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Summary 

This habilitation thesis is a synopsis of the most important research achievements after the 

PhD thesis in prediction-based modeling and estimation in topics like computer architecture, 

smart factories, smart buildings, image processing and web mining. All the presented methods 

have in common a large exploitation of advanced prediction techniques and forecasting models. 

In computer architecture, different value prediction schemes have been developed and 

evaluated with the goal of increasing instruction-level parallelism and the overall processing 

performance and decreasing at the same time the energy consumption of superscalar, 

multithreaded and multicore microprocessors. Value prediction is a speculative technique, which 

anticipates the results of high-latency instructions and unlocks subsequent dependent instructions 

by speculatively executing them earlier. The prediction must be accurate, since any 

misprediction is treated by a recovery of the correct processor context, which consumes 

additional cycles. This work brings original contributions in developing and evaluating advanced 

value prediction methods applied selectively on critical Load instructions. We present counter-

based and perceptron-based prediction schemes integrated into simulators like M-SIM or Sniper. 

The high number of parameters of the simulated microprocessors generates a huge simulation 

complexity in the design space exploration process. Therefore, the multi-objective optimization 

is realized by heuristic search through genetic algorithms. 

My most recent research topic is aiming to improve the smart factory ecosystem with 

contributions in predicting and modeling assembly processes. The main goal is the integration of 

a prediction module into assembly assistance systems able to support factory workers in their 

manufacturing activities by providing choices for the next assembly step. First, a two-level 

contextual predictor was used to suggest the next assembly steps which consists in a state 

register (the first level) which indexes a table storing pairs of state-patterns and their associated 

next states (the second level). Another variant of the two-level contextual predictor extended 

each assembly state with an automaton which could be in stable or in unstable substate. 

Unfortunately, this scheme provided insignificant improvement, and because it used 

supplementary information and additional steps in the prediction process, it was considered less 

efficient than the scheme without automata. The Markov model is another context-based two-

level predictor which can store multiple next states, together with their number of occurrences 

for each pattern. The length of the context determines the order of the model. The state with the 

highest number of occurrences is extracted from the prediction table entry selected with the left-

shift state register and is then provided as the predicted one. Such a predictor can provide 

multiple next assembly choices with different probabilities, but for time-critical decisions it can 

be configured to return the most probable state. The prediction by partial matching algorithm 

was also evaluated as an assembly step predictor. It combines different order Markov predictors. 

The model of order R first tries to predict with the Markov chain of order R. If the Markov chain 

can predict, its prediction is returned. Otherwise, if the current Markov chain cannot predict, the 

order is decremented until a prediction can be done or all the models were evaluated without 

success and, in that case, no prediction can be provided. Because the current context cannot 

always be found in the prediction table, an enhanced prediction scheme was considered, which 

explores the neighboring characteristics of the user if the actual characteristics do not have an 

exact match. Neighboring context exploration involves changing one characteristic of the worker 

at a time followed by prediction trial. The step that was predicted the most from the neighboring 

states will be considered the next assembly step.  

In the smart buildings research area, a main contribution consists in smart energy 

management systems designed for households equipped with photovoltaics and energy storage 

systems making automated decisions based on forecasted electricity production and 
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consumption. At any time, the system can combine the own produced electricity with the stored 

electricity and with electricity from the grid. The interest is to adjust and synchronize through 

prediction the electricity consumption and production increasing self-consumption and reducing 

the intake from the power grid. Thus, the total annual operating cost is lower and, as additional 

benefit, the losses in the distribution networks are reduced. Based on the predictions, the energy 

management system may decide to activate some household appliances when cheap electricity is 

available and to delay their activation when only high-cost electricity is available. Markov 

chains, stride predictors, a Long Short-Term Memory and hybrid models were developed and 

evaluated on the available datasets.  

In the image processing topic, a context-based denoising method was developed for 

grayscale images affected by impulse noise. The proposed algorithm is using Markov chains to 

replace the detected noise with the intensity having the highest number of occurrences in similar 

contexts. The context of a noisy pixel consists in its neighbor pixels and is searched in a larger 

but limited surrounding area. We have analyzed different search methods and different context 

shapes. The experimental results obtained on the test images have shown that the most efficient 

model applies the search in form of “*” of contexts having the form of “+”. Beside the better 

denoising performance obtained on all the noise levels, the computational time has been also 

significantly improved with respect to the context-based filter which applies full search of full 

context. We have also compared this Markov filter with other denoising techniques existing in 

the literature, most of them being significantly outperformed. Another original contribution is a 

context-based inpainting method which is using Markov chains to repair pixel colors from 

images affected by external factors (defects) or to replace pixel colors belonging to image areas 

covered by objects or texts. First, the user must select the target area and then the developed 

inpainting algorithm is replacing each pixel intensity from the target area based on the 

surrounding unaffected context information. The restoration process is applied from the exterior 

to the interior within the selected target area. For the replacement of a certain pixel intensity, we 

explored a limited surrounding image area to identify the intensity occurring with the highest 

probability in similar contexts. Since we use context information, the proposed inpainting 

technique can very well rebuild the image details. 

In the web mining research area, several prediction-based web-prefetchers have been 

studied. The prediction by partial matching algorithm was evaluated, as well as a dynamic 

decision tree with different order Markov predictors as components. The predicted web object is 

prefetched into the cache to make it available for possible next accesses. The experiments 

performed on a dataset from the Boston University show that the optimal method is the dynamic 

decision tree which uses as features the current link, the link type and the predictions provided 

by the Markov chains of orders 1-4. This optimal predictor outperformed all the Markov models 

applied separately, but also the prediction by partial matching. 
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Rezumat 

Această teză de abilitare este o sinteză a celor mai importante realizări de după teza de 

doctorat în modelare și estimare bazată pe predicție în domenii precum arhitecturi de calcul, 

fabrici inteligente, clădiri inteligente, procesarea imaginilor și web mining. Toate metodele 

prezentate au în comun o largă exploatare a tehnicilor avansate de predicție și a modelelor de 

prognoză.  

În domeniul arhitecturilor de calcul, s-au dezvoltat și evaluat diferite scheme de predicție a 

valorilor având ca scop creșterea paralelismului la nivelul instrucțiunilor și a performanței de 

procesare și în același timp scăderea consumului de energie în cazul microprocesoarelor 

superscalare, multifir sau multicore. Predicția valorilor este o tehnică speculativă aplicată pentru 

anticiparea rezultatelor instrucțiunilor cu latență de execuție ridicată și deblocarea instrucțiunilor 

dependente prin execuție speculativă. Predicția trebuie realizată cu acuratețe pentru că fiecare 

predicție greșită trebuie tratată printr-un mecanism de recuperare a contextului corect, ceea ce 

introduce timp de execuție suplimentar. Această lucrare aduce contribuții originale în 

dezvoltarea și evaluarea unor metode avansate de predicție a valorilor aplicate selectiv pe 

instrucțiuni Load critice. Sunt prezentate scheme de predicție bazate pe contoare respectiv 

perceptroni integrate în simulatoare ca M-SIM sau Sniper. Numărul mare al parametrilor 

microprocesoarelor simulate generează o complexitate de simulare ridicată în procesul de 

explorare a spațiului de proiectare. De aceea, optimizarea multi-obiectiv se realizează aplicând 

căutarea euristică prin algoritmi genetici. 

Tema de cercetare în care m-am implicat cel mai recent propune îmbunătățirea 

ecosistemului de fabrică inteligentă prin contribuții în predicția și modelarea proceselor de 

asamblare a produselor. Scopul principal este integrarea unui modul de predicție în stații de 

asamblare capabile să ghideze muncitorii oferind opțiuni cu privire la următorul pas de 

asamblare. Ca o primă încercare, pentru furnizarea următorului pas de asamblare s-a folosit un 

predictor contextual pe două nivele compus dintr-un registru de stare (primul nivel) care 

indexează o tabelă ce stochează perechi de context împreună cu starea următoare asociată (al 

doilea nivel). O altă variantă a predictorului contextual pe două nivele extinde fiecare stare de 

asamblare cu un automat care poate fi în substare stabilă sau instabilă. Din păcate, această 

schemă a adus îmbunătățiri nesemnificative și, având în vedere că folosește informații 

suplimentare și pași adiționali în procesul de predicție, s-a dovedit mai puțin eficientă decât 

schema inițială fără automat. Modelul Markov este un alt predictor contextual pe două nivele 

care poate stoca stări multiple împreună cu frecvențele lor de apariție pentru fiecare context. 

