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Abstract: The paper presents a new image denoising methadhfrlse noise in grayscale
images using a context-based prediction schemealfogithm replaces the noisy pixel with
the value occurring with the highest frequencythie same context as the replaceable pixel.
Since it is a context-based technique, it presetivesletails in the filtered images better than
other methods. In the aim of validation, we havepared the proposed method with several
existing denoising methods, many of them being editpmed by the proposed filter.
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1. Introduction

Digital images are often affected by different typef noise, due to various sources of
interferences. There are two main noise categor@sussian and impulse. The first
mentioned type is a statistical noise, whose vahresGaussian-distributed. On the other
hand, impulse noise is independent, uncorrelateith Wie image pixels and randomly
distributed. Digital images can be degraded by isgumoise during sensors acquisition or
transmission through a faulty communication chan8elt-and-pepper is a typical impulse
noise composed of minimum and maximum valued pixatin the affected image. The
main objective of salt-and-pepper denoising methigdpreservation of unaffected pixels
while restoring the missing information.

In this paper we are proposing a novel techniqueetiuce salt-and-pepper noise from
grayscale images using context-based predictigerifig (CBPF). The basic idea was to
replace the pixel affected by noise with the pwich occurred with the highest frequency
in the same context as the replaceable pixel. Towerewe search for the context in the
vicinity of the noisy pixel. The frequencies of pIg occurring in a certain context have been
determined like in a Markov chain. Since our metl®dising context information, it is a
good candidate to reconstruct details in the imadiested by noise. We have compared our
technique with other existing denoising methodseirms of mean square error (MSE) and
peak signal-to-noise ratio (PSNR), using the BGameraman and Airplane test images. In
view of the comparisons, we have predeterminedotiienal CBPF configuration and also
choose the best parameters of the mentioned filiérs experimental results showed that the
CBPF significantly outperforms many of the salt-goegpper noise filters existing in the
literature.

The paper is organized as follows. Section 2 revid¢e state-of-the-art in denoising
techniques, while Section 3 introduces the propo€&PF. Section 4 describes the
experimental methodology and the obtained resulkts pmesented in Section 5. Finally,
Section 6 summarizes the relevant contributionspradents some further work directions.



2. Related Work in Impulse Noise Filtering

Impulse noise filtering techniques can be classifie three main categories: statistical
based, fuzzy and neural network based and hylmg|aying multi-stage filtering [1].

One of the most employed impulse noise removal ausths the median filter, efficient
only for low noise densities. Thus, during the ldetade several improved median based
fillers have been developed, with better perforrearan high noise levels. Many
improvements focused on replacing the noisy pixaseld on non-noisy pixel values. In [2],
the authors proposed a method to overcome thecsioirigs faced by the classical median
filter at high noise densities, by considering otthpse pixels that are informative in the
neighborhood. A filter employing two stages waspased in [3]; in the first stage, the noisy
pixel is detected, while in the second stage npiggls are replaced by the mean value of a
2x2 area noise-free pixels. In [4], the authorsggesgts a decision based algorithm which uses
a 3x3 window for image denoising applied selectiielr 0 and 255 pixel values. At high
noise densities the median value is noisy, theegfosuch cases, neighboring pixels are used
to replace the noisy pixels. A modified decisionsdrh unsymmetrical median filter is
proposed in [5], replacing the noisy pixel by thenmed median value of the non-noisy
pixels. When all the pixel values are 0 and 258,rthisy pixel is replaced by the mean value
of the entire window. In [6] the authors recommanihodified directional-weighted-median
filter to reconstruct images corrupted by salt-pegper noise. If the central pixel of a certain
window is classified as noisy, it is replaced byveighted median value on an optimum
direction. Hamza et al. presents in [7] another immethased filter obtained by relaxing the
order statistic for pixel substitution. Noise attation properties as well as edge and line
preservation are statistically analyzed. The traffidsetween noise elimination and detail
preservation is also analyzed.

