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Abstract: The paper presents an improved context-based 

denoising method for grayscale images affected by impulse 

noise. The proposed algorithm is using Markov chains to 

replace the detected noise with the intensity having the 

highest number of occurrences in similar contexts. The 

context of a noisy pixel consists in its neighbor pixels and 

is searched in a larger but limited surrounding area. We 

have analyzed different search methods and different 

context shapes. The experimental results obtained on the 

test images have shown that the most efficient model 

applies the search in form of “*” of contexts in form of 

“+”. Beside the better denoising performance obtained on 

all the noise levels, the computational time has been also 

significantly improved with respect to our previous 

context-based filter which applied full search of full 

context. We have also compared this improved Markov 

filter with other denoising techniques existing in the 

literature, most of them being significantly outperformed. 
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1. Introduction 

As digital images are affected by noise during their 

acquisition or transfer, we are proposing a context-based 

method to eliminate salt-and-pepper noise from grayscale 

images, with an improved prediction scheme based on 

Markov chains. Salt-and-pepper is an impulse noise, 

consisting in white and black pixels altering the image. 

Our main goal is to restore the missing information and to 

preserve the unaffected pixels. In this respect, we are 

replacing the noisy pixel with the intensity having the 

highest number of occurrences in similar contexts within a 

limited surrounding area, like in a Markov chain. By using 

context information, our proposed filter can rebuild details 

in images altered by salt-and-pepper noise. In our previous 

work [1], we have applied a complete search in the limited 

surrounding area of the context, consisting in all the 

neighbor pixels. In this paper, we have continued our 

research by studying different search methods and different 

context shapes. 

For validation, we have compared our technique with 

several denoising methods from the current literature, by 

measuring the mean square error (MSE) on some well-

known test images like “Cameraman”, “Boat” and 

“Airplane”. The experiments have shown that our Markov 

filter significantly outperforms many existing impulse 

noise filters. 

Further, we present some existing related denoising 

techniques. The median filter is one of the most employed 

methods to reduce impulse noise, with the drawback of 

being suitable only for low noise levels. Therefore, 

different improved median filter variants have been 

proposed over the years, which worked better on high 

noise densities. In [2], Srinivasan and Ebenezer proposed a 

decision-based method, which applies a 3×3 denoising 

window only on black and white pixels. In [3], the authors 

have introduced another median filter based method, which 

relaxes the order statistic for intensity substitution. The 

authors of [4] have presented the progressive switching 

median filter, which applies through several iterations an 

impulse noise detection algorithm and filtering. 

In [5], the authors have introduced a two-level noise-

adaptive fuzzy switching median filter. It identifies in the 

first stage the noisy pixels based on a histogram and 

replaces in the second stage the noisy pixels with the 

median of uncorrupted pixel values, applying also fuzzy 

reasoning. In [6] and [7], Chan et al. presented a two-stage 

scheme, using a median filter to identify pixels 

contaminated by noise and a specialized regularization 

method to restore the noisy pixels, by minimizing an 

objective function. In [8], the authors introduced an 

adaptive progressive filtering technique, which detects 

corrupted pixels based on two-dimensional geometric and 

size features of the noise. Based on the result of the first 

stage, an adaptively sized and shaped filtering window 
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(which in our work is fix sized and shaped) is employed in 

the second stage. Another two-stage scheme has been 

presented in [9] by Nasri et al., with noise detection in the 

first stage and Adaptive Gaussian Filtering in the second 

stage. The pixels detected as being noisy are stored in a 

binary noise matrix. The uncorrupted pixels from a fixed-

size window are weighted by a Gaussian function. Then 

the denoised pixel intensity is computed as the normalized 

sum of these weighted values. 

The main difference between the above described 

methods and our denoising scheme is that we use context 

information and therefore we can reconstruct better the 

details in the corrupted images. Our Markov filter could be 

also applied for defect detection, as in [10]. Other context-

based filters have been also proposed. In [11], the authors 

suggested a probabilistic filter which, based on random 

walks on small image neighborhoods, can provide a good 

denoised estimation for a given pixel. In their work, the 

neighborhood dimension and shape are adjusted run-time. 

