all 

these resources are highly underutilized and they changed the management 

of these resources in order to improve performance. They proposed kilo-

instruction processors that combine multicheckpointing with techniques for 

efficient management of the IQs and the physical register file. 

In a conventional superscalar processor every decoded instruction 

requires an entry in the reorder buffer (ROB) until the instruction commits. 

The ROB keeps a copy of all in-flight instructions, and thus, the processor 

can restore the correct architectural state at any instruction if an exception 

occurs. Kilo-instruction processors reduce the size requirement of ROB 

through checkpointing. A checkpoint is the state of the processor taken at a 

specific instruction of the program being executed. The state of the 

processor can be restored to that point if an exception occurs. The state of 

the processor can be checkpointed for a subset of instructions, and, if there 

is an exception, the processor can roll the state back to the closest 

checkpoint prior to the instruction causing the exception. Using a relatively 

small set of checkpoints for long flight-time instructions considerably 

reduces ROB requirements, but, obviously, the cost is a longer recovery 

time when a long-flight-time instruction suffers an exception.  

Cristal et al. [Cri02] proposed selective checkpoints taken only when a 

Load that misses in the L2 cache reaches the head of the ROB. After taking 

such a checkpoint, the processor can early release the ROB resources, and 

also the physical registers and LSQ slots used by instructions in the ROB. 

Instructions independent of the Load with miss in L2 can then use these 

resources. In the same way, Mutlu et al. [Mut03] create a checkpoint of the 

architectural state when a Load that misses in the L2 cache reaches the head 

of the ROB. But their architecture starts executing instructions in a special 

speculative mode called runahead that invalidates the results of the Load 

and all dependent instructions. Some of the independent instructions 

executed in runahead mode might miss in the instruction-, data-, or unified 

caches. The memory system overlaps their miss latencies with the latency of 

the runahead-causing cache miss. When the runahead-causing Load 

completes, the processor exits runahead mode by flushing the instructions 

from its pipeline. It restores the checkpoint and resumes normal instruction 

fetch and execution starting with the runahead-causing Load. Thus, when 

the processor returns to normal mode, it can make faster progress without 

stalling because it has already prefetched into the caches during runahead 

mode some of the data and instructions needed during normal mode. 
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In [Cri04b, Cri04a] Cristal et al. replaced the ROB with a structure 

called pseudo-ROB. Decoded instructions are inserted into the pseudo-ROB 

in order. The processor removes instructions from the head of the pseudo-

ROB at a fixed rate even if they are incomplete. The processor state is 

recoverable for any instruction from the pseudo-ROB and, therefore, 

checkpoints are taken only when incomplete instructions reach the head of 

the pseudo-ROB. This checkpointing mechanism is beneficial to alleviate 

the impact of branch mispredictions. The authors show that over 90% of 

mispredictions are caused by branches that are still in the pseudo-ROB and 

therefore do not need to roll back to the previous checkpoint for recovering 

the correct processor state, minimizing the misprediction penalty. 

A multicheckpointing mechanism was proposed in [Akk03a, Akk03b] 

by Akkary et al. in order to implement large instruction window processors 

without requiring large structures. Rather than using a reorder buffer, they 

use a substantially smaller checkpoint buffer for branch misprediction 

recovery. Since checkpoints cannot be created at every branch, a branch 

misprediction causes the re-execution of all instructions between the last 

checkpointed instruction and the mispredicted branch. This re-execution 

overhead can be minimized if checkpoints are created on branches with high 

misprediction probability. Therefore, Akkary et al. use a confidence 

estimation scheme – a table of 4-bit saturating counters indexed by XORing 

the branch address with the global branch history – to select low-confidence 

branches. Correct branch prediction increments the corresponding counter 

while misprediction resets the counter to zero. Thus, they take a checkpoint 

when a low-confidence branch reaches the decode stage. In addition, the re-

execution overhead is also minimized by checkpointing every 256th 

instruction. To prevent the same branch to be mispredicted again, in the case 

of re-execution from a checkpoint the branch outcome from the previous 

aborted execution is used instead of a prediction. Furthermore, once a 

branch misprediction is resolved and re-execution begins from a prior 

checkpoint, a new checkpoint is taken on the mispredicted branch, allowing 

the retirement of instructions between the two checkpoints. The checkpoints 

are stored in a FIFO buffer. Each entry in the checkpoint buffer has a 

counter that is used to determine when the corresponding checkpoint can be 

freed. A counter is incremented when an instruction, associated with the 

corresponding checkpoint, is allocated and decremented when the 

instruction completes execution, the overflow being prevented by creating a 

new checkpoint. A checkpoint is allocated only if a free entry is available in 

the checkpoint buffer. If a low-confidence branch is fetched and a free entry 

in the checkpoint buffer is not available, the processor continues fetch, 

dispatch and execution without creating a checkpoint on that branch. A 
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checkpoint is reclaimed and all its associated instructions are retired when 

the value of the corresponding counter is 0 – the last instruction belonging 

to that checkpoint completes – and the next checkpoint is allocated. Their 

mechanism enables fast branch misprediction recovery and they show that a 

small number of checkpoints is sufficient for a large instruction window. 

Their simulation results show that 8 checkpoints are sufficient to support a 

2048-entry instruction window, and thus, usually, each checkpoint 

corresponds to a group of hundreds of instructions. 

Every decoded instruction requires an entry in the instruction queue 

(IQ) until it is issued for execution. In [Cri04b] the authors show that 

instructions are divided into two groups: instructions blocked for short time 

in the IQ that are waiting for a functional unit or for results of short-latency 

operations, but most instructions are blocked for long time, when they are 

waiting for long-latency instructions to complete, such as Loads with miss 

in L2 cache. Maintaining these instructions blocked for a long time in the 

IQ, increases the probability of stalling the processor due to a full IQ. This 

problem can be overcome by using multilevel IQs [Cri04b] that advantage 

of different waiting times of instructions in IQs. When long latency 

instructions – Loads without hit in the first or second level caches and all 

instructions that depends on – reach the head of the pseudo-ROB, they are 

removed from the IQ to a slower, but larger and less complex structure, 

called Slow Lane Instruction Queue (SLIQ). Later, when the long-latency 

operations are resolved, the dependent instructions are moved back from the 

SLIQ to the IQ. 

Every renamed instruction that generates a result requires a physical 

register, which is assigned in the rename stage and it is released when the 

next instruction that use the same logical register commits. An analyze 

regarding the physical register file [Cri04b] shows that registers blocked for 

a long time and dead registers constitute the largest fraction of allocated 

registers. A large portion of registers are blocked for long time because the 

corresponding instructions are waiting for the execution of long-latency 

operations.  

Cristal et al. [Cri04b] integrated into kilo-instruction processors an 

aggressive register management mechanism, called ephemeral registers, that 

allows dead registers to be released early and registers blocked for long time 

to be allocated late. Instead of assigning physical registers to architectural 

registers, their late register allocation mechanism assigns virtual tags, the 

physical registers being only assigned when the instructions are issued for 

execution. In order to implement the early register release technique, each 

virtual tag has an associated counter. The counter is incremented each time 

the source register of an instruction is renamed to that virtual tag and is 
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decremented each time the reader instruction is issued for execution. The 

virtual tag and its associated physical register can be released when the 

corresponding counter reaches zero and the register has been already 

written.  

Akkary et al. in [Akk03a] proposed another register release scheme 

implemented by associating a counter to each physical register. A counter is 

incremented each time the source operand of an instruction is mapped to the 

corresponding physical register and is decremented each time an instruction 

actually reads that physical register. A physical register can be released 

when its counter is 0 and the logical register corresponding to that physical 

register is renamed again. Since a checkpoint provides the ability to restore 

the correct architectural state, physical registers must be released only after 

the corresponding checkpoint is released. Using checkpoints as readers 

guarantees that physical registers are not released until all checkpoints to 

which they belong are released. Therefore, when a checkpoint is created, the 

counters of all the physical registers belonging to the checkpoint are 

incremented. Similarly, when a checkpoint is released, the counters of all 

the physical registers that belong to the checkpoint are decremented. Thus, 

the proposed register file mechanism performs comparable to a larger 

conventional register file by significantly reducing the average lifetime of 

the physical registers. 

Memory instructions also require an entry in the Load/Store queue 

(LSQ) until commit. The LSQ assures the program order commitment of all 

Load and Store instructions, and, therefore, complex memory 

disambiguation logic is necessary that compares the effective address of 

each memory operation with the addresses of all previous in-flight memory 

operations. In the memory disambiguation mechanism used by Cristal et al. 

[Cri04b], if a Load is issued and an older Store must write the same memory 

location, the Store result is forwarded to the Load. If the Store result is still 

not ready, the Load is rejected and reissued again.  

Akkary et al. [Akk03b] proposed a hierarchical Store queue 

organization. When a new Store appears, it is inserted into a fast and small 

first-level Store queue that holds the last executed Stores. If this first-level 

Store queue is full, the space for the new Store is assured by removing the 

oldest Store instruction into a larger and slower second-level Store queue 

that holds it until commit. A membership test buffer is used to predict if a 

certain Store instruction is buffered in the second-level Store queue. When a 

Load instruction is issued, the first-level Store queue and the membership 

test buffer are accessed. If the Load misses both the first-level Store queue 

and the membership test buffer, the data is forwarded to the Load from 

memory. If the Load hits the first-level Store queue, the data is forwarded to 
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the Load. If the Load misses the first-level Store queue, but hits the 

membership test buffer, the second-level Store queue is accessed. If there is 

a hit, the data is forwarded to the Load, but in the case of miss the data is 

forwarded from memory with penalization. This hierarchical Store queue 

organization with only a few hundreds of entries provides performance 

close to a usual Store queue with thousands of entries, which is remarkable. 

The performance of kilo-instruction processors on integer programs is 

sometimes limited by hard-to-predict branches and pointer chasing. In 

general, Loads become very critical when they drive a hard-to-predict 

branch. Hopefully, the performance on these integer programs can be 

improved, with selective checkpointing applied on long latency Loads and 

hard-to-predict branches – identified in [Gel06a, Vin06] based on the 

polarization index of branch instructions in different contexts, such as local 

history, global history and path information. Selective checkpointing can be 

applied on unbiased branch contexts in the same manner as Akkary et al. 

[Akk03a] created checkpoints on low-confidence branches, and as Chappell 

et al. [Cha02b] used microthreads only for branch instances likely to be 

mispredicted. 

Pericàs et al. [Per06] introduced the execution locality concept, a 

property that describes instructions as a function of the number of cycles 

they wait in the queues until they issue. Thus, instructions depending on 

cache misses have low execution locality, while the remaining instructions, 

including those that depend only on cache hits, have high execution locality. 

The small amount of low execution locality code causes stalls that 

significantly reduce performance.  

 

Decode

&

Rename

Integer

queue

FP

queue

Register

file

ALU

Reorder buffer (RB)

Integer

queue

FP

queue

Register

file

ALU

Checkpointing stack

Low locality

instruction buffer

Low locality

register file

Load

queue

Store

queue

Store buffer

Cache Processor (out-of-order) Address Processor

Memory Processor (in-order)

Decode

&

Rename

Decode

&

Rename

Integer

queue

FP

queue

FP

queue

Register

file

Register

file

ALUALU

Reorder buffer (RB)

Integer

queue

FP

queue

FP

queue

Register

file

Register

file

ALUALU

Checkpointing stackCheckpointing stack

Low locality

instruction buffer

Low locality

instruction buffer

Low locality

register file

Low locality

register file

Load

queue

Load

queue

Store

queue

Store buffer

Cache Processor (out-of-order) Address Processor

Memory Processor (in-order)

 

Figure 2.3. The Decoupled Kilo-Instruction Processor 

Based on the observation that low execution locality code is very 

decoupled from high execution locality code, Pericàs et al. proposed a 
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decoupled microarchitecture (Figure 2.3) that executes low latency 

instructions on a Cache Processor and high latency instructions on a 

Memory Processor. Thus, one pipeline, the out-of-order Cache Processor, 

exploits instruction-level parallelism, while a second pipeline, the in-order 

Memory Processor, exploits memory-level parallelism. The instructions are 

fetched by the Cache Processor where they are waiting to be issued to the 

functional units. If an instruction turns out – based on a timer – to have long 

issue latency, it is moved from the Cache Processor into a Low Locality 

Instruction Buffer (LLIB), where it is waiting until all long-latency Load 

operations it depends on have finished. When the operands of a long latency 

instruction are available, they are inserted into the Low Locality Register 

File (LLRF). Long-latency Loads are executed in the address processor by 

the LSQ. After a long latency Load completes, the value is kept in the 

address processor. When the dependent instructions arrive to the head of the 

LLIB and the Load value is available, they are moved to the Memory 

Processor to be executed. For the recovery after mispredictions in the Cache 

Processor an ROB structure is used. In the Memory Processor the recovery 

is assured through selective checkpointing. Taking a checkpoint involves 

copying the ready values from the architectural register file into a free entry 

of the Checkpointing Stack. The state of the Memory Processor is restored 

from the Checkpointing Stack if an exception occurs. 

An important limitation of the above presented decoupled 

microarchitecture consists in the serialization (in-order execution) of all 

memory-dependent instructions within the Memory Processor, resulting in 

about 10% performance loss. Therefore, Pericàs et al. in [Per07] have 

further developed their decoupled microarchitecture presented in [Per06] by 

allowing it to scale to multiple cores and multiple threads. This architecture, 

with variable window size, uses multiple cores called Memory Engines that 

can be shared among threads. Thus, their flexible multi-core architecture 

consists of a set of Cache Processors, each one with a static partition of 

Memory Engines, and a pool of Memory Engines that can be dynamically 

assigned to different threads. Consequently, the proposed microarchitecture 

has good potential to adapt to application mixes, because threads without 

Memory Engine requirements can yield their resources to threads that 

require more Memory Engines. Moreover, when there are fewer threads 

than Cache Processors, the active threads can access the dynamic pool of 

Memory Engines without competition. The evaluation results obtained on 

the floating-point SPEC 2000 benchmarks by using 16 Memory Engines 

show a considerable IPC speedup of 12% compared to the baseline 

decoupled microarchitecture. 
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2.2. Advanced Dynamic Branch Prediction 

Accurate branch prediction is increasingly important in today’s high 

performance superscalar processor designs. A variety of basic branch 

prediction techniques are presented in [Hen03] such as the branch 

prediction buffer (BPB) or the branch target buffer (BTB). The goal of all 

these mechanisms is to allow the processor to speculatively execute control 

dependent instructions, thus avoiding stalls and extending the instruction-

level parallelism across multiple basic blocks. 

The BPB and BTB predictors use only the recent behavior of a single 

branch to predict the future behavior of that branch. Branch predictors that 

use the behavior of other branches to make a prediction are called 

correlating predictors or two-level predictors [Hen03], and they were 

introduced independently by Yeh and Patt [Yeh92] and by Pan et al. 

[Pan92]. Two-level predictors use two levels of branch history information 

to make predictions. The first level is a branch history register (BHR) that 

records the outcomes of the last k branches encountered. The second level is 

a pattern history table (PHT) with entries having the same fields as a BTB 

entry. The PHT is indexed using a concatenation of the lower portion from 

branch’s PC with the BHR representing the context of the branch [Pan92]. 

After a branch is resolved, its outcome is shifted left into the BHR, and the 

corresponding PHT entry is also updated. 

In [Yeh92] there are presented three important alternative two-level 

branch predictors and other variations are introduced in [Yeh93]. The 

simplest two-level branch predictor called GAg (Figure 2.4), uses a global 

BHR and a global PHT. 
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Figure 2.4. Two-level branch predictor (GAg) 
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Since the outcomes of different branches update the same history register 

and the same pattern history table, the information of both branch history 

and pattern history is influenced by results of different branches. Initially all 

these predictors did not have the tag checking mechanism, using only the 

global/local histories as pointers to the prediction table; however, according 

to [Vin00a], in Figure 2.4 we added this mechanism that reduces branch 

interferences. 

In order to reduce the branch interference, in [Yeh92] the authors 

introduced a two-level branch prediction mechanism called PAg that uses a 

per-address branch history table (PBHT) and a global pattern history table. 

The PBHT consists of multiple local branch history registers, each of them 

being associated to distinct static branch instructions. A local BHR records 

the last k outcomes of the same static branch. Since all branches update the 

same PHT, the pattern history interference still exists. In order to 

completely remove the interference in both levels, in [Yeh92] the authors 

proposed another two-level branch predictor called PAp that uses a per-

address branch history table and a per-address pattern history table. Thus, 

the PAp scheme keeps separate history and pattern information for each 

distinct static branch. 

All two-level branch predictors presented in [Yeh92] use only global 

or only local branch history information. The global branch history is used 

to exploit correlation between the outcome of a branch and the outcomes of 

other branches. In contrast, the local history exploits correlation between the 

outcomes of a single branch. However, there exist branches that are not 

predictable based only on global or local history. Therefore, in [Vin00a, 

Cha02a] the authors introduced the two-level branch predictors, which 

employ both the global and local branch history information simultaneously. 

McFarling [McFar93] proposed a new technique that combines the 

advantages of two different types of branch predictors. His technique uses 

2-bit up-down counters to keep track of which predictor is currently more 

accurate for each branch. The hybrid predictor uses the more accurate 

component predictor to generate the prediction. He also describes a method 

of increasing the usefulness of branch history by hashing it together with the 

branch address, instead of concatenating it with the branch address as Pan 

and Rahmeh have done in [Pan92]. McFarling demonstrated that the 

eXclusive OR (XOR) of the branch address with the global history has more 

information than either component alone. Combining a predictor that use 

local branch history with a predictor that use global branch history hashed 

together with branch address, he obtained a prediction accuracy of 98.1% on 

the SPEC89 benchmarks [SPEC]. 
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Hybrid predictors provide high prediction accuracy, but they must 

bring data from several component prediction tables to compute a final 

prediction. Unfortunately, this complexity adds more gate delay to the 

process of making a prediction. Because the branch predictor is on the 

critical path for fetching instructions, it must deliver a prediction in a single 

cycle. Jiménez proposed in [Jim03b] an alternative predictor design that 

completely hides prediction latency so that accuracy and hardware budget 

are the only factors that affect the efficiency of the predictor. The key idea 

is to organize the predictor so that a small set of candidate entries from the 

prediction table is prefetched several cycles before the prediction is needed. 

Because more possible target instructions are fetched and executed, when it 

becomes known which entry from the prediction table must generate the 

prediction, the final prediction can be selected in a single cycle. 

Falcón et al. in [Fal04] introduced the prophet/critic hybrid branch 

predictor, which has two component predictors that play the role of either 

prophet or critic. The prophet is a conventional predictor that uses branch 

history to predict the direction of the current branch. The critic uses both the 

history and the future of the branch to give a critique of the prediction 

provided by the prophet for the current branch. Thus, the critique is used to 

generate the final prediction for the branch. In a conventional hybrid 

predictor, both components are accessed in parallel. In the prophet/critic 

hybrid predictor, although both prophet and critic predict the same branch, 

the predictions are not initiated at the same time. The prophet generates the 

prediction for the current branch in an early pipeline stage, and goes on 

along the predicted path generating new predictions, thus providing branch 

future. This allows the output of the prophet (branch future) to be used as 

input to the critic, which provides its critique some cycles later. This 

critique either agrees or disagrees with the prophet prediction, and 

determines the final prediction for the branch. When the prophet mispredicts 

a branch, the critic uses its future bits to train its prediction structures. When 

the branch is encountered again, the critic uses the future bits as context to 

identify if the prophet is likely to be wrong and should be overridden, thus 

increasing the prediction accuracy. 

Dynamic branch prediction with neural techniques was first proposed 

by Vintan [Vin99a], exploring the use of learning vector quantization 

(LVQ) method. In [Vin00b] Vintan analyzed the suitability for branch 

prediction of the LVQ and a Multi-Layer Perceptron (MLP) with a single 

intermediate layer using the backpropagation learning algorithm. The 

author compared the performance of a two-level adaptive branch predictor 

with the LVQ and MLP neural branch predictors. Both the classical and 

neural schemes predicted based on the same information (PC, LHR, GHR). 
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While the LVQ predictor achieved results comparable to an equivalent 

conventional predictor, both the statically pre-trained MLP and dynamically 

trained MLP outperformed the two-level adaptive branch predictor. Taking 

into account that all branches were predicted using only one global neural 

predictor (LVQ or MLP) instead of a local neural predictor per branch, the 

obtained results encouraged other researches in neural branch prediction 

domain. 

As a consequence Jiménez and Lin [Jim03a] proposed a two-level 

scheme that uses fast per branch single-layer perceptrons instead of the 

commonly used two-bit saturating counters. The branch address is hashed to 

select the perceptron, which is used to generate a prediction based on global 

branch history. The perceptron, one of the simplest neural networks, is a 

natural choice for branch prediction because it can be efficiently 

implemented in hardware. Other neural methods, such as backpropagation, 

radial basis networks, Elman networks and Learning Vector Quantization, 

were studied in [Ste01, Kim03, Ega03] but these methods are less attractive 

because of excessive implementation costs. The single-layer perceptron 

consists of one artificial neuron providing weighted connections between 

several input units and one output unit. Figure 2.5 presents the structure of a 

perceptron. 
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Figure 2.5. The structure of a simple perceptron 

A perceptron learns a target boolean function )...,,( 1 nxxt  of n  inputs. In the 

case of branch prediction, the ix  are the bits of the branch history register, 

and the target function predicts whether a particular branch will be taken. 

Intuitively, a perceptron keeps track of positive and negative integer 

correlations between branch history and the branch being predicted, each 

weight iw  representing the correlation between the output of an already 
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executed branch ix  and the output of the branch being predicted ( 0w  is the 

bias weight). The output y  of a perceptron is computed as 





n

i

ii wxwy
1

0       (2.1) 

The inputs are bipolar, thus each ix  is either –1, meaning not taken or 1, 

meaning taken. A negative output is interpreted as predict not taken while a 

positive output is interpreted as predict taken. 

Once the perceptron output y  has been computed and the branch executed, 

the following formula is used to train the perceptron: 
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where t  is the target behavior of the branch: -1 if the branch was not taken, 

or 1 if it was taken. The weight iw  is incremented when the branch outcome 

agrees with ix , and it is decremented in the case of disagreement. Thus, for 

a mostly agreed connection (positive correlation), the weight becomes large, 

and when there is mostly disagreement (negative correlation), the weight 

becomes negative with large magnitude. In both cases, the weight has a 

large influence on the prediction. When there is a weak correlation, the 

weight remains close to 0 contributing little to the output. Jiménez trained 

the predictor using a special case of Rosenblatt’s perceptron learning rule 

[Mit97]: 
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Their predictor achieved increased accuracy by using long branch histories 

without requiring exponential resources. Thus, for a 4KB hardware budget 
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they improved misprediction rates for the SPEC 2000 benchmarks [SPEC] 

by 10.1%. In [Jim02] they developed a perceptron-based predictor that use 

both local and global branch history in the prediction process, increasing the 

accuracy by 14% over the McFarling-style hybrid predictor [McFar93]. In 

[Jim01b] they compared the perceptron predictor with a Multi-Layer 

Perceptron (MLP) using the backpropagation learning algorithm. At each 

history length, the perceptron predictor was more accurate than the MLP. 

Although backpropagation should be able to asymptotically exceed the 

accuracy of the perceptron, the longer training time causes it to be slightly 

less accurate overall. 

Hunt et al. [Hun03] compared different perceptron-based predictors: 

global predictors trained on global branch history, local predictors with each 

of them trained on history of a single branch, and combined predictors that 

use both local and global branch histories. They obtained the best prediction 

accuracy of 96.41% with the combined predictor. They also demonstrated 

that the perceptrons trained on bipolar data outperform the equivalent 

systems trained on binary data.  

In [Jim03c] Jiménez improved the previously presented neural 

architecture obtaining prediction accuracy far superior to conventional 

predictors but with a latency comparable to predictors from industrial 

designs. He used a neural predictor that selects the vector of weights used to 

generate prediction, according to the path leading up to a branch – based on 

all branch addresses belonging to that path –, rather than according to the 

branch address alone as the original perceptron does. Figure 2.6 depicts the 

difference between the original perceptron and the path-based neural 

predictor.  
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Figure 2.6. The output computation process with simple perceptron versus path-

based perceptron 
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This selection mechanism improves significantly the prediction accuracy, 

because, due to the path information used in the prediction process, the 

predictor is able to exploit the correlation between the output of the branch 

being predicted and the path leading up to that branch. On the other hand, 

the prediction latency of path-based neural predictors is lower (almost 

completely hidden), because the computation of the output can begin far in 

advance of the effective prediction, each step being processed as soon as a 

new element of the path is executed. The most critical-timing operation is 

the sum of the bias weight and the current partial sum. The path-based 

neural predictor improves the instructions-per-cycle (IPC) rate of an 

aggressively clocked microarchitecture by 16% over the original perceptron 

predictor [Jim01a]. 

Seznec [Sez04] proposed an improved perceptron-based predictor 

called redundant history skewed perceptron (RHSP). The author 

demonstrated that the accuracy that can be achieved by a perceptron-based 

predictor is significantly better than the one achieved by the original 

perceptron predictor. This accuracy increase is allowed by the combination 

of three techniques: use of a redundant history, pseudo-tagging, and 

skewing. Their experiments showed that the use of a redundant history 

introducing up to four bits to represent a branch significantly improves the 

potential accuracy of the predictor. Pseudo-tagging is introduced in order to 

decrease aliasing impact on the perceptron table by using a few bits of the 

address as part of the input vectors. Thus, when several branches share a 

perceptron, it will predict them correctly if it is able to linearly separate their 

addresses. The skewing technique that also contributes to higher prediction 

accuracy consists in splitting the table of perceptrons in distinct physical 

tables. These distinct tables are indexed with different hashing functions. 

Seznec also reduced the complexity of the computation and introduced the 

ahead-pipelined RHSP that initiates prediction computation ahead. The 

simulations showed lower prediction latency and the same prediction 

accuracy. 

Fern et al. [Fer04] proposed a dynamic decision tree (DDT) for 

hardware prediction. The main idea of dynamic feature selection using DDT 

is to provide branch prediction selecting and storing information about only 

the most relevant features from the larger feature set. They use at each 

decision tree node a correlation feature selector mechanism to select the 

most predictive feature from a large set of candidate features. These 

candidate features are the bits of the local and global branch history. The 

correlation feature selector associates a signed counter to each feature in the 

set. Thus, a large counter magnitude for a feature indicates its strongly 

positive or negative correlation with the branch outcome. The correlation 
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feature selector is updated incrementing the counters for the features that 

agree with the target outcome, and decrementing the remaining counters. In 

the prediction process, the most correlated feature is selected from the set of 

candidate features, including the constant feature. The purpose of the XOR 

operations is to select either the value or its negation based on whether the 

correlation counter indicates a positive or negative correlation.  
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Figure 2.7. Prediction process of an internal DDT node 

The DDT maintains a summary information for each node indicating 

whether the prediction should be made using a branch history feature, the 

constant feature, or the prediction of the selected child. A child is chosen 

based on the sign of the correlation between the selected feature and the 

target outcome. Leaf nodes behave identically to internal nodes except they 

do not have child predictors.  

The DDT-based predictor is implemented using a prediction table. 

Each location of the table stores the information of the nodes for a particular 

tree. In prediction mode the prediction table is accessed with the lower-

order bits of PC, and the summary information for each node is read out. 

The summary information at every node is used in conjunction with the 

feature vector to select the decision to be made at that node: either to predict 

based on a single feature or to pass the prediction to the appropriate child. 

Once the parallel decision operations have occurred, the prediction process 
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identifies a single path of activated nodes from the root to one leaf. The only 

operation that uses time proportional to the depth of the tree is the flow of 

the prediction up the tree on the selected path from the leaf to the root. 

When a target outcome is resolved the correlation feature selectors are 

updated. The simulations on the SPEC’95 benchmarks [SPEC] indicated 

that the DDT-based branch predictor performs comparable to conventional 

two-level predictors with similar storage requirements. In domains with 

many features the DDT has an advantage in terms of time over perceptrons, 

because its prediction time depends only on tree depth and not on the 

number of features. 

Other state-of-the-art branch prediction schemes, more related with 

our work, are presented in Chapter 4.  

2.3. Dynamic Value Prediction 

Value Prediction (VP) is a relatively new technique that is built on the 

concept of value locality and increases performance by eliminating true data 

dependencies. The main aim is to early predict instruction results during 

their fetch or decode stages and to speculatively issue and execute data 

dependent instructions using the predicted values. If the prediction is 

incorrect, recovery mechanisms must be employed to squash speculative 

results and reexecute all instructions that have already used the mispredicted 

value. An important challenge of the VP technique is to compress the 

program’s dynamic critical path and therefore to solve the so-called Issue 

Bottleneck. If the predicted instructions do not belong to the critical path, 

the technique is obviously not efficient in reducing the limitation of the 

critical path. Therefore, the VP technique tries to avoid a fundamental 

limitation in the present-day computing paradigm, the Read After Write 

(RAW) data hazards, thus the intrinsic sequential program execution. 

Lipasti et al. [Lip96a] first introduced Value Locality as the third facet 

of the locality concept (temporal and spatial). They defined the value 

locality as “the likelihood of the recurrence of a previously-seen value 

within a storage location inside a computer system”. Measurements using 

SPEC’95 benchmarks show that value locality on Load instructions is about 

50% using a history of one (producing the same value like the previous one) 

and 80%, using a history of 16 previous instances. Based on the dynamic 

correlation between Load instruction addresses and the values being loaded, 

Lipasti et al. proposed a new data-speculative micro-architectural technique 

entitled Load Value Prediction that can effectively exploit value locality. 

Load value prediction is useful only if it can be done accurately since 
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incorrect predictions can lead to increased structural hazards and longer 

execution latency. Classifying the static Loads separately based on their 

dynamic behavior (unpredictable, predictable and constants), the full 

advantage of each case can be extracted. The cost of mispredictions can be 

avoided by detecting the unpredictable Loads and also the cost of memory 

access through identifying highly predictable Loads. The proposed Load 

Value Prediction Unit consists of a direct mapped Load Value Prediction 

Table (LVPT) for generating last value predictions, a direct mapped Load 

Classification Table (LCT) that maintains 2-bit saturating counters in order 

to classify Loads as unpredictable, predictable or constants and a Constant 

Verification Unit (CVU) used for constant Loads. The CVU assures 

coherence between the LVPT value and the real value from the main 

memory. If a LVPT entry is classified as being constant, its LVPT index 

and memory address are stored in the associative CVU table. Any entry 

with data address matching a subsequent Store instruction is invalidated in 

the CVU table, and the corresponding LCT counter transits into the 

predictable state. 
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Figure 2.8. LVP Mechanism 

The LVPT and LCT structures are indexed by the lower part of the PC and 

simultaneously accessed in the fetch stage of the Load in order to generate a 

value prediction and to determine whether or not a prediction should be 

made, respectively. If the corresponding confidence counter is in the 

unpredictable state, no prediction is generated. For Loads classified as 
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predictable, the LVPT is used to predict the value that was previously 

loaded by that instruction from memory (last value prediction) and to 

forward it to the dependent instructions. When the Load completes, the 

predicted and actual values are compared, the LVPT and LCT are updated, 

and the correct path is reexecuted in the case of misprediction (recovery). 

For constant Loads that find a match in the CVU, accessing the 

conventional memory system is completely avoided. 

Lepak and Lipasti [Lep00a] introduced the Store locality concept and 

Store prediction methods, with good results especially for multiprocessor 

systems. Similarly with the approach of Load instructions, the Store value 

locality was measured using PC (instruction-centric) or data address 

(memory-centric). In both cases the value locality degree is between 30% 

and 70%. The authors introduced the “silent Store” concept, meaning that a 

Store writes the same value like its previous instance (34% – 68% of 

dynamic Store instructions are silent Stores). Removing these Store 

instructions at some points in the program’s execution (either statically at 

compile time, or dynamically at run time), some potential benefit can be 

gained in execution time and/or code size. They describe how is enhanced 

the performance of uniprocessor programs by squashing silent stores: the 

pressure on cache write ports and on Store queues is reduced and the data 

bus traffic outside the processor chip is also decreased. The free silent Store 

squashing concept is based on idle read port stealing to perform Store 

verifies and aggressive Load/Store Queue to exploit temporal and spatial 

locality for Store squashing [Lep00b]. 

In [Saz97] Sazeides and Smith developed an empirical classification 

of value sequences produced by instructions. There are two kinds of value 

predictability existing in programs: value repetition and value 

computability. In order to capture these certain types of value predictability, 

the authors have been proposed two distinct main categories of predictors: 

computational and contextual. Two important characteristics were also 

defined for understanding prediction behavior. One is the Learning Time 

(LT), which is the number of values that have to be observed before the first 

correct prediction. The second is the Learning Degree (LD), which is the 

percentage of correct predictions following the first correct prediction. 

Computational predictors are predicting the next value based on some 

previous values in an algorithmic manner, therefore according to a 

deterministic recurrence formula. The simplest computational predictors are 

the last value predictors (LVP) that perform a trivial computational 

operation: the identity function. The next value of a static instruction is 

predicted as being the most recent value produced by that instruction. LVP 

were used for the first time in [Lip96a] to predict Load values and in 
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[Lip96b] the value prediction process was extended to other instruction 

types. 
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Figure 2.9. Last Value Predictor 

The value history table is indexed by the instruction address. Each 

entry in the prediction table has three fields: Tag, State and Value. The Tag 

field stores the identity (the lower part of the PC) of the instruction that is 

currently mapped to that entry, and the Value field stores the last result for 

that instruction. The State field represents a saturating confidence counter 

(automaton), which is incremented when the prediction is correct and is 

decremented otherwise. The verification of the values generated by the 

VHT is necessary. The state of the confidence counter will be changed 

according to the comparison between the predicted and actual values. 

In [Lip96b] Lipasti and Shen introduced another computational 

predictor, the stride predictor, and Sazeides and Smith in [Saz97] 

generalized the idea. A stride sequence is a value sequence in which the 

next value can be computed by the immediate previous value and a stride. 

Stride predictors in their simplest form predict the next value by adding the 

most recent value to the difference of the two most recent values produced 

by an instruction. The structure of the stride predictor is presented in Figure 

2.10. The experimental results indicated that the performance of 

computational prediction varies between instruction types indicating that its 

performance can be further improved if the prediction function matches the 

functionality of the predicted instruction. 
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Figure 2.10. Stride Predictor 

Figure 2.11 presents a generic scheme for a context-based predictor. 

During the instruction fetch stage the context from VHT (Value History 

Table) is addressed using the PC. This context will address the VPT (Value 

Prediction Table). A location from VPT contains two fields: Val and Confid. 

The Val field stores the last instruction value(s), and the Confid field stores 

the confidence degrees attached to each value from the Val field. 
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Figure 2.11. A generic context-based predictor scheme 
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The value with the highest confidence is predicted only if this 

confidence is greater than a certain threshold. Practically the scheme 

represents a simplified feasible implementation of the generic PPM 

predictor (because it counts the frequencies for each value following a 

certain context). Obviously, there might be some interferences in the PHT. 

An interesting solution in this sense is given in [Des02] where the authors 

proposed to use a second hashing function, independent of the first one. 

They use independent hashing as confidence mechanism for value 

prediction. Figure 2.12 shows this hashing mechanism. The interferences 

are strongly reduced with great benefits on prediction accuracy. 
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Figure 2.12. Independent hashing 

In [Wan97] Wang and Franklin introduced a two-level value predictor 

for data value prediction (see Figure 2.13). The VHT has four fields: Tag, 

LRU, Data Values, and Value History Pattern. The Data Values field stores 

up to four most recent unique values. There is a statistical explanation for 

using only the last four values: 15% – 45% of instructions produce only one 

value in their last 16 dynamic instances and 28% – 67% produce maximum 

four distinct values. The four values are associated with the binary encoding 

{00, 01, 10, 11}. So long as the different instances of a static instruction 

keep producing one of these four values, the next value can be predicted by 

selecting one of the four outcomes. When a fifth unique value is produced, 

it replaces from the Data Value field the least recently seen value, based on 

the LRU field that keeps a counter for each stored value. The Value History 

Pattern (VHP) field stores a 2p bit pattern representing the last p outcomes 
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of an instruction. Because there are four possible outcomes for an 

instruction {00, 01, 10, 11}, two bits are required to store each outcome. 

