Appeared in Journal of Digital Information Management, Vol. 11, Issue 5, ISSN: 0972-7272, pp. 366-377, 2013

| nvestigating a New Design Pattern for Efficient
| mplementation of Prediction Algorithms

Arpad Gellert, Adrian Florea
Computer Science and Electrical Engineering DepamtnfLucian Blaga” University of Sibiu,
Emil Cioran Street, No. 4, 550025 Sibiu, Romania
{arpad.gellert, adrian.florea}@ulbsibiu.ro

Abstract: In our previously published researches we usddrdifit prediction algorithms
to solve several problems in computer architecéune ubiquitous computing. During the
time, we observed what is common among differefdutems and also what can
differentiate these solutions. Therefore, due toexerience in designing predictors, we
are able now to propose a simple and efficient ggrsolution for any problem that
implies prediction. Since prediction is a widelyedstechnique in many fields, our
proposed design pattern can be very useful fowsoét developers.

Keywords: design patterns, predictor, reusable object-ortestdtware, Markov chain,
Multi-Layer Perceptron

1. Introduction

The general prediction mechanism consists in gaitig future contexts based on
current and previous context information, recovgtime correct context if the speculation
fails and updating the predictor to improve futprediction accuracy. Prediction can be
very useful if the availability of some data in adee allows to reduce waiting times,
improving thus the efficiency. Obviously, the pradn must be accurate, because in
some applications a misprediction has costs dtieetmecessity of correct state recovery.
The quality of a prediction model is highly depemniden the quality of the available data.
Especially the choice of the features to base ttegligtion on is important. In our
previous works, we focused on prediction algorittapplied to solve several problems in
computer architecture (branch prediction, regigédue prediction, load value prediction)
and ubiquitous computing (person movement predigti®uring the time, we have
designed and used different high complexity préaiicinethods based on Markov chains,
Hidden Markov Models (HMM), Neural Networks, and@lsome simple methods which
are very efficient for hardware implementation ltke Last Value Predictor and the Two
Level Predictors. Prediction is a widely used teghe in many fields and therefore we
propose a useful implementation solution. Thus,aine of this paper is to introduce the
Predictor design pattern, to describe it and wsithte an example of implementation.
This design pattern is not only focused on microigéecture and ubiquitous computing,
on the contrary, is a solution for any subdomairCoimputer Science which is using
pattern recognition, classification methods, ets. far as we know, we are the first
researchers who define a design pattern for pradict

The organization of the rest of this paper is ds\is. In Section 2 we review the
related work in the fields of prediction and desigatterns. Section 3 describes our
proposed design pattern. In Section 4 we presedtexplain code fragments of the

Predictor implementation in Java and we also Hatstthe experimental results. Section
5 concludes the paper.

2. Related Work

Several works (Gamma et al., 1995; Vlissides, 1¥98gman et al., 2004; Kerievsky,
2004) present simple and elegant solutions to fipeproblems in object-oriented
software design. Design patterns are solutionsttae¢ been developed over time. These
solutions are maximizing both the reuse and theilfiity in software. The idea of a
Predictor design pattern is based on the factpgletiction mechanisms are used in many
applications, some of them previously designedsiy u

In previous works (Vintan et al., 2004; Gellert \&ntan, 2006) we designed
neural-, Markov- and HMM-based predictors to aptte the next movements of
persons. The application predicts the next roonedas the history of rooms, visited by
a certain person moving within an office buildinthese predictors were evaluated by
some movement sequences of real persons, acquinedtfie Smart Doorplates project
developed at University of Augsburg (Petzold, 2004)e simulation results have shown
accuracy in next location prediction reaching up 92%. Other neural network
approaches used in ubiquitous systems were presbyt&guilar et al. (2003) and Mozer
(2004).

