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Abstract

This paper presents an automatic design space exploration using processor de-
sign knowledge for the multi-objective optimisation of a superscalar microarchi-
tecture enhanced with selective load value prediction (SLVP). We introduced
new important SLVP parameters and determined their influence regarding per-
formance, energy consumption, and thermal dissipation. We significantly en-
larged initial processor design knowledge expressed through fuzzy rules and we
analysed its role in the process of automatic design space exploration. The
proposed fuzzy rules improve the diversity and quality of solutions, and the
convergence speed of the design space exploration process. Experiments show
that a set-associative prediction table is more effective than a direct mapped
table and that 86% of the configurations in the Pareto front use multiple values
per load. In conclusion, our experiments show that integrating an SLVP mod-
ule into a superscalar microarchitecture is hardware feasible; in comparison with
the case without SLVP, performance is better, energy consumption is lower, and
the temperatures inside the chip decreases, remaining below 75 ◦C.

Keywords: Automatic Design Space Exploration, Processor Design
Knowledge, Superscalar Microarchitecture, Dynamic Value Prediction, Energy
Saving

1. Introduction

The main goal of this article is the optimisation of processor architecture,
with the aim of containing energy consumption and improving performance, as
well as the quantification and control of thermal dissipation in the obtained
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Pareto-optimal configurations. To this end, we propose an improvement in the
selective load value prediction (SLVP) microarchitecture [15] analysing proces-
sor design knowledge expressed through fuzzy logic rules (PDK-FLR) over the
design space exploration (DSE) process from both the viewpoints of solution
quality and convergence speed.

The SLVP unit is a hardware structure which exploits the locality property
of load values by anticipating the next output of a certain load instruction based
on its previous outputs. The prediction process is applied selectively, only on
long-latency loads, resulting in a simpler hardware structure, fewer SLVP ac-
cesses, and better performance. In this work, the SLVP unit has been extended
with data memory address-based access, set-associative organisation, multiple
load values, as well as the possibility to increase the selectivity level by access-
ing the SLVP solely when a miss in the level 2 (L2) cache occurs. The study in
[14] covered 19 architectural parameters with 2.5 · 1015 possible configurations.
As the number of parameters considered in this work is 23, potential config-
urations grow to more than 121 millions of billions, thus requiring the use of
a heuristic search. The automatic DSE will be generated with the Framework
for Automatic Design Space Exploration (FADSE) presented in [5], applying
the NSGA-II multi-objective genetic algorithm [10]. We significantly improve
and enlarge initial design knowledge, represented inclusively through fuzzy logic
rules, during the optimisation process of the target microarchitecture for faster
convergence and better solution diversity and quality. We will analyse how pro-
cessor design knowledge expressed by experts through fuzzy logic rules might be
formally represented and we will evaluate how it could improve the effectiveness
of multi-objective DSE algorithms. These improvements lead to a new, original
optimisation methodology of micro-architectural design.

We optimise the target microarchitecture with respect to performance, en-
ergy, and temperature. Thermal evaluation and control is an essential feature
in modern central processing unit (CPU) design. All power consumption is
finally dissipated as heat and, in large data centres, heating ventilation and
air conditioning (HVAC) systems absorb almost the same amount of energy
as the computing resources themselves [34]. Considering that a non-negligible
fraction of the worldwide energy production is attributable to information tech-
nology equipment (ITE), and that the corresponding greenhouse gases (GHG)
emissions are expected to grow relatively faster than in other sectors, energy-
efficiency and thermal performance of CPUs are fundamental factors in the quest
for a reduction of the global energy footprint, and consequently GHG emissions.

CPU performance can usually be improved by increasing clock frequencies,
enlarging and refining hardware resources, or adding new hardware resources.
Over the last years, this has however resulted in increased power consumption
of servers, stretching the limits of power supply and cooling equipment. In high-
performance computing (HPC) systems, when extremely expensive computation
is involved, e.g. in simulations for engineering, biochemistry, or finance, thirst
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for speed has been coupled with consumption of egregious amounts of power1.
For such supercomputers, ultimate performance depends on complex optimi-
sations involving the manner in which cores interact with memory and their
communication paradigms [9]. The effect of architectural evolution on HPC
can be appreciated by observing the TOP5002 list. Whilst the average power
consumption of the top 10 (resp., 50, and 500) systems in the list is 1.32 (resp.,
0.908, and 0.257) MW, the average power efficiency scores at 248 (resp., 193,
and 122) MFLOPS/W. Therefore, the most powerful supercomputers (which
also happen to be the most recent) are more energy efficient than their prede-
cessors. In synthesis, although the net effect of an architectural improvement
such as the one proposed here on the energy consumed by an HPC system de-
pends on the microarchitecture of its CPUs, even a modest reduction in power
requirements will account for significant savings.

Given the conspicuous amounts of money invested in data centres, energy-
awareness has also attracted the attention of the security research community.
Indeed, recent evolution in denial of service (DoS) attacks contemplates a new
facet where, instead of focusing on degrading the performance of a system to
make it useless, raiders concentrate on actions whose ultimate purpose is to
raise the energy consumption, with potentially devastating effects on the finan-
cial side [27]. This is particularly evident with battery-powered devices, where
a targeted attack may stealthily deplete the battery, finally leading to service
failure (see, e.g. [13]). It should be kept in mind that, as far as next-generation
mobile devices are concerned, the requirements for secure communications with
the involved computation-intensive cryptographic operations will affect the en-
ergy needs of the mobile SoC [6]. In large-scale data centre infrastructures,
complex contract structures for energy supply exacerbate the amplitude of this
type of attack, because if a threshold billing system (a higher tariff is applied
when consumption exceeds a given threshold) is in place, even a small increase
in consumption may result in a significant amount of monetary loss [28]. In
designing new microarchitectures, then, all the above aspects should be consid-
ered.

