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Abstract: The paper presents a new image denoising method for impulse noise in grayscale 
images using a context-based prediction scheme. The algorithm replaces the noisy pixel with 
the value occurring with the highest frequency, in the same context as the replaceable pixel. 
Since it is a context-based technique, it preserves the details in the filtered images better than 
other methods. In the aim of validation, we have compared the proposed method with several 
existing denoising methods, many of them being outperformed by the proposed filter. 
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1. Introduction 

Digital images are often affected by different types of noise, due to various sources of 
interferences. There are two main noise categories: Gaussian and impulse. The first 
mentioned type is a statistical noise, whose values are Gaussian-distributed. On the other 
hand, impulse noise is independent, uncorrelated with the image pixels and randomly 
distributed. Digital images can be degraded by impulse noise during sensors acquisition or 
transmission through a faulty communication channel. Salt-and-pepper is a typical impulse 
noise composed of minimum and maximum valued pixels within the affected image. The 
main objective of salt-and-pepper denoising methods is preservation of unaffected pixels 
while restoring the missing information.   

In this paper we are proposing a novel technique to reduce salt-and-pepper noise from 
grayscale images using context-based prediction filtering (CBPF). The basic idea was to 
replace the pixel affected by noise with the pixel which occurred with the highest frequency 
in the same context as the replaceable pixel. Therefore, we search for the context in the 
vicinity of the noisy pixel. The frequencies of pixels occurring in a certain context have been 
determined like in a Markov chain. Since our method is using context information, it is a 
good candidate to reconstruct details in the images affected by noise. We have compared our 
technique with other existing denoising methods in terms of mean square error (MSE) and 
peak signal-to-noise ratio (PSNR), using the Boat, Cameraman and Airplane test images. In 
view of the comparisons, we have predetermined the optimal CBPF configuration and also 
choose the best parameters of the mentioned filters. The experimental results showed that the 
CBPF significantly outperforms many of the salt-and-pepper noise filters existing in the 
literature. 

The paper is organized as follows. Section 2 reviews the state-of-the-art in denoising 
techniques, while Section 3 introduces the proposed CBPF. Section 4 describes the 
experimental methodology and the obtained results are presented in Section 5. Finally, 
Section 6 summarizes the relevant contributions and presents some further work directions.  
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2. Related Work in Impulse Noise Filtering  

Impulse noise filtering techniques can be classified in three main categories: statistical 
based, fuzzy and neural network based and hybrid, employing multi-stage filtering [1]. 

One of the most employed impulse noise removal methods is the median filter, efficient 
only for low noise densities. Thus, during the last decade several improved median based 
filters have been developed, with better performance on high noise levels. Many 
improvements focused on replacing the noisy pixel based on non-noisy pixel values. In [2], 
the authors proposed a method to overcome the shortcomings faced by the classical median 
filter at high noise densities, by considering only those pixels that are informative in the 
neighborhood. A filter employing two stages was proposed in [3]; in the first stage, the noisy 
pixel is detected, while in the second stage noisy pixels are replaced by the mean value of a 
2×2 area noise-free pixels. In [4], the authors suggests a decision based algorithm which uses 
a 3×3 window for image denoising applied selectively for 0 and 255 pixel values. At high 
noise densities the median value is noisy, therefore in such cases, neighboring pixels are used 
to replace the noisy pixels. A modified decision based unsymmetrical median filter is 
proposed in [5], replacing the noisy pixel by the trimmed median value of the non-noisy 
pixels. When all the pixel values are 0 and 255, the noisy pixel is replaced by the mean value 
of the entire window. In [6] the authors recommend a modified directional-weighted-median 
filter to reconstruct images corrupted by salt-and-pepper noise. If the central pixel of a certain 
window is classified as noisy, it is replaced by a weighted median value on an optimum 
direction. Hamza et al. presents in [7] another median-based filter obtained by relaxing the 
order statistic for pixel substitution. Noise attenuation properties as well as edge and line 
preservation are statistically analyzed. The trade-off between noise elimination and detail 
preservation is also analyzed. 