In [8] the progressive switching median filter ieepented. The method uses an impulse
detection algorithm before filtering, and thus,yoalproportion of the pixels are filtered. Both
the impulse detection and the noise filtering steqgsprogressively applied through several
iterations. The results are showing an enhanceroeet traditional median filters, being
particularly effective for highly corrupted imagea/ang et al. presents in [9] a modified
switching median filter, employing a two-phase dsimy method. In the first phase, the
adaptive vector median filter detection [10] idéas pixels likely to have been corrupted by
salt-and-pepper noise. In the second phase, tlsy nandidates are evaluated by using four
one-dimensional Laplacian operators, which allodgeepreserving. The proposed approach
can effectively preserve thin lines, fine detaisl @dges. A soft-switching median filter for
impulse noise removal was presented in [11], wh#ssim [12] is proposing a Kriging
interpolation filter to reduce salt and pepper adi®m grayscale images. First, a sequential
search is performed usirg<k window size to determine non-noisy pixels. The -norsy
pixels are then passed to the Kriging interpolatioethod to predict their absent neighbor
pixels detected in the first phase as being ndikg. experimental results are showing that the
Kriging interpolation filter can achieve noise retlan without damaging edges and detalils.

In [13], the authors present a two-stage noise tagafuzzy switching median filter for
salt and pepper noise removal. The first stage askstogram of the corrupted image to
identify the noisy pixels, while in the second stadetected pixels are filtered, leaving
unprocessed the noise-free pixels. Fuzzy reasoringmployed to handle uncertainty
introduced by noise, present in the extracted lodarmation. Their simulation results show
that the presented method outperforms some ofxistirgy salt-and-pepper noise filters. In
[14] Lin identifies impulse noise with Support VectMachine and removes it with a fuzzy
filter. Some authors are using neural networks,[1H], [17], [18], [19], [20], [21] to filter
images affected by impulse noise. Nair and Shaf#r make use of a neural network to



identify impulse noise in corrupted images and adifred median filter to remove the
detected noise. The authors of [23] present andtlybrid technique implying a neural
network in the detection stage and a switchingtfilh the removal stage.

A universal noise removal algorithm [24], working both Gaussian and impulse noise, is
introducing the spatial gradient into the Gausdidaring framework for Gaussian noise
removal and integrate their directional absolutatiee differences statistic for impulse noise
removal and combine them into a hybrid noise filfanother two-stage filter which removes
mixed impulse and Gaussian noise is proposed in [25

In contrast with the above presented methods, oopgsed filter is context-based and
therefore it can better preserve and reconstrueildén images affected by impulse noise.

In the last years, context-based noise filters hbgen also proposed. Buades et al.
presented in [26] the non local means denoisingrdlgn. The estimated value of a pixel is
computed as a weighted average of all the pixetekenmage, whose weights depend on the
similarity between the pixels. Thus, the pixelshadt similar gray level neighborhood to the
replaceable pixel have larger weights in the awerdg fact, this averaging approach
represents the main difference between the not toeans algorithm and Markov chains. In
our method, the noisy pixel is replaced, insteadrofiverage, with the most frequent pixel
which occurred in similar neighborhoods. In [27}tiada et al. proposed a stochastic image
denoising method which is based on random walks astrary neighborhoods of a given
pixel. They sample a subset of random walks s@rfrom a given pixel and use the
probabilities of travelling between pairs of pixels weights to combine them into the noise-
free pixel. The size and shape of each distincghimrhood are determined by the
configuration and similarity of nearby pixels. lontrast, in our method we considered a
neighborhood with fixed size and shape and we tisasia whole to search similar
neighborhoods. Another important difference is thatreplace a noisy pixel with the most
frequent pixel occurring in similar neighborhood$éong et al. proposed another stochastic
image denoising method in [28], which is based arkdv-Chain Monte Carlo sampling.

3. Description of the Proposed Context-Based Prediction Filtering

Context-based prediction can be used to deternhimeptobability of a value, as the
frequency of its occurrence in a certain context, @hus, it has been successfully applied as
statistical model in several computer science afigascomputational biology [29], web
mining [30], ubiquitous computing [31], informatiaetrieval [32], speech recognition [33]
and even in computer architecture [34]. Similaatdlarkov process, it consists in a setNof
distinct statesS={S,, S,, ..., S, }X35]. In the first order model witiN states, the current

state depends only on the previous state:
Plqg, = Sj |qt—1 =S, G-, =S, -]=Plq = Sj |qt—1 =S] (1)

whereq, is the state at time the set of transition probabilities betweengtaesS and§ is
N