This paper is structured as follows. Section 2 reviews the existing value
prediction based speculative microarchitectures and the DSE concept. Section
3 describes the target SLVP based superscalar microarchitecture. Section 4
presents our developed method to improve the effectiveness of multi-objective
DSE algorithms with processor design knowledge expressed through fuzzy logic
rules and other restrictions. Section 5 details the simulation methodology and
presents the quality metrics applied in this work. Section 6 discusses the sim-
ulation results generated on the Alpha AXP 21264 microarchitecture improved
with SLVP capabilities. Finally, Section 7 highlights the main contributions and
proposes some possible further work.

1See, for example, the HiPEAC Vision (https://www.hipeac.net/publications/vision/)
2The 500 most powerful supercomputers in the world are listed at http://www.top500.org
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2. Related Work

2.1. Load Value Prediction

Load value prediction is a data-speculative micro-architectural technique
introduced in [23] exploiting value locality and the correlation between the load
instruction addresses and their actual values. In this work, we apply a selective
approach; prediction will only apply to load instructions with a miss in the data
cache. Doing so, we reduce mis-prediction costs, decrease hardware costs and
significantly improve the performance-energy ratio of the microarchitecture (a
lower hardware complexity and performance increase are combined with lower
energy consumption). Data-speculative techniques have also been presented
in [37]. Superscalar/SMT microarchitectures with a direct mapped SLVP table
have already been presented and investigated in [15], [16] and [14]. Additionally,
in this study, we highly parameterise the SLVP table in a more realistic manner
by adopting a set-associative organisation by allowing the SLVP table to be
accessed with either the load instruction address (Program Counter) or with
the data address, to store multiple distinct values per entry, and to trigger
selective access on a miss in the level 1 (L1) data cache or in the L2 unified
cache.

In [30], the authors used 3-bit confidence counters, predicting only on a sat-
urated counter and resetting it upon a mis-prediction. In fact, with this highly
selective confidence mechanism, prediction accuracy is between 95–99%, yet cov-
erage is low. They also introduced the VTAGE context-based value predictor
(derived from ITTAGE) which uses global branch history and path information
to predict values. Delaying the validation of value prediction until the commit
stage is the strategy proposed in [29]. By checking correctness only at com-
mit time, an entire pipeline squash is executed in the case of mis-prediction,
significantly simplifying the design. This delay and complete pipeline squash
is also applied in [15], [16] and [14] and in our current work. Additionally,
in [29], the authors further reduce the complexity by dynamically classifying
instructions into early execution, out-of-order execution, and late execution in-
structions. Instructions having immediate or predicted operands are executed
early and in order in the front end. On the contrary, predicted instructions
and highly confident branches are executed in-order late and in a pre-commit
pipeline stage. Both the early and late execution instructions avoid out-of-
order execution, leading to lower energy consumption. In contrast, we apply
the value prediction selectively, by focusing only on critical (high latency) load
instructions.

In [26], load value approximation is explored in applications that can tolerate
inexactness. Rollbacks are eliminated, as load instructions need not be re-
executed when the memory value does not exactly match the value provided by
the approximator. In contrast, our technique targets all types of applications
by not accepting any inexactness regarding the speculated values.
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2.2. Design Space Exploration
M3Explorer [40] is a valuable DSE tool containing many state-of-the-art DSE

algorithms. Another well-known DSE framework is implemented as a website
[11] where users can upload target microarchitectures. A similar tool is the
non ad-hoc search algorithm (NASA) [20] which allows the integration of DSE
algorithms, allowing connection to any simulator.

The work presented in [33] addresses the optimal topological placement of
Intellectual Property cores onto the network-on-chip (NoC) tiles, an NP-hard
problem. As a result, multi-objective evolutionary algorithms were developed,
evaluated and optimised for minimizing the NoC communication energy and for
obtaining a thermally balanced NoC design. Specific domain knowledge was
coded in the mutation and crossover operators, increasing both solution quality
and convergence speed.

Another approach quite similar to ours is the one in [24], where the authors
apply domain knowledge in the initialisation and mutation stages. The problem
solved is multi-objective and aims at minimizing the total annual cost and CO2
emissions produced by energy systems. In the present study, in addition to
changing the mutation operator, we introduce domain-specific fuzzy logic rules
by which we limit the search space. These fuzzy logic rules represent qualita-
tive knowledge, largely accepted by CPU designers, regarding the interrelation
between the sizes of micro-architectural components.

In [19] the FADSE tool was successfully used to perform a DSE of the grid
ALU processor (GAP) together with its GAPtimize static scheduler. A recent
multi-objective meta-optimisation method is integrated in FADSE [44], with the
main aim of obtaining Pareto-optimal solutions in the same amount of time as
a single optimisation algorithm. An interesting DSE methodology for FPGAs
is proposed in [32], with a Register Transfer Logic design description under re-
source constraints using low complexity of input transformations and a greedy
algorithm for the exploration process. Unlike our solution, that optimisation
method is only single-objective, intending to minimise circuit latency under
the given constraints. The quality of solutions is also limited, as greedy-like
searches tend to become trapped in local optima. In [41] the authors develop a
DSE method for mapping tasks to the micro-architectural resources of an MP-
SoC. They exploit specific domain knowledge related to task allocation through
a genetic algorithm. In contrast to our work, their domain knowledge is not
focused on finding the best parameter values for a mono-core/multi-core hard-
ware architecture from a multi-objective point of view, and it does not consider
hardware constraints, hierarchical parameters or design rules expressed in fuzzy
logic as in our work.

A performance modelling and simulation framework called ABSOLUT re-
duces the complexity of exploration by applying abstract virtual system models
[42]. The authors used the ABSOLUT tool in different applications, with a
quite acceptable (12%) average difference between simulation results and mea-
surements obtained on real platforms.

In [39], the authors use the strength Pareto evolutionary algorithm (SPEA
II) and non-dominated sorting genetic algorithm (NSGA II) to optimise parallel
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task allocation to cores, with the same objectives considered here—performance,
energy, and temperature. In contrast, our technique applies fuzzy logic domain
knowledge over the DSE process, which increases solution spread and quality as
well as convergence speed.