In [8] the progressive switching median filter is presented. The method uses an impulse 
detection algorithm before filtering, and thus, only a proportion of the pixels are filtered. Both 
the impulse detection and the noise filtering steps are progressively applied through several 
iterations. The results are showing an enhancement over traditional median filters, being 
particularly effective for highly corrupted images. Wang et al. presents in [9] a modified 
switching median filter, employing a two-phase denoising method. In the first phase, the 
adaptive vector median filter detection [10] identifies pixels likely to have been corrupted by 
salt-and-pepper noise. In the second phase, the noisy candidates are evaluated by using four 
one-dimensional Laplacian operators, which allows edge preserving. The proposed approach 
can effectively preserve thin lines, fine details and edges. A soft-switching median filter for 
impulse noise removal was presented in [11], while Jassim [12] is proposing a Kriging 
interpolation filter to reduce salt and pepper noise from grayscale images. First, a sequential 
search is performed using k×k window size to determine non-noisy pixels. The non-noisy 
pixels are then passed to the Kriging interpolation method to predict their absent neighbor 
pixels detected in the first phase as being noisy. The experimental results are showing that the 
Kriging interpolation filter can achieve noise reduction without damaging edges and details.  

In [13], the authors present a two-stage noise adaptive fuzzy switching median filter for 
salt and pepper noise removal. The first stage uses a histogram of the corrupted image to 
identify the noisy pixels, while in the second stage detected pixels are filtered, leaving 
unprocessed the noise-free pixels. Fuzzy reasoning is employed to handle uncertainty 
introduced by noise, present in the extracted local information. Their simulation results show 
that the presented method outperforms some of the existing salt-and-pepper noise filters. In 
[14] Lin identifies impulse noise with Support Vector Machine and removes it with a fuzzy 
filter. Some authors are using neural networks [15], [16], [17], [18], [19], [20], [21] to filter 
images affected by impulse noise. Nair and Shankar [22] make use of a neural network to 
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identify impulse noise in corrupted images and a modified median filter to remove the 
detected noise. The authors of [23] present another hybrid technique implying a neural 
network in the detection stage and a switching filter in the removal stage.  

A universal noise removal algorithm [24], working on both Gaussian and impulse noise, is 
introducing the spatial gradient into the Gaussian filtering framework for Gaussian noise 
removal and integrate their directional absolute relative differences statistic for impulse noise 
removal and combine them into a hybrid noise filter. Another two-stage filter which removes 
mixed impulse and Gaussian noise is proposed in [25]. 

In contrast with the above presented methods, our proposed filter is context-based and 
therefore it can better preserve and reconstruct details in images affected by impulse noise. 

In the last years, context-based noise filters have been also proposed. Buades et al. 
presented in [26] the non local means denoising algorithm. The estimated value of a pixel is 
computed as a weighted average of all the pixels in the image, whose weights depend on the 
similarity between the pixels. Thus, the pixels with a similar gray level neighborhood to the 
replaceable pixel have larger weights in the average. In fact, this averaging approach 
represents the main difference between the non local means algorithm and Markov chains. In 
our method, the noisy pixel is replaced, instead of an average, with the most frequent pixel 
which occurred in similar neighborhoods. In [27], Estrada et al. proposed a stochastic image 
denoising method which is based on random walks over arbitrary neighborhoods of a given 
pixel. They sample a subset of random walks starting from a given pixel and use the 
probabilities of travelling between pairs of pixels as weights to combine them into the noise-
free pixel. The size and shape of each distinct neighborhood are determined by the 
configuration and similarity of nearby pixels. In contrast, in our method we considered a 
neighborhood with fixed size and shape and we use it as a whole to search similar 
neighborhoods. Another important difference is that we replace a noisy pixel with the most 
frequent pixel occurring in similar neighborhoods. Wong et al. proposed another stochastic 
image denoising method in [28], which is based on Markov-Chain Monte Carlo sampling.  

 

 

3. Description of the Proposed Context-Based Prediction Filtering 

Context-based prediction can be used to determine the probability of a value, as the 
frequency of its occurrence in a certain context and, thus, it has been successfully applied as 
statistical model in several computer science areas like computational biology [29], web 
mining [30], ubiquitous computing [31], information retrieval [32], speech recognition [33] 
and even in computer architecture [34]. Similar to a Markov process, it consists in a set of N 
distinct states }...,,,{ 21 NSSSS =  [35]. In the first order model with N states, the current 

state depends only on the previous state:  
 

][...],,[ 121 itjtktitjt SqSqPSqSqSqP ====== −−−  (1)  

where tq  is the state at time t,  the set of transition probabilities between the states Si and Sj is 

}{ ijaA = , having ][ 1 itjtij SqSqPa === − , Nji ≤≤ ,1 , 0≥ija  and 1
1

=∑
=

N

j
ija .  