The VHP field is used to index a second prediction level, the Pattern History 

Table (PHT). For each possible 2p bit pattern, four independent up/down 

counter values {C0, C1, C2, C3} are stored in the PHT, representing a 

condensed history of the previous outcomes of the pattern. When a 

prediction is to be made, the maximum counter is determined from the 

selected PHT entry, and the outcome corresponding to that counter is 

predicted. If KCCCCCMAX ),,,( 3210  then the outcome of the MAX 

circuit is the binary code of K on two bits. A prediction is furnished only if 

the maximum counter value is greater than a specific threshold value. The 

two-level predictor is updated as follows. The VHP field of the selected 

VHT entry is shifted left by two bits and the new outcome is entered. The 

counter from the selected PHT entry corresponding to the correct outcome 

is incremented by 3, and all the other counters are decremented by 1. 
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Figure 2.13. Two-level adaptive value predictor 

The results of laborious simulations on SPEC benchmarks [SPEC] 

pointed out that a single predictor cannot capture all the various types of 

predictability patterns that occur in programs. This suggests that a hybrid 

scheme might be useful for enabling high prediction accuracy at lower cost 

[Wan97]. Although the hybrid value predictors can provide more correct 

predictions than single predictors, they consume more hardware resources. 

More important, they can waste the limited available hardware resources, 
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since every instruction being predicted occupies a unique entry in each of 

the component predictors. In [Wan97] Wang and Franklin proposed a 

hybrid of two-level and stride predictors, with a fixed prioritization of its 

component predictors (Figure 2.14). 
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Figure 2.14. Hybrid (two-level, stride) predictor 

In the proposed hybrid predictor the two-level predictor has always 

priority, thus the stride predictor is used only when the two-level predictor 

does not make a prediction. In our opinion, this fixed prioritization is not 

optimal but it is quite simple to be implemented; a dynamic prioritization 

based on some confidences should be better, but in this case a dynamic 

(adaptive) metapredictor should be necessary in order to select the best 

predictor at a certain moment. Rychlik et al. in [Ryc98] combined a last-, a 

stride-, and a two-level value predictor to an overall hybrid value predictor. 

In order to efficiently use the hardware resources, they provided a dynamic 

classification scheme that distributes instructions into proper component 

predictors during run-time, but unfortunately, without prediction accuracy 

improvements. Wang et al. [Wan99] modified the dynamic classification 

scheme by reclassifying instructions after they cannot be predicted well by 

their previously assigned component predictor. Their modification improved 

this kind of hybrid value predictor. 
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Calder et al. [Cal99] proposed some selective techniques in order to 

reduce the pressure on the prediction tables, by filtering the instructions that 

accessed these resources. The ideal case is to select those dynamic 

instructions that belong to the critical path. For simplicity, the authors 

proposed a technique that gives priority for prediction to those instructions 

that belong to the current longest data dependence chain from the 

instruction window. Their results show that concentrating only on Loads, is 

a reasonable filtering approach since Load latencies are responsible for most 

of the critical paths in integer programs. It is also important to concentrate 

on Store instructions that can provide significant gains, even if those 

instructions are hard to predict. For prediction tables of 1024 entries they 

report an average performance growth of about 11%, comparing with a 

classical superscalar structure. 

Gabbay and Mendelsohn [Gab98] developed a register-file predictor 

that is the closest predecessor to our register value prediction technique 

(presented in Chapter 6). They predict the destination value of a given 

instruction according to the last previously seen value and the stride of its 

destination register. They have also proposed a dedicated analytical model 

for determining the speedup involved by a value prediction architecture. 

Unfortunately the authors did not pursue further this particular idea by 

systematically developing new register-centric predictors and evaluating 

them through simulations. 

Zhou et al. [Zho03] have studied a new type of value locality, named 

computational locality in the global value history. They demonstrated that 

value locality also exists in the global value history, which is the value 

sequence produced by all dynamic instructions according to their execution 

order. As a consequence, a novel predictor scheme, the so-called gDiff 

predictor, is proposed to exploit one special and common case of this 

computational locality, stride-based global locality. Thus, the gDiff predicts 

based on the formula DXX knn   , where D is the stride value. 

Experiments show that very strong stride-based locality exists within global 

value histories. Predicting all value-producing instructions, the gDiff can 

achieve a prediction accuracy of 73%. 

Other state-of-the-art value predictors, including our original register 

value prediction techniques, are presented in Chapter 6.  



 

 

“Prediction is very difficult, 

especially about the future” 

Niels Bohr 

3. Finding Difficult-to-Predict Branches 

Since the performances of modern speculative architectures highly depend 

on branch prediction accuracy, we will further focalize on some branch 

prediction limitations, namely, on hard-to-predict branches. Our first goal is 

to identify difficult branches in the SPEC 2000 benchmarks [SPEC]. We 

consider that a branch in a certain context is difficult-to-predict if it is 

unbiased (the branch behavior is not sufficiently polarized for that certain 

context) and the taken and not taken outcomes are non-deterministically 

shuffled. The second goal is to improve prediction accuracy for branches 

with low polarization rate, introducing new feature sets that will increase 

their polarization rate and, therefore, their predictability. 

3.1. Related Work 

Representative hardware and compiler-based branch prediction methods 

have been developed in recent years in order to increase instruction-level 

parallelism. Branch prediction is an important component of modern 

microarchitectures, despite of their deeper pipelines that increased 

misprediction latency. Therefore, improvements in terms of branch 

prediction accuracy are essential in order to avoid the penalties of 

mispredictions. In this section we presented only the works that are most 

closely related to our proposed novel approach. 

Chang et al., introduced in [Cha94] a mechanism that classifies 

branches into groups of highly biased (mostly-one-direction branches) and 

unbiased branches, in an attempt to reduce the impact of aliasing. By 

profiling, branches were classified according to their dynamic taken rate and 

assigned to the most appropriate dynamic predictor. With their branch 

classification model the authors showed that using a short history for the 

biased branches and a long history for the unbiased branches improves the 

performance of the global history Two-Level Adaptive Branch predictors. 

In contrast to our work, the authors are classifying branches irrespective of 

their attached context (local and global histories, etc.) involving thus an 
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inefficient approach. Due to this rough classification the corresponding 

predictors are not optimally chosen, simply because it is impossible to find 

an optimal predictor for some classes. 

Mahlke et al., proposed in [Mah94] a compiler technique that uses 

predicated execution support to eliminate branches from an instruction 

stream. Predicated execution refers to the conditional execution of an 

instruction based on the value of a boolean source operand – the predicate 

of the instruction. This architectural support allows the compiler to convert 

conditional branches into predicate defining instructions, and instructions 

along alternative paths of each branch into predicated instructions. 

Predicated instructions are fetched regardless of their predicate value. Thus, 

instructions whose predicate value is true are executed normally, whereas 

instructions whose predicate is false are nullified. Predicated execution 

offers the opportunity to improve branch handling in superscalar processors. 

Eliminating frequently mispredicted branches may lead to a substantial 

reduction in branch prediction misses, and as a result, the performance 

penalties associated with the eliminated branches are removed. The authors 

use compiler support for predicated execution based on a structure called 

hyperblock. The goal of hyperblock formation is to group basic blocks 

eliminating unbiased branches and leaving highly biased branches. They 

selected the unbiased branches based on taken frequency distributions. Their 

experimental results show that leaving only highly biased branches with 

predicated execution support, the prediction accuracy is higher. 

Nair has first introduced dynamic branch prediction based on path 

correlation [Nair95]. The basic observation behind both pattern-based and 

path-based correlation is that some branches can be more accurately 

predicted if the path leading to these branches is known. Path-based 

correlation attempts to overcome the performance limitations of pattern-

based correlation arising from pattern aliasing situations, where knowledge 

of the path leading to a branch results in higher predictability than 

knowledge of the pattern of branch outcomes along the path. Nair proposed 

a hardware scheme which records the path leading to a conditional branch in 

order to predict the outcome of the branch instruction more accurately. He 

adapted a pattern-based correlation scheme, replacing the pattern history 

register with a g-bit path history register which encodes the target addresses 

of the immediately preceding p conditional branches. Ideally, all bits of the 

target address should be used to ensure that each sequence of p addresses 

has a unique representation in the register. Since such schemes are too 

expansive to be implemented in hardware, Nair used a simplified scheme 

which uses a subset of q bits from each of the target addresses. Limiting the 

number of bits from the branch address could result path aliasing – the 
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inability of the predictor to distinguish two distinct paths leading to a 

branch. Unfortunately, this path correlation scheme does not show any 

significant improvement over pattern-based correlation [Nair95]. Nair’s 

explanation for this is that for a fixed amount of hardware in the prediction 

tables, path-based correlation uses a smaller history than pattern-based 

correlation because the same number of bits represents fewer basic blocks in 

the path history register than branch outcomes in the pattern history register. 

Despite this, path based correlation is better than pattern-based correlation 

on some benchmarks – especially when history information is periodically 

destroyed due to context switches –, indicating that with a better hashing 

scheme the pattern correlation schemes could be outperformed. 

A quite similar approach is proposed by Vintan and Egan in [Vin99b] 

– their paper represents the genesis of the original work presented in this 

chapter. The authors illustrated, based on examples, how a longer history 

could influence the behavior of a branch (changing it from unbiased to 

biased). They also showed that path information could also reduce branch 

entropy. The main contribution of this paper is related to the prediction 

accuracy gain obtained by extending the correlation information available in 

the instruction fetch stage. Based on trace-driven simulation the authors 

proved for relatively short global branch history patterns, that a path-based 

predictor overcomes a pattern-based predictor at the same hardware budget. 

The main difference, comparing with Nair’s approach, is that here the 

authors are using both the path- and history information in order to do better 

predictions. They show that a scheme based on this principle performs 

better than a classical GAp scheme, at the same level of complexity. 

Particularly useful information has been gleaned regarding the interaction 

between path length and the number of replacements required in the PHT. 

Desmet et al. [Des04] proposed a different approach for branch 

classification. They evaluated the predictive power of different branch 

prediction features based on the Gini-index metric, which is used as 

selection measure in the construction of decision trees. Actually, the Gini-

index is a metric of informational energy and in this case is used to identify 

the branches with high entropy. In contrast to our work Desmet used as 

input features both dynamic information (global and local branch history) 

and static information (branch type, target direction, ending type of taken-

successor-basic-block). V. Desmet compared in her PhD thesis [Des06] 

different branch prediction information, including local/global branch 

history and path information, from the entropy point of view. An important 

difference between our approach and Desmet’s is that we measured per 

dynamic branch-context polarization and presented the average percentage 
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of branch contexts having polarization less than 0.95, whereas Desmet 

measured per branch entropy and presented the average entropy. 

Yokota et al. present in [Yok08] the information entropy concept from 

the branch prediction point of view. They proposed two entropy measures: 

Branch History Entropy (BHe) representing the entropy of global branch 

history and Branch Instruction Entropy (BIe) for local branch history. They 

also defined the entropy of prediction function, called Table Entry Entropy 

(TEe), as the entropy of the input sequence to a prediction function, and 

Table Reference Entropy (TRe) representing the number of active table 

entries determined based on the number of references. The authors 

measured these entropies in every 1,000,000 branches time-window from 

the SPEC 2000 benchmarks. They show that the BHe, BIe and TEe 

entropies are correlated with prediction limits and can derive expected 

prediction performance. Thus, BHe and BIe show prediction limits by 

global and local history, while TEe shows theoretical limits on the predictor 

organization. 

In [Hei99a] the authors identified some program constructs and data 

structures that create “hard to predict” branches. In order to accurately 

predict difficult branches the authors find additional correlation information 

beyond local and global branch history. In their approach the prediction 

table is addressed by a combination between structural information, value 

information and history of values that are tested in the condition of 

respective branch. Unlike our work, Heil et al. did not use the path history 

information in order to do better predictions. Using the proposed prediction 

method based on data values significantly improves prediction accuracy for 

some certain difficult branches but the overall improvements are quite 

modest. However there are some unsolved problems: they tested only 

particular cases of difficult branches, and also, they did not approach branch 

conditions with two input values. Their final conclusion suggests that 

researchers must focus on the strong correlation between instructions 

producing a value and the branch condition that would be triggered by that 

certain value. 

Chappell et al. [Cha02b] investigated difficult-to-predict branches in a 

Simultaneous Subordinate Micro-Threading (SSMT) architecture. The 

authors defined a difficult path as having a terminating branch which is 

poorly predicted when it executes from that path. A path represents a 

particular sequence of control-flow changes. It is shown that between 70% 

and 93.5% of branch mispredictions are covered by these difficult paths, 

involving thus a significant challenge in the branch prediction paradigm. 

The proposed solution in dealing with these difficult predictable branches 

consists in dynamically constructing micro-threads that can speculatively 
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and accurately pre-compute branch outcomes, only along frequently 

mispredicted paths. Obviously, micro-thread predictions must arrive in time 

to be useful. Ideally, every micro-thread would complete before the fetch of 

the corresponding difficult branch. By observing the data-flow within the 

set of instructions guaranteed to execute each time the path is encountered, 

it can be extracted a subset of instructions that will pre-compute the branch. 

The proposed micro-architecture contains structures to dynamically identify 

difficult paths (Path Cache), construct micro-threads (Micro-Thread 

Builder) and communicate predictions to the main thread. The proposed 

technique involves a realistic average speedup of up to 10%, but the average 

potential speedup through perfect prediction of these difficult branches is 

about 100%, suggesting the fertility of the idea. Unfortunately the authors 

did not investigate why these paths, and their associated final branches, are 

difficult to predict. In other words, a very important question is: why these 

“difficult paths” frequently lead to mispredictions? We could hope that we 

already gave the answer in our paper [Vin06], because these “difficult 

branches” might be, at least partially, exactly the unbiased branches in the 

sense defined by us during the paragraph 3.2. They could be more 

predictable even in a single threaded environment, by sufficiently growing 

history pattern length or extending prediction information, as we show in 

this chapter. Thus, our hypothesis is that the SSMT environment represents 

a sufficient solution in order to partially solve these difficult branches, as 

the authors have shown, but not a necessary one.  

Gao et al. have focused in [Gao08] on hard-to-predict branches that 

depend on long-latency cache-missing Loads. These dependences involve 

high-penalty mispredictions becoming serious performance obstacles and 

causing significant performance degradation in executing instructions from 

wrong paths. The authors describe the correlation existing between these 

Load-dependent hard-to-predict branches and the addresses of the producer 

Loads. This correlation is based on the observation that major data 

structures from some memory-intensive applications (especially those with 

heavy pointer chasing) tend to remain stable. If a branch is dependent on 

such stable data, the Load address instead of the Load value is sufficient to 

determine the branch outcome. Therefore, the branch can be solved once the 

corresponding Load address is known, much earlier than the Load value. 

The authors exploit the address-branch correlation through a dedicated 

scheme consisting in the hardware that dynamically captures Load/Branch 

pairs and in an Address-Branch Correlation Based Predictor (ABC). In the 

ABC predictor, stable address-branch correlation information is maintained 

within a prediction table. When a producer address is known, this prediction 

table is accessed to see whether the address has stable correlation with a 
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consumer branch. In the case of hit, the branch outcome is predicted and the 

prediction is used as either a prioritized one when the branch has not been 

fetched yet or an overriding one when the branch has already been fetched 

based on the prediction of the primary branch predictor. The experimental 

results performed on a set of memory-intensive SPEC 2000 benchmarks 

show that augmenting a 16KB TAGE branch predictor with a 9KB ABC 

predictor reduces the execution time by 6.3% and the energy consumption 

by 5.2%. 

Another class of hard-to-predict branches are indirect jumps, which 

are used to implement common programming language constructs such as 

virtual function calls, switch-case statements, polymorphism and interface 

calls. Unfortunately, the prediction accuracy of indirect branches is still very 

low because many indirect branches have multiple targets that are difficult 

to predict even with specialized hardware. In [Flo05a, Flo04] Florea 

extracted some typical features and corpus of procedural and object-oriented 

applications or execution characteristics of desktop applications that 

generate indirect jumps and calls. Starting from the necessity of 

implementing new performing indirect branch prediction schemes, but 

taking into account their hardware feasibility desiderate, the author showed 

that a modified Target Cache structure, based on confidence mechanism and 

indexed with extended global correlation information, represents a more 

simpler and feasible solution that could replace the more complex PPM 

(prediction by partial matching) predictor. He also determined based on 

laborious simulations what is the optimum search pattern when different 

contexts are used. Using profile information, Florea and Vintan developed 

in [Flo05b] a hybrid predictor with arity-based selection that improves 

indirect branch prediction accuracy reaching in average 93.77%, which is 

comparable with a more complex multi-stage cascaded predictor. 

Kim et al. proposed in [Kim07] a new technique for handling indirect 

branches, called Virtual Program Counter (VPC) prediction, which seems to 

be the first low-cost dynamic mechanism that uses the existing conditional 

branch prediction hardware to predict the targets of indirect branches, 

without requiring any program transformation or compiler support. The key 

idea of the proposed Virtual Program Counter (VPC) technique is to treat an 

individual indirect branch as a sequence of multiple virtual conditional 

branches in order to predict them in hardware more accurately (using 

history information). VPC prediction dynamically de-virtualizes an indirect 

branch. Unlike compiler-based de-virtualization, VPC prediction can be 

applied to any indirect branch regardless of the number and locations of its 

targets. A main advantage is that in this way any existing conditional branch 

predictor can be used instead of special predictors dedicated to indirect 
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branches (indirect jumps, indirect calls), maintaining thus low costs and 

complexity. Therefore, further improving conditional branch prediction will 

involve automatically improving VPC technique. The evaluations showed 

that VPC prediction improves average performance by 26.7% compared to a 

commonly used branch target buffer. Unfortunately, VPC prediction is a 

multi-step iterative algorithm, therefore taking many (multiple) cycles. This 

essential timing problem is not quite clearly solved in the paper. 

3.2. Methodology of Identifying Unbiased Branches 

Based on our previous work already published in [Gel06a, Vin06, Oan06, 

Gel07c, Gel08c] we are presenting in this paragraph the methodology of 

finding difficult-to-predict branches, as they are defined in our approach. As 

we have already pointed out in Chapter 2, for each processed dynamic 

branch, the prediction is achieved based on some binary context information 

(local or global branch history, the path leading up to the branch, etc.). We 

have statistically observed that some dynamic branches occurring in certain 

contexts have a highly unbiased behavior. We consider that a branch in a 

context is difficult-to-predict if it is unbiased – meaning that the branch 

behavior (taken / not taken) is not sufficiently polarized for that certain 

context (local branch history, global history, etc.) – and the taken and not 

taken outcomes are shuffled. Therefore, we evaluate the impact of unbiased 

branches on different commonly used features. 

We called feature the binary context on p bits of prediction 

information such as local history, global history or path. Each static branch 

finally has associated k dynamic contexts in which it can appear ( pk 2 ). A 

context instance is a dynamic branch executed in the respective context. We 

introduce the polarization index (P) of a certain branch context as follows: 
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where: 

  kSSSS ...,,, 21  = set of distinct contexts that appear during all 

branch instances; 

 k = number of distinct contexts, 
pk 2 , where p is the length of the 

binary context; 
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 if kiSP i ...,,2,1)(,1)(  , then the context iS  is completely 

biased (100%), and thus, the afferent branch is highly predictable; 

 if kiSP i ...,,2,1)(,5.0)(  , then the context iS  is totally 

unbiased, and thus, the afferent branch might be not predictable if 

the taken and not taken outcomes are shuffled.  

If the taken and not taken outcomes are grouped separately, even in 

the case of a low polarization index, the branch is predictable. The unbiased 

branches are not predictable only if the taken and not taken outcomes are 

chaotically shuffled, because in this case, the predictors cannot learn their 

behavior. We introduce the distribution index (shuffle degree) for a certain 

branch context, defined as follows: 
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where: 

 nt = the number of branch outcome transitions, from taken to not 

taken and vice-versa ( 10  or 01 ), in a certain context Si; 

 ),min(2 TNT  = maximum number of possible transitions; 

 k = number of distinct contexts, pk 2 , where p is the length of the 

binary context; 

 if kiSD i ...,,2,1)(,1)(  , then the behavior of the branch in 

context Si is “contradictory” (unfavorable cases), and thus its 

learning is impossible; 

 if kiSD i ...,,2,1)(,0)(  , then the behavior of the branch in 

context Si is constant (favorable cases), and it can be learned. 

As it can be observed in Figure 3.1, we want to systematically analyze 

different feature sets used by different present-day branch predictors in 

order to find and, hopefully, to reduce the list of unbiased branch contexts 

(contexts with low polarization P).  
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Figure 3.1. Reducing the number of unbiased branches through feature set 

extension 

We approached an iterative methodology: we evaluate and reduce the 

number of unbiased branches by passing them through successive cascades 

of different prediction contexts (feature sets). Gradually this list is shortened 

by increasing the lengths of feature sets (from 16 to 28 bits) and reapplying 

the algorithm. Thus, the final list of unbiased branches contains only the 

branches that were unbiased throughout all their contexts, being therefore 

identified as difficult-to predict. For the final list of unbiased branches we 

will try to find new relevant feature sets in order to further improve their 

polarization index and, therefore, the prediction accuracy. 

This approach is more efficient than one which repeats each time the 

algorithm on all branches. Beside producing some unpleasant aspects 

related to simulation time (days / benchmark) and memory (gigabytes of 

memory needed), the second method would prove even not very accurate. 

This is because some of the branches that are not solved by a long context 

can be solved by a shorter one. Through our iterative approach we avoided 

the occurrence of false problems extending the context.  

In [Oan06] we have studied the polarization of branches but using a 

little different simulation methodology. We evaluated local history 

concatenated with global history. The simulation methodology is presented 

in Figure 3.2.  
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Figure 3.2. Identifying unbiased branches by using the local history concatenated 

with the global history 

Figure 3.3 presents a suggestive example on how unbiased branch 

contexts can be solved through their extension. We considered that a branch 

context is unbiased if its polarization index (see relation (3.1)) is less than 

0.95. The branch contexts with polarization greater than 0.95 are quite 

predictable and will obtain relatively high prediction accuracies (around 

95%). More details are presented in [Flo07a, Flo07b] on a real example 

from the Stanford Perm benchmark. 
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Figure 3.3. The goal of context extension 

In our experiments we concentrated only on benchmarks with a 

percentage of unbiased branch context instances (obtained with relation 

(3.3)), greater than a certain threshold (T=1%) considering that the potential 

prediction accuracy improvement is not significant in the case of 
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benchmarks with percentage of unbiased context instances less than 1%. If 

the percentage of unbiased branch contexts is 1%, even if they would be 

solved, the prediction accuracy would increase with maximum 1%. This 

maximum can be reached when the predictor solves all discovered difficult-

to-predict branches. 

01.0
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i
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NUB
T       (3.3) 

where NUBi is the total number of unbiased branch context instances on 

benchmark i, and NBi is the number of dynamic branches on benchmark i 

(therefore, the total number of branch context instances). 

3.3. An Analytical Model for Determining Relative 

IPC Speedup 

High prediction accuracy is vital especially in the case of multiple 

instruction issue processors. Further, we assume the analytical models 

proposed in [Cha94, Vin07], a superscalar processor that ignores stalls like 

cache misses and bus conflicts, focalizing only on the penalty introduced by 

branch misprediction. Considering as Branch Penalty (BP) the average 

number of cycles wasted for each dynamic instruction due to a branch 

misprediction, the following relation can be written: 

IRbApCBP  )1(  [wasted clock / instruction]  (3.4) 

where we denoted: 

C = number of penalty cycles wasted due to a branch misprediction; 

Ap = prediction accuracy; 

b = the ratio of branches (the number of branches reported to the total 

number of instructions); 

IR = the average number of instructions that are executed per cycle 

(the superscalar factor of architecture; >1). 

Further, we computed how many cycles the execution of each instruction 

take for a real superscalar processor that includes a branch predictor: 

BPCPICPI idealreal   [clock cycle / instruction]  (3.5) 

where: 
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CPIideal = the average number of cycles per instruction considering 

perfect branch prediction )0%100(  BPAp . It is 

obvious that 1idealCPI . 

CPIreal = the average number of cycles per instruction considering real 

branch prediction 

)0%100( idealreal CPICPIBPAp  . 

Therefore, the real processing rate (the average number of instructions 

executed per cycle) results immediately from the following formula: 
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 [instruction / clock cycle] (3.6) 

Relation (3.6) proves the non-linear correlation between processing rate (IR) 

and prediction accuracy (Ap). With these metrics, we adapted the model to 

our results. Further, we use the following notations: 

x = the ratio of biased context instances; 

x1  = the ratio of unbiased context instances. 

Since Apglobal represents a weighted mean among prediction accuracies 

applied both to biased and unbiased branches, it can be determined the 

biased prediction accuracy Apbiased. 

unbiasedbiasedglobal ApxApxAp  )1(     (3.7) 

Therefore, further we determined how much is influenced the branch 

penalty (BP) by the growth of the context length and what is the speedup in 

these conditions. For this, we softly modified Chang’s model (3.8) [Cha94] 

by substituting Ap with our Apglobal, according to relation (3.7). Thus, the 

penalty introduced by mispredicting biased branches is the term 

xApbiased  )1( , and it is )1( x  by mispredicting unbiased branches 

)0( unbiasedAp . 

IRbApCBP  )1(       (3.8) 

)1( biasedApxIRbCBP        (3.9) 

A lower percentage of unbiased branches )1( x  obtained by extending the 

context length, leads to a reduction of branch penalty (BP) according to 

(3.9), and implicitly to a greater IR according to (3.6). It can be written: 

Context Length  => x  => BP  => IR  =>  Relative Speedup>0. 
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We computed the relative IR speedup according to relation (3.10), where L 

is the feature’s length, L  {20, 24, and 28}. 

3.4. Experimental Results 

All simulation results are reported on 1 billion dynamic instructions 

skipping the first 300 million instructions from the SPEC 2000 benchmarks 

[SPEC] and on all instructions from the INTEL benchmarks [CBP04]. We 

note with LH(p) a local history of p bits, GH(p) a global history of p bits, 

LH(p)-GH(p) their concatenation, and PATH(p) a path consisting in p PCs. 

3.4.1. Pattern-Based Correlation 

We started our study evaluating the branch contexts from SPEC 2000 

benchmarks [SPEC] on local branch history of 16 bits. In Table 3.1, for 

each benchmark we presented the percentages of branch contexts with 

polarization indexes belonging to five different intervals. The column 

Dynamic Branches contains the number of all dynamic conditional branches 

for each benchmark, whereas the Static Branches column contains the 

number of static branches. For each benchmark we generated using relation 

(3.1) a list of unbiased branch contexts, having polarization less than 0.95. 

We considered that the branch contexts with polarization greater than 0.95 

are predictable and will obtain relatively high prediction accuracies (around 

0.95), therefore, in these cases we considered that the potential 

improvement of the prediction accuracy is quite low.  
 

SPEC 

2000 

Dynamic 

Branches 

Static 

Branches 
Polarization Rate (P) [%] Unbiased Context  

Instances (P<0.95) [0.5, 

0.6) 

[0.6, 

0.7) 

[0.7, 

0.8) 

[0.8, 

0.9) 

[0.9, 

1.0] 

bzip 42591123 211 15.86 16.50 8.58 6.94 52.12 11252986 26.42% 

gzip 71504537 136 15.08 15.63 11.03 9.50 48.76 27692102 38.73% 

mcf 118321124 370 10.06 10.50 8.17 8.52 62.74 6812313 5.76% 

parser 85382841 1777 6.67 5.90 3.68 4.56 79.19 17589658 20.60% 

twolf 70616018 239 14.49 12.72 6.92 5.34 60.54 31763071 44.98% 

gcc 90868660 17248 3.06 2.68 1.72 2.30 90.24 9809360 10.80% 

Average 79880717 3330 10.87 10.65 6.68 6.19 65.59 17486582 24.55% 

Table 3.1. Polarization rates of branch contexts on local history of 16 bits 
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The column Unbiased Context Instances contains – for each benchmark – 

the number of unbiased context instances and their percentage reported to 

all context instances (dynamic branches). As it can be observed in Table 

3.1, the relatively high percentages of unbiased branches (at average 

24.55%) show high improvement potential from the predictability point of 

view. 

We continue our work analyzing a global branch history of 16 bits 

only on the local branch contexts that we have already found unbiased for 

local branch history (see Table 3.1 – last column). In other words, we used a 

dynamic branch in our evaluations only if its 16 bit local context is one of 

the unbiased local contexts. In Table 3.2, for each benchmark we presented 

again the percentages of branch contexts with polarization indexes 

belonging to five different intervals. 
 

SPEC 

2000 

Simulated 

Dynamic 

Branches 

Simula-

ted Static 

Branches 

Polarization Rate (P) [%] Unbiased Context 

Instances 

(P<0.95) 
[0.5, 

0.6) 

[0.6, 

0.7) 

[0.7, 

0.8) 

[0.8, 

0.9) 

[0.9, 

1.0] 

bzip 11252986 26.42% 83 19.34 16.62 14.36 13.80 35.88 9969701 23.40% 

gzip 27692102 38.73% 62 8.98 10.09 9.01 10.88 61.04 20659305 28.89% 

mcf 6812313 5.76% 25 14.57 11.94 9.25 8.13 56.10 3887052 3.28% 

parser 17589658 20.60% 707 6.87 6.98 5.71 6.18 74.26 11064817 12.95% 

twolf 31763071 44.98% 132 8.46 7.43 6.39 9.89 67.83 22893014 32.41% 

gcc 9809360 10.80% 4923 4.02 4.13 3.14 3.56 85.15 3563776 3.92% 

Average 17486582 24.55% 988 10.37 9.53 7.97 8.74 63.37 12006278 17.48% 

Table 3.2. Polarization rates of branch contexts on global history of 16 bits 
evaluating only the unbiased local branch contexts of 16 bits from the SPEC 2000 

benchmarks 

The Simulated Dynamic Branches column contains the number of evaluated 

dynamic branches and their percentages reported to all dynamic branches. 

The Simulated Static Branches column represents the number of static 

branches evaluated within each benchmark. We generated for each 

benchmark using relation (3.1) a list of unbiased branch contexts on local 

and global history of 16 bits, having polarization less than 0.95. The last 

column contains the number of unbiased branch context instances and their 

percentages reported to all dynamic branches. Analyzing comparatively 

Tables 3.1 and 3.2, we observe that the global branch history reduced the 

average percentage of unbiased branch context instances from 24.55% to 

17.48%. The high percentages of unbiased branch context instances in the 

case of bzip, gzip and twolf benchmarks represent a potential prediction 

accuracy improvement. 
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We have also analyzed the XOR between the global branch history of 

16 bits and the lower part of the branch address (PC bits 18 – 3). We used 

again only the branch contexts we found unbiased for the previous feature 

sets (local and global branch history of 16 bits). In other words, we used a 

dynamic branch in our evaluations only if its 16-bit local context is one of 

the unbiased local contexts (Table 3.1), and its 16-bit global context is one 

of the unbiased global contexts (Table 3.2). As our simulations show 

[Gel06a, Gel07c], this feature does not reduce the percentage of unbiased 

branches (17.47%) more than the global branch history did (17.48%). 

For the determined unbiased branch contexts we are analyzing now if 

the taken and not taken outcomes are grouped separately. This is necessary, 

because if the branch outcomes are not shuffled they are predictable using 

corresponding two-level adaptive predictors, but if these outputs are 

shuffled the branches are not predictable. We used relation (3.2) in order to 

determine the distribution indexes for each unpredictable branch context per 

benchmark. We evaluated only the unbiased dynamic branches obtained 

using all their contexts of 16 bits. Table 3.3 shows for each benchmark the 

percentages of branch contexts with distribution indexes belonging to five 

different intervals in the case of local branch history, and in the same way, 

Table 3.4 presents the distribution indexes in the case of global history. 

Tables 3.3, 3.4 show that in the case of unbiased branch contexts, the 

taken and not taken outcomes are not grouped separately, more, they are 

highly shuffled.  
 

SPEC 

2000 

Simulated 

Dynamic 

Branches 

Simulated 

Static 

Branches 

Distribution Rate (D) [%] 
[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0] 

bzip 9969752 23.40% 75 6.78 6.45 44.00 16.80 25.98 

gzip 20659339 28.89% 51 5.10 5.38 38.70 20.98 29.85 

mcf 3887069 3.28% 19 9.21 11.02 46.30 13.32 20.15 

parser 11064250 12.95% 483 20.23 9.50 42.44 9.63 18.19 

twolf 22893094 32.41% 110 14.63 5.81 43.42 16.71 19.43 

gcc 3564489 3.91% 2553 39.07 9.11 33.32 6.00 12.50 

Average 12006332 17.47% 548 15.83 7.87 41.36 13.90 21.01 

Table 3.3. Distribution rates on local history of 16 bits evaluating only the 
branches that were unbiased on all their 16 bit contexts (on local and global 

history) in the SPEC 2000 benchmarks 

The percentage of unbiased branch contexts having highly shuffled 

outcomes (with distribution index greater than 0.4) is 76.3% in the case of 
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local history of 16 bits (see Table 3.3), and 89.37% in the case of global 

history of 16 bits (see Table 3.4). 
 

SPEC 

2000 

Simulated 

Dynamic 

Branches 

Simulated 

Static 

Branches 

Distribution Rate (D) [%] 
[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0] 

bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13 

gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91 

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31 

parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50 

twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75 

gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15 

Average 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79 

Table 3.4. Distribution rates on global history of 16 bits evaluating only the 

branches that have all their 16 bit contexts unbiased in the SPEC 2000 benchmarks 

A distribution index of 1.0 means the highest possible alternation frequency 

(with taken or not taken periods of 1). A distribution index of 0.5 means 

again a high alternation, since, supposing a constant frequency, the taken or 

not taken periods are only 2, lower than the predictors’ learning times. In 

the same manner, periods of 3 introduce a distribution of about 0.25, and 

periods of 5 generate a distribution index of 0.15, therefore we considered 

that if the distribution index is lower than 0.2 the taken and not taken 

outcomes are not highly shuffled, and the branch’s behavior could be 

learned.  

We continued our evaluations extending the lengths of feature sets 

from 16 bits to 20, 24 and 28 bits, our hypothesis being that the longer 

feature sets will increase the polarization index and, therefore, the prediction 

accuracy. Table 3.5 shows the percentages of unbiased branch contexts after 

each context length extension.  
 
Benchmark 16 bits 20 bits 24 bits 28 bits 

LH(16) GH(16) LH(20) GH(20) LH(24) GH(24) LH(28) GH(28) 

bzip 26.42 23.40 15.24 14.62 9.98 8.92 6.40 5.35 

gzip 38.73 28.89 24.82 24.07 19.23 18.85 14.95 14.55 

mcf 5.76 3.28 2.66 2.58 2.22 2.17 1.83 1.81 

parser 20.60 12.95 9.18 8.39 5.95 5.46 3.86 3.56 

twolf 44.98 32.41 24.83 22.99 17.42 7.28 5.95 5.67 

gcc 10.80 3.92 2.26 1.94 1.35 1.20 0.85 - 

Average 24.55 17.48 13.17 12.43 9.36 7.31 6.60 6.19 

Table 3.5. The percentages of unbiased context instances (P<0.95) from the SPEC 

2000 benchmarks after each context length extension 
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As it can be observed, in the case of the gcc benchmark, extending the 

feature set length to 28 bits, the percentage of the unbiased context instances 

is less than the threshold T of 1% (see relation (3.3)), and thus we 

eliminated it from our next evaluations. Therefore we consider that the 

conditional branches from the gcc benchmark are not difficult to predict 

using feature lengths of 28 bits. As a consequence, the results obtained with 

the gcc benchmark are not included in the average results from the last two 

columns. Despite of the feature set extension, the number of unbiased 

dynamic branches remains still high (6.19%), and thus, it is obvious that 

using longer feature sets is not sufficient. On the other hand, longer features 

are not feasible to be exploited through classic branch prediction. 

The global history solves at average 2.56% of the unbiased dynamic 

branches not solved with local history (according to Figure 3.4). The 

hashing between global history and branch address (XOR) behaves just like 

the global history, and it does not improve further the polarization rate 

[Gel06a, Gel07c]. 
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Figure 3.4. Reduction of average percentages of unbiased context instances 

(P<0.95) in the SPEC 2000 benchmarks by extending the lengths of feature sets 

In Figure 3.4 it can be also observed that increasing the branch history, the 

percentage of unbiased dynamic branches decreases, suggesting a 

correlation between branches situated at a large distance in the dynamic 

instruction stream. The results also show that the “ultimative predictibility 

limit” of history context-based prediction is approximatively 94%, 

considering biased branches as perfectly predictable and unbiased branches 

as completely unpredictable. A conclusion based on our simulation 

methodology is that 94% of dynamic branches can be solved with prediction 
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information of up to 28 bits (some of them are solved with 16 bits, others 

with 20, 24 or 28 bits). 