Dimensiunea contextului folosit stabilește ordinul modelului. Starea cu frecvența de apariție cea 

mai ridicată se extrage din intrarea tabelei de predicție selectată cu registrul de stare și este 

furnizată apoi ca stare predicționată. Un astfel de predictor poate furniza mai multe opțiuni cu 

probabilități diferite pentru următorul pas de asamblare, dar pentru sistemele în timp real se 

poate configura să returneze starea cea mai probabilă. A urmat evaluarea algoritmului de 

predicție bazat pe potrivire parțială pentru furnizarea următorului pas de asamblare. Acesta 

combină mai multe modele Markov de ordin diferit. Prima încercare de predicție a modelului de 

ordin R se realizează cu lanțul Markov de ordin R. Dacă acesta poate predicționa, i se returnează 

predicția. Altfel, dacă lanțul Markov curent nu poate predicționa, ordinul este decrementat până 

când predicția este realizabilă sau niciun model n-a reușit să predicționeze, caz în care procesul 

se încheie fără predicție. Deoarece contextul curent nu poate fi întotdeauna găsit în tabela de 

predicție, am introdus o schemă de predicție îmbunătățită, care explorează caracteristicile vecine 

ale utilizatorului dacă caracteristicile reale nu se potrivesc exact. Explorarea contextelor vecine 

implică schimbarea pe rând a câte unei caracteristici a muncitorului urmată de încercarea 
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generării predicției. Starea predicționată majoritar din contexte vecine va fi considerată predicția 

finală. 

În domeniul clădirilor inteligente, principala contribuție constă într-un sistem inteligent de 

gestiune a energiei electrice destinat caselor echipate cu panouri fotovoltaice și sisteme de 

stocare a energiei care ia automat decizii pe baza estimării producției și a consumului de energie 

electrică. În orice moment sistemul poate combina după necesități energia electrică produsă local 

cu energia electrică stocată respectiv cu energie din rețeaua electrică. Rolul sistemului de 

gestiune este ajustarea și sincronizarea consumului și a producției de energie electrică, crescând 

raportul de autoconsum și reducând presiunea pe rețeaua electrică. Astfel, scad costurile anuale 

și, ca beneficiu suplimentar, scad și pierderile din rețelele de distribuție. Pe baza predicțiilor, 

sistemul de gestiune a energiei electrice poate activa electrocasnice când este disponibilă 

electricitate ieftină și poate întârzia activarea lor când e disponibilă doar electricitate scumpă. Au 

fost dezvoltate modele Markov, predictoare incrementale, rețele neuronale recurente de tip 

LSTM și modele hibride și toate au fost evaluate pe seturile de date disponibile. 

În ceea ce privește procesarea imaginilor, am dezvoltat o metodă contextuală de eliminare 

a zgomotului de tip impuls din imaginile în nivele de gri afectate. Algoritmul propus folosește 

lanțuri Markov pentru înlocuirea zgomotului detectat cu intensitatea care a apărut cel mai 

frecvent în contexte similare. Contextul unui pixel afectat de zgomot constă în intensitățile 

pixelilor din strânsa vecinătate și este căutat într-o vecinătate mai largă dar limitată. Am analizat 

diferite metode de căutare și diferite forme de context. Rezultatele experimentale obținute pe 

imagini de test au arătat că modelul cel mai eficient aplică o căutare în formă de „*” a 

contextelor în formă de „+”. Pe lângă performanța de filtrare îmbunătățită pe toate nivelele de 

zgomot, s-a redus substanțial și durata de procesare față de modelul de filtrare contextuală cu 

căutare completă a contextelor de formă pătratică. Am comparat acest filtru Markov cu alte 

tehnici de filtrare existente în literatura de specialitate, majoritatea lor fiind net depășite. O altă 

contribuție originală constă în metode de reconstrucție contextuală a zonelor de imagine afectate 

de factori externi (defecte) sau acoperite de obiecte sau text. Într-o primă fază, utilizatorul 

trebuie să selecteze zona dorită, iar apoi algoritmul dezvoltat înlocuiește intensitatea fiecărui 

pixel din zona marcată pe baza informațiilor contextuale neafectate din jur. Procesul de 

restaurare se aplică din exterior spre interior în cadrul zonei selectate. Pentru înlocuirea 

intensității unui anumit pixel, se explorează o zonă limitată din jur în vederea identificării 

intensității care apare cel mai frecvent în contexte similare. Prin folosirea informațiilor 

contextuale, tehnica propusă poate reconstrui foarte bine detaliile din imagini. 

În domeniul web mining, am studiat diverse metode de preîncărcare a obiectelor web pe 

bază de predicție. S-a evaluat algoritmul de predicție bazat pe potrivire parțială, precum și arbori 

de decizie cu diferite componente Markov. Obiectul web predicționat se preîncarcă în cache 

pentru a-l face disponibil în caz de accesare. Experimentele efectuate pe setul de date colectat de 

Universitatea din Boston arată că metoda optimă este cea bazată pe arbore de decizie care 

folosește ca trăsături link-ul curent, tipul link-ului și predicțiile generate de lanțurile Markov de 

ordin 1-4. Această metodă optimă de predicție a depășit toate modelele Markov aplicate 

individual, dar și algoritmul de predicție bazat pe potrivire parțială. 
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I. ACHIEVEMENTS 

1. Introduction 

This habilitation thesis provides a summary of my research related to prediction methods 

in different applications developed since the defense of my PhD thesis in November 2008. This 

chapter presents the context and motivation of my works, summarizes the scientific contributions 

as well as their scientific and didactic impact. 

1.1. Context and Motivation 

The general prediction mechanism consists in anticipating future contexts based on current 

and previous context information. Prediction can be applied in computing systems if it brings a 

certain gain in performance, energy consumption, or resource management in general, through 

the availability of some data in advance. Prediction can be also used in modeling different 

processes or signals.  

In some of the computing systems, like microprocessors, inexactness is not accepted and, 

therefore, if the speculation fails, the correct context might be recovered. Such a correct state 

recovery has its timing costs. Obviously, the misprediction rate can be kept on low levels by 

using the most accurate predictor. In other computing systems, like assembly assistance systems, 

smart building applications, image restoration applications, web prefetching systems, etc., 

inexactness is acceptable and, thus, a recovery is not necessary in the case of failed speculation, 

but for the highest benefits the most accurate predictor is preferred.  

In both situations, the predictor might be updated run-time after mispredictions in order to 

dynamically improve the prediction accuracy. The quality of a prediction model is highly 

dependent on the quality of the available data. Especially the choice of the features to base the 

prediction on is important. This habilitation thesis presents several prediction methods adapted 

and configured for different applications. 

1.2. Research Roadmap 

Most of my research activities were focused on analyzing, developing and adapting 

prediction methods for different applications. Thus, all the researches presented in this 

habilitation thesis have in common the prediction. 

As an extension of the research from my PhD thesis, chapter 2 presents different hardware 

prediction schemes applied in microprocessors. Power became a very important design 

constraint in nowadays processors and a lot of research targets toward analysis and optimization 

of power consumption. In this context, we analyzed the efficiency of selectively anticipating the 

results of some long-latency instructions within superscalar and Simultaneous Multithreaded 

(SMT) architectures. The goal is to prove that our selective value prediction technique beside the 

IPC improvement also reduces energy consumption. We show that the performance lost by 

reducing L1 cache capacity can be covered by our selective load value prediction technique. The 
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experimental results, performed on the SPEC 2000 benchmarks, show that reducing the L1 data 

cache space by quartering its size and using a selective value prediction produces a significant 

IPC speedup and a considerable energy reduction against the baseline microarchitecture. Next, 

we have included into our analysis the L2 unified cache. The considered parameters increased 

too much the design space and, therefore, we performed an automatic design space exploration 

using a special developed software tool by varying several architectural parameters through 

heuristic search. The experimental results show that our automatic design space exploration 

(DSE) provides significantly better configurations than our previous manual DSE approach, 

considering the proposed multi-objective approach to find the optimal configurations in terms of 

CPI (Cycles per Instruction) and energy consumption. 