Generalizing, in an order R model, the current state depends on R previous states [36]: 
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]...,,[...],,[ 121 rRtitjtktitjt SqSqSqPSqSqSqP ======= −−−−  (2)  

We can also express the order R model in a simpler form: 
 

]...,,[...],,[ 121 Rtttttt qqqPqqqP −−−− =  (3) 

The full probabilistic description requires to specify the current state and all the 
predecessor states [35], meaning that the current state in a sequence depends on all the 
previous states. 

In the present work, we are proposing the reconstruction of grayscale images affected by 
impulse noise using context-based information in a similar way as in a Markov chain 
implementation. In Markov chains, the next state is determined based on the transition 
probabilities from the current context. Therefore, we have adapted the classical Markov 
model presented in (3), whose values are from a 1D sequence, to work with the values of a 
2D area. In our application, the probability of a pixel value is determined as the frequency of 
its occurrence in the same or similar contexts. Thus, the noisy pixel represents the next state 
which must be predicted, the surrounding pixels represent the context, whereas the search 
area encodes the previous states through its pixel values. In the case of grayscale images, the 
states consist of pixel values ranging between 0 and 255. Thus, we adjusted the order R 
model as follows: 
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where CS is the context size expressed as the number of pixels from one side of the context 
square, W and H are the width and height of the image, respectively. Since the context is 
surrounding one pixel, its size can have only odd values. The pixel value qx,y depends on the 
pixel values from the surrounding context, excepting its own value. Thus, the order of the 
CBPF will be R=CS2-1 and the context consists in R pixel values. The probability of a certain 
pixel value in a given context is determined as the frequency of that pixel value in the 
considered context occurring within the image. 

Equation (4) implies searching the contexts in the entire image, which leads to a major 
disadvantage from the timing point of view. Therefore, we limit the search area, based on the 
search radius SR, as follows: 
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Obviously, we have adjusted the SR on the margins to keep it within the image and have 

considered noisy pixels having values of 0 or 255, as in [4]. When we have determined that a 
pixel is noisy (N), we have taken the context C of that pixel consisting in R pixels from the 
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neighborhood, and searched for that context in a larger area, with size defined by SR, as it is 
illustrated in Figure 1. The noise-free pixel value occurred in that context with the highest 
frequency will replace the noisy pixel value N. 

N

C C C C C

C

C

C

C C C CC

C

C

C

context size (CS)

search radius (SR)
N

C C C C C

C

C

C

C C C CC

C

C

C

context size (CS)

search radius (SR)

 
Figure 1. The CBPF proposed for image denoising 

 
The algorithm which replaces a noisy pixel through the presented context-based prediction 

technique is described in the following pseudocode: 
 

CBP (x, y, SR, CS, T) 
For i:=x-SR to x+SR, 0≤i<W  

  For j:=y-SR to y+SR, 0≤j<H 
   If i=x AND j=y then  

Continue 
   If SAD(x, y, i, j, CS)<T AND NOT Salt_Pepper(i, j) then  

Q[Color(i, j)]:=Q[Color(i, j)]+1 
Return Max(Q) 

 
The parameters of the CBP function are: the position of the current pixel, the search area 

defined by SR, CS which gives the order of the model and the similarity threshold T. 
Obviously, the noisy pixel is not part of the context. In order to improve the algorithm 
efficiency, we do not search for identical contexts; we accept similar contexts, measuring the 
similarity degree as the sum of absolute differences: 

 

∑ ∑
−

=

−

=
−=

1

0

1

0
21 ),(),(

CS

j

CS

i

jiBjiBSAD , without 
2

CS
ji ==  (6)  

 
The following pseudocode presents how we compute the sum of absolute differences: 
 

SAD (x1, y1, x2, y2, CS) 
 S:=0 
 For i:= -CS/2 to CS/2, 0≤i+x1<W, 0≤i+x2<W, do 
  For j:= -CS/2 to CS/2, 0≤j+y1<H, 0≤j+y2<H do 
   If i=0 AND j=0 then 