In [Oan06] we have studied the polarization of branches by evaluating 

local history concatenated with global history, according to the 

methodology presented in Figure 3.2. The evaluation results presented in 

Table 3.6 and Figure 3.5 show that these longer contexts, due to their better 

precision, have higher polarization index.  
 
Benchmark LH(16)-

GH(0) 

LH(16)-

GH(16) 

LH(20)-

GH(20) 

LH(24)-

GH(24) 

LH(28)-

GH(28) 

LH(32)-

GH(32) 

bzip 26.42 12.83 7.53 4.70 3.08 2.10 

gzip 38.73 24.58 17.84 12.67 9.12 6.16 

mcf 5.76 3.09 2.44 2.09 1.78 1.49 

parser 20.61 7.42 4.7 3.01 1.98 1.40 

twolf 44.98 23.94 12.79 8.28 5.70 3.90 

gcc 10.85 2.50 1.41 0.88 0.58 0.39 

Average 24.56 12.39 7.80 6.15 4.33 3.01 

Table 3.6. The percentages of unbiased context instances in the SPEC 2000 

benchmarks, after each context length extension, obtained by using the local 

history concatenated with the global history 
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Figure 3.5. The percentages of unbiased context instances in the SPEC 2000 

benchmarks, after each context length extension, obtained by using the local 

history concatenated with the global history 



74 Beyond the Limits of Modern Processors 

Comparing our results, it is obvious that a certain feature set LH(p)-GH(p) 

from Table 3.6 is approximatively equivalent in terms of polarization rate 

with feature set GH(p+4) from Table 3.5. In other words, the same 

percentage of unbiased context instances is obtained for both LH(p)-GH(p) 

and GH(p+4) feature sets, but the number of bits in the correlation 

information is different: (p+p) bits of local and global history and (p+4) bits 

of global history, respectively. Most of the present-day predictors cannot 

use very long contexts and also cannot use dynamic reconfigurable history 

lengths to get the full advantages of the iterative approach. 

In [Flo07b] we have also detected – on all branches (non-iterative 

simulation) – the unbiased context instances within the SPEC JVM98 (Java) 

benchmarks, by extending the global branch history contexts from 8 to 32 

bits. The percentage of unbiased branches decreased from 8.87% to 5.80% 

in these object-oriented Java programs (see Figure 3.6). The reason of the 

lower percentage of unbiased branches in the SPEC JVM98 benchmarks 

could be the lower occurance of conditional branches in object-oriented 

applications compared to procedural applications. 
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Figure 3.6. The percentages of unbiased context instances in the SPEC JVM98 

benchmarks, after each context length extension of global branch history 

Taking into account that increasing the prediction accuracy with 1%, 

the IPC (instructions-per-cycle) is improved with more than 1% (it grows 

non-linearly) [Yeh92], there are great chances to obtain considerably better 

overall performances even if not all of the 6.19% difficult predictable 

branches, from the SPEC 2000 benchmarks, will be solved. Therefore, we 

consider that this 6.19% represents a significant percentage of unbiased 

branch context instances, and in the same time a good improvement 
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potential in terms of prediction accuracy and IPC. Focalising on these 

unbiased branches – in order to design some efficient path-based predictors 

for them [Nair95, Vin99b] – the overall prediction accuracy should increase 

with some percents, that would be quite remarkable. The simulation results 

also lead to the conclusion that as higher is the feature set length used in the 

prediction process, as higher is the branch polarization index and hopefully 

the prediction accuracy (Figure 3.4). A certain large context (e.g. 100 bits) – 

due to its better precision – has lower occurrence probability than a smaller 

one, and higher dispersion capabilities (the dispersion grows exponentially). 

Thus, very large contexts can significantly improve the branch polarization 

and the prediction accuracy, too. However, they are not always feasable for 

hardware implementation. The question is: what feature set length is really 

feasable for hardware implementation, and more important, in this case, 

which is the solution regarding the unbiased branches? In our opinion, as 

we’ll further show, a feasable solution in this case could be given by path-

based predictors. 

3.4.2. Path-Based Correlation 

The path information could be a solution for relatively short history contexts 

(low correlations). Our hypothesis is that short contexts used together with 

path information should replace significantly longer contexts, providing the 

same prediction accuracy. A common criticism for most of the present two-

level adaptive branch prediction schemes consists in the fact that they used 

insufficient global correlation information [Vin99b]. There are situations 

when a certain static branch, in the same global history context pattern, has 

different behaviors (taken / not taken), and therefore the branch in that 

context is unbiased. If each bit belonging to the global history will be 

associated during the prediction process with its corresponding PC, the 

context of the current branch becomes more precise, and therefore its 

prediction accuracy could be better. Our next goal is to extend the 

correlation information with the path, according to the above idea [Vin99b]. 

Extending the correlation information in this way, suggests that at different 

occurrences of a certain static branch with the same global history context, 

the path contexts can be different. 

We started our evaluations regarding the path, studying the gain 

obtained by introducing paths of different lengths. The analyzed feature 

consists of a global branch history of 16 bits and the last p PCs. We applied 

this feature only to dynamic branches that we already found unbiased 

(P<0.95) for local and global history of 16 bits. 
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SPEC 

2000 

GH(16) PATH(1) PATH(16) PATH(20) LH(20) 

bzip 23.40 23.35% 22.16% 20.38% 15.24% 

gzip 28.89 28.88% 28.17% 27.51% 24.82% 

mcf 3.28 3.28% 3.28% 3.20% 2.66% 

parser 12.95 12.89% 12.01% 10.95% 9.18% 

twolf 32.41 32.41% 31.46% 27.10% 24.83% 

gcc 3.92 3.91% 3.56% 3.02% 2.26% 

Average [%] 17.48 17.45% 16.77% 15.36% 13.17% 

Gain [%] 0.02% 0.70% 2.11% 4.30% 

Table 3.7. The gain introduced by the path of different lengths (1, 16, 20 PCs) 

versus the gain introduced by extended local history (20 bits), in the SPEC 2000 

benchmarks 

Column GH(16) from Table 3.7, presents for each benchmark the 

percentage of unbiased contexts using a 16-bit global history. Columns 

PATH(1), PATH(16) and PATH(20) present the percentages of unbiased 

context instances obtained using a global history of 16 bits and a path of 1, 

16 and 20 PCs, respectively. The last column presents the percentages of 

unbiased context instances extending the local history to 20 bits (without 

path). For each feature is presented the average gain opposite to the first 

column. It can be observed that a path of 1 introduces a not significant gain 

of 0.2%. Even a path of 20 introduces a gain of only 2.11% related to the 

more significant gain of 4.30% introduced by an extended local branch 

history of 20 bits. The results show (Table 3.7) that the path is useful only in 

the case of short contexts. Thus, a branch history of 16 bits compresses well 

the path information. In other words, a branch history of 16 bits spreads 

well the different paths that lead to a certain dynamic branch. 

We continue our work evaluating – on all branches (non-iterative 

simulation) – the number of unbiased context instances (P<0.95) using as 

prediction information paths of different lengths (p PCs) together with 

global histories of the same lengths (p bits). The results are presented in 

Figure 3.7 where they are compared with the results obtained using only 

global history. Figure 3.7 shows again that the path is relevant for better 

polarization rate and prediction accuracy only in the case of short contexts 

and there is only marginal gain with longer history lengths (p bits), meaning 

that a global branch history of more than 12 bits approximates very well the 

longer path information (p PCs). 
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Figure 3.7. The gain introduced by the path for different context lengths – SPEC 

2000 benchmarks 

Desmet shows in her PhD thesis [Des06] that complete path (all 

branches) is more efficient than simple path (only conditional branches) 

from the entropy point of view. This is in contradiction with our results 

presented in Table 3.8, where we compared these types of path from the 

unbiased branch percentage point of view. This contradiction can be 

justified by observing the following differences between our measurements: 

 Desmet measured per branch entropy and presented the average 

entropy, while we measured per branch-context polarization and 

presented the average percentage of branch contexts having 

polarization less than 0.95; 

 Desmet’s path consists in the PCs corresponding to the target 

instructions (as Nair did), while our path consists in the PCs of 

branches; 

 Desmet uses short histories (p=1, 2, 5 PCs), whereas our evaluations 

were generated on a larger interval (p=1, 4, 8, …, 24 PCs). 

As we explain below, paradoxically, the simple path is more rich in 

information than complete path (for the same number of PCs), justifying our 

results presented in Table 3.8. Let’s consider the following sequence of 

instructions: 

... bne1 ... bne2 ... jr ... bne3 ... bne4 ... bne5=? 

If we use a path history of 4 PCs (p=4), then: 

 simple path = bne1, bne2, bne3, bne4; 

 complete path = bne2, jr, bne3, bne4. 
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The unconditional branch jr brings less information, because it is always 

taken, and therefore, between bne2 and bne3 through jr only one path is 

possible, while through conditional branches two paths are possible. Thus, 

the path consisting exclusively in conditional branches is better than 

complete path (see Table 3.8). 
 

Context p=1 p=4 p=8 p=12 p=16 p=20 p=24 

GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23 

GH (p bits) +  

FullTargetPath (p PCs) 46.74 37.23 30.72 26.50 23.89 21.58 19.88 

GH (p bits) +  

FullPath (p PCs) 43.21 37.03 30.49 26.41 23.86 21.56 19.86 

GH (p bits) +  

CondTargetPath (p PCs) 45.13 36.41 29.76 25.56 23.18 20.77 19.09 

GH (p bits) +  

CondPath (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01 

Table 3.8. Percentages of unbiased branches on the SPEC 2000 benchmarks 

We also compared the path consisting in PCs of branches with the path 

consisting in PCs of target instructions. The path of branch PCs is slightly 

better, however the difference is quite unsignificant (see Table 3.8). 

Further, we present some results obtained applying the same 

methodology on Branch Prediction World Championship benchmarks – 

proposed by Intel [CBP04, Loh05a]. We continue to evaluate – on all 

branches using the non-iterative simulation – paths of different lengths (p 

PCs) used together with global histories of the same lengths (p bits). 
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Figure 3.8. The gain introduced by the path – Intel benchmarks 
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As Figure 3.8 shows, the results produced (unbiased context instances ratio) 

by the Intel benchmarks have the same profile like those obtained on the 

SPEC 2000 benchmarks (Figure 3.7). Actually, rich contexts (long patterns) 

reduce almost to zero the advantage introduced by using the path 

information. The main difference observed, analyzing Figures 3.7 and 3.8, 

consists in the different values of these ratios (much higher on SPEC 

benchmarks) – due to their different characteristics and functions [Loh05a]. 

However, it must be mentioned that while the SPEC benchmarks were 

simulated on 1 billion dynamic instructions the Intel benchmarks were 

entirely simulated, but the total number of dynamic instructions is 

significantly lower (under 30 million). 

3.4.3. Evaluating Relative IPC Speedup Through an 

Analytical Model 

In our simulations presented in [Gel06a] we obtained using the gshare 

predictor [McFar93] the global prediction accuracy Apglobal = 93.60% and 

the accuracy of unbiased branch prediction Apunbiased = 72.2%. Thus, 

according to formula (3.7), 722.01747.08253.0936.0  biasedAp , 

resulting that Apbiased = 0.9813. Obviously, predicting the unbiased branches 

with a more powerful branch predictor having, to say, 95% prediction 

accuracy, determines a gain proportional with ratio of unbiased context 

instances: )1()722.095.0( xgainAccuracy  . More than that, this 

accuracy gain involves a processing rate speedup according to (3.4) and 

(3.6). This gain justifies the importance and the necessity of finding and 

solving difficult-to-predict branches. 
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Figure 3.9. The relative IR speedup for different increased context lengths reported 

to the IR obtained on 16 bits 
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Figure 3.9 illustrates the relative IR speedup obtained, according to (3.10), 

by extending the context. The baseline processor model has an IRideal of 4 

[instruction / clock cycle] and incorporates a branch predictor with 98.13% 

prediction accuracy for biased branches. The considered number of penalty 

cycles wasted due to a branch misprediction in our model is 7. The ratio of 

simulated branches (the number of simulated branches reported to the total 

number of simulated instructions) is b=8% (see Table 3.1). Figure 3.9 

illustrates not only the necessity of a greater number of prediction features 

to improve the processor performance, but also the necessity of new 

performing branch predictors that can consider a larger amount of 

information in making predictions (but whose size does not scale 

exponentially with the length of the input feature set). 

3.5. Summary 

We considered that a branch context is unbiased if its polarization index is 

less than 0.95. In order to reduce the number of unbiased branches, we first 

increased the lengths of the branch contexts (local/global histories, etc.). We 

identified and decreased the number of unbiased branches in the SPEC 2000 

benchmark suite [SPEC] by passing unbiased branches through successive 

cascades of different prediction contexts – local history (LH) and global 

history (GH) – by increasing history information (from 16 to 28 bits). Using 

a global history context of 16 bits, about 17% of branches are unbiased and 

unpredictable. This number decreases to about 6% if the context has 28 bits. 

We consider that this value of 6% is still too high and further investigations 

are required. The evaluation results also show that the “ultimate 

predictability limit” of history context-based prediction is about 94%, 

considering unbiased branches as completely unpredictable. A conclusion 

based on our simulation results is that about 94% of dynamic branches can 

be solved with prediction information of up to 28 bits. We have also 

analyzed the path information and we concluded that a global branch history 

of more than 12 bits compresses well the path information, and therefore, 

the gain introduced by the path is not significant. 

Summarizing the statistics reported on the SPEC 2000 benchmarks, 

546 static branches generate 77,683,129 dynamic instances at average 

(142,120 instances / static branch). Focalizing now on those detected 

unbiased (with LH=28 bits and GH=28 bits), 113 static branches generate 

4,376,664 dynamic instances at average (38,731 instances / static branch). 

Therefore the unbiased branches are generated by few static branches 

having many dynamic instances. As a consequence, taking into account the 



Finding Difficult-to-Predict Branches 81 

enormous number of dynamic unbiased branches per a static branch, an 

adequate predictor has plenty of time to learn its behavior. The real problem 

is to find the right prediction information that changes such unbiased 

branches into biased ones. 

The next chapter investigates the predictability of this remaining 6% 

of identified unbiased branches and proposes some new, more correlated 

prediction information in order to increase their prediction accuracy. 



 

 

“The only relevant test of the validity of a hypothesis 

is comparison of prediction with experience” 

Milton Friedman 

4. Predicting Unbiased Branches 

In Chapter 3 we showed that the percentages of difficult branches are quite 

significant (at average between 6% and 24%, depending on the different 

used prediction contexts and their lengths). This chapter presents some 

important present-day branch predictors and some condition-history-based 

branch predictors proposed by us in [Gel07a, Gel07b, Gel07c, Gel08c], all 

of them being used to evaluate, in terms of prediction accuracy, the 

unbiased branches identified in Chapter 3. 

4.1. Related Work 

4.1.1. Branch Prediction Based on Data Value Information 

In this section we analyze different proposed techniques that are exploiting 

the correlation between data values and branch outcomes. An important 

disadvantage of the approaches that are using the branch register values 

directly is that these values are rarely available, and therefore, they must be 

predicted. In general, value prediction is applied wisely due to the relatively 

high misprediction cost and low prediction accuracy.  

In [Che03] the authors proposed a new approach, called ARVI 

(Available Register Value Information), in order to predict branches based 

on partial register values along the data dependence chain leading up to the 

branch. The authors show that for some branches the correlation between 

such register value information and the branch’s outcome can be stronger 

than either history or path information. Thus, the main idea behind the 

ARVI predictor is the following: if the essential values in the data 

dependence chain, that determine the branch’s condition, should be 

identified, and those values have occurred in the past, then the branch’s 

outcome should be known. If the values involved in the branch condition 

are the same as in a prior occurrence then the outcome of the branch will be 

the same, too. Thus, if the branch’s register values are available then a 
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lookup table can provide the last branch’s outcome occurred with the same 

values. Unfortunately, the branch’s register values are rarely available at the 

time of prediction. However, if values are available for registers along the 

dependence chain that leads up to the branch, then the predictor can use 

these values to index into a table and reuse the last behavior of the branch 

occurred in the same context. Therefore, instead of relying only on branch 

history or path, the ARVI predictor includes data dependent registers as part 

of the prediction information. The ARVI predictor uses a Data Dependence 

Table (DDT) to extract the registers corresponding to instructions along the 

data dependence chain leading up to the branch. The branch’s PC and the 

identifiers of the data dependent registers are hashed together and used to 

index the prediction table. The values of the data dependent registers are 

hashed together and used as a tag to distinguish the occurrences of the same 

path having different values in the registers. Thus, the ARVI predictor uses 

both path and value-based information to classify branch instances. A two-

level predictor using ARVI at the second level achieves a 12.6% overall IPC 

improvement over the state-of-the-art two level predictors, for the SPEC’95 

integer benchmarks. In our opinion, if dynamic branches that are unbiased 

in their branch history or path contexts [Vin06] are biased in their value 

history context, the benefit could be remarkable. An analysis in this sense 

will be effectuated in this chapter. 

Z. Smith in his work [Smi98] showed on the SPEC’95 benchmarks 

that the majority of mispredicted branches come from few static branches. 

Therefore, he identified “bad” branches based on the distribution of 

mispredictions – a function of the number of mispredictions per branch 

using the gshare predictor with 12 history bits. An analysis of branches 

having a relatively high number of mispredictions shows that they could be 

really less predictable but without importance due to their relatively low 

number of dynamic instances, and, on the other hand, some of them could 

be predictable because the number of mispredictions is, however, far less 

then the number of branch’s dynamic instances. Consequently, there is no 

strong correlation between branch’s predictability or global prediction 

accuracy and the distribution of mispredictions. In order to increase the 

predictability of mostly mispredicted branches, Smith evaluated the 

possibility to predict branch outcomes based on a value history. The idea is 

to use a context-based predictor whose prediction table is indexed by a 

register value instead of the XOR between the PC and global history as in 

gshare. Only the first (non-immediate) branch operand is used as prediction 

context, because, as the author shows, the majority of branches have the 

second operand equal with zero. However, using both branch operands as 

prediction information could be better. Using a history of only 2 values 



84 Beyond the Limits of Modern Processors 

together with the value of the outer loop counter (an iteration counter 

associated to the enclosing loop’s branch), Smith obtained a branch 

prediction accuracy of 93.4%. 

In [Hei99b] the authors observed that many important branches that 

are hard to predict based on branch history and path become easily 

predictable if data-value information is used. First, they analyzed a 

technique called speculative branch execution that uses a conventional data-

value predictor to predict the input values of the branch instruction and, 

after that, executes the branch instruction using the predicted values. The 

main disadvantage of this method consists in the relatively high prediction 

latency, because the operand-value prediction is followed by the pre-

calculation of the branch’s condition. Therefore, they proposed a Branch 

Difference Predictor (BDP) which simply holds a history of branch source 

register differences and uses it in the prediction process. Consequently, the 

value history information is used directly for branch prediction, reducing 

thus the latency. Since branch outcomes are determined by subtracting the 

two inputs, the branch source differences correlate very well with the branch 

outcomes. The branch difference history is maintained per static branch in a 

Value History Table (VHT) and it is retrieved using the branch’s PC. By 

using branch differences, the number of patterns is very high, since a certain 

static branch instruction may produce many values. Thus, predicting all 

branches through this method leads either to excessive storage space 

requirements or to significant table interference. Therefore, in their 

prediction mechanism, only the difficult branches are predicted based on the 

branch source differences using the Rare Event Predictor (REP), whereas 

the majority of branches are predicted using a conventional predictor (e.g. 

gshare). They considered that a branch is difficult if it is mispredicted by 

the conventional predictor. When a branch instruction occurs, the VHT and 

the REP are accessed in parallel with the PC and global branch history. If 

the value difference history matches a REP tag, then the REP provides the 

prediction. If the REP does not contain that certain pattern, the conventional 

branch predictor generates the prediction. Their results show that the 

majority of prediction accuracy improvement is gained by using a single 

branch difference, while adding a second or third difference results in little 

additional improvement. The BDP reduces the misprediction rate by up to 

33% compared to gshare and up to 15% compared to Bi-Mode predictors, in 

the SPEC’95 integer benchmarks. A first important difference between 

Heil’s approach and ours is that we are focalizing on unbiased branches 

identified in Chapter 3 (branches with low polarisation degree that tend to 

shuffle between taken and not taken) instead of Heil’s difficult branches 

(those mispredicted by a conventional predictor). However, the main 
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difference is that we correlate branch outcome with the sign of the 

condition’s difference whereas Heil et al. correlate it with the value of the 

condition’s difference. As we’ll further show, using signs instead values 

involves better prediction accuracies and less storage necessities. 

Furthermore, we use a sign-history of up to 256 condition differences in 

contrast to the value-history of up to 3 condition differences exploited in 

[Hei99b]. Another important difference between the two approaches is the 

architectural one, since we predict branches using some modified state-of-

the-art Markov and neural predictors. 

Thomas et al. [Tho03] introduced new branch prediction information 

that consists in affector branches. They identify for each dynamic branch 

from a long global history, a set of branches called affectors, which control 

the computation that directly affect the source operands of the current 

dynamic branch. Since affectors have a direct effect on the outcome of a 

future branch, they have a high correlation with that branch. The affector 

information is represented as a bitmap having all bits corresponding to the 

affector branches set to 1 and those of non-affectors set to 0. The affector 

information is maintained based on runtime dataflow information for each 

architectural register as entries in an Affector Register File (ARF). When 

the processor encounters a conditional branch, all entries in the ARF are 

shifted left by one bit and the least significant bit is made 0. When a 

register-writing instruction occurs, the ARF entries corresponding to the 

source registers are ORed together and written into the ARF entry of the 

destination register with the least significant bit set to 1. Thus, the affector 

information for the destination register is generated as a union of the 

affector histories corresponding to the source registers, whereas the least 

significant bit, set to 1, marks the last branch from the global history as an 

affector. The affector branch information for a branch instruction is 

inherited from the affector information corresponding to its source registers. 

Therefore, when a prediction is to be made for a certain branch, the affector 

information of its source registers are ORed together in order to determine 

its affector branches. The authors also proposed different prediction 

schemes that use the affector branch information.  

Constantinides et al. [Con04] presented a method of detecting 

instruction-isomorphism and its application to dynamic branch prediction. A 

dynamic instruction is considered isomorphic if its component graph is 

identical with the component graph of an earlier executed dynamic 

instruction. The component graph of a dynamic instruction can include 

information about the instruction, its dynamic data dependence graph and its 

input data. Two cases of instruction isomorphism can be distinguished: 

isomorphic-equality and pseudo-isomorphism. In the case of isomorphic 
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equality the instructions are isomorphic and they have the same outputs, 

whereas in the pseudo-isomorphism case, the instructions are isomorphic 

but their outputs are not equal. The isomorphism detection process is 

preceded by component-graph transformations that may convert non-

isomorphism to isomorphic-equality by removing information from the 

component graph that does not affect the outcome of the instruction. The 

isomorphism detection mechanism contains four units: the Register-

Signature File (RSF), the Component Graph Encoding/Transformation 

mechanism (CGET), the Memory Signature File (MSF) and the 

Isomorphism Detection Table (IDT). The RSF is accessed with the source 

register names to read the signatures – encoded component graphs. The 

CGET takes the instruction’s source signatures and creates a new signature, 

which represents the instruction’s encoded/transformed component-graph. If 

the instruction writes to a register, the new signature is written into the RSF 

entry corresponding to the destination register. To determine if an 

instruction is isomorphic with a previously executed instruction, its 

signature – produced by CGET – is used to access the IDT. The IDT also 

returns the branch direction in the case of branch prediction. Isomorphism 

detection must wait for decoded instruction information and, thus, the 

isomorphic branch predictor has relatively high latency. Therefore, 

Constantinides et al. proposed a hybrid branch prediction mechanism 

composed by a fast conventional predictor and a slower isomorphic-based 

predictor. The isomorphic prediction – available few cycles after the 

conventional prediction – is used to validate and possibly override the 

prediction provided by the conventional predictor. 

In [Gon99] and [Gon01] González et al. introduced a branch 

prediction through value prediction unit (BPVP) that pre-computes branch 

outcomes by predicting their input values. Since, the accuracy of value 

predictors is lower than that of the conventional branch predictors, 

speculative branch pre-computation must be applied selectively. Therefore, 

they proposed a hybrid branch prediction mechanism involving a correlating 

branch predictor (e.g. gshare) and a BPVP that uses a conventional value 

predictor. The value predictor is used together with an Input Information 

Table (IIT) and an additional logic to detect the instructions that generate 

the branch’s inputs. Each architectural register has an entry in the IIT that 

stores the PC of the latest instruction having the corresponding register as 

destination and the value computed speculatively by the latest compare 

instruction having the corresponding register as destination. The compare 

instructions are speculatively pre-executed according to their predicted 

inputs and the speculative results are stored in the IIT. The mechanism has 

different behaviors depending on the branch that is predicted. In the case of 
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branches with inputs produced by arithmetic or Load instructions, the IIT is 

accessed with the source register names to read the PCs of the latest 

instructions that had as destination the branch’s source registers (detection 

of the instructions that produces the branch inputs). The PCs are used to 

access the value predictor that predicts the inputs of the branch. The 

branch’s outcome is speculatively pre-computed based on the predicted 

inputs. In the case of branches with inputs produced by compare 

instructions, the IIT is accessed with the source register names to read the 

comparison’s speculative result. The outcome of the branch is speculatively 

pre-computed based on this speculative comparison result. The BPVP-

gshare predictor achieves a speedup of 8% over the 2bit-gshare predictor. 

The instruction-centric value prediction within the BPVP should be replaced 

with register-centric value prediction [Vin05a] (presented in Chapter 6), 

reducing the complexity, hardware costs and power consumption. Thus, 

branches should be pre-computed speculatively based on their input values 

predicted with our most effective register-centric value predictor (a hybrid 

of two-level and stride). 

In [Rot99] call targets are correlated with the instructions that produce 

them rather than with the call’s global history or the previous branch targets. 

The proposed approach pre-computes virtual function call’s (v-call) targets. 

V-call targets are hard to predict even through path-based schemes that 

exploit the correlation between multiple v-calls of the same object 

reference. Object oriented programming increases the importance of v-calls. 

The proposed technique dynamically identifies the sequence of instructions 

that computes a v-call target. Based on this instruction sequence is possible 

to pre-calculate the target before the actual v-call is encountered. This pre-

calculation can be used to supply a prediction. The approach reduces v-call 

target mispredictions with 24% over a path-based two level predictor. 

In [Vin03] the authors proposed to pre-compute branches by 

determining a branch outcome as soon that its operands are available. The 

instruction that produced the last branch source operand would also trigger 

the branch condition estimation. As soon as this operation completed, the 

branch outcome could be immediately resolved. Similarly to branch history 

prediction, branch information is cached into a “prediction table” (PT). Each 

PT entry has the following fields: TAG (the lower part of the PC), PC1 and 

PC2 (the PCs of the instructions that produced the branch operand values), 

OPC (the opcode of the branch), nOP1 and nOP2 (the register names of the 

branch operands), PRED (for the branch outcome) and a LRU field (Least 

Recently Used). The register file has two additional fields for each register: 

LP (the PC of the last producer) and RC (a reference counter which is 

incremented by each instruction that modifies a register linked by a branch 
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instruction stored in the PT and is decremented when the corresponding 

branch instruction is evicted from the PT). The PC of any non-branch 

instruction that modifies at least one register is recorded into the 

supplementary LP (Last Producer) field of its destination register. The first 

issue of a particular branch in the program is predicted with a default value 

(not taken). After the branch’s execution, a PT entry is allocated and 

updated. Every time after a non-branch instruction – having the 

corresponding RC field greater than 0 – is executed, the PC1 and PC2 fields 

from the PT are searched upon its PC. When a hit occurs, the branch stored 

in that PT entry is executed and the outcome is stored into the PRED bit. 

When the branch is issued, its outcome is found in the PT, as it was 

previously computed, and thus its behavior is perfectly known before 

execution. Even though this concept would provide (almost) perfect 

prediction accuracy, there was a heavy timing penalty in the case when a 

branch instruction was dynamically executed immediately after the last 

source operand has been computed, in fact this is a common case. Based on 

the pre-computing branch concept [Vin03] Aamer et al. presented in 

[Aam03] a study regarding the number of instructions occurred between the 

execution of the instruction that produced the last operand of a branch and 

the execution of that branch. Their simulations show that the average 

distance between the last source producer and branch is less than the ideal 

theoretical distance. If the operand producer instruction is too close to the 

corresponding branch then the branch would have to postpone processing 

for a few cycles, until the operand producer instruction is finished. For these 

branches a BTB can be used, improving thus the performance. Thus, the 

branch outcomes can be obtained far enough in advance so that some 

performance improvement can be still achieved. 

Aragón et al. presented in [Ara01] a new approach to improve branch 

predictors: selective branch prediction reversal. The main idea is that many 

branch mispredictions can be avoided if they are selectively reversed. 

Therefore, they proposed a Branch Prediction Reversal Unit (BPRU) that 

reverses predictions of branches likely to be mispredicted, based on the path 

leading to the branch (including the PC of the input producers) and the 

predicted values of the branch inputs. The BPRU uses the previously 

presented BPVP-gshare hybrid branch predictor [Gon99] and a Reversal 

Table (RT). Each entry of the RT stores a reversal counter implemented as 

an up/down saturating counter, and a tag. When a branch is predicted, the 

RT is accessed by hashing together the PCs of its input producers, the 

predicted input values and the path leading to the branch. The most 

significant bit of the counter indicates if the predicted branch outcome must 

be reversed. When the correct branch outcome is available, the 
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corresponding RT entry is updated by incrementing the reversal counter if 

the preliminary branch outcome was correct and decrementing the counter 

otherwise. The experimental results show average speedups of 6% over the 

original BPVP-gshare and of 14% over the 2bit-gshare predictor. 

4.1.2. State-of-the-Art Branch Predictors 

Dynamic branch prediction with neural methods, was first introduced by 

Vintan [Vin99a], and further developed by many researchers, especially by 

Daniel Jiménez [Jim01a]. Despite the neural branch predictor’s ability to 

achieve very high prediction rates and to exploit deep correlations at linear 

costs, the associated complexity due to latency, large quantity of adder 

circuits, area and power are still obstacles to the industrial adoption of this 

technique. Anyway, the neural methods seem to be successful for future 

microprocessors taking into account that they were already implemented in 

Intel’s IA-64 simulators. Jiménez and Lin [Jim01a] proposed a two-level 

scheme that uses fast single-layer perceptrons instead of the commonly used 

two-bit saturating counters. The branch address is hashed to select the 

perceptron, which is then used to furnish a prediction based on global 

branch history. The perceptron’s prediction- and learning algorithm was 

presented in Section 2.2. 

A branch may be linearly inseparable as a whole, but it may be 

piecewise linearly separable with respect to the distinct associated program 

paths. More precisely, the path-based neural predictor combines path history 

with pattern history, resulting superior learning skills to those of a neural 

predictor that relies only on pattern history. To generate a path-based neural 

prediction [Jim03c], the correlations of each component of the path are 

aggregated. This aggregation is a linear function of the correlations for that 

path. Since many paths are leading to a branch, there are many different 

linear functions for that branch, and they form a piecewise-linear surface 

separating paths that lead to predicted taken branches from paths that lead to 

predicted not taken branches. The piecewise linear branch prediction 

[Jim05], is a generalization of perceptron branch prediction [Jim01a], which 

uses a single linear function for a given branch, and path-based neural 

branch prediction [Jim03c], which uses a single global piecewise-linear 

function to predict all branches. The piecewise linear branch predictors use 

a piecewise-linear function for a given branch, exploiting in this way 

different paths that lead to the same branch in order to predict – otherwise 

linearly inseparable – branches. The piecewise linear branch predictors 
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exploit better the correlation between branch outcomes and paths, yielding 

an IPC improvement of 4% over the path-based neural predictor [Jim05]. In 

the weight selection mechanism of the idealized piecewise linear branch 

predictor, the weight Wbpg corresponds to branch b ( Bb 1 ), its global 

history bit g ( Gg 1 ) and the pth PC ( Pp 1 ) from its path. The 

Idealized Piecewise Linear Branch Predictor uses dynamically adjusted 

history lengths [Jim05]. The predictor counts the number of static branches 

whose bias magnitude, noted |W0|, exceeds 2. If this number exceeds 300, 

then the predictor switches to lower global and local history lengths, 

otherwise, it uses higher global and local history lengths. This heuristic is 

applied after 300,000 branches have passed. 

Related to Jiménez’s research, we gave an original interpretation of 

his dynamically adjusting history length mechanism [Jim05], through our 

previously introduced “unbiased branches” concept [Gel06a, Vin06, 

Oan06]. Thus, his heuristics work as follows: if more than 300 “relatively 

biased” branches are encountered (branches having |W0|>2), then it switches 

to lower global/local history length. Otherwise (meaning that there were 

encountered many “perfectly unbiased” branches, having |W0|≤2) it 

switches to higher global/local history length. From our point of view, this 

is justified by the fact that increasing history length reduces the number of 

unbiased branches as we have already shown.  

A conventional path-based neural predictor achieves high prediction 

accuracy, but its very deeply pipelined implementation makes it both a 

complex and power-intensive component, since for a history length of p it 

uses – to store the weights – p separately indexed SRAM arrays organized 

in a p-stage predictor pipeline. Each pipeline stage requires a separate row-

decoder for the corresponding SRAM array, inter-stage latches, control 

logic and checkpointing support, all of this adding power and complexity to 

the predictor. Loh and Jiménez proposed in [Loh05c] two techniques to 

address this problem. The first decouples the branch outcome history length 

from the path history length using shorter path history and a traditional long 

branch outcome history. In the original path-based neural predictor, the path 

history was always equal to the branch history length. The shorter path 

history allows the reduction of the pipeline length, resulting in decreased 

power consumption and implementation complexity. The second technique 

uses the bias-weights to filter out highly-biased branches (mostly always 

taken or mostly always not taken branches), and avoids consuming update 

power for these easy-to-predict branches. For these branches the prediction 

is determined only by the bias weight, and if it turns out to be correct, the 

predictor skips the update phase which saves the associated power. The 
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proposed techniques improve the prediction accuracy with 1%, and more 

important, reduce power and complexity by decreasing the number of 

SRAM arrays, and reducing predictor update activity by 4-5%. Decreasing 

the pipeline depth to only 4-6 stages reduces the implementation complexity 

of the path-based neural predictor. 

Tarjan and Skadron introduced in [Tar05] the hashed perceptron 

predictor, which merges the concepts behind the gshare [McFar93] and 

path-based perceptron predictors [Jim03c]. The previous perceptron 

predictors assign one weight per local-, global- or path branch history bit. 

This means that the amount of storage and the number of adders increases 

linearly with the number of history bits used to make a prediction. One of 

the key insights of Tarjan’s work is that one-to-one ratio between weights 

and number of history bits is not necessary. By assigning a weight not to a 

single branch but a sequence of branches (hashed indexing), a perceptron 

can work on multiple partial patterns making up the overall history. The 

hashed indexing consists in XORing a segment of the global branch history 

with a branch address from the path history. Decoupling the number of 

weights from the number of history bits used to generate a prediction allows 

the reduction of adders and tables almost arbitrarily. Using hashed indexing, 

linearly inseparable branches which are mapped to the same weight can be 

accurately predicted, because each table acts like a small gshare predictor 

[McFar93]. The hashed perceptron predictor improves accuracy by up to 

27.2% over a path-based neural predictor.  

Loh and Jiménez introduced in [Loh05b] a new branch predictor that 

takes the advantage of deep-history branch correlations. To maintain 

simplicity, they limited the predictor to use conventional tables of saturating 

counters. Thus, the proposed predictor achieves neural-class prediction rates 

and IPC performance using only simple PHT (pattern history table) 

structures. The disadvantage of PHTs is that their resource requirements 

increase exponentially with branch history length (a history length of p 

requires 2p entries in a conventional PHT), in contrast to neural predictors, 

whose size requirements increase only linearly with the history length. To 

deal with very long history lengths, they proposed a Divide-and-Conquer 

approach where the long global branch history register is partitioned into 

smaller segments, each of them providing a short branch history input to a 

small PHT. A final table-based predictor combines all these per-segment 

predictions to generate the overall decision. Their predictor achieves higher 

performance (IPC) than the original global history perceptron predictor, 

outperforms the path-based neural predictors, and even achieves an IPC rate 

equal to the piecewise-linear neural branch predictor. Using only simple 
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tables of saturating counters, avoids the need for large number of adders, 

and in this way, the predictor is feasible to be implemented in hardware. 