A={a;}, havinga; =P[q, =S/|q,, =S],1<i, j<N, a, 20 and Y a; =1.
j=1

Generalizing, in an ordd® model, the current state dependsoprevious states [36]:



P[a, :Sj|qt—1 =S, G-, =S, ---]=Plq, :Sj|qt—1 =S, . Gr=S] (2)

We can also express the oréRemodel in a simpler form:

Pla [0y, Gz 1= PIOL|Gs -s O] 3)

The full probabilistic description requires to sigcthe current state and all the
predecessor states [35], meaning that the curtaite® ¢ a sequence depends on all the
previous states.

In the present work, we are proposing the recoostm of grayscale images affected by
impulse noise using context-based information isirilar way as in a Markov chain
implementation. In Markov chains, the next statedé&termined based on the transition
probabilities from the current context. Therefovee have adapted the classical Markov
model presented in (3), whose values are from addience, to work with the values of a
2D area. In our application, the probability ofiagb value is determined as the frequency of
its occurrence in the same or similar contexts.sT tioe noisy pixel represents the next state
which must be predicted, the surrounding pixelsasgnt the context, whereas the search
area encodes the previous states through its ypaleés. In the case of grayscale images, the
states consist of pixel values ranging between @ 26b. Thus, we adjusted the order
model as follows:

P[qxvy qi‘j,i =0,..W-1j=0,...,H-Lwithout(i=xand j =y)] =
4
= P{quy Clsi oy 10 :—%S%S 0<x+i<W,0<y+j<H,withouti = j :O} )

whereCSis the context size expressed as the number efspfxom one side of the context
square,W andH are the width and height of the image, respegtivBince the context is
surrounding one pixel, its size can have only odies. The pixel valugcy depends on the
pixel values from the surrounding context, exceapiits own value. Thus, the order of the
CBPF will beR=CS-1 and the context consistsRpixel values. The probability of a certain
pixel value in a given context is determined as fileguency of that pixel value in the
considered context occurring within the image.

Equation (4) implies searching the contexts in ¢hére image, which leads to a major
disadvantage from the timing point of view. Therefove limit the search area, based on the
search radiuSR as follows:

P[qx,y

= P|:qx,y

Griys; s | = ~SR.., SR 0< X +i <W, 0< y+ j < H,withouti = j =0] =

®)
Clsi oy 10 :—%S%S 0<x+i<W,0<y+j<H,withouti = j :O}

Obviously, we have adjusted t&&Ron the margins to keep it within the image andehav
considered noisy pixels having values of 0 or 2&5in [4]. When we have determined that a
pixel is noisy N), we have taken the conteRtof that pixel consisting iR pixels from the



neighborhood, and searched for that context ingetaarea, with size defined IS8R as it is
illustrated in Figure 1. The noise-free pixel valecurred in that context with the highest
frequency will replace the noisy pixel valie

context size (CS)

c,cjc|cj|c

C : C

search radius (SR)|
C N C
C H C

c|cjcj|c,|c

Figure 1. The CBPF probosed for image denoising

The algorithm which replaces a noisy pixel throtigh presented context-based prediction
technique is described in the following pseudocode:

CBP (x, ¥y, SR, CS, 1)
For i:=x-SR to x+SR, 0<i<W
For j:=y-SR to y+SR, 0<j<H
If i=x AND j=y then
Conti nue
If SAD(X, y, i, j, CS)<T AND NOT Salt_Pepper(i, j) then
QColor(i, j)]:=Color(i, j)]+1
Return Max(Q

The parameters of tHeéBP function are: the position of the current pixéle tsearch area
defined bySR CS which gives the order of the model and the sintyathresholdT.
Obviously, the noisy pixel is not part of the codteln order to improve the algorithm
efficiency, we do not search for identical contexie accept similar contexts, measuring the
similarity degree as the sum of absolute difference

csiacst - _ . cs
SAD= Z Z|Bl(l’1)_Bz(|sJ)|,W|th0utl =] :7 6)
j=0 i=0

The following pseudocode presents how we comp@etim of absolute differences:

SAD (x1, yl, x2, y2, CS)
S: =0
For i:= -CS/2 to CS/2, O<i+x1<W O0<i+x2<W do
For j:=-CS/2 to CS/2, 0<j+yl<H, 0<j+y2<H do
If i=0 AND j =0 t hen
Cont i nue

S:=S + | Color(i+x1, j+yl)-Color(i+x2, j+y2)|
Return S



Since the noisy pixel is not part of the conteke wvalue of the middle pixel must be
avoided in theéSAD computation. We have considered a context sinfildre SAD value is
less than a certain threshold We keep inQ how many times a certain pixel value has
occurred after the considered pixel. TMax function returns the color (index) of the highest
element fromQ. The noise-free pixel value occurred in similantexts with the highest
frequency will replace the noisy pixel valie If there is at least one valid case, it is re¢grn
by the CBP function. If similar contexts have not been fouride initial noisy pixel is
unchanged, but this case is very rare. We havekelded a pixel is noisy with the
Salt_Pepperfunction returning TRUE for pixels having valuet @ or 255. TheCBPF
algorithm is presented in the following pseudocode:

CBPF(CS, SR, T)
For i:=0 to W1 do
For j:=0 to H1 do
If Salt_Pepper(i, j) then
Set _Color (i, j, CBP(i, j, CS, SR T))

where theSet_Colorfunction replaces the value of the noisy pixielj) with the value
returned by th€BP function.

4. Experimental M ethodology

We have implemented our CBPF algorithm in C#, wagrthe implementations of the
state-of-the-art denoising methods used for corapas were available in Matlab. The tests
were performed on three 512x512 grayscale PNG imdgeat, Cameraman and Airplane.
We have added salt-and-pepper noise into the atigmages, in ratios between 10% and
90%, in steps of 10%. All the methods were compasedg this set of noisy images.

The performances of the denoising methods wereesgpd in terms dfISEand PSNR
TheMSEshows the error values of a filtered im&eompared with the original orf

SS(FG. ) -06, )Y
MSE === @
nm

whereW andH are the width and height of the image, respegtiv@h the other hand, the
PSNRestimates the quality of a denoised image witpeetsto the original one. THESNRIis
computed as follows:

255
PSNR=100og,, —— 8
O10 MSE (8)

The goal is to obtain a loMSEand a higiPSNR



5. Experimental Results

First, we have evaluated the CBPF by vary@#on a fixedSR=5 andT=500. As we have
explained in Section 3, theéScan have only odd values and it must be at leaSh8 MSE

values obtained on the test images are presentedune 2.
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Figure 2. The MSE of the Boafa), Cameramaiib) and Airplangc) images denoised using
CBPF with different context sizes

Figure 2 has shown that the best valueG&is 3, the CBPF being inefficient for higher
contexts. A richer context leads to higher precistaut if it is too rich, the probability to find
it is low. Therefore, usually the performance isreasing together with the context up to a
certain size (which in our application is 3), aftdrich it starts to decrease.

We have continued our evaluations by varying thercde radiusSR between 2 and 5,
considering the bestS=3 and a fixedl=500. TheMSE values obtained on the test images

are presented in Figure 3.
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Figure 3. The MSE of the Bodt), Cameramaii) and Airplangc) images denoised using
CBPF with different search radius values

One can observe that on the Boat image, a CBPFSRttalue of 3 is better up to 60%
noise level and foBRof 4 is better only starting with 70% noise dens®n the Airplane
image theSRof 2 is better up to 50%, whieRof 3 and 4 are very close and better starting
with a noise of 60%. On the Cameraman im&fe4 performs best, it being just slightly
outperformed bysR2 on a noise up to 20%. Therefore, we considerthieaoptimal SR value
will be 4. The conclusion after this evaluationpste@as that the search area might be
sufficiently high to find the context, but if it i®o high SR>5), the multiple pixel value
choices can lead to uncertainty and thus to loweoding ability.