In other research papers (Vintan et al.,, 2006;le@ekt al., 2007) we used
different prediction methods in order to anticipéte behavior of branch instructions
which appear in high level program constructs likeswitch, for, while, etc., and are a
major bottleneck in the instruction-level paraBeli (ILP) exploitation of multiple
instruction issue microprocessors. During the tise¥eral prediction methods have been
developed based on some well-known learning algost(Markovian, neural, Bayesian,
decision trees, support vector machine, etc.) siiegl for efficient hardware
implementation. Through dynamic branch predictiomgroprocessors are speculatively
processing multiple basic blocks in parallel aneréfiore their ability to increase ILP is
stronger. For the evaluations, the predictors waptemented in software simulators and
tested on the SPEC 2000 benchmarks. We used (Vittaal., 2008), among other
metrics, a HMM-based prediction algorithm to evédutghe random degrees of some
difficult to predict branches and we have showr thase branchesave intrinsic random
behavior, being generated by very complex progranctsires.

In other works (Vintan et al., 2005; Gellert et 2009, 2010, 2012) we proposed
and implemented several value prediction methodsder to increase ILP in superscalar
and simultaneous multithreading microarchitectufé® idea of all these methods was to
unlock some dependent instructions by anticipagither the register values or the
results of the long latency load instructions. &lese predictors were implemented in
software simulators in order to evaluate their mtemh accuracy, but also the overall
processing performance and energy consumptionyémpuseful metrics from computer
architect viewpoint. Some of these predictors pdove be efficient regarding both
objectives (Gellert et al., 2010).

All the predictors mentioned in this section fietsame general solution, being
differentiated just by the way the prediction isfpemed, therefore we consider that
presenting a design pattern for them could be usejul.

3. Describing the Predictor Design Pattern

We provide in this section a description of thed®r®r design pattern.

Intent: Provides an implementation template for any ptemicmechanism. It can be
used to anticipate future states or symbols infavace application and it is useful when
speculatively knowing future states or symbols dvamce unlocks some application-
specific dependencies involving thus an executpaedup.

Motivation: There are many situations when the behavior obfaware process in a

certain context is always or mostly the same. Ichstases, if we record the history of
contexts and the associated behaviors, when weifidémose contexts in the future, we
can predict with high accuracy the correspondinigabsrs. Obviously, it is possible to

encounter mispredictions, but a confidence mechanan help to decide when to predict
or when to avoid prediction, increasing thus therall accuracy.

Applicability: The Predictor design pattern can be used in aiits which have
prediction processes. It helps to efficiently immpént prediction mechanisms.

Structure: Figure 1 presents the class diagram of a systerohwhiusing the Predictor
design pattern.

AbstractConfidence .
Trust(Object) AbstractPredictor
rus jec
Untrust(Object) Predict() _
IsPredictable(Object) Update(Obiject)
ConcreteConfidence ConcretePredictor
s | M o prede
Update(Object
IsPredictable(Object) pdate(Object)

Figure 1. The structure of the Predictor designtepat

Participants:
e AbstractConfidence
e ConcreteConfidence
» AbstractPredictor
» ConcretePredictor
e Client

Collaborations: AbstractConfidence relies on its subclass to define theust, Untrust
and IsPredictable methods AbstractPredictor relies onConcretePredictor to define the
Predict andUpdate methods. The prediction is performed as followse €lient checks if
the current context is predictable by calling tHePredictable method of
ConcreteConfidence. Then the client calls theredict method ofConcretePredictor and
the returned prediction is used in advance to wnlbependencies only if the current
context is predictable. When the real symbol isvkmothe client compares it with the
predicted one and correspondingly performs the tepbip calling theJpdate method of
ConcretePredictor, which introduces the new symbol to the recordstbhy of symbols,
and also by calling th@&rust method ofConcreteConfidence in case of correct prediction
or theUntrust method in the misprediction case.

Consequences. The Predictor design pattern eliminates stallaftycipating future states

based on current and previous context informatfopotential disadvantage of using a
predictor can occur in some applications if thedprton accuracy is low due to the high
number of mispredictions and the recovery is timestming.

Implementation: In this implementation the update of the predicsoperformed by the
client and it consists in calling thEust or Untrust method of theConfidence and the
Update method of theConcretePredictor. If the number of possible observations is very
high we recommend the use of hash tables to kesghgbion information.