Seznec recently developed perhaps the most powerful 

idealistic/realistic branch predictors. His idealistic hybrid GTL predictor is 

composed by three distinct branch predictors (TAGE, GEHL and Loop) 

exploiting very deep history correlations and a metapredictor derived from 

the skewed predictor [Sez07a]. The GEHL predictor is the main component 

being the most accurate. In this chapter we also used it in predicting our 

unbiased branches. In [Sez07b] is presented a realistic branch predictor 

called L-TAGE consisting of a 13-component TAGE predictor and a Loop 

predictor. Both these predictors won the 2nd Championship Branch 

Prediction [CBP06] organized by Intel Co., obtaining, at average, 3.314 

mispredictions/KI. Even if these predictors are the best known branch 

predictors they are using the same limited prediction information (branch 

address, global/local histories and path) that is insufficient for reducing 

unbiased branches entropy and for accurately predicting them. 

In [Gao06] the authors initially implemented a PPM-based branch 

predictor using as context the global branch history. They associated a 

signed saturating prediction counter ranging between [-4, 4] to each PC-

history pair. The counter was incremented if the branch outcome was taken 

and decremented otherwise. When both the branch address and history 

pattern were matched, the corresponding counter provided the prediction. In 

the case of multiple matches for a branch with different history lengths, the 

prediction counter afferent to the longest history was used. However, as 

they show, the longest history match may not be the best choice, and, 

therefore, they proposed another scheme called PPM with the confident 

longest match that uses the prediction counter as a confidence measure. This 

scheme generates a prediction only when the counter is a non-zero value. 

The authors observed that in the case of multiple matches with different 

history lengths, the counters may not agree with each other and different 

branches may favor different history lengths. Thus, the most important 

scheme introduced by Gao and Zhou in this paper, predicts branch outcomes 

by combining multiple partial matches through an adder tree. The 

Prediction by combining Multiple Partial Matches (PMPM) algorithm 

selects up to L confident longest matches and sums the corresponding 

counters to furnish a prediction. A bimodal predictor is used to predict 

branches that are completely biased (either always taken or always not 

taken) and the PMPM predictor is used to furnish a prediction when a 

branch is not completely biased. The realistic PMPM predictor has seven 

global prediction tables indexed by the branch address, global history and 

path, and also has a local prediction table indexed by the branch address and 
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local history. When the PMPM is accessed for prediction, up to four 

counters from the global history tables are summed with the counter from 

the local prediction table, if there is a hit. If the sum is zero, the bimodal 

predictor is used. Otherwise the sign of the sum provides the prediction. The 

prediction counter from the bimodal prediction table is always updated. The 

prediction counter from the local prediction table is always updated in the 

case of hit, while the counters of the global prediction tables that have been 

included in the summation are updated only when the overall prediction is 

wrong or the absolute value of the sum is less than a certain threshold. Their 

results show that combining multiple partial matches provides higher 

prediction accuracy than a single partial match, decreasing the average 

misprediction rate to 3.41%. A first important difference between the 

approach presented in [Gao06] and our branch difference prediction by 

combining multiple partial matches developed in this chapter is that we are 

focalizing on the unbiased branches identified in Chapter 3 (branches with 

low polarisation degree that tend to shuffle between taken and not taken) 

instead of “not fully biased” branches. The authors defined a “fully biased” 

branch as a branch in a certain dynamic context having set its attached bias 

counter to a maximum value (the counter is incremented each time that 

branch has a biased behavior and decremented otherwise). Probably it 

would be better to say “highly biased” branch instead of “fully biased”, 

meaning that it was highly biased (maximum counter) during the “last” 

processing period (maximum counter at the current prediction moment). 

However, the main difference is that they used global branch history, 

whereas we used global and local branch difference history. Another 

important difference consists in how the multiple Markov predictions are 

combined: we used majority vote (more efficient for our approach) instead 

of the adder tree used by Gao and Zhou. 

In [Sri06] the authors proposed a hybrid branch prediction scheme 

that employs two PPM predictors, one predicts based on local branch 

history and the other predicts based on global branch history. For both the 

local and global PPM predictors, if the local and global history were not 

matched, then shorter patterns are searched, and so on, until a match is 

found. When a pattern match occurs, the outcome of the branch that 

succeeded the pattern during its last occurrence is returned as prediction. 

The two independent predictions are combined through a perceptron. The 

output of the perceptron is computed as Y=W0 + W1PL + W2PG, where the 

inputs PL and PG correspond to the predictions generated by the local and 

global PPM predictor (-1 if not taken and +1 if taken), respectively. The 

final prediction is taken if the output Y is positive and not taken if Y is 

negative. The table of weights is indexed by the lower 20 bits of the 
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branch’s PC. The perceptron is updated by incrementing the weights whose 

inputs match the branch outcome and decrementing those with mismatch. 

The Neuro-PPM branch predictor achieves an average misprediction rate of 

3%. 

4.2. Branch Prediction Using State-of-the-Art 

Predictors 

4.2.1. The Perceptron-Based Branch Predictor 

In [Jim02] Jiménez and Lin developed a perceptron-based predictor that 

uses both local and global branch history information in the prediction 

process. Figure 4.1 presents the architecture of their perceptron-based 

branch predictor. 
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Figure 4.1. The perceptron-based branch predictor 

The lower part of the branch address (PC) selects a perceptron in the table 

of perceptrons (weights’ matrix) and a local history register in the local 

branch history table. Both local and global branch history are used as inputs 

for the selected perceptron in order to generate a prediction. 
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4.2.2. The Idealized Piecewise Linear Branch Predictor 

The piecewise linear branch predictor (previously described in paragraph 

4.1.2) has the same architecture as the perceptron-based branch predictor 

(see Figure 4.1). The weight selection mechanism of the idealized piecewise 

linear branch predictor is presented in Figure 4.2, where GH is the global 

history, PC is the branch’s address and GA is the path – an array of the 

addresses afferent to the last executed branches. Thus, the weight Wbpg 

corresponds to branch b ( Bb 1 ), its global history bit g ( Gg 1 ) and 

the pth PC ( Pp 1 ) from its path. 
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Figure 4.2. The weight selection mechanism of the idealized piecewise linear 

branch predictor 

4.2.3. The Frankenpredictor 

The Frankenpredictor [Loh05a] is a gskew-agree global history predictor 

combined with a path-based neural predictor. The gskew-agree predictor 

avoids interference by mapping potential conflicting branches to different 

entries from three different tables. Three different predictions are provided, 

the final prediction being furnished by taking majority vote. The agreement 

approach uses a default BTFNT (backward taken forward not taken) static 

prediction (bias) for each branch. The predictions (P1, P2 and P3) generated 

by the selected pattern history table entries are further compared with the 

bias. The neural predictor provides the ability of working with long branch 
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histories and it also provides the hybridization by including the predictions 

of the gskew-agree predictor as additional bits in the perceptron’s input 

vector – the agreement bits (A1, A2 and A3) provided by the three PHTs (Ai 

is 1 if Pi agrees with the bias and 0 otherwise, 1≤i≤3) and the majority vote 

(AM). The prediction mechanism of the Frankenpredictor is presented in 

Figure 4.3. 
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Figure 4.3. The Frankenpredictor’s architecture 

4.2.4. The O-GEHL Predictor 

The Optimized GEometric History Length (O-GEHL) predictor [Sez05] uses 

M distinct prediction tables indexed with hash functions of the branch 

address and the global branch history. Distinct history lengths of up to 200 

bits and a path history of up to 16 bits, consisting of one address bit per 

branch, are used to index the prediction tables. Table T0 is indexed using the 

branch address. The history lengths used to index tables Ti, Mi 1 , form 

a geometric series: 

)1()( 1 LiL i         (4.1) 

The prediction tables store predictions as signed counters. To compute a 

prediction, a single counter is read from each prediction table. The 

prediction is computed as the sign of the sum S of the M counters. The 

prediction is taken if S is positive and not taken otherwise. The final 

prediction mechanism of the O-GEHL predictor is presented in Figure 4.4. 
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Figure 4.4. The O-GEHL prediction aggregation mechanism 

4.3. Value-History-Based Branch Prediction with 

Markov Models 

The context-based predictor predicts the next value based on a particular 

stored pattern (context) that is repetitively generated in the value sequence. 

Theoretically they can predict any stochastic repetitive sequences. A context 

predictor is of order k if its context information includes the last k values, 

and, therefore, the search is done using this pattern of k values length. In 

fact, in this case the prediction process is based on a simple Markov model 

[Vin07]. A first order discrete Markov process may be described at any time 

as being in one of a set of N distinct states }...,,,{ 21 NSSSS  , as illustrated 

in Figure 4.5. 
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Figure 4.5. A Markov chain with 3 states 
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A full probabilistic description of discrete Markov chain requires 

specification of the current state as well as all the predecessor states (the 

current state in a sequence depends on all the previous states). For the 

special case of a discrete, first order, Markov chain, this probabilistic 

description is truncated to just the current and predecessor state (the current 

state depends only on the previous state): 

][...],,[ 121 itjtktitjt SqSqPSqSqSqP  
 (4.2) 

where tq  is the state at time t. Thus, for a first order Markov chain with N 

states, the set of transition probabilities between states Si and Sj is }{ ijaA  , 

where ][ 1 itjtij SqSqPa   , Nji  ,1 , having the properties 

0ija  and 1
1




N

j

ija . 

For a Markov chain of order R the probabilistic description is 

truncated to the current and R previous states (the current state depends on R 

previous states). The following example shows the necessity of using 

superior order Markov models. If the sequence of states is 

AAABCAAABCAAA, the Markov models of order 1 and 2 mispredict A, 

and only a Markov model of order 3 predicts correctly the next state B. This 

example is also presented in Figure 4.6. 
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Figure 4.6. Markov predictors of different orders 

Value predictors that implement the “Prediction by Partial Matching” 

algorithm (PPM) [Saz97, Jos97] represent an important class of context-
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based predictors. Mudge et al. [Mud96] demonstrates that all two-level 

adaptive predictors implement special cases of the PPM algorithm that is 

widely used in data compression. It seems that PPM provides the ultimate 

predictability limit of two-level predictors. The PPM-based predictor 

contains a set of simple Markov predictors, each one predicting the value 

that followed the corresponding context with the highest frequency, as it can 

be seen in Figure 4.6. In a complete-PPM predictor, if a prediction cannot 

be furnished by the Markov predictor of order k, then the pattern length is 

shortened and the Markov predictor of order 1k  is used to furnish the 

prediction and so on until either a prediction is furnished or the Markov 

predictor is of the order 0. 

Our second idea in order to reduce the number of unbiased branches, 

after the feature set length extension (presented in Chapter 3), was to find 

new relevant information that could reduce their entropy making them more 

predictable. Representing the problem in a superior feature space dimension 

is a general well-known method in solving many Computer Science 

classification/prediction problems. Therefore, we predict the condition of 

the current branch (B0) based on the conditions of the previous branches 

(B1, B2, ..., Bh), with different PPM predictors. We use each branch 

condition as the value or the sign of the difference between the operand 

values (two approaches). Regarding the approach that uses only the signs of 

the input differences, a value of 1 indicates that the corresponding branch 

difference is positive, a -1 indicates a negative difference, while a 0 

indicates equality between the branch inputs. The outcome of the current 

branch B0 is determined speculatively based on its predicted condition 

(difference). 

But is it better to use only the signs of differences as history 

information instead of the values of differences? Is this compressed branch 

condition history more efficient than the most complete value history? The 

number of distinct symbols that can occur in a value history is huge reported 

to only three symbols that can appear in a sign history. Thus, the frequency 

of symbols in a value history is very low. In the following example only a 

Markov predictor of order 1 can be used for the value history, and it 

generates a misprediction, while in the case of the sign history, even a 

Markov predictor of order 5 can be used, which achieves the correct 

prediction: 

Value history: -126, -34,  7, -42, -28, 75, -829, -7982, 102, -542, -42, ? 

Sign history: -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, ? 

Obviously, through a sign history much deeper correlations can be exploited 

than with a value history. A natural question is: are the sign histories better 
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than the simplest branch outcome histories (taken / not taken)? The 

difference-sign history can be more efficient because, due to its additional 

information, it can efficiently exploit shorter contexts, too. The following 

example presents the situation for bgez: 

Difference history: 138, 52, 47, 0, -591, 5783, 4, 702, 0, -35, 721, 5, 14, 0, ? 

Sign history:  +, +, +, 0, -, +, +, +, 0, -, +, +, +, 0, ? 

Output history: T, T, T, T, NT, T, T, T, T, NT, T, T, T, T, ? 

If after “0” statistically follows “-“ (and, in the case of bgez, “0” is 

associated together with “+” to taken) a first order Markov can correctly 

predict in the case of sign history, while, in the case of outcome history, the 

Markov predictor must be of order 4 or higher for correct prediction. 

Anyway, the simulation results will decide which type of branch condition 

history is the most efficient. 

4.3.1. Local Branch Difference Predictor 

Figure 4.7 presents the speculative branch execution mechanism of our local 

PPM branch-difference predictor. The Branch Difference History Table 

(BDHT) maintains for each static branch the differences corresponding to 

the branch’s last h dynamic instances (B1, B2, ..., Bh). 
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Figure 4.7. A local PPM-based branch-difference predictor 
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The BDHT entry is selected by the branch address (PC of B0). The branch 

differences from the selected BDHT entry are then used as inputs into the 

complete-PPM predictor. The PPM predictor of order k (where k<h) 

furnishes the predicted difference of the branch undergoing execution (B0). 

Speculative execution of the branch B0 based on its predicted difference 

only occures in the case that the considered pattern of length k is repeated in 

the string of last h differences with a frequency greater than or equal to a 

certain threshold value. 

4.3.2. Combined Global-Local Branch Difference Predictor 

Figure 4.8 presents the speculative branch execution mechanism using a 

combined global and local PPM-based branch-difference predictor. The 

Global History Register (GHR) contains the global history: the global 

branch difference history or the global branch outcome history (two 

different approaches). For each global history pattern, a distinct BDHT is 

maintained. Thus, the BDHT is selected by the GHR. Each BDHT is 

configured as a local BDHT and is accessed as described in Section 4.3.1. 
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Figure 4.8. A global-local PPM-based branch-difference predictor 
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4.3.3. Branch Difference Prediction by Combining Multiple 

Partial Matches 

Figure 4.9 presents the speculative branch execution mechanism using the 

Branch-Difference Predicion by Combining Multiple Partial Matches 

(BPCMP). An entry in the BDHT is accessed as described in Section 4.3.1, 

but now the h branch differences are used as inputs into multiple Markov 

predictors of different orders. Thus, the sign of the input difference (-1, 1, or 

0) corresponding to the current branch (B0) is predicted using multiple 

Markov predictors of orders ranging between [1, n], n<h (see Figure 4.9). 

The final branch difference prediction is then furnished through majority 

vote. 
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Figure 4.9. Branch-difference prediction by combining multiple Markov predictors 

We have also investigated a confidence-based voting mechanism. In 

this case, each BDHT entry holds n saturated confidence counters, in the 

range [-4, 4], which are associated with the n Markov predictors. A certain 

Markov predictor of order k (1 kn) will furnish a value prediction if the 

corresponding pattern occures at least once in the history of h values. In the 

case of a correctly predicted branch, its confidence saturating counter is 

incremented and decremented in the case of a misprediction. Each Markov 

prediction is replicated as many times as the corresponding counter’s value 

shows (only if this value is greater than zero). These multiple predictions 

are then passed to the voter, which furnishes the most frequent value. 
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4.4. Using Previous Branch Condition as Prediction 

Information 

In this section we tried to use the value of previous branch condition (PBC) 

as prediction information, taking into account that it determines branch’s 

behavior. A PBC value consists in the difference of the operand values 

involved in the previous branch condition. Using only one branch condition 

is in concordance with Heil’s observation in [Hei99b] that majority of 

prediction accuracy improvement is gained by using a single branch 

difference. First we evaluated the percentage of unbiased context instances 

(having polarization P less than 0.95) using the PBC value together with the 

global histories of p bits (1≤p≤24). Figure 4.10 compares the percentages of 

unbiased branches using the global history (GH), the global history 

concatenated with the path (GH + PATH), and the global history 

concatenated with the value of the previous branch condition (GH + PBC). 
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Figure 4.10. The gain introduced by the previous branch condition (PBC) vs. the 

path for different context lengths – SPEC 2000 benchmarks 

The experimental results, presented in Figure 4.10, show that the PBC 

value is more efficient than the path information: it decreased the 

percentage of unbiased branches for all evaluated context lengths (1≤p≤24). 

Therefore we could use this new prediction information in some state-of-

the-art branch predictors in order to increase prediction accuracy [Gel07a, 

Gel07b, Gel07c, Gel08c]. 
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4.4.1. The GAg Predictor Using Global PBC Value 

We first analyzed a GAg scheme that uses the previous branch condition 

(PBC) by XORing it with the GHR (as the Gshare XORed the PC with the 

GHR). The predictor’s scheme is presented in Figure 4.11.  
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Figure 4.11. The GAg predictor using the previous branch condition (PBC) 

4.4.2. The PAg Predictor Using Local PBC Value 

We have also analyzed a PAg scheme that uses the local (per-address) PBC 

value (previous branch condition) by XORing it with the LHR (local history 

register). The predictor is presented in Figure 4.12. 
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Figure 4.12. The PAg predictor using the local PBC value 
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The Per-address Branch History Table (PBHT) maintains for each branch its 

own Local History (LH) and its Previous Branch Condition (PBC) value. 

4.4.3. The Piecewise Linear Branch Predictor Using PBC 

Value 

Further, we propose some improved idealized piecewise linear branch 

predictors (see Figures 4.13 and 4.14) that use the previous global or local 

branch condition (PBC) as additional prediction information. The global 

history length is dynamically adjusted between 18 and 48 bits and the local 

history length between 1 and 16 bits, as in [Jim05, Gel07a, Gel07b]. In both 

schemes local and global branch histories together with the PBC value are 

used as inputs for the selected perceptron in order to generate a prediction. 

The three indexes used within the weight selection mechanism are obtained 

through a hash function that uses three prime numbers, as follows [Jim04]: 

       NWiPCPCindex i

i

GH mod1289381660509511387 1  
 (4.3) 

     NWjPCindex j

LH mod1289381511387     (4.4) 

     NWkPCindex k

PBC mod1289381511387     (4.5) 

with GHlengthi ,1 , LHlengthj ,1 , PBClengthLHlengthLHlengthk  ,1  

(PBClength is 32 in our case), and NW the total number of weights 

(parameter varied in our simulations between 8590 and 30713). PCi-1 

represents the previous (i-1)th branch’s PC, belonging to the path of the 

current branch. Consequently, a certain prediction is generated using 

( PBClengthLHlengthGHlength  ) number of selected weights. These 

weights were selected from a table containing NW weights. The first two 

relations were used according to Jimenez’s simulator proposals [Jim04] 

while the third one was introduced by us, according to the new introduced 

PBC information. 

4.4.3.1 The Piecewise Linear Branch Predictor Using Global PBC 

Value 

Figure 4.13 presents the scheme of the perceptron-based branch predictor 

that is using as additional prediction information the global previous branch 

condition (PBC). The lower part of the branch address (PC) selects a 
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perceptron in the table of perceptrons and a local history register in the local 

branch history table.  
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Figure 4.13. Perceptron-based branch predictor using the global PBC value 

4.4.3.2 The Piecewise Linear Branch Predictor Using Local PBC Value 

Figure 4.14 presents a possible scheme of the perceptron-based branch 

predictor that is using as prediction information local (per-address) previous 

branch condition (PBC). 
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Figure 4.14. Perceptron-based branch predictor using the local PBC value 
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In Figure 4.14, the Local Branch History Table maintains for each branch its 

Local History (LH) and its the Previous Branch Condition (PBC) value.  

4.5. Experimental Results 

The perceptron and our branch difference predictors were implemented by 

extending the sim-bpred simulator provided in SimpleSim-3.0 [Sim]. We 

also include the implementation of the unbiased branch selection 

mechanism and, thus, the predictors can be evaluated on unbiased branches, 

too. We have evaluated our predictors on SPEC 2000 benchmarks, 

especially those that indicated a high percentage of unbiased branches 

[Gel06a, Vin06]. The Championship Branch Prediction (CBP-1) simulators 

afferent to the Frankenpredictor [Loh05a] and the Piecewise Linear Branch 

Predictor [Jim05] were extended to work with the same unbiased branch 

selection mechanism. In order to exploit these predictors we used the CBP-1 

branch prediction framework which includes twenty traces (5 integer 

programs, 5 floating point, 5 multimedia applications and 5 server 

benchmarks) and a driver that reads the traces and calls the branch predictor 

[CBP04]. The traces are approximately 30 million instructions long and 

include both user and system codes. The two predictors were implemented 

within the constraints of a storage budget of (64K + 256) bits. 

All simulation results are reported on 1 billion dynamic instructions 

skipping the first 300 million instructions from the SPEC 2000 benchmarks 

[SPEC] and on all instructions from the INTEL benchmarks [CBP04]. We 

note with LH(p)-GH(q) prediction information consisting in local history 

(LH) of p bits, and global history (GH) of q bits. We also note with 

PPM(tdim, hlen, plen, thres, htype) a complete-PPM branch-difference 

predictor using a Branch Difference History Table (BDHT) of tdim entries, 

a history length of hlen differences, a search pattern length of plen 

(specifying the current state), a threshold of thres, and considering a history 

of branch difference values or branch difference signs (htype=value/sign). 

4.5.1. Evaluating State-of-the-Art Branch Predictors 

In the first stage of this section, we have measured with present-day branch 

predictors the prediction accuracy on all branches and on the final list of 

unbiased branches identified in Chapter 3, using different local and global 

history lengths.  
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4.5.1.1. Evaluating the Perceptron-Based Branch Predictor 

Figure 4.15 shows comparatively the results obtained on the SPEC 2000 

benchmarks with a simple perceptron-based predictor integrated into 

Simplesim-3.0 [Sim]. We used a table of perceptrons with 256 entries. 
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Figure 4.15. The average prediction accuracies obtained with the perceptron 

predictor using different prediction information on the SPEC 2000 benchmarks 

Figure 4.15 intends to find an optimal LH(p)-GH(q) configuration within an 

enormous space of possible solutions. As Figure 4.15 shows, when we used 

the best configuration of the perceptron predictor (a local history of 28 bits 

and a global history of 40 bits – determined based on laborious simulations), 

we obtained an average prediction accuracy of 92.58% on all branches and 

of only 73.46% on the unbiased branches. 

4.5.1.2. Evaluating the Idealized Piecewise Linear Branch Predictor 

Figure 4.16 shows comparatively on the SPEC 2000 benchmarks the 

prediction accuracies obtained with the Idealized Piecewise Linear Branch 

Predictor (described in paragraph 4.2.2) on all branches and on the final list 

of unbiased branches identified in Chapter 3 using the XOR between the 

global history of 32 bits and the path of 32 PCs.  
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Figure 4.16. The average prediction accuracies obtained with the Idealized 

Piecewise Linear Branch Predictor on the SPEC 2000 benchmarks 

We used the original Idealized Piecewise Linear Branch Predictor [Jim05] 

whose global history length is dynamically adjusted between 18 and 48 bits 

and its local history length between 1 and 16 bits. Even if the Idealized 

Piecewise Linear Branch Predictor doesn’t solve satisfactory the unbiased 

branches problem, it predicts them with an average accuracy of 77.3% that 

is better than all the other simulated branch prediction schemes. 

Figure 4.17 shows comparatively on the CBP-1 Intel benchmarks 

[CBP04] the prediction accuracies obtained with the Idealized Piecewise 

Linear Branch Predictor [Jim05] on all branches and on the final list of 

unbiased branches. We used the same configuration as on the SPEC 2000 

benchmarks.  
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Figure 4.17. Average prediction accuracies obtained with the Idealized Piecewise 

Linear Branch Predictor on the Intel benchmarks 
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The Idealized Piecewise Linear Branch Predictor provides a prediction 

accuracy of 89.1% on the unbiased branches from the Intel benchmarks. 

Although the CBP-1 Intel benchmark suite includes integer, floating-point, 

multimedia and server applications, we are reserved regarding them due to 

their shortness. Furthermore, the Second World Championship Branch 

Prediction Competition (CBP-2) [CBP06] has used all the twelve 

CPUintSPEC2000 benchmarks and eight JavaSPECjvm98 benchmarks, 

which shows the weakness of the CBP-1 benchmark suite. 

In [Flo07b] we have also evaluated on the SPEC JVM98 benchmarks 

the fast path-based neural branch predictor [Jim03c] – a particular 

configuration of the piecewise linear branch predictor – which uses a single 

global piecewise-linear function to predict all branches. As Figures 3.6 and 

4.18 show, the lower percentage of unbiased branches within the object-

oriented Java applications has a lower impact on the global prediction 

accuracy (98.57%) and even unbiased branches are predicted more 

accurately (80.51%).  
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Figure 4.18. Average prediction accuracies obtained with the Fast Path-Based 

Neural Branch Predictor on the SPEC JVM98 benchmarks 

4.5.1.3. Evaluating the Frankenpredictor 

Figure 4.19 shows comparatively on the SPEC 2000 benchmarks the 

prediction accuracies obtained with the Frankenpredictor (described in 

paragraph 4.2.3) on all branches and on the unbiased branches identified in 
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Chapter 3. For the Frankenpredictor we used a global history of 59 bits 

[Loh05a]. 
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Figure 4.19. The average prediction accuracies obtained with the Frankenpredictor 

on the SPEC 2000 benchmarks 

Figure 4.20 shows comparatively on the CBP-1 Intel benchmarks [CBP04] 

the prediction accuracies obtained with the Frankenpredictor on all branches 

and on the final list of unbiased branches, using the same configuration as 

on the SPEC 2000 benchmarks.  
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Figure 4.20. The average prediction accuracies obtained with the Frankenpredictor 

on the Intel benchmarks 
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We empirically found out that the behavior of difficult branches – as we 

defined them – cannot be sufficiently learned neither by neural predictors. 

Figures 4.16 – 4.20 confirm us again, that the unbiased branches, identified 

in Chapter 3, are hard-to-predict with present-day branch predictors. 

4.5.1.4. Evaluating the O-GEHL Predictor 

We have also evaluated the Optimized GEometric History Length (O-

GEHL) predictor [Sez05], described in paragraph 4.2.4 (see Figure 4.4). We 

used an 8-table O-GEHL predictor. The experimental results obtained on 

the SPEC 2000 benchmarks are presented in Figure 4.21. 
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Figure 4.21. The average prediction accuracies obtained with the O-GEHL 

predictor on the SPEC 2000 benchmarks 

As it can be observed, the neural branch predictors provided higher 

prediction accuracy then the O-GEHL predictor (see comparatively Figures 

4.16, 4.19 and 4.21). 

4.5.2. Evaluating Markovian Value-History-Based Branch 

Predictors 

In this section we evaluate the Markovian value-history-based branch 

predictors proposed and described in Section 4.3. We emphasize that our 
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investigation is about the impact that unbiased branches have on dynamic 

branch prediction and therefore realistic hardware costs and timings are out 

of scope. 

4.5.2.1. Evaluating Local Branch Difference Predictors 

We set out to determine the optimal local branch difference predictor. We 

asked ourselves five questions. Would the operand sign value difference 

algorithm achieve better prediction accuracy than the operand value 

difference? Which local history register length would provide the best 

prediction accuracy? Which pattern length would achieve the best 

prediction accuracy? What is the most suitable threshold value? What is the 

ideal number of local BDHT entries?  

In Figure 4.22 we answer the first two questions: What would be the 

most suitable operand difference algorithm to use and, which history 

register length achieves the best prediction accuracy? We evaluated the 

impact of the unbiased branches (identified in Chapter 3) from the SPEC 

2000 benchmarks using a complete PPM predictor with a local BDHT. We 

considered an unlimited BDHT which ensured that every static branch had 

its own entry thereby eliminating any possibility of collisions. The pattern 

length was set to 3, the threshold value was set to 1, and the local history 

register length was varied from 8 differences to 64. 
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Figure 4.22. The average prediction accuracies on the SPEC 2000 benchmarks, 
using a PPM(tdim=unlimited, hlen=varied, plen=3, thres=1, htype=value and 

sign) branch difference predictor with different local history lengths 
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Our results show that better prediction accuracy is achieved by the 

difference signs rather than the difference values and that beyond a local 

history register length of 24 differences there is only marginal improvement 

in prediction accuracy. Consequently, the sign of the current branch 

difference is better correlated with the signs of its previous differences 

rather than with the values of those differences. But why is better to use 

only the signs of differences as history information instead of the values of 

differences? The number of distinct symbols that can occur in a value 

history is huge reported to only three symbols that can appear in a sign 

history. Thus, the frequency of symbols in a value history is very low. 

Therefore, as we have shown in Section 4.3 based on examples, through a 

sign history much deeper correlations can be exploited than with a value 

history.  
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Figure 4.23. The average usage rates of Markov predictors using 

PPM(tdim=unlimited, hlen=24, plen=3, thres=1, htype=sign and value) branch 

difference predictors on all branches 

Figure 4.23 compares the sign history with the value history in terms of 

usage rate afferent to Markov predictors of different orders. We used the 

optimal history length 24 and a pattern length of 3, and therefore, we 

evaluated the usage rates corresponding to Markov predictors of orders 0, 1, 

2 and 3. As Figure 4.23 shows, more often are used superior order Markov 

predictors by using a sign history, and thus, deeper correlations can be 

exploited. Therefore, we continued by evaluating different pattern lengths 

using an unlimited BDHT, a sign history of 24 branch difference signs, and 

a threshold of 1. In Figure 4.24 we answer the third question: Which pattern 

length would achieve the best prediction accuracy? Our results confirm that 

our original pattern length of 3 achieves the best prediction accuracy, 

considering the optimal local history of 24 branch difference signs.  
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Figure 4.24. Average prediction accuracies on SPEC 2000 benchmarks, using a 

PPM(tdim=unlimited, hlen=24, plen=varied, thres=1, htype=sign) branch 

difference predictor with different pattern lengths 
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Figure 4.25. Average prediction accuracies on SPEC 2000 benchmarks using a 
PPM(tdim=unlimited, hlen=varied, plen=varied, thres=1, htype=sign) branch 

difference predictor exploring different local history lengths and pattern lengths 

Figure 4.25 explores the space of local history lengths and pattern lengths 

using a threshold of 1 and confirms that an acceptable choice (taking into 

account a good accuracy/complexity trade-off report) is to use a history of 

24 branch difference signs with a pattern length of 3. 
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Figure 4.26. Average prediction accuracies on SPEC 2000 benchmarks, using a 

PPM(tdim=unlimited, hlen=24, plen=3, thres=varied, htype=sign) branch 

difference predictor with different threshold values 

Threshold Lost predictions [%] 

T=1 0.00 

T=2 7.59 

T=3 13.37 

T=4 17.31 

T=5 20.50 

T=6 23.40 

T=7 25.13 

T=8 26.98 

Table 4.1. Average percentages of predictions lost with different thresholds 

In Figure 4.26 we answer the fourth question: What is the most suitable 

threshold value? We used an unlimited BDHT, a local history of 24 branch 

difference signs, the pattern length was now set to 3 and the threshold value 

varied. The threshold’s value means how many times the current search 

pattern must be found in the history string in order to generate a prediction, 

implementing thus a confidence degree (otherwise, no prediction is 

generated). Our results show that prediction accuracy improves with an 

increasing threshold value, but there is marginal, if any, benefit of 

increasing the threshold value beyond 7. Strictly considering the confidence 

metric, the experimental results presented in Figure 4.26 show that the 

optimal threshold value is 7. However, in this case, the total number of 

predictions decreases at average with 25.13% (see Table 4.1). Considering 

T=1, the global prediction accuracy on unbiased branches A(T=1) is 

68.61%. In contrast, considering T=7, the global accuracy A(T=7) is 



Predicting Unbiased Branches 117 

%64.58%33.78%87.74   whereas for T=2, A(T=2) it is 

%75.65%16.71%41.92  . Therefore, from the global accuracy point of 

view T=1 is optimal.  

In Figure 4.27 we answer the final question: What would be the 

optimal number of entries in the local BDHT? We used the same parameters 

as Figure 4.26, and the number of entries in the local BDHT was varied 

from 64 entries to 256 entries in increments of 64. We have also included an 

unlimited local BDHT. Our experimental results show that the impact of the 

so called 3Cs (capacity, collisions and cold-start) to be minimal with a 256 

entry local BDHT and that there is minimal prediction accuracy gain by 

increasing the number of entries beyond 256 entries where the increased 

number of cold-start mispredictions may impact on prediction accuracy. 
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Figure 4.27. Average prediction accuracies obtained on the SPEC 2000 

benchmarks using a PPM(tdim=varied, hlen=24, plen=3, thres=1 and 7, 

htype=sign) branch difference predictor with different BDHT sizes 

The next step consists in speculatively executing branches based on 

their predicted input differences. We investigated the branch prediction 

accuracies of the individual SPEC 2000 benchmarks using our optimal local 

branch difference predictor. We used the operand sign difference algorithm, 

with a local history register length of 24-signs, a pattern length of 3, and we 

used a local 256 entry BDHT. In our results we compare two threshold 

values, 1 and 7. When the threshold value is 1, we achieve an average 

branch prediction accuracy of 90.55% and the unbiased branches have an 

average branch prediction accuracy of 71.76%. When the threshold value is 

increased to 7, we achieve an average branch prediction accuracy of 96.43% 
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and the unbiased branches have a prediction accuracy of 79.69%. These 

results show the significance of the threshold value on prediction accuracy 

and the impact of unbiased branches. Consequently, unbiased branches in 

this local context remain difficult-to-predict. 

4.5.2.2. Evaluating Combined Global and Local Branch Difference 

Predictors 

We consider the high number of unbiased branches and their impact on 

prediction accuracy to be due to their high degree of shuffling. To alleviate 

the problem of shuffled branch behaviour of unbiased branches we have 

developed a combined global and local branch difference predictor which 

would convert an unbiased branch in a local context into a biased branch in 

a global context, and therefore a difficult-to-predict branch in a local context 

would be an easy-to-predict branch in a global context. 

In our global and local branch difference predictor, each global history 

pattern is used to point to its own local BDHT as described in paragraph 

4.3.2 and shown in Figure 4.8. Consequently, we restrict the global history 

register length to a maximum of 4 differences. The selected BDHT is 

indexed by the PC, as in the local approach. First, we evaluated the 

predictor by maintaining in the GHR (see Figure 4.8) the global branch 

difference history: the signs of the inputs’ differences corresponding to the 

previous h branches. The parameters of each of the local BDHTs were the 

same as those of the optimal local BDHT determined in paragraph 4.5.2.1. 
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Figure 4.28. Average prediction accuracies on SPEC 2000 using a 

PPM(tdim=256, hlen=24, plen=3, thres=1 and 7, htype=sign) branch difference 

predictor varying the global branch difference history 
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In Figure 4.28 the global history register length of 0 represents the optimal 

local branch difference predictor whose results are provided in Figure 4.27, 

with a 256 entry BDHT. With the combined global and local difference 

predictor, as the global history register length is increased there is a 

marginal improvement in prediction accuracy. 

The next step consists in investigating the branch prediction 

accuracies by speculatively executing branches based on their predicted 

input differences. With a global history register length of 4 signs and a 

threshold value of 1, the combined global and local branch difference 

predictor achieves an average prediction accuracy of 92.33%, but the 

unbiased branches only achieve an average prediction accuracy of 71.54% 

showing a marginal improvement over the local branch difference predictor. 

When the threshold value is increased to 7, the average prediction accuracy 

improves to 97.44% and the average prediction accuracy of unbiased 

branches is significantly better at 81.25%. Even though there is some 

improvement in prediction accuracy, these results show that the impact of 

unbiased branches still remains significant and therefore implies that 

alternative approaches are required. 

We also evaluated the predictor by maintaining in the GHR the global 

branch outcome history (taken / not taken). Our simulation results show that 

the confidence is slightly better on unbiased branches if we use the global 

difference-sign history. As we have shown through an example in Section 

4.3, the difference-sign history can be more efficient because, due to its 

additional information, it can efficiently exploit shorter contexts, too. 