The results on engineering a context-aware assistive system for manual assembly tasks are 

presented in chapter 3. The assembly station employs context-based predictors to suggest the 

next steps during the manufacturing process and is based on data collected from experiments 

with trainees in assembling a tablet. The predictors are trained with correct assembly styles 

extracted from the collected data and assessed against the whole dataset. Thus, we found the 

predictor that best matches the assembly preferences. We analyzed two-level context-based 

predictors, Markov predictors and the Prediction by Partial Matching (PPM) algorithm in terms 

of prediction rate, coverage and prediction accuracy. We have also improved the Markov 

predictor with a padding mechanism which improved the coverage and, thus, there is a 

significantly higher number of assembly steps which are correctly correlated with the real 

intentions of the workers. 

Humans typically act in a certain habitual pattern, which can be exploited in different 

anticipative systems within a smart building. Chapter 4 presents different prediction techniques 

applied in intelligent energy management systems, as components of smart buildings. Ubiquitous 

systems use context information to adapt appliance behavior to human needs. Even more 

convenience is reached if the appliance foresees the user’s desires and acts proactively. The 

electrical power sector must undergo a thorough metamorphosis to achieve the ambitious targets 

in greenhouse gas reduction set forth in the Paris Agreement of 2015. Reducing uncertainty 

about demand and, in case of renewable electricity generation, supply is important for the 

determination of spot electricity prices. In this context, we evaluate a context-based technique to 

anticipate the electricity production and consumption in buildings. We focus on a household with 

photovoltaics and energy storage system. We analyze the efficiency of Markov chains, stride 

predictors and also their combination into a hybrid predictor in modelling the evolution of 

electricity production and consumption. All these methods anticipate electric power based on 

previous values. The main goal is to determine the best method and its optimal configuration 

which can be integrated into an intelligent energy management system. The role of such a system 

is to adjust and synchronize through prediction the electricity consumption and production in 

order to increase self-consumption, reducing thus the pressure over the power grid. 

In chapter 5, the focus is on two image restoration techniques: impulse noise filtering and 

inpainting. Digital images are often degraded by impulse noise during acquisition from sensors 

or transmission through a faulty communication channel. Salt-and-pepper is a typical impulse 

noise composed of minimum and maximum valued pixels within the affected image. The main 

objective of salt-and-pepper denoising methods is the preservation of unaffected pixels while 

restoring the missing information. We introduced a new image denoising method relying on 

prediction through Markov chains. The algorithm replaces the noisy pixel’s intensity with the 

predicted one: the value occurring with the highest frequency in the same context as the 

replaceable pixel’s intensity. We have analyzed different search methods and different context 

shapes. Since it is a context-based technique, it preserves the details in the filtered images better 

than other methods. After the success of the Markov chains in image denoising, we analyzed the 

possibility to apply them for image inpainting, thus to restore the colors of objects from images 

affected by some external factors (like scratches or wipes) or partially covered by other objects. 

Damages or unwanted objects can be removed from an image by replacing the intensity of each 
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pixel from such an area, based on the surrounding unaffected context information. The 

restoration process is applied from the exterior to the interior, using for replacement colors 

occurring with the highest probability in similar contexts. Since we use context information, the 

proposed inpainting technique can successfully rebuild details in images. 

Different prediction-based web prefetching techniques are analyzed in chapter 6. 

Prefetching anticipates the next accesses and loads the corresponding web objects into the cache. 

If the user accesses a web object which is available in the cache, the browser can load it without 

any delays. Prediction-based prefetching can be very effective in long browsing sessions by 

minimizing the access latencies. One of the evaluated method is PPM. Since the number of 

visited web pages can be high, tree-based and table-based implementations can be inefficient 

from the representation point of view. Therefore, we present an efficient way to implement PPM 

as simple searches in the observation sequence. Thus, we can use high number of states in long 

web page access histories and higher order Markov chains at low complexity. The time-

evaluations show that the proposed PPM implementation is significantly more efficient than 

previous implementations. We have also enhanced the predictor with a confidence mechanism, 

implemented as saturating counters, which classifies dynamically web pages as predictable or 

unpredictable. Predictions are generated selectively only from web pages classified as 

predictable, improving thus the accuracy. The other evaluated method is a hybrid one consisting 

in a dynamic decision tree and different order Markov predictors as components. The predictions 

generated by the Markov chain components are used as features within the dynamic decision 

tree. We use a decision tree to select the most predictive features from the considered feature set 

and based on those selected features we generate predictions. In our application the feature set 

includes the current link, the type of the current link as well as the predictions of different order 

Markov chains. 

Finally, chapter 7 presents the main further work plans. I will continue the research in all 

the five directions: anticipative techniques in multicore architectures (ideas defined in [179] and 

[16]), adaptive assembly assistance systems, smart energy management systems, context-based 

image restoration and prediction-based hybrid web prefetching. 

1.3. Impact of Contributions 

Starting from my teaching assistant position at Lucian Blaga University of Sibiu in 2003, I 

had a sustained research activity by publishing 7 books, 40 papers in conference proceedings and 

journals indexed in ISI Web of Knowledge and 29 papers in conference proceedings and journals 

indexed in other international databases.  

My main research topic, derived from my PhD thesis and still active today, was in the 

computer architecture domain, the research activities being deployed in prof. Lucian Vintan’s 

research center. The experience and the knowledge accumulated from that period allowed me to 

diversify my research areas and interests, covering today also topics like smart factories, smart 

buildings, image processing and web mining, with significant results in publications indexed ISI 

Web of Knowledge. I was member in the research teams of 8 research projects. I was manager or 

responsible from Lucian Blaga University of Sibiu of other 8 research projects. In 2010 I 

received the “AD AUGUSTA PER ANGUSTA” prize awarded by Lucian Blaga University of 

Sibiu for excellence in scientific research. The recognition of my publications is reflected by 

more than 600 citations and a Hirsch index of 13 in Google Scholar. The Hirsch index is 8 in 

Scopus and 7 in ISI Web of Science. As another recognition of my research activity, I was 

invited to be part of the program committee of international conferences, to serve as scientific 

reviewer for international journals and also to be member of the editorial board of Journal of 

Digital Information Management, Journal of E-Technology, International Journal of Advanced 

Statistics and IT&C for Economics and Life Sciences, and Future Internet (special issue: 

Computer Vision, Deep Learning and Machine Learning with applications). I was also member 

of the organizing committee of international conferences and workshops. Currently, I am an 
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active member of the Advanced Computer Architecture and Processing Systems (ACAPS) 

research center from Lucian Blaga University of Sibiu and an affiliate member of the European 

Network of Excellence on High Performance and Embedded Architecture and Compilation 

(HiPEAC). 

Most of the work was possible due to my research mobilities at Barcelona Supercomputing 

Center in 2006 and at Polytechnic University of Milan in 2009, but especially due to the very 

fruitful collaborations with prof. Theo Ungerer (University of Augsburg), prof. Colin Egan 

(University of Hertfordshire), prof. Cristina Silvano (Polytechic University of Milan), prof. Ugo 

Fiore (Parthenope University), prof. Francesco Palmieri (University of Salerno), my colleagues 

prof. Lucian Vintan, prof. Adrian Florea, prof. Remus Brad and prof. Constantin-Bala 

Zamfirescu from the Computer Science and Electrical Engineering Department and my students 

who provided so many times their technical support. The results presented in this habilitation 

thesis were obtained after my PhD thesis, mostly as associate professor (since 2015). 
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2. Speculative Computer Architectures 

A load value predictor is a hardware architectural enhancement which speculates over 

the results of load instructions to speed-up the execution of the subsequent instructions. 

Lipasti first proposed the Load Value Prediction (LVP) concept and, particularly, he 

developed a non-selective LVP in 1996 but we have not used his LVP structure due to its 

huge complexity. Our proposed architectural enhancement, the Selective Load Value 

Prediction (SLVP), differs from a classic value predictor due to an improved selection scheme 

that allows activating the predictor only when a miss occurs in the first level of cache. We use 

a simple direct-mapped table which requires less additional hardware enabling reduced energy 

consumption than traditional approaches (Lipasti’s first proposal).  