Known uses. Markov- and HMM-based predictors (Gellert & Vinta2006; Vintan et
al., 2008) and Neural Networks (Vintan et al., 2004

4. An Example of Predictor I mplementation

To predict or anticipate a future situation, leaghtechniques as Markov Chains, Hidden
Markov Models, Bayesian Networks, Time Series omurde Networks are obvious
candidates. The challenge is to adapt such algositto work with context information.
In this section we present a Markov chain used bile@ & Vintan (2006) and also a
Multi-Layer Perceptron (MLP) used by Vintan et @004), both implemented in Java to
predict the movements of employees within an officdding. The goal of the research
was to design some smart doorplates d@natable to direct visitors to the current location
of an office owner based on a location-trackingeysand predict if the office owner is
soon coming back.

4.1. Person Movement Prediction
The application just generates statistics regargiegson movement prediction and

reports the number of predictions, the number afremb predictions and also the
prediction accuracy. Figure 2 presents the clasgrdm of the application.

AbstractConfidence AbstractPredictor

Trust(Integer) Predict()
Untrust(Integer) Update(Integer)
IsPredictable(Integer) Zr /\
jk Markov
. Clientl Predict()
uses uses

Confidence Update(Integer)
Trust(Integer)
Untrust(Integer)

IsPredictable(Integer) MLP

uses Client2 uses Predict()
Update(Integer)

Figure 2. The structure of the person movementigiad

AbstractPredictor is an interface which relies on a predictor classlefine thepredict
and update methods. Theredict method anticipates the next observation basechen t
history of observations. Thgpdate method must actualize the predictor by maximizing
the probability of correct predictions for the freu TheAbstractPredictor is defined as
follows:

public interface AbstractPredictor {
public abstract Integer predict();
public abstract void update(Integer observation);

}

The Markov class is a concrete Markov-chain-based predictochvdefines theredict
andupdate methods of thé\bstractPredictor interface. Theredict method identifies the
context consisting in the laB (input parameter) observation symbols, searcheg fio
the observation sequence, determines which obsamvaymbol followed the context
with the highest frequency and returns that synasothe predicted next observation. A
transition-table-based implementation is also pbssibut it is inefficient for a high
number of observation symbols. Thpdate method adds the real observation symbol,
when it is available, to the observation sequeMme details about Markov predictors
were presented by Rabiner (1989). Tarkov class is presented below:

public class Markov implements AbstractPredictor{
int P[]; /lthe observation symipobbability distribution
java.util.ArrayList Q = null; //the observatiorquence
intR =0; /lthe order of the Mark@hain
int N =0; /Inumber of observatigmols
int T=0; /llength of observaticggsience
int context([]; /lprediction context

public Markov(int nObservationSymbols, int ordgr)

R = order; Il the order of the Markov Chain
context = new int[R];
N = nObservationSymbols; // the number of didtobservation symbols
Q = new java.util.ArrayList();
}
public Integer predict(){
P = new int[N];
T = Q.size();

for(int k=0; k<R; k++)
context[k] = ((Integer)Q.get(T-R+K)).intValf)e
for(int i=R; i<T; i++){
boolean isContext = true;
for(int k=0; k<R; k++)
if(((Integer)Q.get(i-R+K)).intValue() = atext[Kk]){
isContext = false;
break;
}
if(isContext)
P[((Integer)Q.get(i)).intValue()]++;
}

int pred = 0;

int max = P[O];

for(int k=1; k<N; k++)
if(P[K] > max){

max = P[K];
pred = k;
}
return new Integer(pred);

}

public void update(Integer observation){
Q.add(observation);

}
}

The MLP class is another concrete predictor, a Multi-Layerceptron with one
hidden layer and is using the backpropagation iegralgorithm. In general, the number
of neurons in the input and output layers depemdshe representation of the problem. In
this application we chose binary encoding for thyui layer and one-room-one-neuron
encoding for the output layer. TIMLP class defines thpredict andupdate methods of
the AbstractPredictor interface. Beside these methods, it contains sbthB-specific
methods likegenerateRandomWeights, F, dF, forward and backward, but also some
methods to codify the observation symbols to f& thput layer or the output layer,

decimal ToBinary anddecimal ToCode, respectively. For binary coded inputs and outputs
the uni-polar sigmoid activation function can bedts