4.5.2.3. Branch Difference Prediction by Combining Multiple Partial 

Matches 

Branch differences are predicted by five Markov predictors of orders 

ranging between 1 and 5, the final prediction being provided through 

majority voting (as described in Section 4.3.3 and shown in Figure 4.9). 

Again, we use a 256 entry BDHT, a local branch difference history of 24 

values, and we compare the prediction accuracy of two voting algorithms, a 

simple voting algorithm and a confidence voting algorithm. Figure 4.29 

shows that the average prediction accuracy of the confidence voting 

algorithm is marginally better than the simple voting algorithm. The final 

branch prediction accuracy, obtained using the speculative branch 

differences generated by combining multiple partial matches through 

confidence-based voting, was 91.59% on all branches and only 72.24% on 

unbiased branches. 
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Figure 4.29. Branch difference prediction accuracies by combining multiple partial 

matches through simple voting and confidence-based voting 

We also studied the influence of the threshold’s value over the 

prediction accuracy by combining multiple partial matches through 

confidence-based voting, using a BDHT with 256 entries, and a local 

history of 24 branch difference signs. In this case, the confidence-based 

voting takes the majority, considering only Markov predictions found in the 

history string after the considered pattern at least T (threshold) times. 
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Figure 4.30. Branch difference prediction accuracies by combining multiple partial 

matches through confidence-based voting with different thresholds 
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Threshold Lost predictions [%] 

T=1 2,25 

T=2 5,20 

T=3 6,62 

T=4 8,06 

T=5 9,40 

T=6 10,78 

T=7 13,02 

T=8 2,25 

Table 4.2. Average percentages of predictions lost by using different thresholds 

The experimental results presented in Figure 4.30 and Table 4.2 show that 

the optimal threshold value is 2. Thus, the final branch prediction accuracy 

by combining multiple partial matches through confidence-based voting 

with a threshold of 2 is 73.05% on unbiased branches and 92.42% on all 

branches. 
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Figure 4.31. Branch prediction accuracies obtained using the perceptron-based 

predictors, the O-GEHL predictor and the PPM-based predictors, only on unbiased 

branches 

Figure 4.31 shows again, that the unbiased branches identified in Chapter 3 

cannot be accurately predicted even with condition-history-based Markov 

predictors. The highest average prediction accuracy on the unbiased 

branches, of 77.30%, was provided by the piecewise linear branch predictor. 
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4.5.3. Evaluating PBC-Based Branch Predictors 

4.5.3.1 Evaluating the Global-PBC-Based GAg Predictor 

Figure 4.32 presents the prediction accuracies obtained with the modified 

GAg predictor on unbiased branches.  
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Figure 4.32. Average prediction accuracies of the modified GAg predictor on 

unbiased branches 

The following contexts have been used with the modified GAg predictor (in 

Figure 4.32): 

 GHPC16: the 16 least significant bits of the branch PC (shifted to 

right by 3 bits) XORed with 16 bits of global history (gshare 

predictor); 

 GHPBC16: 16 least significant bits of PBC value XORed with 16 

bits of global branch history; 

 PBC4-GHPBC12: 4 least significant bits of PBC value concatenated 

with the XOR between 12 least significant bits of PBC value and 12 

bits of global branch history; 

 PBC8-GHPBC8: 8 least significant bits of PBC value concatenated 

with the XOR between 8 least significant bits of PBC value and 8 

bits of global branch history; 
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 Shifted-GHPBC16: the 16 least significant bits of PBC value 

(shifted to right by 3 bits) XORed with 16 bits of global history; 

 Shifted-PBC4-GHPBC12: 4 least significant bits of PBC value 

(shifted to right by 3 bits) concatenated with the XOR between 12 

least significant bits of PBC value (shifted to right by 3 bits) and 12 

bits of global branch history; 

 Shifted-PBC8-GHPBC8: 8 least significant bits of PBC value 

(shifted to right by 3 bits) concatenated with the XOR between 8 

least significant bits of PBC value (shifted to right by 3 bits) and 8 

bits of global branch history; 

 PBC4-GH12: 4 least significant bits of PBC value concatenated with 

12 bits of global branch history; 

 Signed-PBC4-GHPBC12: sign bit of PBC value (0 if positive, 1 if 

negative) concatenated with 3 least significant bits of PBC value and 

with the XOR between 12 least significant bits of PBC value and 12 

bits of global branch history. 

4.5.3.2 Evaluating the Local-PBC-Based PAg Predictor 

Figure 4.33 presents the prediction accuracies obtained with the modified 

PAg predictor on unbiased branches.  
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Figure 4.33. Average prediction accuracies of the modified PAg predictor on 

unbiased branches 
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The second level (GPHT) is indexed, depending on the used context, as 

follows: 

 LH16: the second level is indexed by 16 bits of local branch history 

(PAg predictor); 

 LHPBC16: 16 least significant bits of PBC value XORed with 16 

bits of local branch history; 

 PBC4-LHPBC12: 4 least significant bits of PBC value concatenated 

with the XOR between 12 least significant bits of PBC value and 12 

bits of local branch history; 

 PBC8-LHPBC8: 8 least significant bits of PBC value concatenated 

with the XOR between 8 least significant bits of PBC value and 8 

bits of local branch history; 

 Shifted-LHPBC16: 16 least significant bits of PBC value (shifted to 

right by 3 bits) XORed with 16 bits of local history; 

 Shifted-PBC4-LHPBC12: 4 least significant bits of PBC value 

(shifted to right by 3 bits) concatenated with the XOR between 12 

least significant bits of PBC value (shifted to right by 3 bits) and 12 

bits of local branch history; 

 Shifted-PBC8-LHPBC8: 8 least significant bits of PBC value 

(shifted to right by 3 bits) concatenated with the XOR between 8 

least significant bits of PBC value (shifted to right by 3 bits) and 8 

bits of local branch history; 

 PBC4-LH12: 4 least significant bits of PBC value concatenated with 

12 bits of local branch history; 

 Signed-PBC4-LHPBC12: sign bit of PBC value (0 if positive, 1 if 

negative) concatenated with 3 least significant bits of PBC value and 

with the XOR between 12 least significant bits of PBC value and 12 

bits of local branch history. 

4.5.3.3 Evaluating the Global-PBC-Based Piecewise Linear Branch 

Predictor 

Figure 4.34 presents the prediction accuracies obtained on all branches and 

on the unbiased branches with our best proposed and implemented 

predictor: the idealized piecewise linear branch predictor using the global 

PBC value as additional prediction information. The first two bars represent 

the prediction accuracies on all branches and on unbiased branches, 

obtained with the idealized piecewise linear branch predictor (PW). The rest 

of the bars were obtained using the PBC value (32 bits) as additional 
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prediction information, varying the number of weights (from 8590 up to 

30713). 
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Figure 4.34. Average prediction accuracies obtained with piecewise linear branch 

predictor on unbiased branches versus all branches, using the global PBC value as 

additional prediction information 

With the modified piecewise linear branch predictor we obtained a 

prediction accuracy of 78.30% (see Figure 4.34) opposite to those obtained 

with the modified GAg, 69.87% (see Figure 4.32) and the modified PAg, 

73.75% (see Figure 4.33). This gain was probably obtained because both the 

modified GAg and PAg predictors use a hashing between PBC value and 

global/local branch history, while the modified piecewise linear branch 

predictor uses the branch history and PBC value without hashing (by 

concatenating them). 

Analyzing comparatively the results presented in Figures 4.31 and 

4.34 it can be observed how the PBC value determines the improvement of 

unbiased branch prediction accuracy, overcoming with at least 1% the best 

state of the art predictor’s performance. Even if the improvement seems less 

significant, it is very clear how this small percentage contributes to the 

global prediction accuracy (value that overcomes with more than 0.53% the 

best state of the art predictor’s performance). 

4.5.3.4 Evaluating the Local-PBC-Based Piecewise Linear Branch 

Predictor 

Figure 4.35 presents the prediction accuracies obtained with the perceptron-

based branch predictor that is using as prediction information local (per-
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address) previous branch condition (PBC). Unfortunately, we have not 

obtained any improvement with the local PBC approach opposite to the 

global PBC approach, the accuracies being even lower. 
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Figure 4.35. Average prediction accuracies of the piecewise linear branch 
predictor on unbiased branches, using the local (per-address) PBC value as 

additional prediction information 

Consequently, based on laborious simulations we showed that the 

percentages of difficult branches are quite significant, depending on the 

different used contexts and their lengths, giving a new research challenge 

and a useful niche for branch prediction research. We showed that these 

difficult predictable branches cannot be well-predicted using state of the art 

predictors. They need some specific efficient predictors that are using some 

new more relevant prediction information. Finding a new relevant context to 

aggressively reduce the number of unbiased shuffled branches remains an 

open problem. Computer Architects cannot therefore continue to expect a 

prediction accuracy improvement with conventional predictors and 

alternative approaches are necessary. 

4.5.3.5 Prediction Accuracy Improvements with PBC 

Figure 4.36 shows comparatively the prediction accuracies obtained on the 

unbiased branches using predictors with and without PBC. 
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Figure 4.36. Prediction accuracy on unbiased branches using predictors with and 

without the new PBC information 

As Figure 4.36 depicts, all the evaluated branch predictors that are using the 

PBC as additional prediction information are more accurate than the original 

versions (without PBC). 

4.6. Summary 

We showed that the best state of the art branch predictors [CBP04, CBP06] 

are obtaining very low prediction accuracies on unbiased branches, at 

average about 70% [Gel07b, Gel07c, Gel08c]. The same predictors are 

predicting a “normal” branch with accuracies ranging between 95% and 

99%. These predictors are usually hybrid: Markovian, PPM-based, and 

neural. The unbiased branches cannot be accurately predicted even with the 

actual most powerful branch predictors. This fact is perfectly normal taking 

into account that the problem consists in better representing the unbiased 

branches in a new efficient feature space rather in finding better prediction 

structures. The highest average prediction accuracy on the unbiased 

branches, of 77.30%, was provided by the idealized piecewise linear branch 
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predictor [Jim05]. This low prediction rate is understandable taking into 

account that even a neural predictor cannot effectively learn unbiased 

branches. As a comparison, the same predictor obtained far better average 

prediction accuracy, of 94.92%, on all branches. 

We have also used the value of previous branch condition (PBC) as 

additional prediction information in some state-of-the-art branch predictors 

in order to increase their prediction accuracy. Our evaluations showed that 

the PBC value improves the accuracy of idealized piecewise linear branch 

predictor on unbiased branches with at least 1%. Even if the improvement 

seems less significant, it is very clear how this small percentage contributes 

to the global prediction accuracy, which increased with 0.53%. 



 

 

“Anyone who considers arithmetical methods of producing 

 random digits is, of course, in a state of sin” 

John von Neumann 

5. Validating Unbiased Branches Using 

Random Degrees 

As we stated out in the previous chapter, the unbiased branches behavior is 

practically unpredictable. Why this? Are these special branches 

unpredictable due to some relevant information misses or are they 

“random”? However, they were obtained by compiling some deterministic 

programs; therefore they were not randomly generated. But... what is 

random? During this chapter we try to understand random strings of 

symbols from a mathematical point of view in order to practically propose 

some concrete metrics characterizing them. These metrics could help us to 

better understand and analyze the unbiased branches behavior and their 

potential predictability. 

A pragmatic aim consists in finding some deterministic hidden 

information that could reduce the unbiased branches’ entropy. This is 

extremely difficult at least from two reasons: first, due to the enormous 

complexity of the benchmarks’ dynamic behavior and, second, due to the 

fact that the simulated object code obviously has far less semantics 

comparing with the HLL program. However, we consider that our 

developed random degrees could indicate the chance for uncovering this 

new relevant infomation. A high random degree might indicate a huge 

complexity and therefore, small chances to discover the right useful 

information. 

5.1. Related Work 

This section presents a brief related work on characterizing random 

sequences from a fundamental mathematical point of view and on 

applications of Hidden Markov Models (HMM) in different Computer 

Science areas. 
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5.1.1. What is a Random Sequence? 

The questions are: is it possible to give an intrinsic or ontological definition 

of a random string of symbols? Could generate a deterministic program a 

“random” sequence? Mathematicians show that for strings it is only possible 

to develop a notion of randomness degree, the difference between random 

and nonrandom being therefore quite fuzzy [Vin08b]. 

There is a strong logic connection between the concept of randomness 

and computability theory. It is natural to consider that any string of symbols 

generated by an algorithm is not random (it could be perfectly predicted 

through a predictor implementing that algorithm). For an in-depth rigorous 

definition of randomness it is necessary to use the fertile Turing Machine 

(TM) concept. Any binary input sequence in a TM belongs to the so-called 

Finite Binary set (FB) and it codifies the input data. The TM can be in one 

state belonging to the set }...{ 210 fqqqqQ  , where 0q  is the initial state 

(start) and fq  is the final state (stop). Depending on the current input 

symbol )(ts  and the current state q(t), the TM generates the new symbol 

)1( ts  and transits to a new state )1( tq . Thus, each step can be described 

by }),1(),1(),(),({)( mtqtststqxTM t   where },{ RLMm  . 

)(xTM t  is also called instruction, and the entire instruction sequence 

represents the program executed by the TM. For FBx , if the TM reaches 

its final state, it generates the corresponding output sequence TM(x). 

Therefore, from a formal point of view, a TM is a function 

MSQSQf : . 

The set of all TMs is a countable (infinite) set; therefore the TM set 

can be put in a one-to-one correspondence with the natural number set (N). 

This fact can be easily justified. Considering all the TMs with k instructions 

(noted 
kTM ) it means that one can then order the machines by the 

increasing size of the instruction set (
1kTM ), involving that the (

kTM ) set 

is countable ...5,4,3,2k  Therefore, taking into account that each 

certain 
kTM  set contains a finite number of TMs it involves that the set of 

all TMs is countable, too ...),...,,,( 21 nTMTMTM . Thus, each TM defines a 

partial function from the set of FB strings to itself. Alternatively, if the 

function is defined for all strings in FB, then the function is said to be total. 

Now each string in FB is a binary representation of a positive integer 

through an encoding function NFBc : . A partial function NNf :  is 

Turing computable if there is a TM such that, for every n in the domain of f, 
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there is an input FBx  with )(xcn   for which the machine eventually 

stops and such that the output )(xTM  satisfies ))(()( xTMcnf  . From the 

countability of the collection of all TMs, it follows immediately that the set 

of partial Turing computable functions is a countable subset of the much 

larger uncountable set of all partial functions from N to N. In this sense, 

very few functions are Turing computable even if the number of these 

computable functions is infinite (noted Alef 0 in G. Cantor’s mathematical 

theory of actual infinites). This means that the Turing non-computable 

function set is uncountable. It is well-known the Church-Turing thesis 

saying that for any algorithm (finite steps procedure) there is an equivalent 

TM [Vol02]. 

Returning to the random binary string’s definition problem, as we 

already stated, it is obvious that such a string must not be generated through 

an algorithm (i.e., Turing computable function). Thus, any random binary 

string is generated by a non-computable Turing function. (Reciprocal, 

mathematicians showed that there are some non-computable sequences that 

are not random for sure!) Taking into account that the non-computable 

Turing function set is an uncountable set it involves that the random binary 

strings set is uncountable, too. Unfortunately this rigorous definition of a 

random sequence is useless because it cannot effectively generate any 

concrete random string. This is equivalent to say that majority of real 

numbers are random even if it is not possible to generate at least one 

example. Rigorously defining and effectively generating random sequences 

seems to be an open problem for the actual mathematics and also for the 

general studies related to cognitive and noetic behavior. 

The practical idea of randomness as incompressibility was proposed 

independently in the sixties of previous century by R. Solomonoff, A. 

Kolmogorov, and G. Chaitin. The main intuition is that a string is random if 

it cannot be “described” more efficiently than by giving the whole string 

itself. Thus, a string is random if it is algorithmically incompressible or 

irreducible. According to this view, a string is random if no computer 

program of size substantially smaller than the string itself can generate or 

describe it. This is the notion of program size algorithmic or Kolmogorov 

complexity. Obviously, its concrete value depends on the particular formal 

language that implements the generator algorithm. As a consequence of this 

practical approach of randomness we propose the compression rate as a 

random degree of a string of symbols. 
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5.1.2. Prediction with Hidden Markov Models 

Rabiner in his work [Rab89] shows how HMMs can be applied to selected 

problems in speech recognition. His paper presents the theory of HMMs 

from the simplest concepts (discrete Markov chains) to the most 

sophisticated models (variable duration, continuous density models, etc.). 

He also illustrated some applications of the theory of HMMs to simple 

problems in speech recognition, and pointed out how the techniques have 

been applied to more advanced speech recognition problems. 

Liu et al. in their work [Liu03], describe a HMM based framework for 

hand gesture detection and recognition. The goal of gesture interpretation is 

to improve human-machine communication and to bring human-machine 

interaction closer to human-human interaction, making possible new 

applications such as sign language translation. They present an efficient 

method for extracting the observation sequence using the feature model and 

Vector Quantization, and demonstrate that, compared to the classic 

template-based methods, the HMM-based approach offers a more flexible 

framework for recognition. 

Machine Learning techniques based on HMMs have been also applied 

to problems in computational biology and they can be used as mathematical 

models of molecular processes and biological sequences. The goal of 

computational biology is to elucidate additional information required for 

drug design, medical diagnosis and medical treatment. The majority of 

molecular data used in computational biology consists in sequences of 

nucleotides corresponding to the primary structure of DNA and RNA, or 

sequences of amino acids corresponding to the primary structure of proteins. 

Birney in his work [Bir01] reviews gene-prediction HMMs and protein 

family HMMs. The role of gene-prediction in DNA is to discover the 

location of genes on the genome. HMMs have also been used in protein 

profiling to discriminate between different protein families and predict a 

new protein-family or subfamily. Yoon et al. in their work [Yoo04], 

proposed a new method based on context-sensitive HMMs, which can be 

used for predicting RNA secondary structure. The RNA secondary structure 

results from the base pairs formed by the nucleotides of RNA. The context-

sensitive HMM can be viewed as an extension of the traditional HMM, 

where some of the states are equipped with auxiliary memory. Symbols that 

are emitted at certain states are stored in the memory, and they serve as the 

context that affects the emission and transition probabilities of the model. 

They demonstrated that the proposed model predicts the secondary structure 

very accurately, at a low computational cost. 
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In our previous work [Gel06c] we focused on a Hidden Markov Model 

(HMM) approach for context prediction in a ubiquitous computing 

application. Our application predicts the next room based on the history of 

rooms, visited by a certain person moving within an office building. We 

introduced the HMM-based predictors and compared them with simple 

Markov and neural predictors [Vin04b, Vin04c]. We evaluated these 

predictors by some movement sequences of real persons, acquired from the 

Smart Doorplates project developed at Augsburg University [Pet04]. The 

experimental results show that HMMs outperform other implemented 

prediction techniques such as Neural Networks and Markov predictors. 

Predicting from all rooms excepting own room and using a HMM with 4-

state confidence automata, we obtained an average prediction accuracy of 

84.81%, but the prediction accuracy measured on some local predictors 

grew up to over than 92%. 

5.2. Random Degree Metrics for Characterizing 

Unbiased Branches Behavior 

This section presents, based on our bibliographical research [Rab89, 

Gam99, Cor01, and Vol02], some practical ideas proposed in [Vin08b] for 

characterizing sequences generated by unbiased branches from the random 

degree viewpoint.  

5.2.1. Random Degree Metric Based on Hidden Markov 

Models 

New relevant information could reduce the string’s entropy and thus its 

random degree. Unfortunately this information might be very difficult or 

even impossible to be found. As a consequence we think it would be 

interesting trying to predict a sequence using HMMs like those developed in 

[Rab89, Gel06c]. A HMM is a doubly embedded stochastic process with an 

underlying hidden stochastic process which can only be observed through 

another set of stochastic processes that generate the sequence of observable 

symbols. A generic HMM is illustrated in Figure 5.1, where qt is the hidden 

state at time t, Ot is the observation at time t, A is the matrix of transition 

probabilities between hidden states, and B is the matrix of observation 

probabilities within each hidden state. 
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q1
q2 q3 qT

A A A A

B B B B

O1 O2 OTO3

Hidden State Sequence (Q):

Observation Sequence (O):

q1
q2 q3 qT

AA AA AA AA

BB BB BB BB

O1 O2 OTO3

Hidden State Sequence (Q):

Observation Sequence (O):  

Figure 5.1. Hidden Markov Model 

HMM predictors are very powerful adaptive stochastic models. Our 

hypothesis is that HMMs could compensate relevant information miss-

knowledge through their hidden stochastic process. HMM’s prediction 

accuracy might be considered as an ultimate prediction limit. Therefore, we 

propose HMM prediction accuracy as another practical metric for 

calculating the random degree associated with a sequence of symbols. Of 

course, all these random degree metrics will be applied to our unbiased 

branches behaviors in order to estimate how much random they are. 

5.2.1.1. First Order HMMs 

Elements of a First Order HMM 

1. N – the number of hidden states, with }...,,,{ 110  NSSSS  the set of 

hidden states, and tq  the hidden state at time t. N will be varied in order 

to obtain the optimal value. 

2. M – the number of observable states, with }...,,,{ 110  MVVVV  the set 

of observable states (symbols), and tO  the observable state at time t. 

3. A = }{ ija  – the transition probabilities between the hidden states iS  and 

jS , where 1,0],[ 1   NjiSqSqPa itjtij . 

4. B = )}({ kb j  – the probabilities of the observable states kV  in jS , where 

10,10],[)(  MkNjSqVOPkb jtktj .  

5. π = }{ i  – the initial hidden state probabilities, where 

10],[ 1  NiSqP ii . 

We also defined the following variables: 

 ),...()( 21  ittt SqOOOPi   – the forward variable [Rab89], 

representing the probability of the partial observation sequence until 

time t, and hidden state iS  at time t, given the model ),,(  BA . 
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 ),...()( 21  itTttt SqOOOPi  
 – the backward variable [Rab89], 

representing the probability of the partial observation sequence from t+1 

to the end T, given hidden state iS  at time t and the model ),,(  BA . 

 ),...,(),( 211  Tjtitt OOOSqSqPji  
 – the probability of being 

in hidden state iS  at time t, and hidden state jS  at time t+1, given the 

model ),,(  BA  and the observation sequence. 

 ),...()( 21  Titt OOOSqPi   – the probability of being in hidden 

state iS  at time t, given the model ),,(  BA  and the observation 

sequence. 

 H – the history (the number of observations used in the prediction 

process). In [Rab89] and [Sta04] the entire observation sequence is used 

in the prediction process (H=T), but in some practical applications the 

observation sequence increases continuously, therefore its limitation is 

necessary. The last H observations can be stored in a left shift register. 

 I – the maximum number of iterations in the adjustment process. 

Usually the adjustment process ends when the probability of the 

observation sequence does not increase anymore, but for a faster 

adjustment, the number of iterations is limited. 

Adjustment Process of a First Order HMM 

1. Initialize ),,(  BA ; 

2. Compute 1...,,0,1...,,0,...,,1),(),,(),(),(  NjNiTtijiii tttt  ; 

3. Adjust the model ),,(  BA ; 

4. If )( OP  increases, go to 2. 

 

The model parameters ),,( BA  are adjusted in order to maximize the 

probability of the observation sequence. The model ),,(  BA  can be 

chosen such that )( OP  is locally maximized using an iterative procedure, 

or using gradient techniques. In this work we use the Baum-Welch iterative 

method introduced by Baum et al. [Bau72]. The Baum-Welch algorithm – 

identical to the Expectation Maximization (EM) method for this particular 

problem – improves iteratively an initial model. If we define the current 

model as ),,(  BA  and use it to compute the reestimated model 

),,(  BA  – through steps 3.5, 3.6 and 3.7 from the prediction algorithm 
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–, then, as it has been proven by Baum, the model   is more likely than 

model   in the sense that )()(  OPOP  . Thus, if   is used iteratively 

in place of   repeating the reestimation calculation, the probability of the 

observation sequence can be improved until some limiting point is reached. 

Rabiner show in [Rab89] that the same reestimation formulas can be 

obtained using the techniques of Lagrange multipliers. 

Initialization of the First Order Model 

 The transition probabilities between the hidden states }{)( ijaNNA  , 

are randomly initialized to approximately 1/N; the sum of each row’s 

elements must be 1. 

 The probabilities of the observable states )}({)( kbMNB j , are 

randomly initialized to approximately 1/M; the sum of each row’s 

elements must be 1. 

 The initial hidden state probabilities π(1N) = }{ i  are randomly set to 

approximately 1/N, their sum being 1. 

Prediction Algorithm Using a First Order HMM 

1.) T=H (T is the length of the observation sequence); 

2.) c=0 (c is the number of current iteration, its maximum is given by I); 

3.) The model ),,(  BA  is repeatedly adjusted based on the last H 

observations 
THTHT OOO ...,,, 21 

 (the entire observation sequence if 

H=T), in order to increase the probability of the observation sequence 

)...( 21 THTHT OOOP  . In 3.1, 3.2 and 3.3 steps the denominators are 

used in order to obtain a probability measure, and to avoid underflow. 

As Stamp showed in [Sta04], underflow is inevitable without scaling, 

since the probabilities tend to 0 exponentially as T increases. 

3.1. Compute the forward variable   in a recursive manner: 

1,...,0,

)(

)(
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1

0

1

1
1 










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 Ni
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i

N

i

HTii

HTii
HT




 , where )(1 iHT   is 

the probability of observation symbol 1HTO  and initial hidden 

state iS , given the model ),,(  BA ; 
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where )( jt is the probability of the partial observation sequence 

until time t ( tHT OO ...1 ), and hidden state jS  at time t, given the 

model ),,(  BA . Since, by definition, 

),...()( 21  jTTHTHTT SqOOOPj  
, 

the sum of the terminal forward variables )( jT  gives the 

probability of the observation sequence: 






 
1

0

21 )()...(
N

j

TTHTHT jOOOP  . 

3.2. Compute the backward variable   in a recursive manner: 
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where )(it  is the probability of the partial observation sequence 

from t+1 to the end T ( Ttt OOO ...21  ), given hidden state iS  at 

time t and the model ),,(  BA . 

3.3. Compute  : 
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where ),( jit is the probability of being in hidden state iS  at time 

t and in jS  at time t+1, given the observation sequence 

THTHT OOO ...21   and the model ),,(  BA . 
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3.4. Compute  : 







1

0

1...,,0,1...,,1),,()(
N

j

tt NiTHTtjii  , where 

)(it  is the probability of being in the hidden state iS  at time t, 

given the model ),,(  BA  and the observation sequence 

THTHT OOO ...21 
. 

3.5. Adjust π: 

)(1 iHTi    – represents the expected number of times the 

hidden state is iS  at the initial time 1 HTt . 

3.6. Adjust A: 


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1
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1
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ji
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



 – represents the probability of transition from 

hidden state iS  to jS .  

 

The numerator is the expected number of transitions from state iS  

to jS , while the denominator is the expected number of transitions 

from state iS  to any state. 

3.7. Adjust B: 


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
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



 – the probability of observation symbol kV  

given that the model is in hidden state jS . The numerator is the 

expected number of times the model is in hidden state jS  and the 

observation symbol is kV , while the denominator is the expected 

number of times the model is in hidden state jS . 

3.8. c=c+1; 

if )]...(log[)]...(log[ 11  THTTHT OOPOOP    and c<I then  

go to 3.). 
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Since P would be out of the dynamic range of the machine 

[Rab89], we compute the logarithm of P, using the following 

formula [Sta04]: 
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4.) At current time T, the next observation symbol 
1TO  is predicted, using 

the adjusted model ),,(  BA : 

4.1. choose hidden state iS  at time T,  1...,,0  Ni ,  maximizing 

)(iT ; 

4.2. choose next hidden state jS  (at time 1T ),  1...,,0  Nj ,  

maximizing ija ; 

4.3. predict next symbol kV  (at time 1T ),  1...,,0  Mk ,  

maximizing )(kb j . 

 

If the process continues, then 1 TT  and go to 2.). 

5.2.1.2. A Possible Generalization: Superior Order HMMs 

In this paragraph we present a Hidden Markov Model of order R, 1R , 

based on our work published in [Gel06c]. There are multiple possibilities 

for doing this but we present here only one we considered the most 

appropriate due to its simplicity. The key of our proposed model is 

represented by the so-called hidden super-states, a combination of R 

primitive hidden states. Therefore, the main difference, comparing with a 

first order HMM, consists in the fact that the stochastic hidden Markov 

model is of order R instead of order one. This new model is justified 

because we suppose that in some specific applications, there are longer 

correlations within the hidden state model. In other words, we suppose that 

the next hidden state is better determined by the current super-state rather 

than by the current primitive state. As it can be further seen, the new 

proposed model is similar with the well-known HMM of order one, 

excepting the fact that the generic primitive hidden state becomes now a 

generic super-state. 
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Elements of a Superior Order HMM 

1. R – the order of HMM (a combination of R primitive hidden states form 

a so called super-state). 

2. N – the number of primitive hidden states (belonging to a HMM of 

order 1), with }...,,,{
110 

 RN
SSSS being the set of hidden super-states 

and Sqt  the hidden super-state at time t. The current super-state 

determines the transition into the next one based on a super-state 

transition matrix with restrictions (this transition matrix involve a non-

ergodic model, see example of Table 5.1). N will be varied in order to 

obtain the optimal value. 

3. M – the number of observable states, with }...,,,{ 110  MVVVV  the set 

of observable states (symbols), and tO  the observable state at time t. 

4. A = }{ ija  – the transition probabilities between the hidden super-states 

iS  and jS , where 1,0],[ 1  

R

itjtij NjiSqSqPa . 

5. B = )}({ kb j  – the probabilities of the observable states kV , considering 

the current hidden super-state jS , where 

10,10],[)(  MkNjSqVOPkb R

jtktj . 

6. π = }{ i – the initial hidden super-state probabilities, where 

][ 1 ii SqP  , 10  RNi . 

 

In order to simplify the terminology, in the rest of this chapter we’ll refer to 

the hidden super-states as simply hidden states. 
 

We also define the following variables: 

 ),...()( 21  ittt SqOOOPi   – the forward variable [Rab89], 

representing the probability of the partial observation sequence until 

time t, and hidden state iS  at time t, given the model ),,(  BA . 

 ),...()( 21  itTttt SqOOOPi    – the backward variable [Rab89], 

representing the probability of the partial observation sequence from t+1 

to the end T, given hidden state iS  at time t and the model ),,(  BA . 

 ),...,(),( 211  Tjtitt OOOSqSqPji    – the probability of being 

in hidden state iS  at time t, and hidden state jS  at time t+1, given the 

model ),,(  BA  and the observation sequence. 
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 ),...()( 21  Titt OOOSqPi   – the probability of being in hidden 

state iS  at time t, given the model ),,(  BA  and the observation 

sequence. 

 H – the history (the number of observations used in the prediction 

process). In [Rab89] and [Sta04] the entire observation sequence is used 

in the prediction process (H=T), but in some practical applications the 

observation sequence increases continuously, therefore its limitation is 

necessary. Thus, the last H observations can be stored in a left shift 

register having a certain length. 

 I – the maximum number of iterations in the adjustment process. 

Usually the adjustment process ends when the probability of the last H 

observations does not increase anymore, but for a faster adjustment, the 

number of iterations is limited. 
 

For a HMM of order R with N primitive hidden states, the transition 

probabilities between the hidden states }{)( ij

RR aNNA  , are stored in a 

table with RN  rows and RN  columns but not all cells of the table are used; 

there are only N consistent (possible) transitions from each state involving a 

non-ergodic model. The following table, for example, corresponds to a 

HMM of order 3 (R=3) with 2 primitive hidden states (N=2): 

 

 

States 

j 

0 1 2 3 4 5 6 7 

AAA AAB ABA ABB BAA BAB BBA BBB 

 

 

 

i 

0 AAA X X       

1 AAB   X X     

2 ABA     X X   

3 ABB       X X 

4 BAA X X       

5 BAB   X X     

6 BBA     X X   

7 BBB       X X 

Table 5.1. Consistent transitions for a HMM of order 3 (R=3), with 2 primitive 

hidden states (N=2) 

Only the consistent cells marked with “X” are used, because transitions are 

possible only between states which end and start with the same )1( R  

primitive hidden states. The consistent cells of the transition table are given 

by the following formulas: 
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 For next hidden states (columns) 1...,,0  RNj , are consistent 

only the current hidden states (rows) 

11 )1(...,,0  
















 RR NN

N

j
N

N

j
i ; 

 For current hidden states (rows) 1...,,0  RNi , are consistent only 

the next hidden states (columns) 

1)mod(...,,)mod( 11   NNNiNNij RR
. 

 

The HMM of order R is similar with a first order HMM with the above state 

transition restrictions. 

Adjustment Process of a Superior Order HMM 

1. Initialize ),,(  BA ; 

2. Compute 1...,,0,1...,,0,...,,1),(),,(),(),(  RR

tttt NjNiTtijiii  ; 

3. Adjust the model ),,(  BA ; 

4. If )( OP  increases, go to 2. 

Initialization of the Superior Order Model 

 The transition probabilities between the hidden states 

}{)( ij

RR aNNA  , are randomly initialized to approximately 1/N; the 

sum of each row’s elements must be 1. The hidden state transition 

probabilities are initialized for 1...,,0  RNi  and 

1)mod(...,,)mod( 11   NNNiNNij RR . 

 The probabilities of the observable states )}({)( kbMNB j

R  , are 

randomly initialized to approximately 1/M; the sum of each row’s 

elements must be 1. 

 The initial hidden state probabilities π(1 )RN  = }{ i  are randomly set 

to approximately 1/NR, their sum being 1. 

Prediction Algorithm Using a Superior Order HMM 

1.) T=H  (T is the length of the observation sequence); 

2.) c=0  (c is the number of current iteration, its maximum is given by I); 



Validating Unbiased Branches Using Random Degrees 143 

3.) The model ),,(  BA  is repeatedly adjusted based on the last H 

observations 
THTHT OOO ...,,, 21 

 (the entire observation sequence if 

H=T), in order to increase the probability of the observation sequence 

)...( 21 THTHT OOOP 
. In 3.1, 3.2 and 3.3 the denominators are used 

in order to obtain a probability measure, and to avoid underflow. As 

Stamp showed in [Sta04], underflow is inevitable without scaling, since 

the probabilities tend to 0 exponentially as T increases. 

3.1. Compute the forward variable   in a recursive manner: 

1,...,0,

)(

)(
)(

1
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1

1
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


 , where )(1 iHT   

is the probability of observation symbol 
1HTO  and initial hidden 

state iS , given the model ),,(  BA ; 
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where )( jt  is the probability of the partial observation sequence 

until time t     ( tHT OO ...1 ), and hidden state jS  at time t, given 

the model ),,(  BA . Since, by definition, 

 

),...()( 21  jTTHTHTT SqOOOPj   , 

 

the sum of the terminal forward variables )( jT  gives the 

probability of the observation sequence: 






 
1

0

21 )()...(

RN

j

TTHTHT jOOOP  . 

3.2. Compute the backward variable   in a recursive manner: 
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,1,...,0,1,...,1,
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where )(it  is the probability of the partial observation sequence 

from t+1 to the end T  ( Ttt OOO ...21  ), given hidden state iS  at 

time t and the model ),,(  BA . 

3.3. Compute  : 
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,1)mod(...,,)mod(,1...,,0 11   NNNiNNijNi RRR

 where ),( jit is the probability of being in hidden state iS  at time 

t and in jS  at time t+1, given the observation sequence 

THTHT OOO ...21 
 and the model ),,(  BA . 

3.4. Compute  : 
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NiTHTtjii  , 

where )(it  is the probability of being in hidden state iS  at time t, 

given the model ),,(  BA  and the observation sequence 

THTHT OOO ...21 
. 

3.5. Adjust  π: 

)(1 iHTi   – represents the expected number of times the 

hidden state is iS  )1...,,0(  RNi  at the initial time 

1 HTt . 

3.6. Adjust A: 
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 – the probability of transition from hidden state 
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iS  to jS , where 1...,,0  RNi  and 

1)mod(...,,)mod( 11   NNNiNNij RR . 

The numerator is the expected number of transitions from state iS  

to jS , while the denominator is the expected number of transitions 

from state iS  to any state. 