In [8] the authors implement PESA-II, NSGAII, SPEA2, and PAES multi-
objective algorithms to L2 cache memory optimisation to reduce energy con-
sumption and execution time of applications in the embedded systems. The
main drawback is that their work only concerns the second level of cache; nei-
ther the entire memory hierarchy nor the entire microarchitecture, as in our
holistic approach, is covered. Additionally, they do not consider temperature
for optimisation.

In [14], an automatic DSE of a direct mapped SLVP-based superscalar mi-
croarchitecture was performed. The goal was to determine optimal configura-
tions with respect to performance and energy consumption. Additionally, in this
study, we extend the set of fuzzy logic rules to highly parameterise the SLVP
structure allowing important functional improvements, and we also perform
thermal analysis and control of some selected Pareto-optimal configurations.
These improvements make possible a realistic optimisation of the CPU. As a
consequence of the significantly enlarged and improved optimisation methodol-
ogy, we provide more detailed relevant experimental results showing that dy-
namic value prediction techniques are feasible to be implemented in realistic
processors with important performance-energy advantages. We are unaware of
other applications of fuzzy logic rules for decision making in automatic DSE of
microarchitectures. To our knowledge, only the FADSE tool allows DSE with
fuzzy logic rules.

3. Highly Parameterised SLVP

We extended the SLVP-based superscalar architecture [14] with the following
new important capabilities:

1. Indexing the SLVP table, also using data memory address (memory-centric
approach). As access is performed selectively (only upon a miss in the L1
data cache when the data memory address is already available), the SLVP
can be indexed using the data memory address without causing delays
in the pipeline structure. This comparative analysis is motivated by the
fact that some studies have demonstrated that the locality of values is
statistically higher on the data memory address [22].

2. Evaluating set-associative SLVP configurations. Despite complexity and
access latency of associative tables, they can improve prediction accuracy
by decreasing interferences. We compare the efficacy of set-associative and
direct mapped SLVP tables.

3. Exploiting a multiple-value locality. The solution consists of a value pre-
diction table that stores in a line the last N distinct results for a certain
load instruction. A simple confidence counter and a LRU field are attached
to each of these results. In [45], the authors show that most of dynamic
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instructions produce up to four distinct values in their recent history. This
observation is also confirmed by previous value locality evaluations. Thus,
we will vary the value history between 1 and 4.

4. Accessing the SLVP selectively on miss in the L2 cache may be of interest,
too. We will compare this approach with the previous one (accessing
the SLVP on miss in the L1 data cache) from the performance, energy
consumption, and temperature dissipation viewpoints.

We will evaluate the proposed microarchitecture within the M-SIM simulator
[38] that implements a state of the art superscalar/SMT microarchitecture [17]
by performing an automatic DSE with the FADSE tool [5]. Therefore, besides
the already existing SLVP size (given as the number of entries) we introduce
the following additional parameters:

� Accessing the SLVP table with the Instruction/Data Memory Address;

� The number of distinct values stored in each entry of the SLVP table (N):
1, 2, 4;

� Associativity degree of the SLVP table (Assoc): 1-way, 2-way, 4-way, 8-
way;

� Accessing the SLVP on a miss in the L1 data cache (DL1) or only on a
miss in the L2 unified cache (UL2).

We will vary the architectural parameters, as in [14]. The parameter limits
of the parameterised SLVP are listed in Table 1.

Table 1: SLVP Parameter Limits
Parameter Lower limit Upper limit
Entries 16 8192
Values per entry 1 4
Associativity 1 8
Index Instruction Address Memory Address
Access type On miss in DL1 On miss in UL2

Fig. 1 presents an example of 2-way set-associative SLVP with a history of
2 values, without losing generality. Each SLVP entry has as fields:

� Tagke - the higher part of the instruction/data address from set k and
entry e;

� eLRUke - used only for set-associative tables to select which entry (e) of
a certain set (k) is to be overwritten in case of a miss;

� Vkej - the last N results stored in set k and entry e; j ranges between 1
and N ;

� Ckej - an automaton on 2 bits having two unpredictable states and two
predictable states attached to each value Vkej ;
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� vLRUkej - a counter attached to each value Vkej only in the case of history
greater than 1, indicating the order in which the values were last produced.

Instruction / data address of Load with 

miss in DL1 / UL2

Setk

TAG SET 0 0

s bits

Selective Load Value Predictor (SLVP)

Tagk1

Tagk2

Vk11 Vk12Ck11 Ck12eLRUk1 vLRUk11 vLRUk12

Vk21 Vk22Ck21 Ck22eLRUk2 vLRUk21 vLRUk22

=?

Hit Miss

32-s-2 bits

=?

Figure 1: An example of 2-way associative SLVP with a history of 2 values

A miss means that the load instruction is not in the SLVP and therefore
it is not predictable. A hit means that the load is in the SLVP, so it can be
unpredictable (if all its confidences are in unpredictable states) or predictable,
generating a correct or an incorrect prediction.

3.1. SLVP

The SLVP table is accessed in the issue stage, only in case of a miss in the
L1 data cache in one approach or a miss in the L2 unified cache in a second
approach. On a hit in the SLVP table, the highest confidence is checked; if it is
in an unpredictable state, the predicted value is ignored, and the current load
instruction is processed normally. Otherwise, in the case of a predictable state,
the value corresponding to the highest confidence is speculatively forwarded to
the in-flight Read After Write dependent instructions.

We check after execution (in the commit stage) the correctness of the pre-
dicted value. On mis-prediction, a recovery process is performed which squashes
all the speculatively executed instructions and re-executes them using the cor-
rect values. We considered in our simulations a realistic average recovery process
taking 20 CPU cycles [12].
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A malicious, carefully crafted, sequence of instructions may be devised with
the specific purpose of triggering this recovery as often as possible. This would
cause performance degradation and should be avoided. Although a compre-
hensive solution is beyond the scope of this work, we briefly discuss possible
defences. Monitoring functions at relatively fine granularity throughout the exe-
cution of a program could be used to check and prevent the unwanted behaviour.
Unfortunately, monitoring can be very expensive to perform, and adding it to
code would be detrimental to portability and in software development and de-
bugging. Alternatively, a dedicated monitoring block could be added to the
SoC. Such module could monitor the number of cache misses over a given time
interval and intervene upon trespassing of some critical threshold. One possible
way to mitigate the problem could be to use dynamic selectivity for value pre-
diction. A 3-bit confidence counter could be used for deciding when to trigger
value prediction, but in normal operation the most significant bit would be ig-
nored (thus reproducing the case we are focusing on here), whereas it would be
considered when responding to critical conditions, effectively reducing misses.