Taking into account that low-power computing became an important design objective 

for mobile, battery-operated devices and even in high-performance microprocessors, the goal 

of this chapter is to explore several configurations of architectures with selective load value 

prediction and to determine the most efficient one in terms of Instruction Per Cycle (IPC) and 

energy consumption. A very important question is: would the selective load value prediction 

mechanism allow us to decrease the data cache size and implicitly the energy consumption, 

without loosing performance? We’ll answer this question by performing a design space 

exploration regarding the size of the L1 data cache in order to find the optimal configuration, 

which keeps high performance at low energy consumption. We also compare different 

superscalar and simultaneous multithreaded (SMT) architectures (enhanced with our selective 

load value predictor, Lipasti’s non-selective load value predictor, Jouppi’s victim cache, etc.) 

and show that our anticipative technique outperforms the others. 

2.1. Superscalar and SMT Microarchitectures with Load Value 

Predictor 

In this section we present a manual design space exploration of superscalar and SMT 

architectures with SLVP, published in [68]. In [67], we have analyzed the efficiency of 

selectively anticipating the results of some long-latency instructions within superscalar and 

SMT architectures. Particularly we have focused on multiply (MUL), Division (DIV) and 

critical Load instructions (with miss in L1 data cache [58]). We integrated into the M-SIM 

simulator [185] a Dynamic Instruction Reuse (DIR) scheme for the MUL/DIV instructions 

and a LVP for the critical Load instructions. Our improved superscalar architecture achieved 

an average IPC speedup of 3.5% on the integer SPEC 2000 benchmarks, of 23.6% on the 

floating-point benchmarks, and an improvement in energy-delay product of 6.2% and 34.5%, 

respectively. Our evaluations have also shown higher IPC and lower relative energy 

consumption (energy-delay product) on all the evaluated SMT configurations (1, 2, 3 and 6 

threads).  

Since our previous results show that most of the IPC speedup was generated by the load 

value predictor we further focalize only on this speculative technique. In [68], we performed a 

manual design space exploration regarding the size of the L1 data cache in order to find the 

optimal configuration, which keeps high performance at low energy consumption. We have 

shown that the performance lost by reducing the L1 cache capacity can be covered by our 

SLVP technique. The experimental results, performed on the SPEC 2000 benchmarks, have 

expressed that reducing the L1 data cache space by quartering its size and using SLVP 

produces an improvement of the IPC and energy consumption in both the superscalar and 

SMT architectures against the corresponding baseline architectures. 
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2.1.1. Related Work 

Lipasti et al. [134] firstly introduced value locality as the third facet of the statistical 

locality concepts used in computer engineering. They defined the value locality as “the 

likelihood of the recurrence of a previously-seen value within a storage location inside a 

computer system”. Measurements using SPEC95 benchmarks show that value locality on 

Load instructions is about 50% using a history of one (producing the same value as the 

previous one) and 80% using a history of 16 previous instances. Based on the dynamic 

correlation between Load instruction addresses and the values the Loads produce, Lipasti et 

al. proposed a new data-speculative micro-architectural technique, the LVP, that can 

effectively exploit value locality. LVP is useful only if it can be done accurately since 

incorrect predictions can lead to increased structural hazards and longer Load latency. By 

classifying Load instructions separately (unpredictable, predictable and constants) based on 

their dynamic behavior, it can be extracted the full advantage of each case. The cost of 

mispredictions can be avoided by detecting the unpredictable Loads. On the other hand, 

identifying highly predictable Loads reduces the cost of memory access. An important 

difference between our value prediction approach and Lipasti’s is that we selectively predict 

only critical Loads. Thus, we attenuate the mispredictions cost and reduce the hardware cost 

of the speculative micro-architecture. Moreover, since less hardware is required, there is also 

less power consumption. 

Mutlu et al. presented in [152] a new hardware technique named address-value delta 

(AVD) prediction, able to parallelize dependent cache misses. They observed that some Load 

instructions exhibit stable relationships between their effective addresses and data values, due 

to the regularity of allocating structures in the memory by the program, which is sometimes 

accompanied by the regularity in the program’s input data. In order to exploit these regular 

memory allocation patterns, the authors proposed an AVD structure that maintains the Load 

instructions having a stable address-value difference (delta). Each entry of the AVD table 

consists in the following fields: Tag (the upper bits of the Load’s PC), AVD (the address-value 

delta corresponding to the last occurrence of that Load) and Conf (a saturating counter that 

records the confidence of AVD). The Conf field is used to avoid predictions for Loads with an 

unstable AVD. If a Load instruction having a stable AVD occurs with a cache miss, its data 

value is predicted by subtracting the stable delta from its effective address. This prediction 

enables the pre-execution of dependent instructions, including Loads with cache miss. The 

experimental results show that integrating a 16-entry AVD predictor into a runahead 

processor improves the average execution time by 14.3%, but only for pointer-intensive 

applications. 

In [23], the authors proposed a hardware-based method, called early load, in order to 

hide the load-to-use latency (the latency that instructions wait for their operands produced by 

Load instructions) with little additional hardware costs. The key idea is to make use of the 

time that instructions are waiting in the instruction queue to load the data early, before the 

Loads are effectively executed, by pre-decoding instructions during the fetch stage. Thus, 

instead of using previous instances (values) of the current Load instruction Chang et al. are 

using an earlier executed instance (value) of the current Load instance. In this way, the chance 

to be a correct value seems to increase. They use a small table, called Early Load Queue 

(ELQ) that records Load instructions and the early loaded data. The proposed scheme allows 

Load instructions to load data from memory before the execution stage. Obviously, a 

detection method assures the correctness of the early operation before the Load enters into the 

execution stage. If the corresponding ELQ entry is valid in the Load’s dispatch stage, the 

execution of the Load instruction is completely avoided and all the dependent instructions get 

the data from the ELQ. Unfortunately, this method does not work for out-of-order speculative 

architectures whereas our technique does. Also, it works only for very small instruction 

queues. The experimental results showed that this scheme can achieve a performance 
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improvement of 11.64% on the Dhrystone benchmark and 4.97% on the MiBench benchmark 

suite. 

In [107], the author proposes a new load latency tolerant design that is both energy 

efficient, and applicable to both in-order and out-of-order cores, based on slice re-execution as 

an alternative use of multi-threading support, efficient schemes for register and memory state 

management, using a chained store buffer for efficient store-to-load forwarding, and using 

pruning mechanisms to reduce re-execution overheads. The main idea of load latency 

tolerance is to virtually scale the critical execution structures (issue queue, physical register 

file). Load latency tolerance designs remove from these window resources all the instructions 

dependent on Loads with miss in caches in order to allow younger instructions to enter the 

pipeline and execute. When a miss returns, the instructions which depend on it are re-injected 

into the pipeline – re-acquiring issue queue entries and physical registers – and re-executed. 

2.1.2. Selective Load Value Prediction 

We integrated into our architectures a simple last value predictor used only for Loads 

with miss in the L1 data cache (selective approach). In this way, the implemented structure is 

more efficiently used; the collisions number will be lower against the approach that predicts 

all Load instructions, having tables of the same size. The information about Load instructions 

is maintained in a direct mapped Load Value Prediction Table (LVPT). The LVPT is accessed 

during the execution stage, only if the current Load instruction involves a miss in the L1 data 

cache. The structure of the LVPT is presented in Figure 1. 

Load Value Prediction

Table (LVPT)

PC of Load with miss

in L1 Data Cache

Tag Counter Value

Load Value Prediction

Table (LVPT)

PC of Load with miss

in L1 Data Cache

Tag Counter Value

 

Figure 1. The last value predictor’s architecture 

Each LVPT entry has the following fields: Tag (the higher part of the PC), Counter (a 

2-bit saturating confidence counter with two unpredictable and two predictable states), and 

Value (the Load instruction’s result). In the case of a hit in the LVPT, the corresponding 

Counter is evaluated. If the confidence counter is in an unpredictable state, the Load is 

executed without prediction. Otherwise, the Value from the selected LVPT entry is 

speculatively forwarded to the dependent instructions. In the commit stage, when the real 

value is available, in the case of misprediction, a recovery is necessary to squash speculative 

results and selectively re-execute the dependent instructions with the correct values (see 

Figure 2). We considered in our simulations a recovery taking 7 cycles in the misprediction 

case. 