1
1
1+e™* @

F(x) =

Since in the presented application the inputs ariguts are codified with -1 and 1, the
following bi-polar sigmoid activation function wasnsidered:

1-e™*

F(x) =
9 1+e™”

(@)

The activation function is defined in thé method and its derivate idF. The
generateRandomWeights method is used to randomly initialize the weigintshe [-2/N,
2/N] interval, whereN is the number of input layer neurons (Gallant,3)9%ore details
about the backpropagation algorithm used in MLRsgiven by Mitchell (1997). The
definition of theMLP class is presented below:

import java.lang.Math;

public class MLP implements AbstractPredictor{
java.util.ArrayList Q = null; /Ithe observatieequence
private int history;
private int nNeuronsForSymbol,
int input[]; /larray of input values
private int ninputLayerNeurons;
private int nHiddenLayerNeurons;
private int nOutputLayerNeurons;

private double neth[]; /lthe hidden layer valbe$ore activation
private double whin[][]; //hidden-input weightatmix

private double bhin[]; /[hidden layer bias array

private double hidd[]; //hidden layer valuesafactivation
private double neto([]; /lthe output values befactivation
private double wohif][]; /loutput-hidden weigmatrix

private double bohi[]; /loutput layer bias array

public double out][]; /lthe output values aféetivation

private double deltaout([]; /lthe output layemoerterms

private double deltain(]; /lthe hidden layeroerrerms

private double learningRate = 0.3;

public MLP(int nNeuronsForSymbol, int m, int muble learningRate, int history){
Q = new java.util.ArrayList();
this.nNeuronsForSymbol = nNeuronsForSymbol;
this.history = history;
input = new int[history*nNeuronsForSymbol];
this.ninputLayerNeurons = nNeuronsForSymbostdny;
this.nHiddenLayerNeurons = m;
this.nOutputLayerNeurons = p;
this.learningRate = learningRate;

neth = new double[nHiddenLayerNeurons];

whin = new double[nHiddenLayerNeurons][ninputeeNeurons];
bhin = new double[nHiddenLayerNeurons];

hidd = new double[nHiddenLayerNeurons];

neto = new double[nOutputLayerNeurons];

wohi = new double[nOutputLayerNeurons][nHiddaegerNeurons];
bohi = new double[nOutputLayerNeurons];

out = new double[nOutputLayerNeurons];

deltaout = new double[nOutputLayerNeurons];

deltain = new double[nHiddenLayerNeurons];
generateRandomWeights();

}

private void generateRandomWeights(){
double wi = 4.0/ninputLayerNeurons; //weighenval
double hwi = 2.0/nInputLayerNeurons; //half gigiinterval
for(int j=0; j<nHiddenLayerNeurons; j++){
bhin[j] = (Math.random()*10000)%(Math.floav{(*100)))/100.0-hwi;
for(int k=0; k<nlnputLayerNeurons; k++)
whin[j][k] = ((Math.random()*10000)%(Mathdor(wi*100)))/100.0-hwi;
}

for(int j=0; j<nOutputLayerNeurons; j++){
bohi[j] = (Math.random()*10000)%(Math.floav{(*100)))/100.0-hwi;
for(int k=0; k<nHiddenLayerNeurons; k++)
wohi[j][k] = ((Math.random()*10000)%(Mathdor(wi*100)))/100.0-hwi;
}

}

private double F(double x){
return (1 - Math.exp(-1 * x))/(1 + Math.exp(:X));

}

private double dF(double x){
return (1 - (F(X)*F(x)))/2;
}

public void forward(int in[]){

[* hidd <-in */

int j,I;

for(j=0; j<nHiddenLayerNeurons; j++){
neth(j] = bhin[j];
for(I=0; I<nlnputLayerNeurons; |++)

neth(j] += whin[j][l] * in[l];

hidd[j] = F(neth[j]);