The next stage of our analysis consists in varyiregsimilarity threshold between
450 and 600, in steps of 50. As we have alreadyag»gul, when we have searched for the
context of the current noisy pixel, we have takatoiaccount all the contexts whose
similarity degree, computed as SAD, is less thafigure 4 presents tHdSE obtained for
different similarity threshold values, considerihg besCCS=3 and the optima&bR=4.
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Figure 4 showed that the best similarity threshadtlie is 500 up to 70% noise on the
Boat image and even up to 80% noise on the Camearandh Airplane images. Only on very
high noise density, a threshold of 550 or 600ighdly better. Therefore, we have considered
that the optimal similarity threshold value will Be500. A difference of 500 in th8AD
between two compared image blocks, taking into actdhe bestCS=3 (contexts of 8
pixels), results in a reasonable average per pitielrence of 62.

Further, we have compared the optimal CBPF ha8Rg4, CS=3 andT=500 with other
denoising methods. We have included in the comparanalysis the Noise Adaptive Fuzzy
Switching Median Filter (NAFSMF) [13], the Decisiddased Algorithm (DBA) [4], the
Median Filter (MF), the Progressive Switching Medikilter (PSMF) [8], the Relaxed
Median Filter (RMF) [7] and the Analysis Prior Alginm (APA) [37]. Figures 5 and 6
present comparatively th®ISE and PSNR respectively, for all the considered methods,
including our CBPF witl6R=4, CS=3 andT=500, on the Boat, Cameraman and Airplane test
images.
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Figure 5. Comparing the MSE on the Bdal), Cameramaib) and Airplangc) images

The MSE and PSNRresults show that the CBPF outperforms the MF, PSvid RMF
denoising methods. It also partially outperformbad APA method, on noise levels up to
20%. It is less performing than the NAFSMF and DiBathods.
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Figure 6. Comparing the PSNR on the Bda}, Cameramaib) and Airplangc) images
Figure 7 presents the Cameraman image with 30%asdHpepper noise (a) and its

denoised versions using our CBPF (b), as well agudAFSM (c), DBA (d), MF (e), PSMF
(1), RMF (g), APA (h).
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Figure 7. Denoising the Cameraman image with 30% na$eising the CBPKb), NAFSM
(c), DBA (d), MF (e), PSMF(f), RMF (g), APA (h)

As Figure 7 depicts, the proposed CBPF can bettapve salt-and-pepper noise than the
MF, PSMF and RMF denoising methods.

6. Conclusions and Further Work

In this paper, we have proposed a new filteringhmétfor impulse noise on grayscale
images using context-based prediction. The CBPlacep a pixel affected by salt-and-
pepper noise with the pixel which occurred in ieghborhood, determined by the search
radius input parameter, with the highest frequeimcyhe same context as the replaceable
pixel. The frequencies of pixels occurring in atagr context are determined like in a
Markov chain. Since our method is using contexbrimfation, it can reconstruct details in the
images affected by noise better than other methDds. to the intrinsic behavior, it could
have a significant advantage on images contairergutes. The limitation of the proposed
method stands in the computational time requireédd@noising, which recommends it only
for off-line processing of images.

We have analyzed our CBPF by varying its parameidrs tests performed on the Boat,
Cameraman and Airplane images show that the CBEHFamontext size of 3 is the optimal.
In the next step, we have shown that the optimatckeradius is 4. The last analyzed
parameter was the similarity threshold whose ogdtwadue was 500, admitting reasonable
differences between the compared image blocks. &/e bompared the optimal CBPF (with
configurationCS=3, SR=4, T=500) with other existing denoising methods in terof MSE
and PSNR The experimental results show that the CBPF &agmitly outperforms the MF,
the PSMF and also the RMF and it is not signifijaworse than the NAFSMF and the DBA
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methods (see Figures 5 and 6). It also partiallipediorms, on low noise levels, other

considered algorithms. For the case of usual nfiigging conditions (noise between O-

30%), the proposed method is very close to the npestorming denoising methods

referenced. Therefore, in our opinion, this newhudtcan be further developed, so that it
could outperform all the existing methods. It isnew method, which is using context

information, and has a high further developmenepal.

Although the optimaBRis 4, there are some noise levels whe&Raf 3, or even 2, is
better. Therefore, as a further work direction, wikk analyze the possibility to dynamically
adjust theSRvalue and thus to adapt this input parameterdorttage. Other possible further
work directions are the dynamic context size adaptathe use of other context shapes, the
run-time computation of the similarity thresholdsbd on the context size, as well as the use
of the CBPF in a hybrid system together with fuamg neural methods.
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