During the commit stage, every critical Load updates the LVPT: only the Counter field 

in the case of correct prediction or the Value and the Counter fields in the case of 

misprediction. In the case of miss in the LVPT, the Tag and the Value are inserted into the 

selected entry, and the Counter is reset. 
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Fetch Decode Issue Ex1 Commit

LVPT

If Load with

miss in L1

Data Cache Predicted Value

Misprediction Recovery

Ex2 ExNFetch Decode Issue Ex1 Commit

LVPT

If Load with

miss in L1

Data Cache Predicted Value

Misprediction Recovery

Ex2 ExN

 

Figure 2. Pipeline with Selective Load Value Predictor 

In our selective approach we predict only Loads with miss in the L1 data cache. 

Therefore, the prediction latency consists in the L1 data cache tagging and the LVPT access 

latency. We obtained using Cacti [186] an L1 data cache tagging of 2 cycles and a LVPT 

access latency of one cycle. Thus, the LVPT prediction latency, in our selective approach, is 3 

cycles. In contrast, the original non-selective approach accesses the LVPT for all loads 

(without waiting for the L1 data cache tagging) and, therefore, the prediction latency is one 

cycle. 

2.1.3. Simulation Methodology 

We developed a cycle-accurate execution driven simulator derived from the M-SIM 

simulator [185] supporting the unmodified, statically linked Alpha AXP binaries as well as 

the power estimation as supplied by the Wattch framework [15]. M-SIM extends the 

SimpleScalar toolset [19] with accurate models of the pipeline structures, including explicit 

register renaming, and support for the concurrent execution of multiple threads. We modified 

M-SIM to incorporate our SLVP model in order to measure the relative IPC speedup and 

relative energy consumption reduction when the results of long-latency (critical) Loads are 

anticipated.  

In the SMT mode [59], some processor structures (i.e. issue queue, physical register 

files, functional units, caches) are shared among the threads, and others (rename tables, 

ROBs, Load/Store Queues, branch predictors) are private to each thread. Our LVPT structure 

is private for each thread. 

All the simulation results are generated on the SPEC 2000 benchmarks 

(http://www.spec.org) and are reported on 1 billion dynamic instructions, skipping the first 

300 million instructions. For the superscalar architecture we evaluated six floating-point 

benchmarks (applu, equake, galgel, lucas, mesa, mgrid) and seven integer benchmarks: 

computation intensive (bzip, gcc, gzip) and memory intensive (mcf, parser, twolf, vpr). In 

SMT mode, the M-SIM simulator concurrently runs multiple benchmarks as different threads. 

We used the benchmark pairs {bzip, gcc}, {gzip, parser}, {twolf, vpr}, {applu, equake}, 

{galgel, lucas}, {mesa, mgrid} for our SMT with 2 threads. Processing more than 2 threads 

involves lower IPC speedups, because the shared functional units are better exploited due to 

the higher thread-level parallelism and therefore the LVPT structure becomes less important 

[67].  

Next, Table 1 presents the parameters of some important units of the simulated 

microarchitecture whose configuration can influence both the processing performance and the 

energy consumption. 
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Execution 

Latencies 

Execution 

unit 

Number 

of units 

Operation 

latency 

intALU 4 1 

intMULT 

/ intDIV 

1 3 / 20 

fpALU 4 2 

fpMULT / 

fpDIV 

1 4 / 12 

Superscalarity Fetch /Decode /Issue /Commit  

width = 4 

Branch 

predictor 

bimodal predictor with 2048 

entries 

LVPT 1024 entries, Access lat. = 1 cycle, 

Prediction lat. = L1 cache tagging 

(2 cycles) + Access lat. (1 cycle) = 

3 cycles 

Caches and 

Memory 

Memory unit Access 

Latency 

2-way associative L1 

data cache, 64 KB 

2 cycles 

2-way associative L1 

instruction cache, 64 

KB 

2 cycles 

8-way associative 

unified L2 data 

cache, 4 MB 

14 cycles 

Memory 270 cycles 

Resources 

Register File: [32 INT / 32 FP]*8 

Reorder Buffer (ROB): 128 

entries 

Load/Store Queue (LSQ): 48 

entries 

Table 1. Parameters of the simulated architecture 

Our measurements are generated using an 80 nm CMOS technology and 1.2 GHz 

frequency. We used the following formula for the relative IPC speedup calculation: 

[%]100



base

baseimproved

speedup
IPC

IPCIPC
IPC       (1) 

where baseIPC  and improvedIPC  are the instructions executed per cycle with the baseline and 

improved architectures, respectively. 

The detailed power modeling methodology, used in the simulator, is presented in [15]. 

The dynamic power consumption in CMOS microprocessors is defined as: 

faVCP dd  2
        (2) 

where C is the capacitance, generated using Cacti [186], Vdd is the supply voltage, and f is the 

clock frequency. Vdd and f depend on the assumed process technology. The activity factor a 

indicates how often clock ticks lead to switching activity on average. The power consumption 

of the modeled units highly depends on the internal capacitances of the circuits. From the 

capacitance point of view, there are three categories of architectural structures: array 
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structures, content-associate memories, and complex logic blocks. The first two categories are 

used to model the caches, branch predictors, the reorder buffer, the register renaming table, 

and the register file, while the last category is used to model functional units. 

For the power consumption evaluation, we used the aggressive non-ideal conditional 

clocking model [24] which scales linearly the power of active units with their usage and 

assumes 10% power dissipation in the case of unused units. The instantaneous average power 

consumption (PMean) for a certain benchmark is computed with the following relation: 

T

dttP

P

T

Mean

 

 0

)(

        (3) 

where T is the total simulation time in cycles and P is given in relation (2). The energy 

consumption is given by: 

TPE Mean           (4) 

where MeanP  is computed with relation (3) and T is the simulation time in cycles. The average 

energy (weighted mean) is given by the following formula in [ cyclesW  ]: 












N

i

i

N

i

ii

Mean

C

CE

E

1

1         (5) 

where N is the number of benchmarks, Ei is the total or per unit energy computed for 

benchmark i and Ci is the total number of cycles executed within benchmark i. The relative 

energy reduction percentage is given by: 

[%]100



base

improvedbase

reduction
E

EE
E       (6) 

where, baseE  and improvedE  are the energy consumptions of the baseline and our improved 

architectures, respectively. Thus, a positive value of reductionE  means an improvement of the 

relative energy consumption. 

2.1.4. Experimental Results 

We evaluated the IPC speedup, power dissipation and energy consumption with M-Sim 

[185] on SPEC 2000 benchmarks. We considered the following configurations: 

 Baseline architecture (2-way assoc. 64KB L1 data cache, 2-way assoc. 64KB 

instruction cache, 8-way assoc. 4MB unified L2 cache); 

 Baseline architecture with selective LVPT (direct mapped, 1024 entries, 15 KB); 

 Baseline architecture with non-selective LVPT [134], for comparison; 

 Baseline architecture but with only 1/2 L1 data cache (2-way assoc. 32KB); 

 Baseline architecture but with only 1/2 L1 data cache & selective LVPT; 

 Baseline architecture but with only 1/4 L1 data cache (2-way assoc. 16KB); 

 Baseline architecture but with only 1/4 L1 data cache & selective LVPT. 
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Figure 3 presents the IPC speedups over the baseline architecture. It shows that by 

halving or quartering the cache, the IPC speedup is still significant with the LVPT. The IPC is 

just slightly lower in the case of using a quarter of the L1 data cache because its misses are 

covered by the L2 data cache. Since Lipasti’s original prediction scheme presented in [134] is 

too complicated (being composed of three tables), it’s obviously outperformed. Thus, we 

compare the simple last value prediction table used selectively [67] and non-selectively 

(predicting every load instruction). 
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Figure 3. Average IPC speedups over the baseline superscalar architecture 

  

Selective LVPT (critical 

loads) 

Non-selective LVPT 

(statistics extracted for 

critical loads) 

Benchmark Predictions 

Correct 

predictions Predictions 

Correct 

predictions 

applu 22782796 21551807 17230347 16402766 

bzip2 879219 736996 973495 773384 

equake 5188 4394 1340 1225 

galgel 159536411 159425807 159432043 159371494 

gcc 7125184 6563152 6739856 6132672 

gzip 4630937 3828240 4144950 3519523 

lucas 17425768 17404806 17418002 17400437 

mcf 47456 45347 1028 1023 

mesa 1678431 1559547 1514038 1512910 

mgrid 13079513 12934598 4814996 4778241 

parser 5919387 5251232 5284201 4606584 

twolf 5990146 4549855 4657853 3601658 

vpr 10383135 8823526 7446884 5975711 

Total 249483571 242679307 229659033 224077628 

Table 2. Predictability with selective vs. non-selective LVPT 

The IPC is higher on our selective approach because, as Table 2 shows, the number of 

predictions of critical loads is significantly higher than on the non-selective approach. The 

reason is that a higher number of Loads are fighting for the LVPT in the non-selective 

approach, producing interferences, in the detriment of critical loads. Considering the poor 
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results obtained with the non-selective model, we renounced to present the corresponding 

results. 