Continue 
   S:=S + |Color(i+x1, j+y1)-Color(i+x2, j+y2)| 
 Return S 
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Since the noisy pixel is not part of the context, the value of the middle pixel must be 

avoided in the SAD computation. We have considered a context similar if the SAD value is 
less than a certain threshold T. We keep in Q how many times a certain pixel value has 
occurred after the considered pixel. The Max function returns the color (index) of the highest 
element from Q. The noise-free pixel value occurred in similar contexts with the highest 
frequency will replace the noisy pixel value N. If there is at least one valid case, it is returned 
by the CBP function. If similar contexts have not been found, the initial noisy pixel is 
unchanged, but this case is very rare. We have checked if a pixel is noisy with the 
Salt_Pepper function returning TRUE for pixels having values of 0 or 255. The CBPF 
algorithm is presented in the following pseudocode: 
   
CBPF(CS, SR, T) 

For i:=0 to W-1 do 
  For j:=0 to H-1 do 
   If Salt_Pepper(i, j) then 
    Set_Color(i, j, CBP(i, j, CS, SR, T)) 

 
where the Set_Color function replaces the value of the noisy pixel (i, j) with the value 
returned by the CBP function. 

 

 

4. Experimental Methodology 

We have implemented our CBPF algorithm in C#, whereas the implementations of the 
state-of-the-art denoising methods used for comparisons were available in Matlab. The tests 
were performed on three 512×512 grayscale PNG images: Boat, Cameraman and Airplane. 
We have added salt-and-pepper noise into the original images, in ratios between 10% and 
90%, in steps of 10%. All the methods were compared using this set of noisy images. 

The performances of the denoising methods were expressed in terms of MSE and PSNR. 
The MSE shows the error values of a filtered image F compared with the original one O: 
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(7)  

 
where W and H are the width and height of the image, respectively. On the other hand, the 
PSNR estimates the quality of a denoised image with respect to the original one. The PSNR is 
computed as follows: 

 

MSE
PSNR

2

10

255
log10⋅=  (8)  

 
The goal is to obtain a low MSE and a high PSNR. 
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5. Experimental Results 

First, we have evaluated the CBPF by varying CS on a fixed SR=5 and T=500. As we have 
explained in Section 3, the CS can have only odd values and it must be at least 3. The MSE 
values obtained on the test images are presented in Figure 2. 
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Figure 2. The MSE of the Boat (a), Cameraman (b) and Airplane (c) images denoised using 
CBPF with different context sizes 

 
Figure 2 has shown that the best value for CS is 3, the CBPF being inefficient for higher 

contexts. A richer context leads to higher precision, but if it is too rich, the probability to find 
it is low. Therefore, usually the performance is increasing together with the context up to a 
certain size (which in our application is 3), after which it starts to decrease. 

We have continued our evaluations by varying the search radius SR between 2 and 5, 
considering the best CS=3 and a fixed T=500. The MSE values obtained on the test images 
are presented in Figure 3. 
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Figure 3. The MSE of the Boat (a), Cameraman (b) and Airplane (c) images denoised using 
CBPF with different search radius values 

 
One can observe that on the Boat image, a CBPF with SR value of 3 is better up to 60% 

noise level and for SR of 4 is better only starting with 70% noise density. On the Airplane 
image the SR of 2 is better up to 50%, while SR of 3 and 4 are very close and better starting 
with a noise of 60%. On the Cameraman image SR 4 performs best, it being just slightly 
outperformed by SR 2 on a noise up to 20%. Therefore, we consider that the optimal SR value 
will be 4. The conclusion after this evaluation step was that the search area might be 
sufficiently high to find the context, but if it is too high (SR≥5), the multiple pixel value 
choices can lead to uncertainty and thus to lower denoising ability. 

 The next stage of our analysis consists in varying the similarity threshold T between 
450 and 600, in steps of 50. As we have already explained, when we have searched for the 
context of the current noisy pixel, we have taken into account all the contexts whose 
similarity degree, computed as SAD, is less than T. Figure 4 presents the MSE obtained for 
different similarity threshold values, considering the best CS=3 and the optimal SR=4. 
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Figure 4. The MSE of the Boat (a), Cameraman (b) and Airplane (c) images denoised using 
CBPF with different search similarity thresholds 
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Figure 4 showed that the best similarity threshold value is 500 up to 70% noise on the 
Boat image and even up to 80% noise on the Cameraman and Airplane images. Only on very 
high noise density, a threshold of 550 or 600 is slightly better. Therefore, we have considered 
that the optimal similarity threshold value will be T=500. A difference of 500 in the SAD 
between two compared image blocks, taking into account the best CS=3 (contexts of 8 
pixels), results in a reasonable average per pixel difference of 62.  