[* out <- hidd */

for(j=0; j<nOutputLayerNeurons; j++){
neto[j] = bohifj];
for(I=0; I<nHiddenLayerNeurons; I++)
netolj] += wohifj][l] * hidd[l];
out[j] = F(netolj]);
}
}

public void backward(int tp[], int in[]){
[* out -> hidd */
for(int j=0; j<nOutputLayerNeurons; j++)
for(int I=0; I<nHiddenLayerNeurons; |++){
deltaout[j] = (tp[j] - out[j]) * dF(netolj}
wohi[j][l] += learningRate*deltaout[j]*hiddi;
bohi[j] += learningRate*deltaoutj];
}
/* hidd -> in */
for(int j=0; j<nHiddenLayerNeurons; j++)
for(int I=0; I<nIinputLayerNeurons; I++){
deltain[j] = 0;
for(int k=0; k<nOutputLayerNeurons; k++)
deltain[j] += deltaout[k]*wohi[k][j]*dF(th[j]);
whin[j][l] += learningRate*deltain[j]*in[l]
bhin[j] += learningRate*deltain[j];
}
}

public void decimalToBinary(int dec, int bin[tin){
intk =0, r=0, q = degc;
while(q != 0){
r=9q%2;
if(r == 0)
r=-1,
bin[k++] =r;
q=q/2;

for(; k<n; k++)
binlk] = -1;
}

public void decimalToCode(int dec, int bin[], im{
for(int i=0; i<n; i++)
bin[i] = -1;
if(dec < n)
bin[dec] = 1,
}

public Integer predict(){
int bin[] = new intinNeuronsForSymbol];
for(int i=0; i<history; i++){
decimalToBinary(((Integer)Q.get(i)).intValyebin, nNeuronsForSymbol);
for(int j=0; j<nNeuronsForSymbol; j++)
input[i*nNeuronsForSymbol+j] = bin[j];
}
forward(input);
/I finding the position of the maximum outputish will be predicted
int maxOutputPos = 0;
for(int i=1; i<nOutputLayerNeurons; i++)
if(out[i] > out[maxOutputPos])
maxOutputPos = i;
return new Integer(maxOutputPos);

}

public void update(Integer observation){
int tp[] = new int{nOutputLayerNeurons];
Q.add(observation);
if(Q.size()>history){
Q.remove(0);
decimalToCode(observation.intValue(), tp, hidtlayerNeurons);
backward(tp, input);
}
}

}

As it can be observed, tipeedict method codifies the input data (consisting in dace
history of observations) from decimal to binaryppagates the input forward through the
network by calling théorward method and after that the index of the maximunpuaiuis
considered as being the predicted observation. Opuate method adds the real
observation symbol (when it is available) to thesatation sequence, computes the
errors existing between the real observation symandl the predicted one and after that
propagates these error terms backward through éhsork by calling thebackward
method. The goal of the backward step is to adhestweights in order to minimize the
error.

AbstractConfidence is another interface which relies on a concretefidence
class to define th&ust, untrust andisPredictable methods. The goal of the confidence
mechanism is to decide, based on the current cds@mvsymbol or context and its
attached confidence counter, if a potential preahicstatistically likes to be correct or
not. It dynamically classifies observation symbaols contexts into predictable and
unpredictable and provides this classification digto theisPredictable boolean method.
The goal of therust anduntrust methods is to increase or decrease the confidenae
certain observation symbol or context when the iptieeh turns out to be correct or
wrong, respectively.

10

public interface AbstractConfidence {
public abstract void trust(Integer observation);
public abstract void untrust(Integer observation)
public abstract boolean isPredictable(Integeenlzgion);

}

The Confidence class provides definitions for theust, untrust and isPredictable
methods. In this example the confidence mechanssimplemented based on a set of
saturating counters, each one being associatedlistiact observation symbol. Figure 3
depicts a 4-state confidence counter with two mtatlle and two unpredictable states,
but other variants are also possible.