Figure 4 illustrates the energy reductions over the baseline superscalar architecture. As 

we can observe, the architecture using the quarter of the L1 data cache enhanced with 

selective load value prediction is the most efficient evaluated configuration. Besides the 

positive influence of LVPT to energy reduction, quartering the L1 data cache size 

substantially contributes to save energy. 
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Figure 4. Average energy reductions over the baseline superscalar architecture 

We also evaluated a SMT architecture in the same configurations as those presented 

above. Figure 5 presents the IPC speedup, whereas Figure 6 depicts the energy reduction over 

the baseline SMT architecture. 
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Figure 5. Average IPC speedups over the baseline SMT architecture 
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Figure 6. Average energy reductions over the baseline SMT architecture 

As Figure 6 shows, the most efficient SMT configuration uses the half of the L1 data 

cache and our selective load value prediction technique. Quartering the L1 data cache does 

not further reduce the energy consumption as in the superscalar architecture and the IPC 

speedup is also lower. 

2.1.5. Summary 

Power consumption and processing performance represent two design constraints of any 

computing system ranging from embedded system to desktop computers. In this section we 

focused on the SLVP method by evaluating different architectural configurations in order to 

determine the most efficient one in terms of IPC and energy consumption. The experimental 

results, performed on the SPEC 2000 benchmarks, show a significant speedup and reduced 

energy consumption when we use a selective last value prediction table. Reducing the L1 data 

cache capacity by quartering its size and using a selective LVPT we obtained a relative IPC 

speedup at 8.03% and a relative energy reduction of 11.29% against the baseline architecture. 

These results encourage us to decrease the L1 data cache capacity in order to reduce the 

power consumption without loosing performance.  

For the SMT architecture, halving the L1 data cache size and using a selective LVPT is 

the most efficient configuration, with a relative IPC speedup of 13.77% and a relative energy 

reduction of 12.48%. Quartering the L1 data cache of a SMT architecture with two threads 

does not further reduce the relative energy consumption as in the superscalar architecture. 

As further work, we intend to study the thermal dissipation effects of our proposed 

architectural techniques and to try different dynamic energy and thermal management 

strategies: deactivating areas of L1 data cache, dynamic voltage or frequency scaling in 

function of the temperature, migrating computation in reserve modules, global clock gating, 

etc. The main idea would be to reduce power dissipation in the hotspots. Also, understanding 

and quantifying value prediction benefits in a multicore architecture might be a very 

important challenge. 
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2.2. Automatic Optimization of Superscalar Architectures with Load 

Value Predictor 

This section presents based on [69] an automatic design space exploration of an 

architecture containing a SLVP scheme suitable for energy-aware superscalar processors. In 

this section we extend the manual design space exploration of a SLVP-based superscalar 

architecture to the L2 unified cache. Our goal is to find optimal configurations in terms of CPI 

(Cycles per Instruction) and energy consumption. After this manual design space exploration 

performed by varying only 2 parameters we intend to increase the number of the varied 

parameters to 19. By varying 19 architectural parameters, as we proposed, the design space is 

over 2.5 millions of billions configurations which obviously means that only heuristic search 

can be considered. Therefore, we propose different methods of automatic design space 

exploration based on our developed Framework for Automatic Design Space Exploration 

(FADSE) tool which allow us to evaluate around 2500 configurations of the above-mentioned 

huge design space, while still finding good solutions! We implemented a domain ontology 

consisting of some micro-architectural restrictions and expert knowledge expressed through 

fuzzy rules, in order to accelerate the design space exploration. By performing a multi-

objective automatic design space exploration of the same architecture (using the FADSE tool 

[20]), but varying 19 architectural parameters, the obtained configurations are significantly 

better than the manually obtained ones. 

2.2.1. Related Work 

M3Explorer [187] is a DSE framework that includes many design space exploration 

algorithms. M3Explorer can use response surface models to accelerate the design space 

exploration. Another DSE tool is in a form of a website: archexplorer.org [37]. The users can 

upload their component on the website where it is integrated into a computer system 

simulator. The design is compared against other designs introduced by other users. The users 

do not have any control on the algorithm being used. NASA [117] is also a similar tool. It 

allows the user to easily integrate his/her DSE algorithm and offers the possibility to connect 

to any simulator (features offered also by FADSE). Magellan [121] is a DSE tool which is 

bounded to a certain simulator (SMTSIM). Magellan can perform only single objective DSEs. 

In [114], the FADSE tool was used to explore the vast design space of the Grid Alu 

Processor (GAP) and its post-link optimizer called GAPtimize, both developed at Augsburg 

University. It has shown that FADSE is able to thoroughly explore the design space for both 

GAP and GAPtimize and it can find an approximation of the Pareto frontier [20] consisting of 

near-optimal individuals in moderate time. For the GAP, FADSE can find, due to the 

approximation of the complexity, efficient configurations. 

In [174], the authors present an interesting DSE methodology for FPGAs. In [198], the 

authors are focusing on developing a DSE method for mapping tasks to the microarchitectural 

resources of an MPSoC. They exploit specific domain knowledge related to task allocation 

through a genetic algorithm. In contrast to our work, their domain knowledge is not focused 

on finding the best parameter values for a mono-core/multi-core hardware architecture from a 

multi-objective point of view. Also, their implemented domain knowledge is not considering 

hardware constraints, hierarchical parameters and design rules expressed in fuzzy logic as in 

our work. 

In [201] the authors present their developed performance modeling and simulation 

framework called ABSOLUT which reduces the complexity of the exploration by applying 

abstract virtual system models. The authors used the ABSOLUT tool in different applications. 

The average difference between the simulation results and the measurements performed on 

real platforms was quite acceptable (12%). 



Speculative Computer Architectures 

 20 

In [171] the authors present a DSE tool for an FPGA soft processor. The proposed 

framework uses regression trees and allows a fast DSE in an early design stage. In [30], the 

authors present an electronic system-level methodology for FPGA devices. They define a 

system-oriented computation model to capture the structure of parallel applications. The 

authors also present interesting early hardware cost estimation techniques which can speed up 

the DSE process. The methodology is adequately validated through a case-study on parallel 

JPEG encoding. 

To our knowledge FADSE is the single DSE tool that allows the user to introduce 

domain knowledge through fuzzy rules, written in a human-readable form, in order to 

accelerate the design space exploration. 

2.2.2. Simulation Methodology 

All the experimental results presented further were obtained using the SPEC 2000 

benchmarks on 500 million dynamic instructions, skipping the first 300 million instructions. 

We evaluated six floating-point benchmarks (applu, equake, galgel, lucas, mesa, mgrid) and 

six integer benchmarks: computation intensive (bzip, gcc, gzip) and memory intensive (mcf, 

twolf, vpr). Our measurements are generated using an 80 nm CMOS technology and 1.2 GHz 

frequency.  