In our work, we use a fixed sized and shaped neighborhood 

and we search for similar neighborhoods. We replace a 

pixel affected by noise with the most frequent intensity 

occurred in similar neighborhoods. In [12], the authors 

presented a probabilistic denoising technique consisting in 

Markov-Chain Monte Carlo sampling. A method 

employing a dissimilarity measure for the local 

neighborhood of the noisy pixel was presented by 

Berkovich et al. [13]. The content-based kernel uses a 

statistical model to exclude dissimilar intensities from the 

weighted average. The kernel was adjusted to the image 

content to preserve the edges or textures. 

Universal filtering algorithms, which can be used on 

different types of noise, have been also proposed. Besides 

the very common impulse noise, a Poisson type noise 

distribution was analyzed by Mishra et al. [14]. This 

variety of noise is present especially in medical x-Ray 

imaging and affects low intensity regions. A modified 

version of the Bilateral Filter was introduced, followed by 

a performance comparison. In [15], Smolka and Kusnik 

presented a robust local similarity filter to reduce mixed 

Gaussian and impulse noise from the affected images. In 

order to determine the distortion level of a pixel, they 

compute the similarity of the pixels from the processing 

region and a small filtering window centered on the pixel 

being restored, as a sum of the smallest distances. 

The denoising operation is generally affecting areas 

with discontinuities, producing an unwanted smoothing 

effect. In the paper of Rouf and Ward [16], the fact that 

chromatic discontinuities have lower gradients than 

luminance was used in order to restore image areas 

affected by noise. The method can be employed to recover 

deleted information and improve the denoising process. In 

the same direction, the Sorted Switching Median Filter 

presented in [17], is a three stage filtering process that 

classifies the pixels and avoids the smoothing effect on 

uncorrupted areas. The multistage filtering process has 

been also employed by Liu et al. [18], with a new 

statistical process called ROD-ROAD and a fuzzy logic 

rule for the pixel classification at first, followed by a 

weighted mean filtering. 

In [19], Bingham and Mannila used random projection 

as dimensionality reduction tool on high-dimensional 

image or text data sets and concluded that random 

projection is a promising alternative for noise reduction. 

The rest of the paper is organized as follows: Section 2 

describes the proposed Markov filter. Section 3 presents 

the experimental methodology whereas Section 4 the 

results. Finally, Section 5 summarizes the conclusions and 

suggests further work opportunities.  

 

2. Filtering Impulse Noise Images with Markov Chains 

Markov chains can be applied to compute the probability 

of a certain value in a sequence, as its number of 

occurrences in a considered context. Markov chains have 

been used in different computer science fields like 

bioinformatics [20], web access mining [21], pervasive 

computing [22], image retrieval [23], computational 

linguistics [24], etc. In an R
th
 order Markov model, the 

probability of the current state is computed based on R 

previous states [25], as follows:  

]...,,[...],,[ 121 Rtttttt qqqPqqqP −−−− =  (1) 

where tq  is the state at time t and R is the order of the 

Markov chain. A general prediction algorithm with 

Markov models, determining the next state of a 1D 

sequence based on the transition frequencies from the 

current state, was described in [26]. 

In [1], we reconstructed the grayscale images corrupted 

by impulse noise using Markov chains adapted for pixel 

intensities from 2D areas. The probability of pixel intensity 

in a certain context is computed as the number of its 

occurrences in similar contexts. The noisy pixel must be 

replaced with the predicted next state. The surrounding 

pixel values constitute the context and the search area is 

encoding the previous states. Thus, in grayscale images, 

the states are pixel intensities from the [0, 255] interval. 

The adjusted R
th
 order Markov model is given in (2), where 

CS is the context size (the width of the context square, as it 

is depicted in Figures 1 and 2), SR is the search radius 

(used to limit the search area), and W and H specify the 

image width and height. A certain pixel intensity qx,y 

depends on the neighbor context intensities. We have 

considered noisy the black and white pixels, as in [2]. 
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The adjusted Markov filter given in (2) is depicted in 

Figure 1, where the noisy pixel N is colored with black, the 

context pixels C are dark gray and the search area is light 

gray.  A noisy pixel is replaced with the most frequent 

noise-free intensity occurred in similar contexts within a 

larger surrounding area limited by SR (without leaving the 

image boundaries). As it can be observed in Figure 1, in 

[1] we have applied a full search within the search area 

(limited by SR) of a full context consisting in all the 

neighboring pixels. Further, we denote that filter S0_C0. 