3.2. Updating the SLVP Table

The critical load instructions must update the SLVP table in the commit
stage: the confidences and vLRU fields on correct prediction, and additionally
the history value in case of mis-prediction. The confidence is incremented for
the correct value and decremented for incorrect values. If the produced value is
not in the history, it overwrites the value having the lowest vLRU. The vLRU
fields are set to the maximum for the correct value and decremented for other
values.

In the miss case, the entry with the lowest eLRU is selected, the Tag and the
first value are introduced into the selected entry, all the confidences are reset (to
a strongly unpredictable state), the first vLRU is set to the maximum whereas
all the other vLRUs are reset, the eLRU of the selected entry is set to maximum
and the eLRUs corresponding to the other entries from the set are decremented.

3.3. Modelling Power Consumption

For the power consumption model of the SLVP table, we considered the
following cache array columns:

� 1 column for Tag;

� 1 column for eLRU (only in the case of set-associative tables);

� N columns for the values;

� N columns for the confidences;

� N columns for vLRUs (only if N > 1).

We correspondingly modified the power model of the M-SIM simulator to
include the SLVP table.
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4. Processor Design Knowledge Expressed Through Fuzzy Rules

The previous section presented our micro-architectural improvements. This
section discusses an improved and enlarged processor design knowledge used
during the optimisation process of the target microarchitecture for faster con-
vergence and better solution spread and quality.

Fuzzy logic is based on fuzzy set theory [46]. In classical set theory, the char-
acteristic function associated to a set S, for a certain element, is 1 or 0 depending
on whether that element belongs or not to S, respectively. In the theory of fuzzy
sets this characteristic function can take any real value between 0 and 1, allowing
a gradual transition between membership and non-membership. Some human
decisions are based on logic inferences that use linguistic variables to model
imprecise concepts. Linguistic variables have linguistic values (for example, in
the rule ‘If John is tall and young he might be good as a basketball player’ the
linguistic variables and their possible values are size: tall/medium/small, age:
young/old, value: good/bad). Fuzzy logic has encountered successful applica-
tions in many fields, and we discovered that fuzzy logic rules can also provide a
useful representation of knowledge in the CPU design domain.

We will analyse in more depth how a processor design knowledge expressed
through fuzzy logic rules might be formally represented. The PDK-FLR must be
complete, non-redundant and non-contradictory. Simultaneously fulfilling such
requirements represents an old, difficult challenge for mathematics and logic.
Some initial developments regarding the contradiction degrees of such fuzzy
logic rules were presented in [43]. After understanding such subtle aspects, we
must develop a PDK-FLR for our SLVP-based microprocessor and, after that,
try to integrate it into our DSE algorithms, which is not a trivial task. The
main questions concern the manner in which PDK-FLR affects the convergence
of the DSE algorithms and the solutions quality.

There are several operations required to go from a crisp input value to a
fuzzy value (fuzzification) and, after the inference system has been solved, to
go back (through defuzzification) to a crisp value. In this work we use the
Mamdani rule system [25]. This defines how the logical operations are carried
out. The general (conjunctive/disjunctive) normal form of a rule system has
similar format to the following:

Rule1: IF x11 IS A11 AND/OR x12 IS A12 AND/OR . . . AND/OR x1n IS
A1n THEN y1 IS B1

...
Rulem: IF xm1 IS Am1 AND/OR xm2 IS Am2 AND/OR . . . AND/OR xmn

IS Amn THEN ym IS Bm

where Aij are linguistic values of the input whereas Bij are the linguistic
values of the output. The part before ‘THEN’ is called an antecedent and the
part after a consequent.

First the AND/OR operations must be solved by using the min (for AND)
and max (for OR) functions through a natural analogy with classical (Boolean)
logic algebra. The membership function µ(·) defines the curve associated with
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a linguistic term. Returning to the AND/OR operators, the AND (the only one
we have used in our rules) can be written as:

µAND(xi) =
n

min
j=1

(µij(xij)) (1)

where xi is the vector of the input variables of Rulei and µij is the mem-
bership function associated with the linguistic term ij. Then we apply the
Mamdani implication:

µA→B(x, y) = min (µA(x), µB(y)) (2)

where µA(x) is the membership function obtained after applying the AND/OR
operators and µB(y) is the membership function of the output.

Each rule that has (on the antecedent) a membership value greater than
zero will provide as output a membership function. These output functions
need to be aggregated into a single output. One of the most used methods is
the Mamdani aggregation method [31]. In this method, the output is equal to
the maximum (MAX) truth value in the area where the output membership
functions overlap:

µAGG(x, y) =
m

max
i=1

(µA→Bi
(x, y)) (3)

Even if fuzzy sets are used, it is necessary to obtain a crisp output value to
make an adequate decision.

Defuzzification represents the conversion of a certain fuzzy quantity to a
precise quantity. There are many methods to do this: max membership value
(the height method), centroid methods (centre of area, centre of gravity), mean
max membership, weighted average method and many others [35]. We have
used the centre of gravity method, which is one of the most used methods, and
corresponds mathematically to the expected value of probability and is defined
as:

xCOG =

∫
x · µ(x)dx∫
µ(x)dx

(4)

Recall that µ(x) is the membership function.
The integration of the obtained crisp value into the NSGA-II algorithm’s

mutation operator was performed as follows. The ‘fuzzy logic mutation’ operator
determines the membership of the output variable which is followed by the centre
of gravity (COG) estimation of this membership function. For this xCOG crisp
value the membership µ (xCOG) of the final output function can be calculated.
The current output parameter is set to the xCOG value with a certain probability
(explained below). We used the bit flip mutation fuzzy operator presented in
[4].