The target architecture is a superscalar Alpha AXP 21264 processor augmented with a 

direct mapped selective load value predictor of 1024 entries, access latency of 1 cycle and 

prediction latency of 3 cycles [68]. It has a Register File of [32 int / 32 fp]*8, a Reorder 

Buffer (ROB) of 128 entries and a Load/Store Queue (LSQ) of 48 entries. First-level caches 

are 64 KB, 2-way associative, with a 1-cycle latency. The second-level unified cache is 4 MB, 

8-way associative and 6-cycle latency. The main memory has a latency of 100 cycles. 

The energy reduction metric was presented in 2.1.3 (see formula (6)). For the 

performance metrics we chose CPI (and not IPC) because we want to minimize all the 

objectives for the clarity of the Pareto graphs. For the relative CPI reduction we used the 

following formula: 

[%]100



base

improvedbase

reduction
CPI

CPICPI
CPI      (7) 

where baseCPI  and improvedCPI  are cycles per instructions with the baseline and improved 

architectures, respectively. A positive value of reductionCPI  means a performance improvement 

related to the baseline architecture. 

2.2.3. Manual Design Space Exploration 

A method to increase the cache performance is to reduce the penalty in case of miss 

using multilevel caches. Our simulated architecture uses two level exclusive caches. This 

allows smaller L2 data caches involving less power consumption. The evictions are performed 

based on the Least Recently Used (LRU) algorithm for both cache levels. 

The first goal of our research consists in performing a design space exploration 

regarding the sizes of the L1 data cache and the unified (instruction & data) L2 cache in 

superscalar architectures augmented with SLVP structures. Thus, we will double, halve, 

quarter and eighth the L2 cache and we will halve, quarter and eighth the L1 data cache, 

considering as reference the architecture presented in Section 3. We note with mUL2_nDL1 a 

configuration using m*4 MB 8-way associative unified L2 cache (m=2, 1, 1/2, 1/4, 1/8) and 

n*64 KB 2-way associative L1 data cache (n=1, 1/2, 1/4, 1/8). 
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Figure 7 presents the relative CPI and energy reduction – computed based on formulas 

(7) and (6), respectively – of different configurations with SLVP of 1024 entries reported to 

the baseline configuration without SLVP. It can be observed that the SLVP helps maintaining 

a better CPI and energy consumption when the cache sizes are reduced. The CPI reduction 

with the help of the SLVP is positive up to using halve of UL2 and eighth of DL1. Starting 

with quartering UL2, the CPI reduction is negative and therefore no performance 

improvement is achieved. 

 

Figure 7. Relative CPI and energy reduction reported to UL2_DL1 without SLVP as baseline 

The energy reduction is lower in the case of reducing the L2 cache to 1/8 than in the 

case of quartering it. The energy consumption has a static and a dynamic component. The 

1/8UL2 cache implies a higher miss rate than the 1/4UL2 and therefore higher dynamic power 

consumption, due to the higher number of off-chip accesses. Thus, even if the static power 

consumption of 1/8UL2 is lower than of 1/4UL2 the energy consumption is higher due to the 

higher dynamic power consumption. Therefore, using only the quarter of the L2 cache (2 MB) 

and the eighth of the L1 data cache (8 KB) is optimal from the energy consumption 

viewpoint. 

As a preliminary conclusion, after the manual design space exploration the best 

configuration regarding CPI is 2UL2_DL1 whereas the best configuration in terms of energy 

consumption is 1/4UL2_1/8DL1. There are also some optimal configurations from both CPI 

and energy viewpoints: 1/2UL2_1/2DL1 and 1/2UL2_1/4DL1. These results obtained through 

manual DSE encourage us to explore a larger design space by automatic DSE because the best 

and the optimal configurations are different and there are also other parameters which can be 

varied. 

2.2.4. Automatic Design Space Exploration 

In the previous section we varied only the cache sizes through our manual design space 

exploration. Beside the caches there are several parameters that can highly influence our two 

objectives: CPI and energy consumption. We selected 19 important architectural parameters 

to be varied during our automatic design space exploration, with the lower and upper limits 

given in Table 3. By varying these 19 architectural parameters the design space grows over 

2.5*1015 (2.5 millions of billions) configurations which obviously means that only heuristic 

search can be considered. Therefore, we propose different methods of automatic design space 

exploration based on our developed FADSE tool that contains also a NSGA-II genetic 

algorithm implementation. 
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Parameter Lower limit Upper limit 

DL1 / IL1 

cache 

Sets 2 32768 

Block size (bytes) 8 256 

Associativity 1 8 

UL2 cache 

Sets 256 2097152 

Block size (bytes) 64 256 

Associativity 2 16 

SLVP (entries) 16 8192 

Decode / Issue / Commit width 2 32 

ROB / LSQ / IQ size (entries) 32 1024 

Number of physical register sets (int / 

fp)   

2/2 8/8 

Int / fp ALU 2 8 

Int / fp MUL/DIV 1 8 

Table 3. Parameter limits 

To perform design space exploration, we have developed a tool called FADSE. It 

includes many state-of-the-art evolutionary algorithms through the included jMetal [43] 

library. FADSE can be connected to almost any existing simulator. The parameters are 

described through an extensible XML interface. FADSE allows parallel evaluation (included 

algorithms had to be modified to allow this). 

FADSE is a client-server application. The number of clients can be dynamically 

changed. Clients can be stopped or started while the DSE process runs. Since the DSE process 

can take a lot of time (weeks), reliability of the DSE tool is a major concern. FADSE is able 

to cope with failing clients, failing networks or even power loss of the entire system. It is able 

to recover from these situations by detecting the problems and resubmitting the simulations to 

other clients. In the case of power loss, it can restart the DSE process by making use of the 

integrated checkpointing mechanism. It contains a database which allows reusing already 

simulated individuals. This leads to a reduction of the time required to perform an exploration 

process. FADSE includes many metrics to evaluate the DSE process or to compare different 

algorithms. Some of the implemented metrics are: hypervolume, coverage, two set difference 

hypervolume, etc. 

We have chosen for our automatic DSE the NSGA-II genetic algorithm. NSGA-II is a 

multi-objective genetic algorithm developed by Deb et al. [35]. NSGA-II is not a distributed 

algorithm by default. To accelerate the DSE process we have changed the algorithm and now 

the individuals are evaluated in parallel. This is possible because the values of the objectives 

of an individual are required only after all the individuals are evaluated. So, an entire 

population can be evaluated in parallel and a single synchronization point has to be 

established at the end of a generation. We configured the NSGA-II algorithm as described 

below. 

As stop condition we will observe the hypervolume progress. If there is no progress for 

at least X generations we consider that the algorithm has converged. To measure the progress, 

we will use the following formula: 





X

i

ikk HH
1

)(Progress        (8) 

where Hk is the hypervolume of the current generation k, X  k. When this sum is smaller than 

a specified threshold θ the algorithm is stopped. 

The population size is 100 – as recommended in [35]. We use the bit flip mutation with 

a mutation probability of nparam1  [35] (where nparam is the number of varied parameters). 

In our situation the mutation probability is set to 0.05 (19 parameters). 
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We apply single point crossover, with the probability of crossover set to 0.9 (as 

specified in [35]). We use binary tournament selection (described in [35]). Used metrics: 

 Hypervolume: in a maximization problem the hypervolume is the volume enclosed 

between the Pareto front approximation and the axes. In a minimization problem a 

point must be selected (called hypervolume reference point). The hypervolume 

reference point is selected at the coordinates provided by maximum values of the 

objectives. 

 Other metrics: number of generated individuals, comparisons between the obtained 

Pareto fronts approximation. 