 
Fig. 1 Image denoising with the S0_C0 Markov filter 

 

In this work, we have investigated other simpler search 

rules and also different simpler context shapes. The goal is 

to improve the denoising performance and speed of the 

context-based filter. We tried to replace the full search 

(used in [1]) with a search in form of “+”, “X” and also 

their combination in form of “*”. We tried also to replace 

the full context (used in [1]) with different context shapes: 

the context in form of “+”, “X” and their combination in 

form of “*”. 

The most efficient combination (determined on the test 

images), search in form of “*” of contexts in form of “+”, 

is given in (3). This Markov filter is denoted S*_C+. 

Despite equation (3) seems more complicated than (2), in 

fact it is significantly simpler because it implies processing 

fewer pixels and thus we expect a faster filtering. We will 

also evaluate comparatively (2) and (3) and other variants 

in terms of denoising performance. Figure 2 presents the 

S*_C+ Markov filter. The considered context pixels are 

highlighted with dark gray (forming a “+”) and the search 

rule with light gray (forming an “*”). 

 
Fig. 2 Image denoising with the S*_C+ Markov filter 

 

Obviously, we have implemented and tested all the 

following combinations in which S denotes the search type 

and C the context type: S0_C0 from [1], and from this 

work S0_C+, S0_CX, S+_C0, S+_C+, S+_CX, SX_C0, 

SX_C+, SX_CX, S*_C+. 

The algorithm which replaces a noisy pixel through the 

S*_C+ Markov model is described in the following 

pseudocode: 

 
Markov(x, y, SR, CS, T) 
  For j:=y-SR to y+SR, 0≤j<H 
    If j=y then Continue 
    If SAD(x, y, x, j, CS)<T  
      AND NOT Salt_Pepper(x, j) then  
        Q[Color(x, j)]:=Q[Color(x, j)]+1 
  For i:=x-SR to x+SR, 0≤i<W  
    If i=x then Continue 
    If SAD(x, y, i, y, CS)<T  
      AND NOT Salt_Pepper(i, y) then  
        Q[Color(i, y)]:=Q[Color(i, y)]+1 
  For k:=-SR to SR, 0≤x+k<W, 0≤y+k<H 
    If k=0 then Continue 
    i:=x+k 
    j:=y+k 
    If SAD(x, y, i, j, CS)<T  
      AND NOT Salt_Pepper(i, j) then  
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        Q[Color(i, j)]:=Q[Color(i, j)]+1 
  For k:=-SR to SR, 0≤x-k<W, 0≤y+k<H 
    If k=0 then Continue 
    i:=x-k 
    j:=y+k 
    If SAD(x, y, i, j, CS)<T  
      AND NOT Salt_Pepper(i, j) then  
        Q[Color(i, j)]:=Q[Color(i, j)]+1 
  If Q[Max(Q)]=0 then Return Color(x, y) 
  Return Max(Q) 

 

The parameters of the Markov function are: the line and 

the column of the current pixel, the search radius SR, the 

context size CS and the similarity threshold value T. The 

first two for instructions are performing the “+” search and 

the last two the “X” search for similar contexts. These two 

search rules used together constitutes the “*” search. We 

considered two image areas similar if the sum of absolute 

differences is less than T. 

The following pseudocode presents how we compute 

the similarity degree in the S*_C+ Markov filter, the 

context having a “+” shape: 

 
SAD(x1, y1, x2, y2, CS) 
  S:=0 
  For j:= -CS/2 to CS/2, 0≤j+y1<H, 0≤j+y2<H do 
    If j=0 then Continue 
    S:=S + |Color(x1, j+y1)-Color(x2, j+y2)| 
  For i:= -CS/2 to CS/2, 0≤i+x1<W, 0≤i+x2<W, do 
    If i=0 then Continue 
    S:=S + |Color(i+x1, y1)-Color(i+x2, y2)| 
  Return S 
 

The first for instruction is processing the pixels from the 

vertical line and the second one from the horizontal line of 

the “+” context shape, both avoiding the middle pixel.  