Correct Prediction Correct Prediction Correct Prediction

Correct Prediction
Unpredictable Unpredictable Predictable Predictable

Misprediction Misprediction Misprediction

Figure 3. The confidence counter mechanism

Misprediction

The definition of theConfidence class is given below:

public class Confidence implements AbstractConfoggn
int nStates;
int threshold;
int confidencel[];

public Confidence(int nObservationSymbols, intai&s, int threshold) {
this.nStates = nStates;
this.threshold = threshold;
confidence = new int[nObservationSymbols];

}

public void trust(Integer observation){
if (confidence[observation.intValue()] < n&stl)
confidence[observation.intValue()] ++;

}

public void untrust(Integer observation){
if (confidence[observation.intValue()] > 0)
confidence[observation.intValue()] --;

}

11

public boolean isPredictable(Integer observafion)
if (confidence[observation.intValue()] >= thhedd) return true;
return false;

}

}

The Confidence constructor receives as parameters the maximumbeumf distinct
observations, the number of states and a threshbidh is used by thésPredictable
method. The current observation is classified asdiptable only if its attached
confidence is in a state higher or equal to thestihold’s value.

The next code is a sequence from a client whicheigges statistics within a
certain prediction process regarding the numbepretlictions, the number of correct
predictions and also the prediction accuracy (cdetpas the report between the number
of correct predictions and the total number of ptaehs). First, it instantiates Markov
predictor and aConfidence. The observations are then read from a file caltedhis
example benchmark.txt. For each current observation is determined if atsached
confidence is in a predictable state or not, a iptieth being performed or not,
consequently. The predictor is updated with eaclh nbservation symbol. Thus, the
predictionProcess method represents the kernel of the applicatioichvbreates a bridge
between the participant classes.

void predictionProcess() throws java.io.lOException
Markov markov = new Markov(nObservationSymboilsier);
Confidence confTable = new Confidence(nObseu&ymbols, 4, 2);
Integer current = null;
String line = null;
Integer next = null;
int numberOfCorrectPredictions = 0;
int numberOfPredictions = 0;
double predictionAccuracy = 0.0;
java.io.BufferedReader in = null;

try{
in = new java.io.BufferedReader(new javaileReader("benchmark.txt"));

}
catch(java.io.FileNotFoundException fnfe){
fnfe.printStackTrace();
}
line = in.readLine(); /lreading the first elpgation
markov.update(new Integer(line));
current = new Integer(line);
while((line = in.readLine()) '= null){
next = new Integer(line);
/Ichecking predictability
if(confTable.isPredictable(current))
numberOfPredictions++; [ltotal numbepoédictions
/Iprediction of the next observation

12

if(markov.predict().equals(next)){ /[ceat prediction

if(confTable.isPredictable(current))
numberOfCorrectPredictions++;

confTable.trust(current);

}

else confTable.untrust(current); //méghetion

markov.update(next);

current = next;

in.close();
/lcomputing prediction accuracy
predictionAccuracy = numberOfCorrectPredictibnsimberOfPredictions;

}

In the above example we used 4-state confidencetemuwith a threshold of 2 (meaning
two unpredictable and two predictable states. Qishg the confidence mechanism can
be more selective, for example, having only onediptable state. In this case the
threshold parameter of ti@nfidence constructor is 3 instead of 2.

A client which is using the MLP predictor is simildut instead of a Markov
object it instantiates a MLP object. It is also sibke to attach a confidence counter to
combinations of two (Gellert & Vintan, 2006) or neoobservation symbols instead of
only one (as we did here).

4.2. Experimental results

The main goal of this work is to propose a desigtigon for prediction algorithms, the
evaluations provided in this section being justaidation example of the predictor
design concept. The benchmark set used for theuaahs contains movement
sequences of 4 employees in 14 rooms, acquired fremSmart Doorplates project
developed at University of Augsburg (Petzold, 20@ch file contains the location data
of a single test person. The benchmarks are téa$ fyenerated by recording the
movements of the test persons through the officeatéd at the fourth floor in the
building of the Computer Science Institute at theviarsity of Augsburg. Table 1 shows
the contents of a benchmark before and after then raodification process.