3.7. Adjust B: 
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 – the probability of observation symbol kV    

( 1...,,0  Mk ) given that the model is in hidden state jS    

( 1...,,0  RNj ). The numerator is the expected number of times 

the model is in hidden state jS  and the observation symbol is kV , 

while the denominator is the expected number of times the model 

is in hidden state jS . 

3.8. c=c+1; 

if  )]...(log[)]...(log[ 11  THTTHT OOPOOP    and   c<I    

then  go to 3.). 
 

Since P would be out of the dynamic range of the machine 

[Rab89], we compute the log of P, using the following formula 

[Sta04]: 
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4.) At time T, the next observation symbol 1TO  is predicted, using the 

adjusted model ),,(  BA : 

4.1. choose hidden state iS  at time T,  1...,,0  RNi , maximizing 

)(iT ; 
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4.2. choose next hidden state jS  (at time 1T ), 

1)mod(...,,)mod( 11   NNNiNNij RR , maximizing ija ; 

4.3. predict next symbol kV  (at time 1T ), 1...,,0  Mk , 

maximizing )(kb j . 

 

If the process continues, then 1 TT   and  go to  2.). 

 

As we previously emphasized, the prediction accuracy of a symbols 

sequence provided by a HMM predictor could define the random degree of 

that sequence. Obviously, it requires modifying the number of hidden states 

for the HMM predictor in order to maximize the prediction accuracy. 

Particularly, it is interesting to see whether this idealized powerful predictor 

would successfully predict the sequences generated by unbiased branches. 

An affirmative answer would mean that the relevant prediction information 

exists but is hard to identify it, differing from one branch to another. 

Otherwise, if the answer is negative, the intrinsic random degree 

(determinist chaos) of these branches would be very significant. 

5.2.2. Random Degree Metric Based on Discrete Entropy 

Considering a sequence S of symbols belonging to the set 

}...{ 21 kXXXX  , another practical approach for characterizing the 

randomness of S might be based on its entropy: 

0)(log)()(
1

2  


k

i

XiPXiPSE    (5.1) 

Obviously its maximum ( k2log ) is obtained for symbols of equal 

probabilities in S. Therefore, we propose a random degree (RD) for a 

branch’s binary output sequence given by the formula 

]log,0[)()()( 2 kSESDSRD     (5.2) 

where D(S) represents the shuffle degree (distribution index) and it was 

defined in formula (3.2). A high RD value might involve a high random 

degree. Of course, our proposed RD(S) is not theoretically perfect. As an 

example, the sequence 01010101010101... maximizes both D and E but 

despite of this fact it is very deterministic and, therefore, very predictable. 



Validating Unbiased Branches Using Random Degrees 147 

5.2.3. Random Degree Metric Based on Compression Rate 

The compression rate of a symbols sequence (or the space saving due to its 

compression), provided by the well-known lossless compression algorithms 

such as Huffman and Gzip, could represent another effective metric for 

characterizing the random degree of that sequence.  

Huffman proposes an entropic encoding greedy algorithm, effective 

and very useful in lossless compression, commonly used as final 

compression stage. The basic idea is to map an alphabet to a representation 

for that alphabet, composed of variable length strings, so that symbols with 

a higher occurance probability have a smaller representation than those that 

occur less often. 

The kernel of the Gzip utility is the DEFLATE algorithm [Deu96], 

that represents a combination between the LZ77 algorithm [Ziv77] 

(dictionary encoding technique) and the Huffman algorithm (statistical 

encoding technique). The compression is performed in two successive 

stages: i) the identification and replacement of duplicate strings with 

pointers (LZ77) and ii) replacement of the previously obtained symbols with 

new, weighted symbols based on frequency of use (Huffman). 

In order to evaluate the compression rate of the sequences generated 

by biased and unbiased branches behavior, we used the following two 

metrics:  

%100
SizeCompressed

SizeedUncompress
RatenCompressio   (5.3) 

%1001 









SizeedUncompress

SizeCompressed
SavingSpace   (5.4) 

In our opinion, the compression rate and obviously, the space saving of 

sequences generated by unbiased branches behavior should be lower than 

those obtained for sequences generated by biased branches. 

5.2.4. Random Degree Metric Based on Kolmogorov 

Complexity 

The Kolmogorov-Chaitin complexity (or program size algorithmic 

complexity) of code sequence that generates unbiased branches could be a 

useful metric for describing the random degree. According to this metric, 

the length of the shortest program for a universal Turing Machine that 



148 Beyond the Limits of Modern Processors 

correctly reproduces the observed data is a measure of complexity [Kol65]. 

A sequence X has Kolmogorov complexity K(X) equal to the length of the 

shortest program p for a (prefix) universal Turing Machine U that produces 

X and then halts: 

)(min)(
)(:

plXK
XpUp 

      (5.5) 

where l(p) is the length of p in bits. Kolmogorov complexity identifies a 

sequence X as random if )()( XKXl   is small: random sequences are those 

that are irreducibly complex. Thus, the unbiased branches complexity 

should be higher than the other conditional branches complexity. 

Nevertheless, the Kolmogorov complexity has a static nature while it tries to 

characterize the dynamic behavior of a certain branch. On the other hand, 

this metric is the single one that emphasizes the semantic complexity of the 

generator code sequence. 

5.3. Evaluation Results 

Like in the previous chapters, we used six difficult predictable SPEC 2000 

benchmarks and simulated one billion dynamic instructions for each one, 

skipping the first 300 million instructions. It was considered a 16-bit global 

history (GH) context for each branch. We selected from each benchmark 

strongly unbiased contexts having low polarization indexes 

])565.0,501.0[)(( SP  and strongly biased contexts with high polarization 

indexes ])997.0,979.0[)(( SP  that were very frequently processed 

(hundreds of thousands instances per a certain context). The polarization 

index was defined in formula (3.1). As an example, for the gzip benchmark 

we selected the unbiased context {PC= 4198960, GH=5904, P =0.565, 

135533 instances} and the biased context {PC= 4195032, GH= 8135, P 

=0.980, 140396 instances}. Each context has associated a binary string 

representing its behavior (taken / not taken). This binary string represents 

the input sequence for the HMM predictor used by us in paragraph 5.3.1. 

During the paragraph 5.3.2 we calculated the random degrees associated to 

the same binary strings. In paragraph 5.3.3 we calculated the compression 

rates corresponding to the same branches behaviors. 
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5.3.1. Random Degree Evaluation with HMMs 

During this paragraph we considered a per branch local history of 64 bits. 

Using a longer history significantly complicated our developed HMM 

predictors and grew up the computing time. Anyway, our proposed metric is 

quantitatively very relevant. Figure 5.2 presents the prediction accuracies 

obtained on strongly unbiased branches using a first order HMM predictor 

(R=1) for different numbers of possible hidden states (N). For the majority 

of the benchmarks considering two hidden states generate the best 

accuracies. 
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Figure 5.2. Prediction accuracy on unbiased branches using a first order HMM 

Figure 5.3 is similar but for a second order HMM predictor (R=2). Only on 

the gcc benchmark the prediction accuracy grows as far as N grows. All our 

developed second order HMM predictors are worser, at average, than a first 

order HMM with two hidden states (R=1, N=2), which is the best evaluated 

configuration. As it can be seen, the average prediction accuracy obtained 

using the optimal HMM (R=1, N=2) is far greater on biased contexts than 

on unbiased contexts. 
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Figure 5.3. Prediction accuracy on unbiased branches using a second order HMM 

Figure 5.4 comparatively presents, for unbiased and biased branches, the 

average prediction accuracies obtained by our determined quasi-optimal 

HMM (R=1, N=2). There is a significant difference between the average 

prediction accuracy on biased branches (98.43%) and on unbiased branches 

(65.03%).  
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Figure 5.4. Prediction accuracies using the best evaluated HMM (R=1, N=2) 
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As we expected, the HMM predictor obtains an excellent average prediction 

accuracy on biased branches showing its high prediction power. As far as 

we know, we are the first researchers investigating HMMs as an ultimate 

branch prediction limit. Unfortunately even these powerful predictors 

cannot accurately predict unbiased branches. This fact suggests that 

unbiased branches are “intrinsic random” in some way, being generated by 

very complex program structures as we will further show. 

5.3.2. Random Degree Evaluation Based on Discrete Entropy 

In this paragraph we considered as the random degree of a binary sequence 

RD(S), the product between discrete entropy E(S) and shuffle degree D(S) 

associated to S. Thus, )()()( SESDSRD  . Figures 5.5, 5.6 and 5.7 show 

statistical results concerning the entropy, shuffle degree and random degree 

of the biased and unbiased binary sequences obtained through the 

previously exposed methodology. 
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Figure 5.5. Characterizing biased sequences from entropy, shuffle degree and 

random degree viewpoint 

Regarding Figure 5.6 we notice that the entropy is mainly responsible for 

the higher random degree of unbiased branches, the role of shuffle degree 

being minor in this case. 
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Figure 5.6. Characterizing unbiased sequences from entropy, shuffle degree and 

random degree perspectives 
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Figure 5.7. The random degree of biased and unbiased branches 

Since our initial supposition was that biased branch sequences should 

have a lower random degree, the simulation results confirm that the 

considered RD(S) metric represents a good measure for random degree of 

binary sequences. A random degree around 40% shows that respective 

unbiased branch is difficult or, practically, even impossible to be accurately 

predicted. 
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5.3.3. Random Degree Evaluation Based on Compression 

Rate 

Further we transformed into extended ASCII files the binary behavior 

sequences generated by unbiased and biased branches, obtained through the 

methodology exposed in paragraph 5.3. We grouped 8-bit sequences and 

generated the corresponding ASCII codes. We compressed these files using 

the Gzip utility [Gzip] and an own developed application that implements 

the Huffman encoding [Cor01]. 

We based our statistics on two commonly used metrics in data 

compression, presented in paragraph 5.2.3. In Figure 5.8, we illustrate the 

space savings obtained by compressing biased and unbiased branches using 

the previously described algorithms (Gzip and Huffman). 
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Figure 5.8. Space savings using the Gzip and Huffman algorithms 

From the previous chart we can extract the following conclusions: 

first, the space saving obtained through unbiased branches compression 

(19.15% with Gzip) is significantly lower than that obtained through biased 

branches compression (90.37% with Gzip). The second conclusion refers to 

the ascendancy of the Gzip algorithm toward the Huffman algorithm that is 

understandable taking into account that the Huffman encoding represents the 

final stage of the Gzip compression. However, it can be observed that the 

space saving on the twolf benchmark becomes negative (-0.29%) even if the 

Gzip compression algorithm is used. The LZ77 algorithm’s influence is 

almost inexistent leading to the conclusion that is impossible to find many 
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repetitive patterns. Actually, we obtained similar results in [Gel07b], where 

we have shown that using some hybrid Markov predictors, the unbiased 

branches prediction accuracy is very low. 

Since the Huffman encoding is very effective for strings characterized 

by low entropy symbols, the negative space saving values on four SPEC 

benchmarks also illustrates the lack of repetitive pattern from unbiased 

sequences and the impossibility to predict them with higher accuracy using 

Markov predictors. The negative compression is caused by the necessity to 

store the encoding and decoding information in addition to the encoded 

sequence (header that contains the mapping of each distinct symbol from 

the input sequence into the new result symbol). 

5.3.4. Random Degree Evaluation Based on Kolmogorov 

Complexity 

Starting from several computationally intensive and heavily recursive 

Stanford benchmarks [Ste96], we give a code sequence example that will 

generate after execution some unpredictable sequences of unbiased branches 

[Rad07, Flo07a]. Further we partially present the C and Hatfield Superscalar 

Architecture (HSA) assembly code of the Perm benchmark that generates a 

suite of permutations. First, we focused on the most important unbiased 

branch from the Perm benchmark (having PC=58) that exhibits an 

unpredictable behavior even if its context length is very long (53 bits of 

global history). Actually, the percentage of unbiased branches (1.53%) from 

the whole Perm program is exclusively due to the branch from PC=58. 

 
Permute (int n){ 
  int k; 
  pctr = pctr+1; 

  if(n != 1)  // the first branch instruction analyzed (PC=35) 
  { 
    Permute(n-1); 

    for( k = n-1; k >= 1; k--) // the second branch instruction analyzed (PC=58) 
    { 
 Swap(&permarray[n], &permarray[k]); 

 Permute(n-1); 
 Swap(&permarray[n], &permarray[k]); 
    }; 

  } 
} 
 

_Permute: 
 SUB SP, SP, #128 
 ST 0(SP), RA 

 ST 8(SP), R17 
 ST 12(SP), R18 
 ST 16(SP), R19 
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 ST 20(SP), R20 
 MOV R20, R5 
 LD R13, _pctr 

 ADD R13, R13, #1 
 ST _pctr, R13 
 EQ B1, R20, #1 

BT B1, L8 (#0) # after compiling process this branch has the address 35 (PC=35) 
ADD R17, R20, #-1 

 MOV R5, R17 

 BSR RA, _Permute (#0)  
 MOV R18, R17 
 LES B1, R18, #0 

 BT B1, L8 (#0)  
 ASL R13, R20, #2 
 MOV R7, #_permarray 

 ADD R19, R13, R7 
 ASL R13, R18, #2 
 ADD R17, R13, R7 

L12: MOV R5, R19 
 MOV R6, R17 
 BSR RA, _Swap (#0)  

 ADD R5, R20, #-1 
 BSR RA, _Permute (#0)  
 MOV R5, R19 

 MOV R6, R17 
 BSR RA, _Swap (#0) 
 ADD R17, R17, #-4 

ADD R18, R18, #-1 
 GTS B1, R18, #0 

BT B1, L12 (#0) # after compiling process this branch has the address 58 (PC=58) 

L8: LD R17, 8(SP) 
LD R18, 12(SP) 
LD R19, 16(SP) 

LD R20, 20(SP) 
LD RA, 0(SP) 
ADD SP, SP, #128 

MOV PC, RA (#0) 

 

We developed a particular fast path-based perceptron (FPBP) predictor 

[Rad07] with a global history length of 53 bits and 100 entries. FPBP 

predicted the branch 58, in its unbiased contexts, with 65.91% accuracy. 

The number of FPBP mispredictions was 286. The complete PPM predictor 

exploits the recursive character of Perm benchmark. The prediction 

accuracy (PA) obtained by our developed PPM using a global context 

length of 500 bits and a search pattern of 30 bits, on the branch 58, is 

94.30%. As far as this solution is unfeasible for hardware implementation, 

we tried a simplified PPM, but the result was dissatisfactory (PA=79.85%). 

The global prediction accuracy provided by the complete PPM was 98.41%, 

lower than that generated by the FPBP predictor (99.04%). Actually, from 

869 PPM mispredictions, the branch 58 generates 287. Thus, we can 

conclude that both PPM and FPBP predictors do not succeed to accurately 

predict an unbiased branch. The high prediction accuracy (94.30%) on the 



156 Beyond the Limits of Modern Processors 

branch 58 provided by the PPM is actually centered on the whole behavior 

of the branch and not only on its unbiased context. 

As we have already pointed out, the length of the shortest program for 

a universal Turing machine that correctly reproduces the observed data is a 

measure of complexity [Gam99]. Thus, analyzing the behavior of the branch 

58 from the Kolmogorov complexity perspective (we noted it K(58)), it can 

be observed that the minimal length of machine-code that generates this 

unbiased branch is equal with the Permute routine length (measured in 

instructions). This happens because, in order to reach the branch 58, the 

Permute routine should completely execute at least once (due to recursive 

call). 

Thus, K(58)=42 HSA instructions or 8 C instructions. We must 

mention that the whole assembly program has 108 instructions and the rest 

of subroutines are not recursive and consist of array initialization, variables 

interchange, and simple repetitive program structures. Among the other 

conditional branches only one (PC=35) proved to be unbiased for shorter 

global history length (≤32 bits). However, increasing the global history 

length to 53 bits the branch 35 became fully biased, and, therefore 

predictable. Analyzing the Kolmogorov complexity of branch 35 we 

calculated K(35)=12 HSA instructions or 3 C instructions. It involves that 

K(35)<K(58). This happens because the test of the branch 35 does not 

require the complete execution of the Permute routine. Therefore, the 

complexity of the code sequence that generates the unbiased branch (58) 

induces a determinist chaos, frequently occurred in many science domains. 

In addition, based on the analysis of many integer recursive benchmarks we 

have reasons to believe that recurrence combined with some certain 

conditional branches will generate branches with unbiased behavior and 

thus with high Kolmogorov complexity. Such examples occur in the link 

lists or trees cases where the address of an element is tested and followed by 

a recurrent call of the same function to test the next element in the tree. 

5.4. Summary 

Our experiments proved that all these four developed random degree 

metrics are converging at the same point. The unbiased branches are not 

quite “completely random”. They are “almost random” due to programs 

complexity. They generate a deterministic chaos. For example, RD is 1 for a 

“completely random” branch, but as we pointed out in paragraph 5.2, it is 

about 0.40 for unbiased branches and 0.09 for biased branches (Figure 5.7). 

The space saving is 0 for a “completely random” branch, and in our 
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experiments it was about 0.83 for biased branches and 0.05 for unbiased 

branches using the Huffman compression algorithm (Figure 5.8). The HMM 

predictor also obtains an excellent average prediction accuracy on biased 

branches (98.43%) showing its significant prediction power while the 

average prediction accuracy on unbiased branches is limited to 65.03% 

(Figure 5.4). Moreover, the Kolmogorov complexity of an unbiased branch 

is higher than the Kolmogorov complexity of any conditional branch 

belonging to the same programs. As a conclusion, using these random 

degree metrics, the computer architect would understand whether these 

difficult branches are or are not predictable. 



 

 

“We learn as we do and we do 

 as well as we have learned” 

Vernon B. Brooks 

6. Selective Instruction Reuse and Value 

Prediction in a Superscalar Architecture 

In the previous chapters we have shown that unbiased branches cannot be 

accurately predicted irrespective of the prediction information type used in 

the state-of-the-art branch predictors [Vin06, Gel07b]. Furthermore, the 

behavior sequences generated by these difficult branches are characterized 

by high random degrees. Since the overall performance of modern 

superscalar processors is seriously affected by misprediction recovery, these 

difficult branches represent a source of important performance penalties. As 

we pointed out in [Gel06b], 28.68% of branches are dependent on long-

latency instructions (critical Loads, Multiply, Division), and 5.61% are 

unbiased and dependent on a previously committed long-latency instruction. 

Such hard-to-predict branches that depend on critical Loads (with miss in 

the L2 data cache) occur in pointer chasing applications based on linked list 

traversal: 

while (node)   // Branch 
node = nodenext // Load 

Since the branch from the above example depends on the Load, a branch 

misprediction cannot be solved until the Load returns the value. If the Load 

has a high L2 cache miss rate, the misprediction penalties of the branch will 

have significant impact on the overall performance. For example, the 

average misprediction penalty of such a branch, measured as the latency 

between fetching the branch instruction and resolving the misprediction, is 

about 540 cycles, considering a L2 cache miss penalty of 300 cycles 

[Gao08]. Thus, the forementioned dependences involve high-penalty 

mispredictions becoming serious performance obstacles and causing 

significant performance degradation in executing instructions from wrong 

paths. Therefore, the negative impact of branches, and especially of 

unbiased branches, over global performance should be seriously attenuated 

by anticipating the results of long-latency instructions, including critical 

Loads. On the other hand, hiding instructions long latencies in a pipelined 

superscalar processor represents an important challenge itself. Therefore, in 
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this chapter we present based on [Gel08c, Gel08b, Vin05a] some original 

anticipatory methods developed for superscalar architectures. 

6.1. Related Work 

The idea of dynamic instruction reuse was first introduced by Sodani and 

Sohi in [Sod97]. Dynamic instruction reuse is a non-speculative 

microarchitectural technique that exploits the repetition of dynamic 

instructions. The main idea is that if an instruction or an instruction chain is 

reexecuted with the same input values, its output value will be the same. 

The authors introduced different schemes that maintain the inputs and the 

results of previously executed instructions in a hardware structure called 

Reuse Buffer. With instruction reuse the number of executed dynamic 

instructions is reduced and the critical path might be compressed. According 

to the authors’ simulations on the SPEC’95 benchmarks, at average 26% of 

dynamic instructions are reusable. This quite high reuse degree is 

understandable taking into account that less than 20% of the static 

instructions are generating more than 90% of dynamic instructions. These 

useful statistics are qualitatively justified due to the fact that programs are 

written in a compact (loops, recurrence, inheritance, etc.) and generic 

manner (the programs have to operate on a variety of data structures). There 

are some important differences between our approach and Sodani’s. We 

reuse only Mul and Div instructions and, although we use the same Sv 

scheme that track operand values for each instruction, our scheme does not 

require all fields of Sodani’s Sv scheme. Since we do not reuse Load 

instructions, we renounce to the Address and Mem Valid fields. This reduces 

the hardware cost with benefits on power consumption, too. Another 

difference refers to the moment when the instructions are reused: in contrast 

with Sodani’s approach, the Reuse Buffer (RB) is accessed in our 

architecture during the issue stage, because most of the Mul/Div instructions 

found in the RB in the dispatch stage do not have their operands ready. 

Richardson introduced Instruction Memoization [Ric93], a technique 

that consists in storing the inputs and outputs of long-latency operations and 

reusing the output if the same inputs are encountered again. The memo table 

is accessed in parallel with the first computation cycle, and the computation 

halts in the case of hit. Thus, memoing reduces a multi-cycle operation to 

one-cycle when there is a hit in the memo table. In [Bro00] the authors 

proposed a memoing technique in order to save power. Brooks et al. used 

memo tables in parallel with the floating-point and integer multipliers, the 

floating-point adder, and the floating-point divider. Their experimental 



160 Beyond the Limits of Modern Processors 

results show an average speedup of 1.7% and an average power 

consumption improvement of 5.4%. 

Citron and Feitelson in [Cit02] compare different instruction reuse 

techniques, including Instruction Reuse (IR) and Instruction Memoization 

(IM). The authors splat the Lookup Table into several smaller tables for 

floating-point instructions, Loads, multi-cycle integer instructions (Multiply 

and Division) and all other single-cycle instructions. Each table contained 

256 entries. They used IM only for multi-cycle operations. The evaluation 

results (reuse degree and speedup) obtained on the SPEC’95 benchmarks 

show that only floating-point applications can benefit from instruction 

reuse. 

Golander and Weiss present in [Gol07] different instruction reuse 

methods for Checkpoint Processors. In checkpoint microarchitectures a 

misspeculation initiates the rollback, in which the latest safe checkpoint 

preceding the point of misprediction is recovered, and after that the 

reexecution of the entire code segment between the recovered checkpoint 

and the mispredicting instruction (selective reissue). The authors proposed 

two instruction reuse methods for normal execution and other two methods 

for reexecution after a misprediction. The Trivial method identifies trivial 

arithmetic operations having one of the inputs a neutral element, or both 

operands with the same magnitude. The hardware for detecting trivial 

computations and selecting the result consists in comparators for the input 

operands and selectors for the writeback. In our simulator, we implemented 

the Trivial method proposed by Golander. The SelReuse method uses a 

small fully associative reuse cache for long latency arithmetic operations. 

As the authors are showing, an 8-entry cache is sufficient for reusing most 

of the available results. The RbckReuse method is used for all instruction 

types from reexecuted paths, excepting control-flow instructions. Finally, 

the RbckBr method is used for the branch instructions from reexecuted 

paths. The reuse structure maintains only the branch outcome and relies on 

the BTB for the branch target address. A reuse approach that combines all 

the four methods briefly presented above requires an area of 0.87 mm2 and 

consumes 51.6 mW. It achieves an average IPC speedup of 2.5% for the 

SPEC 2000 integer benchmarks, of 5.9% for the floating point benchmarks, 

and an improvement in energy-delay product of 4.80% and 11.85%, 

respectively. 

Based on the dynamic correlation between Load instruction addresses 

and the values the Loads produce, Lipasti et al. [Lip96a] proposed a new 

data-speculative micro-architectural technique entitled Load Value 

Prediction that can effectively exploit value locality to collapse true data 

dependencies (exceeding thus the dataflow limit and enhancing the 
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instruction-level parallelism), reduce average memory latency and 

bandwidth requirement and provide measurable performance gains. Their 

Load Value Prediction Unit was presented in Chapter 2. In [Lip96b], Lipasti 

and Shen extended the prediction of Load values predicting all integer and 

floating point register values. An important difference between our value 

prediction approach and Lipasti’s is that we selectively predict Load 

instructions generating a miss in L1 cache. Thus, we attenuate the 

misprediction cost and reduce the hardware cost of the speculative micro-

architecture. Moreover, since less hardware is required, there is also less 

power consumption. 

Tullsen and Seng in [Tul99] proposed a technique entitled register-

value prediction that identifies instructions which produce values that are 

already in the register file. Therefore, the corresponding results are 

predicted using the values belonging to the register file. Mainly, this 

technique uses the previous value in the instruction’s destination register as 

a prediction for the new result, in a static or dynamic manner. An important 

advantage of this prediction scheme is that it does not require storage for 

values. For dynamic prediction, only a table of confidence counters is used, 

which is indexed by the instruction PC. Thus, the confidence counters are 

associated with instructions indicating which of them have high register 

value reuse. This technique produced speedups of up to 11% for the 

SPECint95 benchmarks and up to 13% for SPECfp95 benchmarks. In 

contrast to our register-centric approach [Vin05a, Vin05b, Gel03], this 

approach is an instruction-centric one. 

In [Sen04] the authors defined register value locality as the probability 

that the next value produced by an instruction to be the value already stored 

in the destination register. In contrast, in our work [Vin05a] we define it as 

the probability that the next value of the destination register belongs to the 

previous k values stored in that register. Therefore, our original register 

value prediction technique consists in predicting the next value of a register 

based on the previously seen values. In [Sen04] the authors used perceptron-

based predictors to perform a limited form of register value prediction: their 

scheme predicts if the value written to a register will be the same as the 

current value. The proposed predictor uses a table of perceptrons. For a 

certain instruction the perceptron is selected with the lower bits of the 

instruction address. The input of the perceptron is the global history of the 

most recent committed instructions, where a value of 1 indicates that the 

corresponding instruction was redundant and a -1 indicates otherwise. They 

demonstrate that for a given size predictor, a perceptron based predictor 

performs better than a saturating counter based register value predictor 

[Tul99] – for an 8KB hardware budget the speedup is 8.1%. 
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A. Thomas and D. Kaeli in their work [Tho04] improve the two-level 

value prediction schemes, presented in [Wan97], by using perceptrons 

instead of confidence counters in the second level. For counter-based 

predictors, the number of counters grows exponentially with the value 

history length and, therefore, the history is limited. The main advantage of 

the perceptron-based predictor is that its size grows linearly with the value 

history length and, thus, longer value histories can be used for prediction. 

The perceptron-based predictors achieved considerably better prediction 

accuracy – 93.55% at average – but without IPC improvement due to their 

higher prediction and update latency. 

R. Thomas et al. [Tho01] improved instruction-centric value 

prediction by using a dynamic dataflow inherited speculative context 

(DDISC) for hard-to-predict instructions. The DDISC consists in a 

compression of the PCs and the predicted values of the predictable source 

producer instructions. The context is determined by assigning a signature to 

each node in the dataflow graph. The signature of a predictable instruction 

is its value predicted by a conventional predictor. The signature of 

unpredictable non-Load instructions is inherited from the signatures of its 

operand producers. In the case of multiple operands, the signature of 

unpredictable non-Load instructions is the XOR of the signatures of their 

operand producers. The signature of unpredictable Load instructions is 

inherited from the signature of the preceding Store instruction that wrote the 

value into the same memory location. The DDISC for a certain instruction is 

obtained by rotating its calculated signature by a value determined by the 

PC (e.g. the last five bits of the PC). Their simulation results show that 

introducing dataflow-based contexts the prediction accuracy improvement 

ranges from 35% to 99%. 

Mutlu et al. presented in [Mut06] a new hardware technique named 

address-value delta (AVD) prediction, able to parallelize dependent cache 

misses. They observed that some Load instructions exhibit stable 

relationships between their effective addresses and data values, due to the 

regularity of allocating structures in the memory by the program, which is 

sometimes accompanied by the regularity in the program’s input data. In 

order to exploit these regular memory allocation patterns, the authors 

proposed an AVD structure that maintains the Load instructions having a 

stable address-value difference (delta). Each entry of the AVD table consists 

in the following fields: Tag (the upper bits of the Load’s PC), AVD (the 

address-value delta corresponding to the last occurrence of that Load) and 

Conf (a saturating counter that records the confidence of AVD). The Conf 

field is used to avoid predictions for Loads with an unstable AVD. If a Load 

instruction having a stable AVD occurs with a cache miss, its data value is 
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predicted by subtracting the stable delta from its effective address. This 

prediction enables the preexecution of dependent instructions, including 

Loads with cache miss. The experimental results show that integrating a 16-

entry AVD predictor into a runahead processor improves the average 

execution time of pointer-intensive applications by 14.3%. 

Liao and Shieh proposed in [Lia02] a new scheme that combines 

value prediction and instruction reuse. The main idea consists in predicting 

operand values if they are not available and speculatively reusing 

instructions if the predicted operands match the values from the Reuse 

Buffer (RB). Obviously, instructions must be correctly reexecuted in the 

case of misprediction. If the operands of an instruction are ready and their 

values match the value fields of the corresponding RB entry, the result is 

guaranteed to be correct, and therefore the execution is non-speculative. The 

simulations on the SPEC’95 benchmarks showed that this scheme provides 

an average speedup of 8.9%. 

In [Cha08] the authors proposed a hardware-based method, called 

Early Load, in order to hide the Load-to-Use latency (the latency that 

instructions wait for their operands produced by Load instructions) with 

little additional hardware costs. The key idea is to make use of the time that 

instructions are waiting in the instruction queue to load the data early, 

before the Loads are effectively executed, by pre-decoding instructions 

during the fetch stage. Thus, instead of using previous instances (values) of 

the current Load instruction Chang et al. are using an earlier executed-

instance (value) of the current Load instance. In this way, the chance to be a 

correct value seems to increase. They use a small table, called Early Load 

Queue (ELQ) that records Load instructions and the early loaded data. The 

proposed scheme allows Load instructions to load data from memory before 

the execution stage. Obviously, a detection method assures the correctness 

of the early operation before the Load enters into the execution stage. If the 

corresponding ELQ entry is valid in the Load’s dispatch stage, the 

execution of the Load instruction is completely avoided and all dependent 

instructions get the data from the ELQ. Unfortunately this method does not 

work for out-of-order speculative architectures whereas our technique does. 

Also, it works only for very small instruction queues. The experimental 

results showed that this scheme can achieve a performance improvement of 

11.64% on the Dhrystone benchmark and of 4.97% on the MiBench 

benchmark suite. 
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6.2. Anticipating Long-Latency Instructions Results 

Our main objective is to develop a superscalar architecture that selectively 

anticipates the values produced by high-latency instructions. We will focus 

on Multiply, Division and Loads with miss in the L1 data cache. The 

reusability degree of Mul and Div instructions, measured with an unlimited 

Reuse Table, was 28.9% on the integer benchmarks and 61.9% on the 

floating-point benchmarks [Gel08a]. These instructions would be solved by 

a Dynamic Instruction Reuse scheme. The reusability degree of Load values 

was 77.4% on the integer benchmarks and 76.4% on the floating-point 

benchmarks [Gel08a]. However, an additional Reuse Buffer for Load Value 

(Data) Reuse is not necessary, because a similar reuse mechanism is already 

provided by the existing L1 and L2 data caches. Therefore, the Load 

instructions with miss in the L1 data cache (selective approach) would be 

solved through value prediction. 

6.2.1. Selective Dynamic Instruction Reuse 

For the Mul and Div instructions we will use the Sv reuse scheme. The 

information about instructions is maintained in a direct mapped Reuse 

Buffer (RB). The RB is accessed during the issue stage, because most of the 

Mul/Div instructions found in the RB during the dispatch stage do not have 

their operands ready (91.5% on the integer benchmarks and 64.6% on the 

floating-point benchmarks). An additional RB access in the dispatch stage 

does not have sense due to the insignificant expected performance gain 

obtained with supplementary costs. Each RB entry has the following fields: 

Tag (the higher part of the PC), SV1 and SV2 (the source values of the 

Mul/Div instruction), Result (the output value of the Mul/Div instruction). 

Since we do not reuse Loads with this scheme, the Address and Mem Valid 

fields used in [Sod97] are unnecessary. In this way, our implemented 

structure is simpler and more cost effective (from hardware budget and 

power consumption point of view) than the initial scheme proposed by 

Sodani and Sohi. 
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Figure 6.1. Reuse scheme for Mul & Div instructions 

If a certain Mul/Div instruction is found in the RB, a reuse test is 

generated. If the actual operand values, taken from the ROB, match the SV1 

and SV2 fields from the selected RB entry, the instruction is not sent to a 

functional unit, its result value being already available for dependent 

instructions. Every non-reused Mul/Div instruction updates the RB in the 

commit stage: writes the tag, the source values and the result into the 

corresponding RB entry. From the power consumption point of view, the 

Reuse Buffer was modeled as a cache array structure using the same power 

models as the other array structures are using. Obviously, the main benefit 

of reusing long-latency instructions consists in unlocking dependent 

instructions (see Figure 6.2). In Figures 6.2, 6.4 and 6.9, all stages except 

the execute stage are a single cycle length; the execute stage has variable 

length, depending upon the latency of the executing instruction (see Table 

6.1). 
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Figure 6.2. Pipeline with Reuse Buffer (RB) 

We also detected trivial operations implementing a technique first 

introduced in [Ric93] by Richardson. We considered the following 

operations: V*0, V*1, 0/V, V/1 and V/V. A simple hardware scheme for 

detecting trivial computations and selecting the result is presented in 

[Gol07] and consists in comparators for the input operands and selectors for 

the write-back. If during the dispatch stage, a Mul instruction is detected 
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with an operand value of 0 or 1, the result is provided by the detector, 

avoiding the functional unit allocation and execution. In the same manner, if 

a Div instruction is detected with the first operand being 0, the second 

operand 1, or with identical operands, the result is provided by the detector 

being thus available at the end of the dispatch stage. The Reuse Buffer is 

accessed during the issue stage for the reuse test only if the Mul/Div 

operation is not detected in the dispatch stage as being trivial. 

6.2.2. Selective Load Value Prediction 

We will integrate into our architecture a simple Last Value Predictor used 

only for Loads with miss in the L1 data cache (selective approach). In this 

way, the implemented structure is more efficiently used; the collisions 

number will be lower against the approach that predicts all Load 

instructions, having tables of the same size. The information about Load 

instructions is maintained in a direct mapped Load Value Prediction Table 

(LVPT). The LVPT is accessed during the issue stage, only if the current 

Load instruction involves a miss in the L1 data cache (critical Load). Each 

LVPT entry has the following fields: Tag (the higher part of the PC), 

Counter (a 2-bit saturating confidence counter with two unpredictable and 

two predictable states), and Value (the Load instruction’s result). 
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Figure 6.3. The Last Value Predictor architecture 

In the case of a hit in the LVPT, the corresponding Counter is 

evaluated. If the confidence counter is in an unpredictable state, the Load is 

executed without prediction. Otherwise the Value from the selected LVPT 

entry is speculatively forwarded to the dependent instructions. In the commit 

stage, when the real value is available, in the case of misprediction, a 

recovery is necessary in order to squash speculative results and selectively 
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re-execute the dependent instructions with the correct values (see Figure 

6.4). We considered in our simulations a value prediction latency of one 

cycle and, in the misprediction case, a recovery taking 7 cycles. 
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Figure 6.4. Pipeline with Load Value Predictor 

During the commit stage, every critical Load updates the LVPT: only 

the Counter field in the case of correct prediction or the Value and the 

Counter fields in the case of misprediction. In the case of miss in the LVPT, 

the Tag and the Value are inserted into the selected entry, and the Counter is 

reset (strongly unpredictable state). 

6.2.3. Simulation Methodology 

We developed a cycle-accurate execution driven simulator derived from the 

M-SIM simulator [Sha05] supporting the unmodified, statically linked 

Alpha AXP binaries as well as the power estimation as supplied by the 

Wattch framework [Bro00]. M-SIM extends the SimpleScalar toolset 

[Bur97] with accurate models of the pipeline structures, including explicit 

register renaming, and support for the concurrent execution of multiple 

threads. We modified M-SIM to incorporate our superscalar architecture 

with selective instruction reuse and value prediction in order to measure the 

relative IPC speedup and relative energy-delay product gain when the 

results of long-latency instructions are anticipated. 