The frequencies of the noise-free pixel values occurring 

in similar contexts are kept in Q. The Max function returns 

the most frequent intensity which will replace the noisy 

pixel. The noisy pixel is not changed if the Markov 

function cannot find any similar context. The Salt_Pepper 

function checks if a pixel is noisy, by returning TRUE for 

black and white pixels. The Markov_Filter function, which 

calls the previously presented Markov function, is the same 

as in [1] and it is presented in the following pseudocode: 

 
Markov_Filter(CS, SR, T) 
  For i:=0 to W-1 do 
    For j:=0 to H-1 do 
      If Salt_Pepper(i, j) then 
        Set_Color(i, j, Markov(i, j, CS, SR, T)) 

 

where the Set_Color function changes the intensity of the 

noisy pixel (i, j) with the value returned by the Markov 

function. 

 

3. Evaluation Methodology 

The proposed Markov filter was implemented in C# and 

we used for comparisons the available Matlab source codes 

of several filters. We performed the evaluations on the 

Cameraman, Boat and Airplane 512×512 grayscale PNG 

images having salt-and-pepper noise levels between 10% 

and 90%. The proposed Markov filter has been configured 

on the Cameraman image with 30% noise level and, after 

that, we compared the optimal model with the other 

existing techniques on all the three test images with all the 

noise levels. 

The denoising performance has been determined using 

the MSE metric whose computation is given in (4): 
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where W and H are the image width and height. The goal is 
to obtain the MSE as low as possible. 

 

4. Evaluation Results 

First, we have checked again the SR and CS parameters 

and the optimal values are the same as in [1]: CS=3 and 
SR=4. The optimal value of T for a full context was 500 in 

[1]. Since the number of pixels is reduced to the half in the 

“+” and “X” contexts, we expect a reduction of the optimal 

T to around 250 in the filters implying such contexts. In 

Figure 3 we have measured the MSE by varying the 

similarity threshold T around the expected optimal value. 

For this first parametrical setup we have chosen the 

S+_C+ Markov filter and the Cameraman test image with 

30% noise. 
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Fig. 3 The MSE of the 30% noised Cameraman image filtered with 

S+_C+ using different similarity thresholds 

Figure 3 has shown that in the case of a “+” context the 

best value for T is 300. As we checked, for an “X” context 
the best T value is the same, which is obvious, since it 

implies the same number of pixels. Further we will use 

T=500 for a full context and T=300 for the “+” and “X” 

contexts. 

Next, we have compared different search rule and 

context shape combinations. The MSE values obtained on 

the Cameraman, Boat and Airplane images are presented in 

Figures 4, 5 and 6, respectively. Since S0_CX was less 

performing than S0_C+ and also SX_C0 was less 

performing than S+_C0, we have checked but not included 

the other models that imply “X” search or “X” contexts 

(S+_CX, SX_CX and SX_C+) in these figures. 
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Table 1 Comparison of the computation times in seconds 

Cameraman Boat Airplane Noise 

density S0_C0 S*_C+ S0_C0 S*_C+ S0_C0 S*_C+ 

10% 9.38 2.29 10.63 2.63 10.51 2.41 

20% 18.27 4.33 19.92 4.80 18.68 4.48 

30% 26.56 6.27 27.88 6.74 26.64 6.39 

40% 33.08 7.91 35.30 8.45 33.90 8.08 

50% 40.02 9.49 41.87 9.96 41.00 9.68 

60% 46.76 10.97 48.28 11.32 47.69 11.13 

70% 53.21 12.45 54.43 12.59 53.81 12.50 

80% 59.60 13.79 60.00 13.82 59.64 13.71 

90% 65.95 14.88 66.51 14.84 66.38 14.82 

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90

Noise Level [%]

M
S
E

S*_C+

S0_C0

S+_C+

S0_C+

S0_CX

S+_C0

SX_C0

  
Fig. 4 The MSE of the Cameraman image denoised with different Markov models 
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Fig. 5 The MSE of the Boat image denoised with different Markov models 

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60 70 80 90

Noise Level [%]

M
S
E

S*_C+

S0_C0

S+_C+

S0_C+

S0_CX

S+_C0

SX_C0

  
Fig. 6 The MSE of the Airplane image denoised with different Markov models 
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As Figures 4-6 show, the S*_C+ is the best Markov filter 

on all the three test images. Thus, even if an “X” search is 

less performing than a “+” search, their combination into 

“*” search provides the best results. The proposed S*_C+ 

model is significantly outperforming the initial S0_C0 

filter from [1], on all the noise levels. The denoising speed 

also decreased on all noise levels. As Table 1 shows, the 

S*_C+ Markov filter is about four times faster than S0_C0.  
The second best model is S+_C+, which is 

outperforming the initial S0_C0 on the Cameraman and the 

Airplane images but it is worse on Boat with noise 

between 40-80%. 