Original benchmark Benchmark after
room codification
2003.10.27 10:26:29;corridor;A;1067246789004 -

2003.10.27 10:26:35;402;A;1067246795003
2003.10.27 10:27:15;corridor;A;1067246835004
2003.10.27 10:27:20;412;A;1067246840003
2003.10.27 10:27:48;corridor;A;1067246868003
2003.10.27 10:27:51;402;A;1067246871659
Table 1. The first movements of person A before @tel the room codification process

o' || |O

13

Each line from the original benchmarks represereraon’s movement, containing the
movement’'s date and hour, the room’s name, theopersiame and a timestamp. After
the codification process the benchmarks contaig @ room codes (0+13), because in
this starting stage of our work only this inforneetiis used for prediction. In the
codification process we have also eliminated fromtienchmarks the common corridor,
because it could behave as noise. There are twahberk types: some short
benchmarks containing about 300-400 movements @me $ong benchmarks containing
about 1000 movements. Our evaluations are basétedong benchmarks.

For the experiments we used the best Markov pr@dacnfiguration obtained by
Gellert & Vintan (2006) having order 2 and also best MLP configuration obtained by
Vintan et al. (2004) having a learning rate of 8 ldistory of 2 rooms, N=8 neurons in the
input layer (4 neurons per room, enough to binadify a maximum of 16 rooms) and 9
hidden layer neurons. The output layer containsreeon for each room (14 neurons),
the position of the highest output being considéhedpredicted room.

In this work we are interested to predict the mexim from all rooms excepting
the own office. Figure 4 presents comparatively fginediction accuracy (the report
between the number of correct predictions anddted humber of predictions, expressed
as percentage) obtained using the Markov and Mlgeliptors without confidence and
also with 4-state confidence counters having 1 iptadle state (denoted C1) or 2
predictable states (denoted C2):

100 = 89.04

< 90 | T 84.04 ' 84.50
= 80 1 B3
> 2 M Markov
8 107 2 Sl N] OMarkov & C1
5 60 - = =l 7:': ||
bt i B3 N B Markov & C2
< 50 - B8 1 R — N]
S 40 2 Sl ‘E N B BMLP
2 & o N EmMLP &C1
2 397 N EMLP & C2
©
® 20 - N
a N

10 - Ny

0 s I\
A B C D Average
Benchmarks

Figure 4. The prediction accuracies obtained ugiegMarkov and MLP predictors, with
and without confidence

The best results were obtained using the MLP predwith the C1 confidence.
This method provided an average prediction accuadc84.5%, with a maximum of
93.58%. As Figure 4 shows, the confidence mechamiamincrease the accuracy by
avoiding prediction when the confidence in a certeontext is low. Obviously, the
confidence mechanism can missing from a predicesigh, especially in applications
where mispredictions do not affect the general quarénce, but is necessary in
applications whose performances are decreaseddpradictions.

14

Benchmark Markov & C1 | Markov& C2 | MLP & C1 MLP & C2
A 70.27% 81.08% 70.27% 80.18%
B 61.05% 79.78% 60.67% 79.40%
C 50.57% 73.58% 49.43% 71.70%
D 60.67% 74.06% 61.09% 74.06%
Average 60.64% 77.12% 60.37% 76.33%

Table 2. The prediction rates obtained using thekblaand MLP predictors with C1 and
C2 confidences

Table 2 shows how the prediction rate (the repatwben the number of
predictions and the total number of movements, esg@d as percentage) is influenced by
the selectivity (threshold) of the confidence metstims for both predictors. The
prediction rate of the predictors without confidenis 100% because a prediction is
always performed. It can be observed that as nmeleetsve confidence mechanism we
used as higher accuracy and lower prediction ratebtained.

5. Conclusions

In this study, we have presented the Predictorgdepattern. We described this new
design pattern and provided an example which géseeratatistics regarding the
prediction accuracy. Obviously, a client can prevtiming measurements, too, such as
we did for microarchitectural value predictors (IBelet al., 2009, 2010, 2012). It is also
possible for a certain client application to usebrity predictors such as cascaded
predictors or metapredictors, since usually a sipgedictor cannot capture all the types
of predictability patterns. In the cascaded preaiictapproach multiple predictors are
used in different stages, in a statically predefinerder (fixed prioritization). A
metapredictor uses multiple predictors in one stagé dynamically selects the best
predictor (adaptive prioritization). A hybrid appaah is motivated by the fact that even
the MLP predictor provided the highest average iptexh accuracy, on the B benchmark
the Markov predictor was better.