Further, we have compared the optimal CBPF having SR=4, CS=3 and T=500 with other 
denoising methods. We have included in the comparative analysis the Noise Adaptive Fuzzy 
Switching Median Filter (NAFSMF) [13], the Decision Based Algorithm (DBA) [4], the 
Median Filter (MF), the Progressive Switching Median Filter (PSMF) [8], the Relaxed 
Median Filter (RMF) [7] and the Analysis Prior Algorithm (APA) [37]. Figures 5 and 6 
present comparatively the MSE and PSNR, respectively, for all the considered methods, 
including our CBPF with SR=4, CS=3 and T=500, on the Boat, Cameraman and Airplane test 
images. 
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Figure 5. Comparing the MSE on the Boat (a), Cameraman (b) and Airplane (c) images 

 

 
The MSE and PSNR results show that the CBPF outperforms the MF, PSMF and RMF 

denoising methods. It also partially outperformed the APA method, on noise levels up to 
20%. It is less performing than the NAFSMF and DBA methods. 
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Figure 6. Comparing the PSNR on the Boat (a), Cameraman (b) and Airplane (c) images 
 
Figure 7 presents the Cameraman image with 30% salt-and-pepper noise (a) and its 

denoised versions using our CBPF (b), as well as using NAFSM (c), DBA (d), MF (e), PSMF 
(f), RMF (g), APA (h). 
 

                            
  a.        b.     c. 
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          d.         e.     f. 

          
    g.            h. 

Figure 7. Denoising the Cameraman image with 30% noise (a) using the CBPF (b), NAFSM 
(c), DBA (d), MF (e), PSMF (f), RMF (g), APA (h) 

 
As Figure 7 depicts, the proposed CBPF can better remove salt-and-pepper noise than the 

MF, PSMF and RMF denoising methods. 

 

6. Conclusions and Further Work 

In this paper, we have proposed a new filtering method for impulse noise on grayscale 
images using context-based prediction. The CBPF replaces a pixel affected by salt-and-
pepper noise with the pixel which occurred in its neighborhood, determined by the search 
radius input parameter, with the highest frequency in the same context as the replaceable 
pixel. The frequencies of pixels occurring in a certain context are determined like in a 
Markov chain. Since our method is using context information, it can reconstruct details in the 
images affected by noise better than other methods. Due to the intrinsic behavior, it could 
have a significant advantage on images containing textures. The limitation of the proposed 
method stands in the computational time required for denoising, which recommends it only 
for off-line processing of images. 

We have analyzed our CBPF by varying its parameters. The tests performed on the Boat, 
Cameraman and Airplane images show that the CBPF with a context size of 3 is the optimal. 
In the next step, we have shown that the optimal search radius is 4. The last analyzed 
parameter was the similarity threshold whose optimal value was 500, admitting reasonable 
differences between the compared image blocks. We have compared the optimal CBPF (with 
configuration CS=3, SR=4, T=500) with other existing denoising methods in terms of MSE 
and PSNR. The experimental results show that the CBPF significantly outperforms the MF, 
the PSMF and also the RMF and it is not significantly worse than the NAFSMF and the DBA 
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methods (see Figures 5 and 6). It also partially outperforms, on low noise levels, other 
considered algorithms. For the case of usual noise filtering conditions (noise between 0-
30%), the proposed method is very close to the most performing denoising methods 
referenced. Therefore, in our opinion, this new method can be further developed, so that it 
could outperform all the existing methods. It is a new method, which is using context 
information, and has a high further development potential. 

Although the optimal SR is 4, there are some noise levels where a SR of 3, or even 2, is 
better. Therefore, as a further work direction, we will analyze the possibility to dynamically 
adjust the SR value and thus to adapt this input parameter to the image. Other possible further 
work directions are the dynamic context size adaptation, the use of other context shapes, the 
run-time computation of the similarity threshold based on the context size, as well as the use 
of the CBPF in a hybrid system together with fuzzy and neural methods. 
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