Further, we have compared this best S*_C+ Markov 

filter with other existing filters: our previous context-based 

prediction filter (CBPF) [1], the Noise Adaptive Fuzzy 

Switching Median Filter (NAFSMF) [5], the Decision 

Based Algorithm (DBA) [2], the Median Filter (MF), the 

Progressive Switching Median Filter (PSMF) [4], the 

Relaxed Median Filter (RMF) [3] and the Analysis Prior 

Algorithm (APA) [27], whose source codes were available. 
Figures 7-9 are presenting comparatively the MSE for all 

the considered methods on the Cameraman, Boat and 

Airplane test images. 
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Fig. 7 Comparing the MSE on the Cameraman image denoised with different existing methods 
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Fig. 8 Comparing the MSE on the Boat image denoised with different existing methods 
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Fig. 9 Comparing the MSE on the Airplane image denoised with different existing methods 
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a.    b.    c. 

                
d.    e.    f. 

                
g.    h.    i. 

Fig. 10 Denoising the Cameraman image having 60% noise (a) using the S*_C+ Markov filter (b), CBPF (c), NAFSM (d), DBA (e), MF (f), 

PSMF (g), RMF (h), APA (i) 

 

 

Figures 7-9 show that the proposed S*_C+ Markov 
filter is better than the MF, PSMF, RMF and CBPF on all 

the noise levels. It is also better than APA on noise 

densities up to 30%. It is just slightly worse than the 

NAFSMF and DBA. 

Figure 10 shows the Cameraman image having 60% 

salt-and-pepper noise (a) and the outputs obtained with our 

proposed S*_C+ Markov filter (b), as well as using CBPF 

(c), NAFSM (d), DBA (e), MF (f), PSMF (g), RMF (h), 

APA (i). 

As Figure 10 depicts, our proposed S*_C+ Markov 

filter is better than the CBPF, MF, PSMF, RMF and APA 

techniques. We can observe again that the quality of the 
image denoised with the S*_C+ Markov filter is very close 

to the quality of the images filtered with NAFSM and 

DBA. 

 

5. Conclusions and Further Work 

In this work, we have improved a context-based filter 
proposed in [1], to denoise grayscale images corrupted by 

impulse noise. Our filter is using Markov chains to replace 
the noisy pixel with the pixel value having the highest 

number of occurrences in similar contexts. The context of a 

noisy pixel consists in its neighbor pixels and is searched 

in a larger but limited surrounding area. The original 

contribution of this paper consists in analyzing different 

search rules and different context shapes. 

We have replaced the full search used in [1] with a 

search in form of “+”, “X” and also their combination in 

form of a “*”. We have also replaced the full context used 

in [1] with different context shapes: “+”, “X” and “*”. The 

MSE results obtained on the Cameraman, Boat and 

Airplane test images show that the most efficient model is 
the proposed S*_C+ Markov filter which applies the 

search in form of “*” of contexts in form of “+”. This filter 

is better than our previous CBPF on all the noise levels, 

but also than the MF, PSMF, RMF and partially than APA 

and it is just slightly worse than the NAFSMF and DBA 

denoising methods. Beside the better denoising 

performance, the computational time has been also 

significantly improved with respect to the previous CBPF. 

The context information is a great advantage of our 
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method, whereas the computational time, despite it was 

significantly improved, is still a slight disadvantage 

compared with some existing techniques. 

A further work direction could try to adjust 

dynamically the search radius or the context size. Other 

research directions are the run-time computation of the 

similarity threshold proportionally with the context size 

and the utilization of the Markov filter together with fuzzy 

and neural techniques. 
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