To define the threshold corresponding to the mutation probability, we use
the following Gaussian function:

f(x) = a · exp

{
− (x− b)2

2c

}
(5)
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The goal is to have a relatively high probability of mutation at the start of
the DSE. As the algorithm progresses, the influence of the rules will be less
significant. We selected: a = 1-PM , b = 0 and c = 150, where PM denotes the
mutation probability. The value of x is incremented for each generated individ-
ual. The parameters were selected such that after 500 individuals (x = 500) the
curve is ‘close enough’ to the value 0. For a population of 100 individuals after
five generations, the influence of the fuzzy rules will be negligible. The maxi-
mum of this function is 1−PM . To preserve solution diversity, we will decrease
the mutation probability as the algorithm progresses and we also multiply the
final value by 0.8.

The membership µ(xCOG) value is used as a measure of confidence. The
mutation probability threshold TMP , used in our modified mutation operator,
is defined by the following formula:

TMP = 0.8 · µ(xCOG) ·
(

(1 − PM ) · exp

{
− x2

2 · 150

}
+ PM

)
(6)

This number is used in the new mutation genetic operator.
To avoid unfeasible configurations, some constraints regarding the caches

were applied, as in [14], where the design space was reduced from 2.5 · 1015

configurations to 3%, i.e. 7.7 · 1013 configurations.
Below we present some qualitative design knowledge represented using lin-

guistic variables within fuzzy logic rules in Conjunctive Normal Form (CNF).
These fuzzy logic rules represent an extended and improved version of those
from the set we previously used in [14]. The rules were implemented in the mu-
tation operator of our DSE algorithms. We have not implemented this type of
knowledge into the crossover operator. These CNF fuzzy logic rules represent
qualitative knowledge largely accepted by the CPU designers in an empirical
manner, fulfilling the usual ‘common-sense’ requirement:

(R1) IF Number of Physical Register Sets IS small/big THEN
Decode/Issue/Commit Width IS small/big

(R2) IF Decode Width IS small/big AND Issue Width IS small/big AND Com-
mit Width IS small/big THEN
Number of Physical Register Sets IS small/big

(R3) IF SLVP Size IS small/big THEN
L1 Data Cache IS big/small

(R4) IF L1 Data Cache IS small/big THEN
SLVP Size IS big/small

(R5) IF N IS small/big AND Assoc IS small/big THEN
SLVP Size IS big/small

All the linguistic variables used represent the CPU parameters as they are
shown in Table 1. The last rule is justified by the results obtained in [14] where
for N = 1 and Assoc = 1 (direct mapped last value predictor); the optimal
SLVP size was large (4096, 8192 entries).

The gradual membership functions were defined as in Table 2
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Table 2: Membership Functions
Parameter Range Small Big

SLVP entries
[16, 256] 1 0
(256, 2048) linearly decreases to 0 linearly increases to 1
[2048, 8192] 0 1

SLVP history
1 1 0
(1, 4) linearly decreases to 0 linearly increases to 1
4 0 1

SLVP associativity
1 1 0
(1, 8) linearly decreases to 0 linearly increases to 1
8 0 1

DL1 cache
[16, 2048] 1 0
(2048, 32768) linearly decreases to 0 linearly increases to 1
[32768, 8388608] 0 1

Decode, Issue, [2, 4] 1 0
and Commit (4,16) linearly decreases to 0 linearly increases to 1
width [16, 32] 0 1
Physical register 2 1 0
sets (same number (2, 8) linearly decreases to 0 linearly increases to 1
for int and fp) 8 0 1

The rules have been written in Fuzzy Control Language (FCL) which is a
domain specific programming language for fuzzy logic. It has been standardised
through IEC 61131-7 3. In FCL membership functions, rules, methods to solve
the rule system, etc. can be specified. We use jFuzzyLogic 4 to parse the FCL
source file and solve the rule system. The FCL file sent to the jFuzzyLogic library
contains all our input and output parameters and their associated membership
functions. We also specify in the FCL the functions to be used by the fuzzy
operators for solving the rule system. The output value computed by the library
is then passed to the fuzzy logic mutation genetic operator and it is used as we
have already presented.

Another set of rules (the ‘deterministic’ constraints) are implemented di-
rectly in FADSE. These ‘crisp’ rules can define relationships such as ‘greater’,
‘greater or equal’, and ‘less’, as well as operations between parameters (multi-
plication, addition, etc.). Rules can also be composed using operators such as
‘and’ and ‘or’. If an individual does not comply with these rules it is automati-
cally marked as infeasible giving it a much lower chance of surviving in the next
generation. The rules are specified through an XML file and are parsed by our
DSE framework.

3http://www.fuzzytech.com/binaries/ieccd1.pdf
4http://jfuzzylogic.sourceforge.net/
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5. Simulation Methodology

5.1. Tools Used in Simulations

The FADSE framework integrates the jMetal library 5 which provides many
multi-objective heuristics. One of the implemented algorithms used in this work
is NSGA-II, a multi-objective genetic algorithm described in [10]. FADSE has
as inputs the metaheuristic (NSGA-II in this case) and specific parameters such
as the following:

� The name of the genetic algorithm parameters (crossover operator, muta-
tion operator, selection operator, population size, maximum evaluations,
mutation probability, crossover probability) and their corresponding val-
ues;

� The benchmark to be run;

� The name of the evaluated objectives (the cycles per instruction (CPI)
and energy consumption of the Alpha AXP 21264 processor enhanced
with SLVP);

� Configurations for the M-SIM v2.0 simulator enhanced with SLVP.

FADSE includes many quality metrics, some of them being inherited from
the jMetal library. The outputs of FADSE are:

� Pareto fronts - a set of non-dominated solutions, being chosen as optimal,
if no objective can be improved without sacrificing another objective;

� Hypervolume - used to observe the evolution of a single algorithm or to
compare multiple runs;

� Coverage - used to compare the Pareto fronts of two populations or of two
different runs.

We integrated the jFuzzyLogic library into FADSE and thus it accepts an
input file with the fuzzy logic rules written in FCL.