All simulation results are generated on the SPEC 2000 benchmarks 

[SPEC] and are reported on 1 billion dynamic instructions, skipping the first 

300 million instructions. We evaluated seven integer benchmarks (bzip, gcc, 

gzip, mcf, parser, twolf, vpr) and six floating-point benchmarks (applu, 

equake, galgel, lucas, mesa, mgrid). Table 6.1 presents some important 

parameters of the simulated architecture: 
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Execution Latencies 

Execution unit Number of units Operation latency 

intALU 4 1 

intMULT / intDIV 1 3 / 20 

fpALU 4 2 

fpMULT / fpDIV 1 4 / 12 

Superscalarity Fetch / Decode / Issue / Commit  width = 4 

Branch predictor bimodal predictor with 2048 entries 

Caches and Memory 

Memory unit Access Latency 

4-way associative L1 data cache, 32 KB 1 cycle 

8-way associative unified L2 data cache, 
512 KB 

6 cycles 

Memory 100 cycles 

Resources 

Register File: 32 INT / 32 FP 

Reorder Buffer (ROB): 128 entries 

Load/Store Queue (LSQ): 48 entries 

Table 6.1. Parameters of the simulated architecture 

For the relative IPC speedup calculation we used the following formula: 

%100



base

baseimproved

IPC

IPCIPC
SpeedupIPC    (6.1) 

where baseIPC  and improvedIPC  are the instructions executed per cycle with 

the baseline and improved architectures, respectively. 

The power consumption measurements are generated using an 80 nm 

CMOS technology. Figure 6.5 presents the structure of the simulator. 
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Figure 6.5. The structure of the simulator 

As Figure 6.5 shows, the simulator generates both performance and 

power consumption estimation. The detailed power modeling methodology, 

used in the simulator, is presented in [Bro00]. The dynamic power 

consumption in CMOS microprocessors is defined as: 

faVCP ddd  2       (6.2) 
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where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply 

voltage, and f is the clock frequency. Vdd and f depend on the assumed 

process technology. The activity factor a indicates how often clock ticks 

lead to switching activity on average. The power consumption of the 

modeled units highly depends on the internal capacitances of the circuits. 

From the capacitance point of view, there are three categories of 

architectural structures: array structures, content-associate memories, and 

complex logic blocks. The first two categories are used to model the caches, 

branch predictors, the reorder buffer, the register renaming table, and the 

register file, while the last category is used to model functional units. 

For the energy measurements, we used the Energy-Delay Product, a 

widely used metric [Gon96, Bro00, Gol07]: 

2IPC

PowerTotal
EDP        (6.3) 

The Energy-Delay Product (EDP) represents the processor’s total power, 

divided by the squared IPC. In other words, the EDP is the energy 

consumption relative to the processor’s global performance (IPC). The EDP 

Gain represents the relative energy-delay product improvement. After each 

architectural improvement we determined the EDP Gain based on: 

%100



base

improvedbase

EDP

EDPEDP
GainEDP    (6.4) 

where, baseEDP  is the energy-delay product of the baseline architecture, 

whereas improvedEDP  is the energy-delay product of the improved 

architecture. Thus, a positive value of the EDP Gain means an improvement 

of the relative energy consumption. 

6.2.4. Experimental Results 

Figure 6.6 presents the reuse degrees obtained with and without detecting 

trivial operations. An RB of 1024 entries provides on the integer 

benchmarks a reuse degree of 17.2%, compared with the reusability degree 

of 28.9% (the upper limit obtained with an unlimited RB). It was more 

efficient for the floating-point benchmarks, where we obtained a reuse 

degree of 54.8% with an RB of 2048 entries, compared with the reusability 

degree of 61.9% (through an unlimited RB). As Figure 6.6 shows, trivial 

operations detection improves significantly the reuse degree. 
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Figure 6.6. Reuse degrees obtained for different RB sizes with and without trivial 

operation detection 

Table 6.2 presents the reuse degrees, the IPC, and the power 

consumption obtained, on the integer and floating-point SPEC 2000 

benchmarks, by using the Sv reuse scheme together with the Trivial 

Operation Detector for the Mul and Div instructions. The Reuse Degree 

columns represent the percentage of reused Mul and Div instructions across 

all the evaluated integer and floating-point benchmarks. The IPC represents 

the average executed instructions per cycle. The RB Power column shows 

the additional dynamic power dissipated by the RB for each evaluated size 

in mW and in percentages reported to the total processor power. 
 

RB 

entries 

SPEC 2000 integer SPEC 2000 floating-point RB Power  

Reuse Degree [%] IPC Reuse Degree [%] IPC [mW] [%] 

0 – 1.6857 – 2.0410 0 0.000 

16 25.8 1.6881 36.8 2.0612 7.2 0.008 

32 27.4 1.6862 37.3 2.0613 12.7 0.014 

64 28.1 1.6862 40.5 2.0747 16.3 0.018 

128 28.2 1.6862 42.5 2.0752 28.8 0.031 

256 28.2 1.6862 45.8 2.0787 38.4 0.042 

512 28.5 1.6862 50.6 2.0828 70.2 0.077 

1024 29.0 1.6862 56.9 2.0863 99.6 0.109 

2048 29.0 1.6862 62.8 2.0888 178.8 0.195 

Table 6.2. Reuse degree, IPC and power consumption obtained with the RB and 

Trivial Operation Detector on the SPEC 2000 benchmarks 

The very low IPC gain measured on the integer benchmarks is 

justified because only about 11 million instructions were reused from a total 
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of 7 billion across all the integer benchmarks. Moreover, reusing Mul/Div 

instructions belonging to wrong speculated paths frequently involves issuing 

some long latency Loads. These critical instructions would not be executed 

without successful reuse. 

Although the RB structure dissipates additional dynamic power, 

reusing long-latency instructions increases the IPC and therefore lowers the 

relative energy consumption (see Figure 6.7). We determined the energy-

delay product for the architecture without RB and for the architecture with 

RB of different sizes, based on relation (6.3). The EDP Gain represents the 

relative energy-delay product improvement determined based on relation 

(6.4) for each RB size. 
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Figure 6.7. Relative IPC speedup and relative energy-delay product gain on the 

SPEC 2000 floating-point benchmarks with RB and Trivial Operation Detection 

The speedup is insignificant in the case of the integer benchmarks, due to 

the significantly lower number of Mul and Div instructions. Consequently, 

the energy-delay product is better only for RB sizes between 16 and 128 

entries, but the improvement is insignificant. These results are in 

concordance with Citron [Cit02] who also remarked the poor evaluation 

results (reuse degrees and speedups) obtained on the SPEC’95 integer 

benchmarks. Therefore a significant benefit of Mul/Div instructions reuse is 

achieved only for floating-point applications. 

Table 6.3 presents the prediction accuracy, the IPC, and the power 

consumption obtained by evaluating our developed architecture with 

Mul/Div Reuse Buffer of 1024 entries and Trivial Operation Detector for 

the Mul and Div instructions and with Last Value Predictor for critical Load 

instructions. The PA columns represent the prediction accuracy of critical 
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Loads. The IPC represents the average instructions per cycle. The LVPT 

Power column shows the additional dynamic power dissipated by the LVPT 

for each evaluated size in mW and in percentages reported to the total 

processor power. 
 

LVPT entries SPEC 2000 integer SPEC 2000 floating-point LVPT Power  

PA IPC PA IPC [mW] [%] 

0 (no RB, LVP) – 1.6857 – 2.0410 0 0.000 

16 94.0 1.7066 99.7 2.1873 6.4 0.007 

32 93.5 1.7094 99.8 2.2333 8.7 0.009 

64 92.6 1.7245 99.8 2.3533 14.6 0.016 

128 91.0 1.7318 99.7 2.3915 19.9 0.022 

256 88.7 1.7351 99.5 2.4378 33.6 0.037 

512 88.1 1.7387 99.3 2.4484 48.0 0.052 

1024 87.1 1.7456 99.2 2.5241 84.9 0.092 

2048 87.2 1.7460 99.1 2.5320 128.1 0.139 

Table 6.3. Prediction accuracy, IPC and power consumption obtained with an RB 

of 1024 entries, the Trivial Operation Detector and the LVPT 

Figure 6.8 presents the relative IPC speedup and the relative energy-

delay product improvement for the integer and floating-point benchmarks. 
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Figure 6.8. Relative IPC speedup and relative energy-delay product gain with a 
Reuse Buffer of 1024 entries, the Trivial Operation Detector, and the Load Value 

Predictor 
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We determined the energy-delay product for the architecture without RB 

and LVPT and for the architecture with an RB of 1024 entries and LVPTs 

of different sizes, based on relation (6.3). The EDP Gain represents the 

relative energy-delay product improvement determined based on relation 

(6.4) for each LVPT size. As it can be observed, the optimal LVPT size is 

1024. 

Both IPC speedup and EDP gain are significantly higher on the 

floating-point benchmarks compared to the integer benchmarks (see Figure 

6.8). This difference occurs because the number of critical Loads is more 

than twice higher in the floating-point benchmarks. The difference is further 

accentuated by the percentage of predicted critical Loads (classified as 

predictable by LVPT confidence counters) which is 85% on the floating-

point benchmarks and only 40% on the integer benchmarks [Gel08a]. 

Finally, the difference is also slightly increased by the higher prediction 

accuracy obtained on the floating-point benchmarks. 

We also measured the memory traffic reduction as the percentage of 

correctly predicted Loads reported to the total number of memory accesses. 

Our evaluations show an average memory traffic reduction of 1.58% on the 

integer benchmarks and of 10.93% on the floating-point benchmarks, which 

are in concordance with our energy consumption estimations. 

The selective instruction reuse approach proposed by Golander and 

Weiss (presented in paragraph 6.1) achieves an average IPC speedup of 

2.5% on the SPEC 2000 integer benchmarks, of 5.9% on the floating point 

benchmarks, and an improvement in energy-delay product of 4.80% and 

11.85%, respectively. In comparison, our improved superscalar architecture 

achieves an average IPC speedup of 3.5% on the integer SPEC benchmarks, 

23.6% on the SPEC floating-point benchmarks, and an improvement in 

energy-delay product of 6.2% and 34.5%, respectively. 

6.3. Contributions to Dynamic Value Prediction: 

CPU Context Prediction 

The main aim of this section consists in focalizing dynamic value prediction 

to the CPU context [Vin05a, Vin05b]. The idea of attaching a value 

predictor to each CPU register (register-centric predictor) instead of an 

instruction or memory-centric predictor is original and could involve new 

architectural techniques for improving performance and reducing the 

hardware cost of speculative microarchitectures. In an earlier work [Flo02], 

Florea et al. performed several experiments to evaluate the value locality 
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exhibited by MIPS general-purpose integer registers. The results obtained 

on some special registers ($at, $sp, $fp, $ra) were quite remarkable (90% 

value locality degree) leading to the conclusion that value prediction might 

be successfully applied at least on these favorable registers. 

Whether the prediction process has been instruction (producer) or 

memory-centered with great complexity and timing costs, by implementing 

the well known value prediction schemes [Lip96a, Saz99] centered on the 

CPU’s registers will reduce the hardware cost. However, there are some 

disadvantages. Addressing the prediction tables with the instructions’ 

destination register name (during the decode stage) instead of the Program 

Counter will cause some interference. However, we have proved that, with a 

sufficiently large history a hybrid predictor could eliminate this problem and 

achieve very high prediction accuracy (85.44% at average on eight MIPS 

registers using SPEC’95 benchmarks and 73.52% on 16 MIPS registers 

using SPEC 2000 benchmarks). The main benefit of the proposed VP 

technique consists in unlocking the subsequent dependent instructions. 

6.3.1. Register Value Predictors 

Statistical results based on simulation have proved that commonly used 

programs are characterized by strong value repetitions [Lip96a, Sod00]. The 

main causes for this phenomenon are: data and code redundancy, program 

constants, and the compiler routines that resolve virtual function calls, 

memory aliases, etc. The register value locality is frequently met in 

programs and shows the number of times each register is written with a 

value that was previously seen in the same register and dividing by the total 

number of dynamic instructions having this register as their destination field 

[Flo02, Gel03]. 

As we observed in [Vin05a, Gel03], the value locality on some 

registers is remarkable high (90%), and this predictability naturally leads us 

to the idea of implementing value prediction on these favorable registers. 

Dynamic value prediction on registers represents a new technique that 

allows the speculative execution of the read after write dependent 

instructions by predicting the values of the destination registers during 

second half of the instruction’s decode stage (see Figure 6.9). The Value 

Prediction Table (VPT) is accessed with the name of the destination 

register. The register’s next value is predicted based on the last values 

belonging to that register. In the case of a valid prediction, the VPT will 

forward the predicted value to the subsequent corresponding RAW 

dependent instructions. After execution, when the real value is known, it is 



Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 175 

compared with the predicted value. If the value was correctly predicted the 

critical path might be reduced. In the case of a misprediction the 

speculatively executed dependent instructions are re-issued for execution 

(recovery). 
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Figure 6.9. The implementation of the register value prediction mechanism in the 

pipeline structure of a general microarchitecture 

In [Vin05a, Gel03] we developed and simulated several different 

basic value predictors, such as the last value predictor, the stride value 

predictor, the context-based predictor and hybrid value predictors to capture 

certain type of value predictabilities from the SPEC benchmarks and to 

obtain higher prediction accuracy. All these predictors were adapted to our 

proposed prediction model. 

6.3.1.1. Last Value Predictors 

The last value predictors (see Figure 6.10) predict the next value as the 

same as the last value stored in the corresponding register. 
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Figure 6.10. Last value predictor 
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Each register used in the prediction mechanism has an entry in the VHT. In 

this way the number of entries in the prediction table is the same as the 

number of logical registers. Each entry of the prediction table has its own 

automaton in the State field (a 2-bit saturating confidence counter with two 

unpredictable and two predictable states). The last value from the Val field 

is predicted only if the automaton is in a predictable state. Obviously, it is 

necessary to verify the value generated by the value history table (VHT). 

The automaton’s state will be changed according to the comparison between 

the predicted and actual values. The Val field is also updated.  

6.3.1.2. Stride Predictors 

In this case, considering that 1nv  and 2nv  are the most recent values, the 

new value nv  will be calculated using the recurrence formula: 

)( 211   nnnn vvvv , where )( 21   nn vv  is the stride of the sequence. 

Figure 6.11 shows the structure of this predictor. 
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Figure 6.11. Stride predictor 

The Str1 and Str2 fields keep the last two strides. Each time a register 

is used as destination, its current stride is computed: ValVStr  , where V 

is the actual value of that register and Val is its last value stored in the VHT. 

The automaton is incremented if the prediction is correct otherwise it is 

decremented. If 21 StrStr  , the predicted value is calculated adding the 

stride Str2 to the value stored in the VHT’s Val field. If the automaton is in 

the predictable state, the prediction is furnished. 
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6.3.1.3. Context-Based Predictors 

The context-based predictors predict the value that will be stored in a 

register based on the last values stored in that register. A context is a finite 

sequence of values with repeated appearance as in a Markov chain. The 

Prediction by Partial Matching (PPM) algorithm has been already presented 

in Section 4.3. A PPM-based predictor furnishes the value that followed the 

considered context with the highest frequency. Obviously, the predicted 

value depends on the context length. A longer context frequently drives to 

higher prediction accuracy but sometimes it can behave as noise. 
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Figure 6.12. Structure of a context-based PPM predictor 

Figure 6.12 shows the structure of the context-based predictor. Each entry 

from the VHT has an associated automaton that is incremented when the 

prediction is correct and is decremented in the case of a misprediction. The 

fields V1, V2, …, V4 store the last four values associated with each register 

(considering that the predictor works with a history of four values). If the 

automaton is in the predictable state, it predicts the value that follows the 

context with the highest frequency. 

6.3.1.4. Hybrid Predictors 

It has been shown that a single type of predictor does not offer the best 

results. Some types of value sequences generated in programs are better 

predicted with a certain predictor, and others, with another type of predictor 

[Wan97]. Therefore, it is natural to consider the idea of hybrid prediction: 

two or more value predictors working together dynamically in the prediction 
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process. Figure 6.13 shows a hybrid predictor composed of a context-based 

PPM predictor and a stride predictor. The context-based predictor always 

has priority, as in [Wan97]. In this way the value generated by the stride 

predictor is only used if the context-based predictor cannot generate a 

prediction. 
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Figure 6.13. Hybrid predictor (PPM & stride) 
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Figure 6.14. Hybrid predictor (two-level & stride) with fixed prioritization 
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Figure 6.14 presents the hybrid predictor composed of a 2-Level predictor 

and a Stride predictor adapted for register-centric prediction. It has the same 

functionality as the instruction-centric approach [Wan97] presented in 

Section 2.3, but it is indexed with the destination register name instead of 

the PC. This fixed prioritization used in Figures 6.13 and 6.14 seems not to 

be optimal. Probably a dynamic prioritization based on some confidences 

should be better (the predictor having the highest confidence degree will 

have priority). 
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Figure 6.15. Hybrid predictor (two-level & stride) with adaptive prioritization 

The adaptive hybrid predictor presented in Figure 6.15 uses a saturating 

confidence counter for each component predictor: C2Lev for the 2-Level 

predictor and CStr for the Stride predictor. Thus, it dynamically selects the 

most confident predictor. Other adaptive neural metapredictors have been 

proposed and evaluated in [Vin04a], but with less efficiency mainly due to 

the complexity of the backpropagation learning algorithm. Some simplified 

perceptron-based metapredictors might be more efficient and feasible for 

hardware implementation  
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6.3.2. Simulation Methodology 

We developed a cycle-accurate execution driven simulator derived from the 

sim-outorder simulator of the SimpleScalar toolset [Sim]. The baseline 

superscalar processor supports out-of-order instruction issue and execution. 

We modified it to incorporate our proposed register value predictors. Table 

6.4 shows the configuration of the baseline processor used to obtain the 

results. 

To perform our evaluation, we collected results from different 

versions of SPEC benchmarks: five integer (li, go, perl, ijpeg, compress) 

and three floating-point (swim, hydro, wave5) SPEC’95 benchmarks. We 

simulated seven benchmarks (gzip, b2zip, parser, crafty, gcc, twolf and mcf) 

from the CINT SPEC 2000 set.  

The number of instructions fast forwarded through before starting our 

simulations is 400 million. We used the –fastfwd option in SimpleScalar/ 

PISA 3.0 to skip over the initial part of execution in order to concentrate on 

the main body of the programs. Results are then reported by simulating each 

program for 500 million committed instructions. 

 

Processor 

Core 

Fetch / Decode / Issue Width 8 instruction / cycle 

Reorder Buffer Size 128 entries 

Load-Store Queue 64 entries 

Integer ALUs 8 units, 1-cycle latency 

Integer Multiply / Divide 4 units, 3 / 12-cycle 

latency 

Predictors 
Hybrid branch predictor 

gshare with 16K entries, 

14 bit history, bimodal 

with 16K entries. 

Branch and Value misprediction 7-cycle latency 

Memory 
Memory Access 60-cycles latency 

Memory Width 32 bytes 

Caches 

Level-one data cache 

4-way set associative, 

64 KB, 1-cycle hit 

latency 

Level-one instruction cache 
direct mapped, 128 KB, 

1-cycle hit latency 

Level-two cache (unified) 

4-way set associative, 

1024 KB, 10-cycle hit 

latency 

Table 6.4. Machine configuration for baseline architecture 
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6.3.3. Experimental Results 

Starting with a minimal superscalar architecture, we studied how the 

simulator’s performance will be affected by the variation of its parameters. 

We now present the results obtained with a hybrid of PPM and stride 

register value predictor. Each register has associated a 4-state confidence 

automaton. A prediction is made only if the automaton is in one of the two 

predictable states. In Figures 6.16 and 6.17, respectively, each bar 

represents the average of register value prediction accuracy obtained for 

eight SPEC’95 benchmarks and for seven integer SPEC 2000 benchmarks, 

respectively. 
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Figure 6.16. Register value prediction using a hybrid predictor (PPM, stride), a 

history of 256 values, and a pattern of 4 values (SPEC’95 simulation results) 
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Figure 6.17. Register value prediction using a hybrid predictor (PPM, stride), a 

history of 256 values, and a pattern of 4 values (SPEC 2000 simulation results) 
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In Figures 6.16 and 6.17 we calculated the prediction accuracy (PA) using 

the following formula: 








n

i

k

k

k

iVRef

iCPV

RPA

1

n

1i

)(

)(

  )(       (6.5) 

where n = number of benchmarks (8 for SPEC’95 and 7 for SPEC 2000), k 

= register number, )(iCPV k  = number of correctly predicted values for 

register kR  (on benchmark i), and )(iVRef k  = the total number of dynamic 

instructions that have register kR  as their destination (on benchmark i). 

In the next investigations, we are focusing only on the predictable 

registers which have prediction accuracy higher than a certain threshold 

(60% and 80%, respectively), measured using the PPM-based hybrid 

predictor on the SPEC benchmarks. As it can be seen in Figures 6.16 and 

6.17 the registers having a prediction accuracy higher than 60% are: 1, 5, 7–

13, 15, 18–20, 22, 29–31 on SPEC’95, and, 1, 6–8, 10–16, 18–25, 29–31 on 

SPEC 2000. The statistic results on the SPEC’95 benchmarks exhibit a 

using degree of 19.36% for these 17 registers. This means that 19.36% of 

instructions use one of these registers as a destination. The equivalent 

average result on SPEC 2000 is 13.24% using 22 general purpose registers. 

In Figures 6.18 and 6.19 we compared the previously presented value 

prediction techniques: last value prediction (Figure 6.10), stride prediction 

(Figure 6.11), PPM prediction (Figure 6.12) and PPM-based hybrid 

prediction (Figure 6.13). 
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Figure 6.18. Prediction accuracy on 17 favorable registers (PA>60%) on SPEC’95 
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We used in the prediction process only the 17 favorable registers on the 

SPEC’95 benchmarks and 22 favorable registers on the SPEC 2000 

benchmarks. The PPM and the hybrid predictors use a history of 256 values 

and a search pattern of 4 values. 
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Figure 6.19. Prediction accuracy using 22 favorable registers (PA>60%) on the 

SPEC 2000 benchmarks 

These results (see Figures 6.18 and 6.19) represent the global 

prediction accuracies of the favorable registers for each benchmark. The 

hybrid predictor synergy can be observed. It involves an average prediction 

accuracy of 78.25% on the SPEC’95 benchmarks and 72.93% on the SPEC 

2000 benchmarks. 

Now we will try a more elitist selection considering only the registers 

with prediction accuracy higher than 80% (see Figures 6.20 and 6.21). 
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Figure 6.20. Prediction accuracy on 8 favorable registers (PA>80%) on SPEC’95 
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The selection is again based on Figures 6.16 and 6.17. We can observe that 

there are 8 registers that fulfill this condition (1, 10–12, 18, 29–31) on the 

SPEC’95 benchmarks and 16 registers (1, 8, 11–15, 20–25, 29–31) on the 

SPEC 2000 benchmarks (registers 1, 29–31 are included even if they do not 

fulfill this condition because they exhibit a high degree of value locality 

[Vin05a] and they also have special functions). The global using rate of 

these registers is 10.58% on the SPEC’95 benchmarks, and 9.01% on the 

SPEC 2000 benchmarks. 
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Figure 6.21. Prediction accuracy using 16 favorable registers (PA>80%) on the 

SPEC 2000 benchmarks 

Figures 6.20 and 6.21 emphasize, for each benchmark, the global 

prediction accuracy obtained with the implemented predictors using 8 and 

16 selected registers, respectively (threshold over 80%, according to the 

previous explanations). Each bar represents the prediction accuracy for a 

certain benchmark, measured by counting the number of times when 

prediction is accurate for any of the favorable registers and dividing by the 

total number when these registers are written. The simulation results offered 

by the last value predictor are relatively close to the stride predictor’s 

results. The best average prediction accuracy was obtained with the hybrid 

predictor 85.44%, which was quite remarkable (on some benchmarks over 

96%). 

Figures 6.22 and 6.23 show the speedup obtained compared to the 

baseline processor when using each register value predictor. 
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Figure 6.22. Speedup over baseline machine using 8 favorable registers (SPEC’95) 
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Figure 6.23. Speedup over baseline machine using 16 favorable registers (SPEC 

2000) 

Finally, in Figures 6.24 and 6.25 we have compared the PPM-based hybrid 

predictor (PPM-Stride) with the two-level-based hybrid predictors: 2Lev-

Stride with fixed prioritization (presented in Figure 6.14) and 2Lev+Stride 

with adaptive prioritization (presented in Figure 6.15), both using a history 

of 32 values and a pattern of 4 values. 
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Figure 6.24. Comparing the hybrid predictors on the SPEC’95 benchmarks 
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Figure 6.25. Comparing the hybrid predictors on the SPEC 2000 benchmarks 

Figures 6.24 and 6.25 show that the hybrid predictor with adaptive 

prioritization composed of a two-level and a stride predictor is comparable 

to or even outperforms the PPM-based hybrid predictor, at significantly 

lower implementation cost and complexity. 



Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 187 

6.4. Summary 

In this chapter we have presented and evaluated a superscalar architecture 

that selectively anticipates the values produced by high-latency instructions. 

As we pointed out, about 28% of branches (more than 5% being unbiased) 

are dependent on long-latency instructions. Therefore, our goal was to 

attenuate the negative impact of branches, and especially of unbiased 

branches, over global performance. We developed a Reuse Buffer and a 

Trivial Operation Detector for Mul and Div instructions and a simple Last 

Value Predictor for critical Load instructions, and we integrated all these 

structures into the M-SIM simulator [Sha05].  

The experimental results, performed on the SPEC 2000 benchmarks, 

show a significant speedup and improved energy consumption for the 

proposed architecture. Using a Reuse Buffer of 1024 entries together with 

the Trivial Operation Detector improves the IPC with 2.2% and reduces the 

relative energy consumption with 4% on the floating-point benchmarks. 

Predicting critical Load instructions through an additional Last Value 

Predictor, improves the IPC with 3.5% on the integer benchmarks and with 

23.6% on the floating-point benchmarks. This significant speedup lowers 

the relative energy consumption (EDP) with 6.2% on the integer 

benchmarks and with 34.5% on the floating-point benchmarks. 

Consequently, applying some well-known techniques selectively on long-

latency instructions provides serious performance gain and significantly 

reduces energy consumption within the simulated architecture. 

Finally, we have introduced and studied the register value prediction 

concept. As we discussed, the intention of the register value prediction is to 

reduce the unfavorable effect of the RAW dependencies, by reducing the 

wait times of the subsequent dependent instructions. Also, the prediction 

focused on registers instead of instructions is advantageous because fewer 

predictors are needed, thus significantly saving complexity and costs. We 

proposed to exploit the value locality on registers using different prediction 

techniques. We used the hybrid predictor presented in Figure 6.13 to select 

the favorable registers. We continued after that with the evaluation of the 

predictors using registers with prediction accuracy higher than 60%. The 

best results were obtained with the hybrid predictor: an average prediction 

accuracy of 78.25% and a using rate of 19.36%. We then tried a more elitist 

selection of the registers and we continued the evaluation of the predictors 

using only the registers with prediction accuracy higher than 80%. The best 

results were obtained again with the hybrid predictor: an average prediction 

accuracy of 85.44% (on some benchmarks with over 96%) and a using rate 
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of 10.58%. Also, considering an 8-issue out-of-order superscalar processor, 

simulations show that register-centric value prediction produces average 

speedups of 17.30% for the SPECint95 benchmarks and 13.58% for the 

SPECint2000 benchmarks. We also showed that the PPM-based hybrid 

predictor is outperformed by the less complex but adaptive two-level-based 

hybrid predictor. 

 



 

 

“Entities should not be 

multiplied unnecessarily” 

William of Ockham 

7. Enhancing the Simultaneous 

Multithreading Paradigm with Selective 

Instruction Reuse and Value Prediction 

In the previous chapter we improved a superscalar microarchitecture with 

selective instruction reuse and value prediction techniques focalized on 

long-latency instructions. We obtained significant IPC speedups and 

energy-delay product gains, proving the necessity of these techniques for 

higher instruction-level parallelism. A very important question is: would 

these techniques improve even multithreading architectures? Additionally a 

multithreaded processor would naturally hide the long instructions latencies, 

including the memory-wall, and also some of the branches’ problems. This 

chapter answers the question by evaluating a simultaneous multithreaded 

architecture enhanced with selective instruction reuse and value prediction 

to anticipate the results of long-latency instructions. 

7.1. Related Work 

This section presents an overview of several multithreading approaches, 

focalizing then on Simultaneous Multithreading architectures, used and 

enhanced during this chapter. With multithreading multiple threads can 

share the functional units of a single processor [Hen03]. To support 

multithreading, the processor must be able to maintain the independent state 

of each thread in separate resource copies. The hardware also must support 

quick context switches between threads. 

7.1.1. Multithreading Architectures 

There are two different multithreaded architecture designs [Ung02, Ung03]: 

implicit- and explicit multithreaded processors. Implicit multithreaded 

superscalar processors aim at a low execution time of a single program, 
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while explicit multithreaded processors aim at a low execution time of a 

multithreaded workload.  

Implicit multithreaded processors concurrently execute several threads 

from a single sequential program. The threads in such architectures 

represent contiguous regions of the static or dynamic instruction sequence 

that can be obtained with or without the help of the compiler. Multiscalar 

processors, first introduced by Gurindar Sohi, divide a single-threaded 

program into tasks that are distributed to different parallel processing units. 

The multiscalar model supports control speculation and data dependence 

speculation. If a control speculation turns out to be incorrect, the speculative 

thread and all its successor threads are discarded. Data dependence 

speculation occurs when a thread loads data from memory with the 

expectation that the predecessor threads will not store a value to the same 

memory location. Trace processors partition a processor into distinct cores 

and divide the program into traces that are collected by a trace cache. They 

solved the so called fetch bottleneck limitation [Vin07]. One core of the 

processor executes the current trace while the other cores execute future 

traces speculatively.  

Explicit multithreaded processors are able to execute threads of 

several processes concurrently. A classification of explicit multithreaded 

processors that issue instructions from a single thread per cycle, 

distinguishes between fine-grained and coarse-grained multithreading 

[Hen03], while an explicit multithreading technique that issue instructions 

from multiple threads per cycle is simultaneous multithreading. In fine-

grained multithreading (interleaved multithreading) threads are switched 

after each instruction fetch, interleaving in this way their execution. More 

exactly, an instruction from a certain thread enters in the pipeline after the 

retirement of the previous instruction of that thread. Thus, the processor 

must be able to switch threads every clock cycle. Interleaved multithreading 

partially eliminates control and data dependences between instructions in 

the pipeline, leading to a simple and fast pipeline. Memory latency is 

tolerated by not scheduling a thread until the memory operation has 

completed. In order to completely hide pipeline hazards this model requires 

at least as many threads as many stages are in the pipeline. The key 

disadvantage of fine-grained multithreading is that it slows down the 

execution of the individual threads because they are delayed by instructions 

from the other active threads. This deficiency can be overcome with the 

dependence lookahead technique and the interleaving technique [Ung02]. 

The dependence lookahead technique, by using additional opcode bits, 

allows the compiler to state the number of instructions directly following in 

program order that are not data- or control-dependent on the instruction 
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being executed. Thus, the instruction scheduler can feed non-data- and non-

control-dependent instructions of the same thread successively into the 

pipeline. The interleaving technique uses caching and full pipeline 

interlocks. With caching not all memory references are long latency 

operations. Using full pipeline interlocks, a certain context is not limited to 

only one instruction in the pipeline. Instructions are issued switching each 

cycle between available contexts. Contexts become unavailable when they 

encounter a long-latency operation and become available again when that 

operation completes. Thus, even a single context is supported in the 

pipeline. 

In the case of coarse-grained multithreading (blocked multithreading), 

threads are switched only when stalls occur, and thus, it does not slow down 

the execution of the individual threads (single-thread performance is similar 

to that of superscalar processors). Instructions are issued from a single 

thread and the pipeline is emptied if a stall occurs. The disadvantage of 

coarse-grained multithreading consists in the start-up pipeline costs, since 

the thread that is executed after the stall must fill again the pipeline. Coarse-

grained multithreading can be classified based on the event that triggers a 

context switch into static and dynamic models [Ung02]. In static models the 

context switch is encoded by the compiler and occurs each time the same 

instruction is executed in the instruction stream. The advantage of static 

models is that context switching can be triggered in the fetch stage of the 

pipeline. The static model with explicit switching uses an additional 

instruction for triggering context switches. In static models with implicit 

switching, a context switch decision depends on the class of the fetched 

instruction. Instruction classes that cause context switch include Load, Store 

and, obviously, branch instructions. In dynamic models the context switch is 

triggered by dynamic events. Usually, all instructions between the fetch 

stage and the stage that triggers the context switch are discarded, leading to 

a higher context switch overhead. Several dynamic models are presented in 

[Ung02]. The switch-on-cache-miss dynamic model switches the context if 

a Load or Store instruction misses in the cache. These switches are detected 

in a late stage of the pipeline and, therefore, a large number of subsequent 

instructions that are already in the pipeline must be discarded, increasing the 

context switch overhead. The switch-on-signal dynamic model switches the 

context if a specific signal occurs, such as interrupt request, trap or message 

arrival. The switch-on-use dynamic model switches the context when an 

instruction tries to use the still missing value of a Load. This model is 

implemented by adding a valid bit to each register, the bit being cleared 

when a Load to the corresponding register is issued and set when the result 

is available. A context switch occurs only if a thread needs a value from a 
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register whose valid bit is still cleared. The conditional-switch dynamic 

model couples an explicit instruction with a condition, the context being 

switched only if the condition is fulfilled. Such conditional-switch 

instruction can be used after a group of Load instructions, the switch being 

ignored if all Loads hit the cache and performed otherwise. 

In [Ung02] the nanothreading and microthreading coarse-grained 

techniques are also presented. The nanothreading approach uses a 

nanothread that executes in the same register set and the same page as the 

main thread. When a stall occurs in the main thread, the processor 

automatically begins fetching instructions from the nanothread. Usually the 

nanothread focuses on simple tasks that can be done asynchronously to the 

main thread, such as prefetching data into a buffer. In the DanSoft 

processor, nanothreading is used to fetch both sides of a branch. A static 

three-bit branch prediction scheme is used. In the case of the states with low 

branch prediction confidence (the middle four of the eight states) the 

processor fetches instructions from both paths. If the branch is misprediced 

in the main thread, the path executed by the nanothread is used, generating a 

misprediction penalty of only one to two cycles. The microthreading 

technique is similar to the nanothreading, but the number of threads is not 

restricted to only two. The threads share the same register set and the same 

run-time stack. A disadvantage of both nanothreading and microthreading 

techniques is that the compiler has to schedule registers to each active 

thread, since all threads share the same register set. 

7.1.2. Simultaneous Multithreading 

Combining the superscalar instruction issue with the multithreading 

approach, naturally leads to the idea of issuing instructions from several 

active threads in parallel. Latencies that occur in the execution of single 

threads are bridged by issuing operations of the remaining threads. 

Simultaneous multithreading (SMT) uses the resources of a multiple-issue 

processor to simultaneously exploit both thread-level parallelism (TLP) and 

instruction-level parallelism (ILP). In SMT processors [Egg97], TLP can 

come from either multithreaded programs or independent programs within a 

workload, whereas ILP comes from each single program or thread. SMT is 

motivated because it successfully exploits both types of parallelism and 

therefore uses resources more efficiently, increasing instruction throughput 

and speedup. Thus, instructions from multiple threads are issued 

simultaneously in a single clock cycle. In the case of out-of-order processors 

with dynamic scheduling, register renaming provides a large set of virtual 
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registers that can be used to hold the register sets of multiple threads. The 

independent commitment of instructions from different threads can be 

supported if a separate reorder buffer is used for each thread. 

A classification of SMT processors can be made based on their 

resource organization [Ung02]. In architectures with resource sharing, 

instructions from different threads share all resources: the fetch buffer, the 

physical registers that provide the renaming function for all register sets, the 

instruction window and the reorder buffer. The architectures with resource 

replication actually replicate all internal buffers of a superscalar processor, 

each buffer being associated to a specific thread. The issue unit is able to 

issue instructions from different instruction windows simultaneously to the 

execution units. The threaded multipath execution model, which exploits 

existing hardware of a SMT processor to execute simultaneously alternate 

paths of a conditional branch, is also presented in [Ung02]. Therefore, 

additional hardware is introduced into SMT processors to test for unused 

resources (hardware threads). If the hardware detects processor threads that 

are not processing useful instructions, the prediction confidence estimator is 

used to decide if only one path of a conditional branch should be followed 

(high prediction confidence), or both paths should be followed 

simultaneously (low prediction confidence). 