Prediction is a widely used technique in computierse and engineering and
thus, in our opinion, the proposed design pattean be very useful for software
developers but also for hardware architects, eafpecin designing the software
simulators of microprocessors — an important stg®mputer architecture research and
design process (Yi & Lilja, 2006).

References

Aguilar, M., Barniv, Y., Garrett, A., 2003. Predan of Pitch and Yaw Head Movements
via Recurrent Neural Networks, International J&@oinference on Neural Networks, Vol.
4, 2813-2818.

Freeman, E., Robson, E., Bates, B., Sierra, K.,420@ead First Design Patterns,
O'Reilly Media, USA.

Gallant, S.I., 1993. Neural Networks and Expertt&ys, MIT Press., USA.

15

Gamma, E., Helm, R., Johnson, R., Vlissides, J951®esign Patterns: Elements of
Reusable Object-Oriented Software, Addison-WeslkSA.

Gellert, A., Vintan, L., 2006. Person Movement FeBdn Using Hidden Markov
Models. Studies in Informatics and Control, Vol., 18o. 1, National Institute for
Research and Development in Informatics, 17-30.

Gellert, A., Florea, A., Vintan, M., Egan, C., Vam, L., 2007. Unbiased Branches: An
Open Problem. Twelfth Asia-Pacific Computer Systedchitecture Conference
(ACSAC'07), 16-27.

Gellert, A., Florea, A., Vintan, L., 2009. Explaoig Selective Instruction Reuse and
Value Prediction in a Superscalar Architecture. rdau of Systems Architecture,
Elsevier, Vol. 55, Issue 3, 188-195.

Gellert, A., Palermo, G., Zaccaria, V., Florea, Yintan, L., Silvano, C., 2010. Energy-
Performance Design Space Exploration in SMT Arciitees Exploiting Selective Load
Value Predictions. International Conference on esAutomation and Test in Europe
(DATE 2010), 271-274.

Gellert, A., Calborean, H., Vintan, L., Florea, £012. Multi-Objective Optimizations
for a Superscalar Architecture with Selective VaRrediction. IET Computers & Digital
Techniques, Vol. 6, No. 4 (July), 205-213.

Kerievsky, J., 2004. Refactoring to Patterns, Addi§Vesley, USA.
Mitchell, T., 1997. Machine Learning, McGraw-HilUSA.

Mozer, M. C., 2004. Lessons from an adaptive ho8s®art Environments: Technology,
Protocols, and Applications, J. Wiley & Sons, USA.

Petzold, J., 2004. Augsburg Indoor Location TragkBenchmarks. Technical Report
2004-9, Institute of Computer Science, UniversityAogsburg, Germany.

Rabiner, L.R., 1989. A Tutorial on Hidden Markov 8&ds and Selected Applications in
Speech Recognition, Proceedings of the IEEE, VpNoZ 2, 257-286.

Vintan, L., Gellert, A., Petzold, J., Ungerer, Z004. Person Movement Prediction Using
Neural Networks. Proceedings of the KI2004 Inteoratl Workshop on Modeling and
Retrieval of Context (MRC 2004), Vol. 114, 618-623.

Vintan, L., Florea, A., Gellert, A., 2005. FocatigiDynamic Value Prediction to CPU’s
Context. IEE Proceedings — Computers & Digital Teghes, Vol. 152, No. 4, 457-536.

Vintan, L., Gellert, A., Florea, A., Oancea, M.,dfg C., 2006. Understanding Prediction
Limits through Unbiased Branches. Eleventh AsiafRacComputer Systems
Architecture Conference (ACSAC’06), 483-489.

Vintan, L., Florea, A., Gellert, A., 2008. Randoneddees of Unbiased Branches.
Proceedings of the Romanian Academy, Series A3NB59-268.

Vlissides, J., 1998. Pattern Hatching: Design Padtdpplied, Addison-Wesley, USA.

Yi, JJ., Lilja, D.J., 2006. Simulation of Computekrchitectures: Simulators,
Benchmarks, Methodologies and Recommendations. IE@BEsactions on Computers,
Vol. 55, No. 3, 268-280.

16