M-SIM v2.0 is an open source multi-threaded architectural simulator devel-
oped in the C language by Joseph Sharkey [38]. We enhanced M-SIM with
SLVP techniques, using processor design knowledge. We modified the power
model of M-SIM to include the SLVP table. The inputs of M-SIM are (see also
Table 1):

� DL1/IL1/UL2 cache parameters: set, block size, associativity;

� SLVP: number of entries, associativity, access type;

5https://jmetal.github.io/jMetal/
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� Core parameters: decode/issue/commit width, physical register sets, ROB/LSQ/IQ
entries.

The outputs of M-SIM are the CPI and power consumption.
CACTI 6 is a cache and memory model developed by Norman Jouppi and

other researchers from the Hewlett Packard laboratories. The inputs of CACTI
are:

� Integrated circuit technology;

� Cache geometry (size, associativity, block size).

The outputs of CACTI are the time, power and area estimations.
QUILT [1] represents a user-friendly circuit floor planning environment de-

veloped in the Java language by David Albonesi (Cornell University, USA) and
Greg Briggs (Rochester University, USA). QUILT allows building floorplans for
the HotSpot simulator. The inputs of QUILT are:

� The microarchitecture’s area;

� Components.

The output of QUILT is a floorplan coordinate text file.
The HotSpot simulator [18] is a thermal model developed in the C language

by Kevin Skadron and his colleagues from Virginia University, USA. The inputs
of HotSpot are:

� The microarchitecture floorplan;

� A power trace file.

HotSpot outputs the corresponding transient temperatures onto a tempera-
ture trace file.

5.2. Performance and Energy Consumption Analysis

The experimental results were obtained on SPEC 2000, skipping the initial
300 million instructions and executing the next 500 million. Simulations were
performed on an Intel Xeon powered HPC with 96 cores at 2 GHz. At each
generation (we considered 100 individuals per each generation) the algorithm
sends a number of individuals for simulation to clients running on each core
equal to the number of available processing resources. Once a client finishes
a simulation a new individual is sent. At the end of the generation, a join
operation is triggered and all the clients finish their processing before moving
to the next generation. The granularity of the job is at benchmark level, which
means that for a single individual we spawn 12 jobs (equal to the number of
benchmarks) to be run by the clients. The simulated microarchitecture is an

6http://www.hpl.hp.com/research/cacti/
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Alpha AXP 21264 microprocessor enhanced with our SLVP unit considering 32
nm CMOS technology, 1.2 GHz frequency and 1V Vdd.

In this work, we consider the following latencies: DL1 / IL1 / UL2 / MEM
latency = 1 / 1 / 10 / 200 CPU cycles. For a 1.2 GHz clock frequency on 32
nm technology (thus, a clock cycle of 0.83 ns), the SLVP’s latency will vary
depending on its organisation (number of entries, line size influenced by the
number of values and associativity). We determined with the CACTI 5.3 tool
that the SLVP latency is 1 CPU cycle in most of the configurations; only in the
configuration having 8192 entries, 8-way associativity and a history of 4 values
the latency is 2 cycles.

As a performance metric, we chose CPI (instead of instructions per cycle
(IPC)) so that all objectives are to be minimised and a Pareto front can be
obtained. Formula (7) was used to compute CPI reduction:

CPIreduction =
CPIbase − CPIimproved

CPIbase
(7)

where CPIbase and CPIimproved are average cycles per instruction with the
baseline and improved architectures, respectively.

The simulator’s power model is described in [2]. We applied the ‘aggressive
non-ideal conditional clocking’ model [7] which linearly scales the active units’
power with their usage and considers a reduced 10% power dissipation for unused
units. The energy consumption [W · cycles] is given by the following formula:

E = P · T (8)

where P is the instantaneous average power consumption and T is the total
simulation time in cycles. The relative energy reduction is described by the
following formula:

Ereduction =
Ebase − Eimproved

Ebase
(9)

where, Ebase and Eimproved represent the energy consumption of the baseline
and the enhanced microarchitecture, respectively.

To determine the performance and energy consumption of the Alpha AXP
21264 processor enhanced with SLVP, we used the M-SIM v2.0 simulator [38].
The automatic DSE is performed by our FADSE tool which uses a dedicated
connector to aggregate the parameter values and the benchmark information in
a command line to start the simulation, and at the end, to parse the results for
the objectives.

5.3. Thermal Analysis

To validate the hardware implementation of a microarchitecture whose opti-
mal parameter values were derived from automated DSE methods, performance
and energy consumption analysis should be complemented by a thermal analysis
of the improved superscalar processor, also establishing a maximum permissible
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temperature which may occur on chip. A processor that reaches peak temper-
atures over the feasibility threshold of 111.8 ◦C [36] is very difficult to cool by
conventional convection methods in current computer systems (laptop, desk-
top, portable media devices). In Fig. 2 we present the workflow to validate the
microarchitecture from a thermal viewpoint.

With the parameter values corresponding to the configurations selected by
FADSE, we used the CACTI 5.3 tool to determine the area of integration and
the access time of the following memories: ICache, DCache, UL2Cache and
SLVP. Based on the obtained integration areas, we have modified the original
ALPHA 21264 floorplan with the QUILT tool [1] to obtain a more realistic
approximation of our microarchitecture floorplan. This process has been applied
to all the selected configurations; thus, each configuration has its own floorplan.

The power consumption has been determined with the M-SIM simulator
[38] (that integrates the Watch framework) for each configuration with and
without our SLVP structure. The power traces are generated collecting power
statistics for each functional unit every 500 kilocycles. In the UL2Cache case,
due to its U-shape surrounding other components, and because QUILT uses
rectangular shapes to model the architecture, we were constrained to split the
area of UL2Cache into three separate blocks. For a better approximation in
these situations, we reported the computed power from M-SIM for each block
based on its integration area.