In SMT architectures some processor structures (i.e. instruction queue, 

physical register files, execution units, caches) are shared among the 

threads, and others (ROBs, Load/Store Queues, branch predictors) are 

private to each thread [Bar08]. The different characteristics and 

requirements of every thread within a SMT environment can unbalance 

resource allocation and some threads will consume more resources than 

others. The overall performance of a SMT processor depends on how shared 

resources are distributed among threads. There are several possible policies 

to distribute the resource entries (distribution policies) and to select the 

instructions that will leave the resource at each cycle (scheduling policies). 

The most flexible scheme for distributing the entries of a resource is the 

dynamic distribution policy under which any instruction from any thread 

can compete for any free entry. The distribution of resources can also be 

static: each resource is partitioned and each thread has a private access to 

one partition. This completely prevents starvation and ensures a fair access 

to the common resources for all threads. However, the performance may not 

be optimal in this case because some threads may be slowed down due to a 

lack of resources whereas other threads might underuse their allocated 

partition. Static partitioning is widely used to share instruction queues 

among threads, due to its easier implementation. Besides distribution policy, 

shared resources are also controlled by a scheduling policy that arbitrates 
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between threads to select the instructions that can leave the resource. The 

most common scheme is the very simple Round-Robin policy, which 

switches between threads in a circular way, regardless of their behavior. The 

ICOUNT policy is another possible strategy, which is based on dynamic 

priorities reevaluated at each cycle to reflect the number of instructions per 

thread present in the pre-issue pipeline stages. Instructions of several 

threads can be fetched simultaneously, with the constraint that the thread 

with the highest priority is satisfied first. 

Liu and Gaudiot proposed in [Liu08] a resource sharing control 

technique on both the Instruction Fetch Queue (IFQ) and Reorder Buffer 

(ROB) structures in order to improve the performance of SMT processors. 

The research is important taking into account that the power of SMT lies in 

its ability to issue and execute instructions from different threads at every 

clock cycle. The authors are developing four distinct sharing control 

schemes, built on the well-known ICOUNT policy. They observed that 

controlling the resource sharing of either IFQ or ROB alone can only 

provide very limited performance improvement. On the other hand, 

controlling the resource sharing of both IFQ and ROB together could 

achieve significant performance gain. 

Marcuello et al. in [Mar99] analyzed the performance of speculative 

multithreaded processors with different value predictors. The thread 

speculation logic of a Clustered Speculative Multithreaded processor is 

responsible for detecting those parts of a sequential program that can be 

executed by different threads. This architecture considers the beginning of 

loops as quasi-independent control points. Thus, each speculative thread 

corresponds to a different iteration of a loop, called loop trace. The value 

prediction is focused on trace input or output values, since these values flow 

through inter-thread dependences. The instruction-based predictors correlate 

their predictions with previous values of the same instruction whereas trace-

based predictors correlate predictions with previous values of the same 

instruction within the same trace. The authors proposed a value predictor, 

called increment predictor, and evaluated its performance within a particular 

microarchitecture that implements the speculative multithreading paradigm. 

The increment predictor predicts every trace output value as the value of 

that storage location at the beginning of the trace plus an increment. This 

increment is computed as the difference between the values at the end and at 

the beginning of the trace. The predicted increment is updated when a new 

increment has been seen twice in a row. Their 1 KB trace-oriented 

increment predictor, with its prediction accuracy of 73%, outperforms the 

trace-adapted versions of the last value, stride and context-based predictors. 
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Martin et al. show in their work [Mar01] that multithreaded pointer 

manipulation can generate erroneous results when value prediction is 

implemented without considering memory consistency correctness. 

Therefore, only verifying prediction correctness by comparing the predicted 

and actual values is not always sufficient. In a TLP system, unlike in a 

single-threaded uniprocessor, it is possible for a value prediction to be 

incorrect at the time of the prediction but “correct” by the time the predicted 

value is verified, since another thread or processor could have modified the 

value between prediction and verification. When multiple threads or 

processors concurrently access a logically shared memory, the definition of 

correctness becomes more complicated. Thus, speculative TLP 

implementations must ensure that value prediction does not cause 

consistency model violations. 

An important impediment in developing large-scale SMT 

architectures is the register file size required by a large number of contexts. 

In [Red03] Redstone et al. introduce and evaluate the mini-thread concept, a 

simple extension of SMT that increases thread-level parallelism without 

register file size increase. A mini-threaded SMT architecture adds additional 

per-thread state to each hardware context. Using this hardware, an 

application can exploit more thread-level parallelism within a context, by 

creating multiple mini-threads that use their own per-thread state, but share 

the context’s architectural register set. Their experimental results show that 

adding mini-threads improves performance by an average of 38% (and a 

maximum of 66%) on a 2-context SMT. 

Ramírez et al. proposed in [Ram08] runahead threads to exploit 

memory-level parallelism while reducing resource contention in SMT 

processors. Runahead execution is a mechanism whose goal is to bring 

speculative data and instructions into the caches, and it was also used in 

[Mut03] within checkpointing architectures (see paragraph 2.1.3). The 

technique presented in [Ram08] applies runahead execution to any running 

thread when a long-latency Load is pending. Thus, when a thread undergoes 

a long-latency Load, it turns into a runahead thread and operates in 

speculative mode. With runahead threads, memory-bound threads can 

advance speculatively (instead of stalling) by using different resources for 

short times without disturbing the other threads. Their evaluations show that 

runahead threads improve throughput by 83% over static fetch policies. 

In [Sub08] Subramaniam et al. studied the interaction between long-

latency stalls caused by ambiguous memory dependences and SMT 

processing. A thread that encounters a stalling condition (e.g. a cache miss) 

can potentially tie up many of the shared resources for the entire latency of 

the stall. This effectively reduces the number of critical resources available 
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to the non-stalled threads. If the stall timings are predictable, then this 

information can be directly exploited by the SMT fetch unit to better 

manage the shared processor resources. Therefore, the authors proposed a 

technique called proactive exclusion which stops the SMT to fetch from a 

thread (avoiding thus resource allocation) when a memory dependence is 

predicted, before the stalling condition has been occurred. In order to 

mitigate delaying such threads, they introduced the so called early parole 

mechanism that exploits the predictability of dependence delays and restarts 

fetching from an excluded thread in an anticipatory manner such that the 

instructions arrive to the out-of-order execution units just as the original 

dependence resolves. Their simulations show that a fetch policy which 

combines these two techniques yields a 16.9% throughput improvement on 

a 4-way SMT processor that supports speculative memory disambiguation. 

7.2. Selective Instruction Reuse and Value Prediction 

in SMT Architectures 

As a final objective of our research, we quantified the impact of our 

developed Selective Instruction Reuse and Load Value Prediction 

techniques in a simultaneous multithreaded architecture (SMT) that involves 

per thread Reuse Buffers and LVP tables [Gel08c, Vin08a].  

We developed a cycle-accurate execution driven simulator derived 

from the M-SIM simulator [Sha05] supporting the unmodified, statically 

linked Alpha AXP binaries as well as the power estimation as supplied by 

the Wattch framework [Bro00]. M-SIM supports single threaded execution 

(superscalar mode) as well as the multithreaded mode in which multiple 

threads of control are executed simultaneously, according to the 

Simultaneous Multithreaded (SMT) model [Egg 97]. 
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Figure 7.1. SMT architecture enhanced with selective instruction reuse and value 

prediction 
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In the SMT mode, some processor structures (i.e. issue queue, physical 

register files, functional units, caches) are shared among the threads, and 

others (rename tables, ROBs, Load/Store Queues, branch predictors) are 

private to each thread. Figure 7.1 presents a SMT architecture enhanced 

with our selective instruction reuse and value prediction methods proposed 

in Section 6.2. 

Threads maintain separate PC counters, but share the fetch unit and I-

Cache. Threads also share the available bandwidth in the front end, 

including fetch, decode and renaming. The M-SIM implements the well 

known ICOUNT fetch policy (briefly described in paragraph 7.1.2), by 

default, fetching from up to two threads per cycle. The M-SIM has 

implemented separate branch predictors per thread, which was shown in 

[Ram03] as providing the best performance for multithreaded processors. 

The Reorder Buffers (ROB) as well as our Reuse Buffers (RB) and Load 

Value Prediction Tables (LVPT) are private. Each thread maintains its own 

rename table because it has its own set of architectural registers. After 

renaming, instructions from all threads are dispatched into the shared Issue 

Queue. In the Issue Queue, instructions from all threads participate in 

instruction wakeup and compete for the issue bandwidth in selection. 

Instructions that are selected for issue continue to register file access. There 

are separate integer and floating-point physical register files, both being 

shared among threads. After register file access is complete, instructions 

begin execution on the functional units, which are also shared. Loads and 

Stores access the shared data cache. In order to maintain the correct 

ordering of memory accesses, the Load/Store Queue (LSQ) is used. The M-

SIM uses separate LSQs per thread, so that an unresolved address from one 

thread does not prevent Loads in other threads from issuing. After 

execution, instructions write back to the register files. Commitment is done 

in order for each thread. 

Our Reuse Buffers and Load Value Prediction Tables have the same 

structures as in Section 6.2 (see Figures 6.1 and 6.3). The RB and LVPT 

were implemented in sim-outorder.c within the M-SIM through the 

following structures: 

 
struct RBLocation 
{ 

md_addr_t tag; // the higher part of the buffered instruction's PC  
qword_t srcval1; // first source value 
qword_t srcval2; // second source value 
qword_t res;  // result value 

}; 
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struct RBLocation rbuff[10][10000]; // maximum 10 threads and 
// 10,000 entries per thread 

 
struct LVPTLocation 
{ 

md_addr_t tag; // the higher part of the Load instruction's PC  
byte_t counter; // 2-bit saturating counter 
qword_t value; // Load value 

}; 
 
struct LVPTLocation lvpt[10][10000]; // maximum 10 threads and 

// 10,000 entries per thread 

 

The context identifier (context_id) is maintained for each instruction in the 

Reorder Buffer (ROB_entry). The private resources are selected for 

instructions belonging to each thread based on this identifier. 

7.3. Simulation Methodology 

Table 7.1 presents some important parameters of the simulated architecture: 

 

Execution Latencies 

Execution unit Number of units Operation latency 

intALU 4 1 

intMULT / intDIV 1 3 / 20 

fpALU 4 2 

fpMULT / fpDIV 1 4 / 12 

Superscalarity Fetch / Decode / Issue / Commit  width = 4 

Branch predictor bimodal predictor with 2048 entries 

Caches and 

Memory 

Memory unit Access Latency 

4-way associative L1 data cache, 32 KB 1 cycle 

8-way associative unified L2 data 

cache, 512 KB 

6 cycles 

Memory 100 cycles 

Resources 

Register File: 32 INT / 32 FP 

Reorder Buffer (ROB): 128 entries 

Load/Store Queue (LSQ): 48 entries 

Table 7.1. Parameters of the simulated architecture 

The dynamic power consumption measurements are generated using an 80 

nm CMOS technology: 

faVCP ddd  2
      (7.1) 
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where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply 

voltage, and f is the clock frequency. Vdd and f depend on the assumed 

process technology. The activity factor a indicates how often clock ticks 

lead to switching activity on average. For the energy measurements, we 

used the Energy-Delay Product, a widely used metric [Gon96, Bro00, 

Gol07]: 

2IPC

PowerTotal
EDP        (7.2) 

The Energy-Delay Product (EDP) represents the processor’s total power, 

divided by the squared IPC. 

All simulation results are generated on the SPEC 2000 benchmarks 

[SPEC] and are reported on 1 billion dynamic instructions, skipping the first 

300 million instructions. For the superscalar architecture we evaluated seven 

integer benchmarks (bzip, gcc, gzip, mcf, parser, twolf, vpr) and six 

floating-point benchmarks (applu, equake, galgel, lucas, mesa, mgrid). In 

SMT mode, the M-SIM runs multiple benchmarks as different threads in 

parallel. Therefore, we combined benchmarks into groups of 2, 3 or 6 

depending on the simulated SMT architecture. Thus, we used {bzip, gcc}, 

{gzip, parser}, {twolf, vpr}, {applu, equake}, {galgel, lucas}, {mesa, 

mgrid} for our 2-way SMT, {bzip, gcc, gzip}, {parser, twolf, vpr}, {applu, 

equake, galgel}, {lucas, mesa, mgrid} for the 3-way SMT, and {bzip, gcc, 

gzip, parser, twolf, vpr}, {applu, equake, galgel, lucas, mesa, mgrid} for the 

6-way SMT. 

7.4. Experimental Results 

We measured the IPC and the dynamic power consumption of the proposed 

SMT architecture by varying the number of threads. Figures 7.2 and 7.3 

present the IPC obtained by evaluating our developed superscalar and SMT 

architectures with and without Reuse Buffer and Load Value Predictor. 

According to our previous results obtained with the enhanced superscalar 

architecture (presented in paragraph 6.2.4), we optimally sized the RB and 

the LVPT to 1024 entries. 
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Figure 7.2. IPC obtained with and without RB & LVPT on the integer SPEC 2000 

benchmarks 
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Figure 7.3. IPC obtained with and without RB & LVPT on the floating-point 

SPEC 2000 benchmarks 

Figures 7.2 and 7.3 show that the RB and LVPT structures improve 

the IPC on all evaluated architectural configurations (superscalar and SMT). 

As far as concern floating-point benchmarks, the highest improvement was 
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obtained with one thread, and as the number of threads grows, the IPC 

improvement becomes lower (see Figure 7.3). With fewer threads, the ten 

shared functional units (see Table 7.1) are underused and therefore the 

selective instruction reuse and value prediction techniques have an 

important improvement potential. With a higher number of threads, the 

same ten functional units are highly used by the SMT engine, thus both the 

instruction reuse and value prediction mechanisms becoming less important. 

Therefore, especially on floating-point benchmarks, with six threads we 

obtained the best IPC but the lowest relative IPC speedup (see Figures 7.3 

and 7.4). 

Finally, we evaluated, for different number of threads, the IPC 

speedup and the EDP gain of a SMT architecture enhanced with Selective 

Instruction Reuse and Value Prediction against a classical SMT architecture. 

The IPC speedups obtained with our superscalar (one thread) and SMT 

architecture (2, 3 and 6 threads) are presented in Figure 7.4, whereas Figure 

7.5 presents the EDP gains achieved with the same architectures. 
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Figure 7.4. Relative IPC speedup (enhanced SMT vs. classical SMT) by varying 

the number of threads 

As Figures 7.4 and 7.5 depict, the RB and LVPT structures achieved IPC 

speedups and EDP gains on all the simulated configurations. The best 

improvements on the integer benchmarks have been obtained with 2 

threads: an IPC speedup of 5.95% and an EDP gain of 10.44%. Although, 

on the floating-point benchmarks, we obtained the highest improvements 

with the enhanced (LVP+Reuse) superscalar architecture, the SMT with 3 

threads also provides an important IPC speedup of 16.51% and an EDP gain 

of 25.94%. 
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Figure 7.5. Relative energy-delay product gain (enhanced SMT vs. classical SMT) 

for different number of threads 

Analyzing Figures 7.2 and 7.3 we can observe the advantage of SMT 

architectures against the superscalar architecture irrespective these are 

enhanced or not with selective instruction reuse and value prediction 

mechanisms. 

7.5. Summary 

In this chapter we have studied the impact of selective instruction reuse and 

value prediction in a Simultaneous Multithreaded architecture. We used 

these methods to anticipate the results of long-latency instructions (Mul, 

Div, Load), as we did in Chapter 6 within a superscalar architecture. Thus, 

we integrated the Reuse Buffer and Last Value Predictor structures into the 

M-SIM simulator [Sha05]. We implemented private RBs and LVPTs for 

each thread. Our simulation results, performed on the SPEC 2000 

benchmarks, show that the IPC is better on all evaluated SMT 

configurations, when the RB and LVPT structures are used. However, as the 

number of threads grows, the IPC speedup tends to become less significant, 

because the shared functional units are better exploited by the SMT engine 

even without RB and LVPT. We measured the highest IPC with the six-

threaded enhanced SMT architecture: 2.29 on the integer SPEC 2000 

benchmarks and 2.88 on the floating-point benchmarks. 

 



 

 

“The strongest arguments prove nothing so long 

as the conclusions are not verified  by experience” 

Roger Bacon 

8. Conclusions and Further Work 

The main contributions of this work can be summarized as follows: a 

systematic methodology of identifying difficult-to-predict branches, 

dedicated predictors designed to improve the prediction accuracy of 

unbiased branches, random degree metrics developed to characterize the 

randomness of sequences produced by unbiased branches, and selective 

dynamic value prediction and instruction reuse methods integrated into 

superscalar and simultaneous multithreaded architectures. This chapter 

presents some quantitative and qualitative conclusions regarding the 

important experimental results obtained within this book and emphasizes 

some possible further work directions. 

First, we have shown that unbiased branches are hard to predict if 

their outcomes, in the considered prediction contexts (branch address, local 

or global branch history, path), tend to chaotically shuffle between taken 

and not taken. We identified through laborious simulations these difficult-

to-predict branches in the SPEC 2000 benchmarks, and partially solved 

them through context length extension. However, about 6% of branches 

could not be solved even with the longest evaluated correlation information 

(28 bits), their polarization degrees remaining still unacceptably low (less 

than 0.95). Despite some branches are path-correlated, a global branch 

history of more than 12 bits approximates very well the longer path 

information. Thus, the path is useful only in the case of short contexts, for 

longer contexts its gain being insignificant. In other words, a sufficiently 

long branch history might be viewed as a good “compression” of the most 

complete path information. We also concluded that current state-of-the-art 

branch predictors correlate either insufficient information or wrong 

information in the prediction of unbiased branches. Even one of the most 

effective predictors, the idealized piecewise linear branch predictor 

developed by Jiménez, only achieved a prediction accuracy of 77.3% on the 

unbiased branches, leading us to consider alternative approaches. Therefore, 

we improved several state-of-the-art branch predictors with additional 

prediction information. Thus, we developed and evaluated some PPM-based 

value predictors that are using a compressed branch condition history whose 



204 Beyond the Limits of Modern Processors 

digits were -1, 0, or 1, depending on the sign of the difference between the 

operand values implied in each considered past branch. Unfortunately, even 

these idealistic predictors, able to exploit the correlation between branch 

outcome and branch condition history, could not improve the predictability 

of unbiased branches.  

We have analyzed comparatively the percentages of unbiased 

branches obtained using the global history, the global history concatenated 

with the path, and the global history concatenated with a new prediction 

information, namely, the previous branch condition (PBC) represented as a 

32-bit difference between the operand values of the previous dynamic 

branch. The evaluations showed that the previous branch condition is more 

efficient than the path information: it decreased the percentage of unbiased 

branches for all the evaluated context lengths. Therefore we additionally 

used local (per-address) or global PBC value, hashed together with the 

local/global branch history, integrated in some conventional branch 

predictors like the GAg and PAg, and in some state-of-the-art neural branch 

predictors. The piecewise linear branch predictor improved with the global 

PBC value was the most efficient, according to our evaluations. 

Nevertheless, even this powerful predictor achieved a modest 78.3% 

average prediction accuracy on the unbiased branches, whereas its global 

average prediction accuracy was 95.45% overcoming the original piecewise 

linear branch predictor (the best state of the art branch predictor) with 

0.53%. However, this modified piecewise linear branch predictor 

significantly outperformed the modified GAg and PAg predictors. This gain 

was probably obtained because both the improved GAg and PAg predictors 

used a hashing between the PBC value and the global/local branch history, 

whereas the modified piecewise linear branch predictor used the branch 

history and PBC value without hashing (by concatenating them).  

Other very powerful general predictors like our developed HMM, 

have predicted unbiased branches with an average accuracy of only 65.03%. 

Since the impact of unbiased branches significantly restricts the global 

accuracy, predicting them still represents a hard challenge for computer 

architects. This means that accurate prediction of unbiased branches remains 

an open problem and such branches will continue to limit the ceiling of 

dynamic branch prediction. Moreover, taking into account that these 

difficult branches are generated by very complex program structures, we 

expect that their negative influence will be even more significant in the 

future. 

At this moment there is not a universally accepted paradigm for 

effectively defining random strings of symbols. Not surprisingly, 

understanding randomness is closely related with strong mathematical 
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concepts like computability and algorithms, information theory and 

complexity, actual infinites theory, etc. The problem is therefore open and 

of great interests in many fields of science. We showed that unbiased 

branches could be understandable in more depth using this interdisciplinary 

methodological frame. We developed four metrics that are defining the 

random degree of a string of symbols. These metrics are based on: HMM-

based predictability, discrete entropy, compression rate and Kolmogorov 

complexity associated to the code sequence that generates unbiased 

branches. The proposed random degree metrics could practically help the 

computer architect to better understand if a certain branch predictor should 

be improved. All these four developed metrics are converging at the same 

point. They are showing how much “intrinsic randomness” a string of 

symbols and, particularly, the sequences produced by unbiased branches 

contain. If some difficult-to-predict branches are not intrinsic random with 

our metrics, according to our experience, their prediction accuracy could be 

further improved by the researcher. Unfortunately, if these branches are 

intrinsic random, the answer is a pessimistic one, generating a strong 

limitation in Computer Architecture. Since the future applications 

complexity will increase (object oriented programs, design patterns, 

complex project management, virtual machines, etc.), we expect that also 

the number and therefore the influence of unbiased branches will further 

increase. 

Our statistics show that about 28% of branches are dependent on long-

latency instructions. Moreover, 5.61% of branches are unbiased and depend 

on long-latency instructions, too. These dependences involve high-penalty 

mispredictions becoming serious performance obstacles and causing 

significant performance degradation in executing instructions from wrong 

paths. Therefore, the negative impact of (unbiased) branches over global 

performance should be seriously attenuated by anticipating the results of 

long-latency instructions, including critical Loads. On the other hand, hiding 

long execution latencies in a pipelined superscalar processor represents an 

important challenge itself. Therefore, we developed a superscalar 

architecture that selectively anticipates the values produced by high-latency 

instructions. We have focused on Multiply, Division and Loads with miss in 

L1 data cache, implementing a Dynamic Instruction Reuse scheme for the 

Mul/Div instructions and a simple Last Value Predictor for the critical Load 

instructions. Our improved architecture achieved an average IPC speedup of 

3.5% on the integer SPEC 2000 benchmarks, of 23.6% on the floating-point 

benchmarks, and an improvement in energy-delay product of 6.2% and 

34.5%, respectively. Actually, this lower energy consumption shows the 

efficiency of our anticipatory techniques in a superscalar architecture. We 
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have also demonstrated that there is a dynamic correlation between the 

names of the destination registers and the values stored in these registers. 

Therefore we extended dynamic value prediction by introducing the 

register-centric prediction concept instead of instruction-centric prediction. 

This register-centric approach is advantageous because fewer predictors are 

needed, thus reducing complexity and costs. We developed several different 

basic value predictors, such as the last value predictor, the stride value 

predictor, context-based predictors and hybrid value predictors to capture 

certain type of value predictabilities from the SPECint95 and the 

SPECint2000 benchmarks. All these predictors were adapted to our 

proposed prediction model. The evaluations showed that the hybrid 

predictors have best exploited the value locality concept. Moreover, the 

hybrid predictor with counter-based adaptive prioritization composed of a 

two-level and a stride predictor outperformed the PPM-based hybrid 

predictor, at significantly lower implementation cost and complexity. 

Considering an 8-issue out-of-order superscalar processor, the register 

centric value prediction achieves average speedups of 17.30% on the 

SPECint95 benchmarks and 13.58% on the SPECint2000 benchmarks. 

After we have shown the utility of selectively anticipating long-

latency instructions in superscalar architectures, it was natural to analyze the 

efficiency of these methods in multithreaded environments. Thus, we have 

studied the impact of dynamic instruction reuse and value prediction, 

applied selectively on Mul/Div instructions and on critical Loads, in a 

Simultaneous Multithreaded (SMT) architecture. We implemented private 

Mul/Div Reuse Buffers (RB) and Load Value Prediction Tables (LVPT) for 

each thread. Our simulations performed on the SPEC 2000 benchmarks 

showed higher IPC on all evaluated SMT configurations, when the RB and 

LVPT structures were used. With fewer threads, the shared functional units 

are underused and therefore the selective instruction reuse and value 

prediction techniques have an important improvement potential. However, 

as the number of threads grows the IPC speedup decreases, because the 

shared functional units are better exploited due to the higher thread-level 

parallelism (TLP) and therefore the RB and LVPT structures become less 

important. We measured the highest IPC of 2.29 on the integer and 2.88 on 

the floating-point benchmarks with our six-threaded enhanced SMT 

architecture. However, the best improvements on the SPEC integer 

applications have been obtained with 2 threads: an IPC speedup of 5.95% 

and an EDP gain of 10.44%. Although, on the SPEC floating-point 

programs, we obtained the highest improvements with the enhanced 

superscalar architecture, the SMT with 3 threads also provides an important 

IPC speedup of 16.51% and an EDP gain of 25.94%. As a conclusion, 
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applying some well-known anticipatory techniques selectively on long-

latency instructions provides serious performance gain and significantly 

reduces energy consumption in superscalar and even in multithreaded 

architectures. 

Finally, we highlight some interesting research topics that need to be 

further investigated in the future. Since accurate prediction of unbiased 

branches still remains an open problem, we consider that the use of more 

prediction contexts (some relevant HLL code information) is required to 

further improve prediction accuracies. Perhaps an alternative mechanism 

might be to hand-shake scheduler support with dynamic branch prediction. 

The idea of the scheduler would be to remove as many branch instructions 

(especially unbiased branches) from the static code as possible and leave the 

remaining branches to be dynamically predicted. Yet another alternative 

could be to pursue the concepts of micro-threading where small fragments 

of code (e.g. both branch paths) are executed concurrently and the branch 

problem is no longer a major concern. It would be also useful to quantify 

the unbiased branch ceiling in multicore architectures. Also, understanding 

and exploring instruction reuse and value prediction benefits in a multicore 

architecture might be another very important challenge. 

 



 

 

“Experimental science is the queen of sciences 

and the goal of all speculation” 

Roger Bacon 
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“The Fast drives out the Slow 

 even if the Fast is wrong” 

William Kahan 

Glossary 

Benchmark: is a program (execution driven simulation) or a program’s 

trace (trace driven simulation) used for evaluations. In this work we 

used the SPEC 2000 benchmark suite, the SPEC JVM98 benchmarks, 

Stanford benchmarks, and the CBP-1 traces. 

Basic Block: sequence of instructions that occur between two consecutive 

branches and are not the targets of branch instructions. 

Biased branch: mostly always taken or mostly always not taken branch 

(mostly-one-direction branch). The behavior (taken / not taken) of a 

biased branch is polarized. 

Biased branch context: the branch behavior (taken / not taken) is polarized 

for that certain context (local branch history, global history, path, etc.). 

Branch difference: represents the value or the sign of the difference 

between the branch’s inputs. Regarding the sign of the inputs’ 

difference, a value of 1 indicates that the corresponding branch 

difference is positive, a value of -1 indicates a negative difference, while 

a 0 indicates equality between the branch’s inputs. 

Branch difference predictor: the branch outcomes are predicted based on 

branch difference histories. 

Branch polarization: measured through the polarization index (P). 

Branch prediction: is the prediction of the direction (taken / not taken) 

and/or the target address (next PC) of a branch instruction. 

Checkpointing architecture: allows speculative execution by saving or 

checkpointing the state of the processor at certain points in a history 

buffer or a checkpoint, respectively. 

Chip-level multiprocessor (CMP): see multicore architecture. 

Complete-PPM predictor: see Prediction by Partial Matching (PPM). 

Compression rate: a commonly used metric in data compression, 

representing the uncompressed size divided to the compressed size, as 

follows. 

%100
SizeCompressed

SizeedUncompress
RatenCompressio  
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Confidence automaton: saturated counter that indicates the confidence of a 

certain prediction. The prediction is generated only if the confidence 

automaton is in a predictable state. 

Context: the context of length p represents the last p elements from the 

correlation information used in order to make a prediction. In the case of 

branch prediction the correlation information is the branch history (e.g. 

local or global branch history) or the path leading to the branch, and a 

context of length p consists in the last p bits from the branch history or 

in the last p PCs from the path. 

Context instance: is a dynamic branch executed in the respective context. 

Critical Load: a Load instruction with miss in both cache levels. 

Distribution (index): the distribution index of a certain branch context is 

computed as follows. 
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 nt = the number of branch outcome transitions, from taken to not 

taken and vice-versa, in context Si; 

 ),min(2 TNT  = maximum number of possible transitions; 

 k = number of distinct contexts, pk 2 , where p is the length of the 

binary context; 

 if kiSD i ...,,2,1)(,1)(  , then the behavior of the branch in 

context Si is “contradictory” (the most unfavorable case), and thus its 

learning is impossible; 

 if kiSD i ...,,2,1)(,0)(  , then the behavior of the branch in 

context Si is constant (the most favorable case), and it can be 

learned. 

Dynamic branch: is an instance of a static branch during program’s 

execution. 

Dynamic branch prediction: the branches are predicted with hardware 

techniques. 

Dynamic learning: is the run-time prediction process when the outputs of 

the predictor are used to generate predictions and to adjust the prediction 

structures. 

Dynamic power consumption: see power consumption. 

Energy-Delay Product (EDP): a widely used metric, representing the 

processor’s total power, divided by the squared IPC, as follows: 
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2IPC

PowerTotal
EDP   

Entropy: considering a sequence S of symbols belonging to the set 

X={X1X2 ... Xk}, the entropy of S is 0)(log)()(
1

2  


k

i

XiPXiPSE . 

Obviously its maximum ( k2log ) is obtained for symbols of equal 

probabilities in S. 

Feature (set): is the binary context on p bits of prediction information such 

as local history, global history or path. Each static branch finally has 

associated k dynamic contexts in which it can appear ( pk 2 ).  

Gain: is the factor which gives the improvement of the quality, with a 

certain metric. 

Global branch history (GH): the outcome sequence (taken / not taken) 

generated by the previous dynamic branches. 

Hidden Markov Model (HMM): is a doubly embedded stochastic process 

with an underlying stochastic process that is not observable (it is 

hidden), but it can be observed through another set of stochastic 

processes that produce the sequence of observations. 

Hidden super-state: see super-state. 

Hidden state:  is a state in a Hidden Markov Model (HMM). 

Instruction-level parallelism (ILP): is a measure of how many instructions 

can be processed simultaneously in multiple instruction issue (MII) 

microarchitectures. 

Kolmogorov complexity: a sequence X has Kolmogorov complexity K(X) 

equal to the length of the shortest program p for a universal Turing 

Machine U that produces X and then halts: 

)(min)(
)(:

plXK
XpUp 

 , 

where l(p) is the length of p in bits. Kolmogorov complexity identifies a 

sequence X as random if )()( XKXl   is small: random sequences are 

those that are irreducibly complex. 

Local branch history (LH): the outcome sequence (taken / not taken) 

generated by the previous dynamic instances of a certain static branch 

instruction. 

Markov chain: in the case of a first order Markov chain the probabilistic 

description is truncated to just the current and predecessor state. 

][...],,[ 121 itjtktitjt SqSqPSqSqSqP   , where tq  is 

the state at time t. Thus, for a first order Markov chain with N states, the 
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set of transition probabilities between states Si and Sj is }{ ijaA  , where 

][ 1 itjtij SqSqPa   , Nji  ,1 , having the properties 0ija  

and 1
1




N

j

ija . For a Markov chain of order R the probabilistic 

description is truncated to the current and R previous states. 

Markov predictor: the prediction is generated based on the state transition 

probabilities of a Markov chain. 

Memory wall: is the continuously increasing gap between processor and 

memory speeds. The memory wall produces a serious performance 

limitation of high-frequency microprocessors by main memory access 

latencies. 

Multicore architecture: combines two or more independent cores into a 

die, or more dies packaged together. 

Multithreaded processor: is a microarchitecture that exploits thread-level 

parallelism (TLP), by executing instructions from multiple threads 

simultaneously or concurrently. 

Observable state: an observation produced by the stochastic process of the 

corresponding hidden state in a Hidden Markov Model. 

Path: is a prediction information consisting in the sequence of branch PCs 

or target PCs leading up to a certain dynamic branch instruction. The 

path can include all branch instruction types or exclusively conditional 

branches. 

Path-based correlation: means using the path information leading up to a 

certain dynamic branch in order to determine (predict) the outcome of 

that branch. 

Pattern-based correlation: means using branch outcome history (e.g. local 

branch history, global branch history) in order to determine (predict) 

the outcome of a certain dynamic branch. 

Polarization (index): the polarization index (P) of a certain branch context 

is computed as follows. 
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 , where 

  kSSSS ...,,, 21  = set of distinct contexts that appear during all 

branch instances; 

 k = number of distinct contexts, 
pk 2 , where p is the length of the 

binary context; 
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 
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



 10 , ,  NT = number of “not taken” branch 

instances corresponding to context Si,  T = number of “taken” branch 

instances corresponding to context Si, ki ...,,2,1)(  , and 

obviously 110  ff ; 

 if kiSP i ...,,2,1)(,1)(  , then the context iS  is completely 

biased (100%), and thus, the afferent branch is highly predictable; 

 if kiSP i ...,,2,1)(,5.0)(  , then the context iS  is totally 

unbiased, and thus, the afferent branch is not predictable if the taken 

and not taken outcomes are shuffled. 

Power Consumption: the dynamic power consumption is the main source 

of power dissipation in CMOS microprocessors and it is defined 

as faVCP ddd  2
, where C is the capacitance, Vdd is the supply 

voltage, f is the clock frequency, and the activity factor a indicates how 

often clock ticks lead to switching activity on average. 

Prediction accuracy: the percentage or ratio of correct predictions reported 

to the total number of predictions. 

Prediction by Partial Matching (PPM): is a context-based prediction 

algorithm. The PPM predictor contains a set of simple Markov 

predictors. It predicts the value that followed the context with the 

highest frequency. In the case of complete-PPM predictor, if a 

prediction cannot be generated with the Markov predictor of order k, 

then the pattern length is shortened and the Markov predictor of order k-

1 tries to predict and so on. 

Previous branch condition (PBC): the difference between the operand 

values implied in the previous branch condition. The global PBC is the 

previous branch condition difference. The local PBC is the previous per-

address branch condition difference. 

Primitive (hidden) state: is a (hidden) state in a first order Hidden Markov 

Model. 

Program counter (PC): is a register in the processor (also called 

instruction pointer) which indicates the memory address of the next 

fetched instruction within a program. 

Simultaneous multithreading (SMT): uses the resources of a multiple-

issue processor to exploit both thread-level parallelism (TLP) and 

instruction-level parallelism (ILP). Instructions from multiple threads 

are issued simultaneously in a single clock cycle, and thus, the available 

resources are better utilized. 
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Space saving: a commonly used data compression metric, computed as 

follows. 
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Speculative architecture: is a microprocessor that allows speculative 

execution to reduce the execution time of conditional branches and long-

latency instructions by predicting their results. 

Speculative execution: instruction execution based on predicted values or 

predicted branch outcomes. 

Static branch: a certain branch instruction from a program. 

Static branch prediction: the branches are predicted statically by the 

compiler. Static branch predictors are used in processors where the 

expectation is that branch behavior is highly predictable at compile-

time. It is especially useful for the global static scheduling methods. 

Static learning: means that before effective run-time prediction process, the 

predictor is trained based on some patterns. In the static learning process 

the outputs of the predictor are used only to adjust the prediction 

structures. 

Super-state: in the case of Hidden Markov Models of order R a 

combination of R primitive hidden states form a super-state. 

Superscalar processor: is a microarchitecture that exploits instruction-

level parallelism (ILP) by introducing more than one instruction at a 

time into multiple pipelines to be executed simultaneously. 

Thread-level parallelism (TLP): means processing instructions from 

multiple threads simultaneously or concurrently within multithreaded 

microarchitectures. TLP can be extracted from either sequential 

programs or multithreaded workloads. 

Unbiased branch: a branch whose behavior (taken / not taken) is not 

sufficiently polarized. 

Unbiased branch context: the branch behavior (taken / not taken) is not 

sufficiently polarized for that certain context (local branch history, 

global history, path, etc.). 
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