The next step is to generate the thermal maps and temperature traces with
the HotSpot 5.02 simulator [18] to identify possible hotspots (temperatures over
111.8 ◦C) and validate the microarchitecture. HotSpot 5.02 uses as input files
the floorplan and the previously obtained power trace. The simulator has a
variety of cooling configuration packages. For these simulations, we used the
default cooling package (as a first cooling configuration) that consists of forced
air flow over a copper heatsink and, additional to this package, we enabled a
secondary heat transfer path (as a secondary configuration).

6. Experimental Results

6.1. Performance and Energy Consumption Evaluations

First, we compared the Pareto fronts of our new extended architecture with
and without fuzzy logic rules. Further we selected six configurations from the
obtained Pareto front for thermal analysis.

Fig. 3 presents the Pareto front approximations discovered by our modified
NSGA-II genetic algorithm after 52 generations (at the end of the exploration).
Globally, the best results are obtained with PDK-FLR, showing a noticeable
gain. We can observe that in the area with high energies, the DSE running
with fuzzy logic rules is able to discover significantly better results, which is
remarkable. But that is not the only area of interest; for low energies, quality of
results is comparable for both Pareto fronts, but the spread of solutions found by
the run with fuzzy logic rules is better. This means that a computer architect
will have more choices in selecting an optimal architecture from the Pareto
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Figure 2: Workflow for finding a near optimal microarchitecture from the thermal viewpoint

front discovered by the optimisation algorithm. It also proves that even if we
impose some rules on the algorithm that reflect some biased ‘pre-conceptions’
of the architect (‘a priori design knowledge’), the algorithm does not remain
confined to the restricted areas imposed by these rules and can provide diversity
in solutions. This is possible because the fuzzy logic rules are applied with
Gaussian probability distribution.

All the individuals from the Pareto front have set-associative SLVPs and
86% of them have a value history higher than 1. Interestingly, none of the
configurations from the final population belong to our previous optimised mi-
croarchitecture [14] with direct mapped SLVP and only one value per entry.
Another important observation is that all the individuals from the Pareto front
are accessing the SLVP only on a miss in the DL1 cache. Configurations which
access the SLVP only on a miss in the UL2 cache are performing worse, possibly
because only three benchmarks (applu, lucas, and mgrid) have a relatively high
number of loads with misses in the L2 cache [16]. An important observation is
that all the configurations from the Pareto fronts index the SLVP table with the
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Figure 3: Pareto front comparison, running NSAG-II

instruction address. Accessing the SLVP table with the data memory address
proved less effective, even though some researchers report that significant value
locality exists in both directions: memory-centric and producer-centric [22].
Table 3 presents six configurations (C1-C6 from Fig. 3) selected for thermal
evaluation from the Pareto front obtained by the run with fuzzy logic rules.

Fig. 4 compares the hypervolumes of the explorations with and without
fuzzy logic rules. Hypervolume evolution shows the convergence speed of the
algorithm to a relatively stable Pareto front. A larger hyper-volume means
better quality solutions: ‘whenever one approximation completely dominates
another approximation, the hypervolume of the former will be greater than
the hypervolume of the latter’ [47]. From the hypervolume evolution over the
generations we can observe that the results obtained by the run with fuzzy logic
rules are generally better than the ones obtained without them. The improved
convergence induced by the usage of fuzzy information is significant and can
be deduced from the fact that the DSE with fuzzy logic rules obtains a quality
of results (from a hypervolume value point of view) in generation 17 which
is equivalent with the quality obtained without fuzzy rules in generation 48.
Furthermore, the hypervolume value reached in generation 18 is never reached
without fuzzy logic rules during all 52 simulated generations. This represents a
considerable improvement in convergence speed.

According to Figs. 3 and 4 the best solution quality and convergence speed
are given by the exploration with fuzzy logic rules. Running one generation (100
individuals), without PDK-FLR, on 96 cores at 2 GHz on an Intel Xeon based
HPC, takes approximately one day. Running all 52 generations, without fuzzy
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Table 3: Pareto Optimal Configurations
Parameter C1 C2 C3 C4 C5 C6

DL1 cache
Sets 64 256 256 256 256 256
Block size 64 64 64 64 256 128
Associativity 2 2 2 2 2 8

IL1 cache
Sets 512 512 512 512 32 32
Block size 64 8 8 8 256 256
Associativity 1 8 8 8 8 8

UL2 cache
Sets 1024 4096 4096 4096 4096 4096
Block size 128 256 256 256 256 256
Associativity 8 2 2 2 8 8

SLVP
Entries 8192 128 8192 128 8192 8192
Values per entry 2 2 2 2 2 2
Associativity 8 8 8 8 4 4
Decode width 8 8 32 32 32 32
Issue width 4 8 8 8 16 16
Commit width 32 32 32 32 32 32
ROB size 128 256 256 256 1024 1024
LSQ size 64 64 64 64 512 1024
IQ size 128 64 64 64 256 256
Physical register sets 64 128 128 128 256 256
int / fp ALU 8/8 8/8 8/8 8/8 8/8 8/8
int / fp MUL/DIV 2/4 2/4 2/4 8/4 8/8 8/8

logic rules takes 50 days. With fuzzy logic rules we obtained the same results
in only 33 days (thus 34% faster).

6.2. Thermal Evaluations and Control

The last step of our analysis was to determine how the Pareto optimal mi-
croarchitectures found by FADSE behave from a thermal point of view, and we
also wanted to quantify the thermal impact achieved by introducing the SLVP
module into the M-SIM superscalar microarchitecture. Thus, we analysed six
micro-architectural configurations (Fig. 3) from the Pareto front corresponding
to maximum energy and the best processing performance (C5 & C6), minimum
energy areas with the worst performance (C1) and three configurations situ-
ated at the inflexion of the Pareto front approximation (C2 & C3 & C4). The
parameters of these selected configurations are presented in Table 3.

As Fig. 3 reveals, the performance of the C2, C3 and C4 configurations is
roughly equal to that obtained on C5 and C6. From a thermal point of view,
all the studied microarchitectures are feasible in hardware implementations (the
maximum temperatures inside chips being under 75 ◦C according to Fig. 5). In
Figs. 5 and 3 note that the maximal temperatures and energy consumption are
reached for configurations C5 and C6. According to our initial expectations, we
note that the maximum temperatures were obtained for the Instruction Queue
(IQ) in all the simulated benchmarks (see Fig. 7).

By introducing a SLVP module into a superscalar microarchitecture, we
did not produce a significant thermal impact on the chip. However, we might
be tempted to conclude that the pressure and, as a consequence, the higher
temperature on the IQ is caused by the load value prediction, which increases
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Figure 4: Hypervolume comparison, running NSGA-II

the demand for resources as instructions executed with erroneous operands must
be re-executed. However, this is not true at all, because in Figs. 5 and 7 we can
observe that the SLVP reduces the maximum temperature of the chip by up to
8 ◦C.

A very interesting observation related to Fig. 5 consists of the importance of
a secondary heat transfer path located between the processor and the heatsink.
The secondary path behaves like a ‘heat buffer’. This reduces the maximum chip
temperature to normal values. The secondary cooling package utility improves
the C5 and C6 configurations, where the temperature reduction is around 9 ◦C.

Furthermore, based on previous research presented in [21] and [3], we chose
to implement the following micro-architectural solutions to reduce the overload
in the IQ:

� reducing the number of mis-speculated branch instructions using an effec-
tive perceptron predictor [21];

� finding the appropriate size of the decode/commit width (DCR);

� issue-aware fetch gating (whenever the number of decoded instructions is
higher than those which do commit, it will disable the fetch stage in the
next cycle - known as decode/commit rate fetch gating).

Much of the wasted energy from the front-end pipeline stages is due to the
mis-speculated control instructions. Mis-predicted branches cause more instruc-
tions to be decoded than those that are committed. Mis-speculated instructions
will reside in the IQ with no useful purpose until they are squashed after the
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Figure 5: Maximum temperatures using two cooling packages reached on the 6 selected micro-
architectural configurations

Figure 6: Average chip temperatures reached on the 6 selected microarchitectures

branch instruction’s resolution. The front-end energy can be decreased by per-
forming better branch predictions. By increasing the accuracy of branch predic-
tions, fewer mis-speculated instructions are executed, resulting in less pressure
on the IQ, which increases performance and saves energy. In this sense we have
integrated into our simulator a perceptron branch predictor, too.

Table 4 illustrates the simulation results compared with a similar microar-
chitecture having different (just the branch predictor) structure (Bimodal). As
we can see, if the prediction accuracy increases, it will contribute to higher pro-
cessing performance, lower energy consumption and lower heat. The main cause
of IQ overloading can be attributed to the mismatch between decoded and com-
mitted instructions. Technically, the producer rate is obtained by tracking the
queue occupancy, while for the consumer rate we monitor how many instructions
are leaving the reorder buffer.
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Figure 7: Temperature map for the C6 configuration of the SLVP-based superscalar architec-
ture

Table 4: Percentage variation of the Micro-architectural Metrics by Reducing the Number of
Mis-speculated Branches

Metrics Variation
Prediction accuracy +4.2%
Processing performance +9.5%
Energy -5.9%
Maximum temperatures -2.3%

Fig. 8 illustrates an execution of the gzip benchmark assuming a superscalar
architecture with maximum Decode width and Commit width of 32 instructions.
We note that in more than 7% of the cycles no instructions are committed while
the decoding unit is in use, indicating that the producer is not correlated with
the consumer, e.g. the front-end processing is too fast to supply the commit
rate. As Fig. 8 illustrates, a superscalar architecture with a DCR of 32 is too
large, involving an inefficient exploitation of the IQ and leading sometimes to
potential hotspots. By applying issue-aware fetch gating, performance decreases
by 4% but the temperature is reduced by 7 ◦C.

7. Conclusion and Further Work

In this work, we presented an improved automatic DSE methodology which
significantly enlarges an initial domain knowledge represented through fuzzy
logic rules and other deterministic restrictions. We highly extended the SLVP
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Figure 8: Mismatches between the producer and consumer rate within the instruction window

microarchitecture and we also performed a thermal analysis and control which
verifies the energy efficiency of the design and its temperature optimisation.
These improvements led to a new, realistic and original methodology for per-
formance, energy consumption, and temperature optimisation of the CPU.

Evaluations showed that a set-associative SLVP table is more effective than
a direct mapped table and that 86% of the configurations from the Pareto front
use multiple values per SLVP entry (N > 1). The fuzzy logic rules produce a
Pareto front which is noticeably better than the front obtained without them,
and convergence is 34% faster with our fuzzy logic rules. The spread of the
solutions found by the DSE algorithm with fuzzy logic rules is also better,
providing computer architects with more choices in selecting one of the Pareto
optimal configurations discovered.

We analysed the thermal dissipation of six architectural configurations se-
lected from the Pareto front and all of them were hardware feasible, as their
temperatures were below the feasibility threshold of 111.8 ◦C. It is very impor-
tant to remark that our added SLVP structure does not negatively impact the
maximum chip temperature; on the contrary, its inclusion causes the maximum
chip temperature to decrease by up to 8 ◦C. We also implemented some effective
micro-architectural solutions to reduce the IQ overload.

Broadly speaking, we showed that the cross-fertilisation between computer
architecture and CPU multi-objective optimisation methods, on one hand, and
knowledge representation domain, on the other hand, leads to a more effective
processor design. Extending and improving this idea may be extremely promis-
ing in computer architecture research. In fact, fuzzy logic rules are just one
of the ways for describing domain knowledge; alternatives worth investigating
include semantic nets and other knowledge representation methods such as the
domain ontologies used in semantic web projects. Automatically computing the
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degrees of contradiction for such sets of fuzzy logic rules would also be helpful
to avoid solution quality degradation.

Although temperature (the HotSpot tool) is not yet integrated into our SLVP
based speculative superscalar simulator as a full-fledged third objective, the
thermal analysis we performed did indicate the maximum chip temperatures
and produced solutions that are both feasible and have desirable properties.
We would like to repeat the experiments on SLVP-based multicore microarchi-
tectures and study the effect of adding to our simulator two new objectives:
temperature and die size.
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