2.2.4.1. Run without prior information 

First, we start FADSE with an initial randomly generated population, without prior 

information. We search for the optimal SLVP-based superscalar configurations considering 

the same two objectives, CPI and energy consumption, as in the previous manual design space 

exploration. We vary the parameters presented in Table 3 with the hope to find better 

configurations than our manually obtained “optimal” configurations. To avoid extremes 

which can generate unfeasible configurations, we used the following constraints: 

 UL2 > DL1 + IL1 

 UL2_bsize ≥ DL1_bsize 

 UL2_bsize ≥ IL1_bsize 

where UL2_bsize, DL1_bsize and IL1_bsize are the block sizes for the unified L2 cache, L1 

data cache and L1 instruction cache, respectively. Additionally, we limited the cache sizes by 

using the following hard constraints (borders): 

 DL1: 16 KB - 1 MB 

 IL1: 16 KB - 1 MB 

 UL2: 1 MB - 8 MB 

Unfortunately, the constraints used within the initial run does not allow FADSE to 

efficiently explore the borders and, therefore, the configurations were not better than those 

obtained manually (see Figure 8) from the energy point of view. Consequently, we relaxed the 

minimum cache capacities as follows: 

 DL1: 4 KB - 1 MB 

 IL1: 8 KB - 1 MB 

 UL2: 256 KB - 8 MB 

As Figure 8 shows, with relaxed borders FADSE provides significantly better configurations 

than our previous manual design space exploration. With these constraints the design space is 

reduced to 3% of the initial space, meaning 7.7*1013 configurations. Considering both 

objectives, the better results are influenced by the following parameters: less DL1 sets, less 

IL1 sets, higher decode/issue/commit width, higher ROB size, higher IQ size, higher number 

of MUL/DIV and higher SLVP size. Big structures will increase the energy consumption thus 

we do need FADSE to find the relations between different parameters. We can observe again 

that SLVP helps maintaining better CPI and energy consumption with reduced cache sizes. 

Since the exploration with relaxed borders was superior to the initial constraints, in the 

next experiments we used only the relaxed borders. 

2.2.4.2. Run with manually obtained “optimal” configurations 

The second step in our experiment consists in starting FADSE with an initial randomly 

generated population but containing also our manually obtained “optimal” configurations and 

their vicinity (with the goal to find better ones). We selected from Figure 7 the best 
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configuration in CPI, 2UL2_DL1, the best configuration in terms of energy consumption, 

1/4UL2_1/8DL1, and other two configurations which are optimal from both CPI and energy 

viewpoints: 1/2UL2_1/2DL1 and 1/2UL2_1/4DL1. We also considered the vicinities of these 

four configurations by varying the SLVP size, L1 data cache size and L2 unified cache size 

one step up and down. Thus, we started FADSE again with randomly generated population 

but containing also our 24 selected configurations: the “optimal” manual configurations and 

their vicinities (some of them are overlapped). Figure 8 shows the obtained Pareto fronts after 

25 generations by the first three runs (initial run, run with relaxed borders and run with initial 

good configurations) compared with the manually obtained configurations.  

In terms of CPI all the runs find much better solutions than the manually obtained 

configurations. The run with relaxed borders clearly finds better configurations than the ones 

obtained through manual exploration and also better than the ones found during the initial run 

(restrictive constraints). The obtained solutions are distributed evenly along the Pareto 

approximated front. 

 

Figure 8. Pareto fronts’ comparison 

Inserting good configurations into the initial population provides also good results but it 

is not able to explore the area with very low energies. It obtains better results than the run 

with relaxed borders in the vicinity of energy 1.20E+10 [ cyclesW  ]. Low energy 

configurations are not found probably because the initial configurations were better (and we 

have observed this on our analysis of the Pareto front approximation evolution over the 

generations) than all the other individuals inserted randomly in the population. So, all these 

good individuals survived until the next generation and most of the offspring were generated 

from them, thus loosing diversity. The mutation operator with a probability of 0.05 of 

changing one parameter has a small chance to influence significantly the produced offspring, 

leading to a reduction of diversity. 

2.2.4.3. Run with knowledge expressed through fuzzy rules 

We are using fuzzy rules to allow the designer to express knowledge. The information 

provided by these fuzzy rules is then used during the search process to guide the DSE 
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algorithm. For this purpose, we have included the jFuzzyLogic library in FADSE. A user can 

define rules in a standard FCL file (IEC 61131 part 7). In [69], we have developed and 

implemented the following rules derived from our experience in computer architecture 

design: 

 

 IF Number_Of_Physical_Register_Sets IS small/big THEN 

Decode/Issue/Commit_Width IS small/big 

 IF SLVP_size IS small/big THEN L1_Data_Cache IS big/small 

 

We have selected the Mamdani-type fuzzy systems [143]. These imply the following steps 

that need to be carried to extract information: fuzzification of the input variables, evaluating 

the rules, aggregating the outputs and then defuzzification. The fuzzification was done using 

trapezoidal functions. For the evaluation the min function was used for “and” and max for 

“or”. For inference, the Mamdani implication has used (min). The rule aggregation was 

performed using the Mamdani aggregation (max). This system was selected because of its 

popularity. 

Two different mutation operators were used. Both are based on the bit flip mutation. To 

preserve diversity, the information provided by the fuzzy rules is not always taken into 

consideration. To obtain this, a probability of applying the fuzzy information (called fuzzy 

probability) is used. The only difference between the implemented methods is how the 

probability to apply the information provided by the fuzzy rules is computed. 
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Figure 9. Pareto front comparisons between the run with fuzzy rules and the run with relaxed 

borders  

In the simple implementation, this fuzzy probability is constant during the run of the 

algorithm and it is set to be equal with the probability of mutation (mutation_prob). If the 

fuzzy rule is not applied, the algorithm switches to the classical bit flip mutation for the 

current parameter. The second implementation uses a Gaussian probability so there is a higher 

chance to apply the fuzzy rules for the first generations. As the DSE process runs, the 

probability to apply the fuzzy rules decreases to a value close to mutation_prob. We have 

selected the parameters of the Gaussian function such that at generation 5 the function is close 

to 0. The Gaussian function is then translated so that the minimum is close to mutation_prob. 

The final form of the function is shown below: 
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where x increases with one for each individual generated by the algorithm. The result of this 

function is further multiplied by 0.8 and by the membership value [228] to obtain a maximum 

value less than 1. Figure 9 presents the results obtained with fuzzy information compared with 

the previous results. 

We have selected the run with relaxed borders (called “run without fuzzy”) as the 

reference run since it has found solutions all along the approximated Pareto front. In Figure 9, 

the run with fuzzy information (constant probability to apply the fuzzy rules) and the run 

without fuzzy information are compared. It can be easily observed that the run with fuzzy 

information obtains very good results. Figure 9 also shows that the run with fuzzy rules finds 

better results in the vicinity of energy 1.20E+10 [ cyclesW  ] than the run without fuzzy 

information. We have also compared the run with fuzzy rules with the one with initial good 

configurations and we observed that in fact the later obtains a few individuals which are 

slightly better.  
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Figure 10. Pareto fronts comparison between the runs with fuzzy rules 

Figure 10 performs a comparison between the results obtained with fuzzy information 

but with different methods of calculating the probability to use the information provided by 

them. The run with constant probability finds better individuals in the area with low energy. 

Having an almost 80% probability to apply the rules during the first generations might lead to 

a loss in diversity of the individuals on the parameters influenced by the rules. This fact might 

explain the poorer results. 

Figure 11 gives us two types of information: about the convergence of the algorithms 

and about the quality of results. It can be observed that the algorithms tend to stop the rapid 

evolution after 15 generations (initial run is an exception). The algorithms were run until 

generation 25 due to time constraints. 

After a comparison of the hypervolume values we can conclude that: the initial run with 

restricted borders obtained the worse results. Relaxing the borders considerably improved the 

quality of results even though the size of the design space has become larger by a factor of 

around 2 (from 3.8*1013 to 7.7*1013). Having good configurations inserted in the initial 
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population can lead to very good results but it starts to perform worse after generation 14, 

rising a bit after generation 19 and then dropping dramatically after generation 23. Observing 

the obtained Pareto front approximation and its evolution we have concluded that the 

algorithm tends to focus on a smaller area of the space, falling into local minima. This can be 

explained by the lack of diversity of the initial configurations, since all the individuals 

inserted differ on only two parameters from a total of 19. 
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Figure 11. Hypervolume comparison 

The run with a constant probability of accepting the results from the fuzzy rules 

provided the best results. The run with a Gaussian probability of applying the information 

provided by the fuzzy rules had a similar behavior at the beginning with the run using relaxed 

borders. After generation 12 the results are slightly worse. We can conclude that imposing a 

high probability of the rules will reduce diversity, especially with a small number of rules. In 

our previous work more rules were used and the membership functions had many intervals 

(associated linguistic terms) [115]. In this situation the runs with Gaussian probability 

provided better results. 

It can be observed that using some extra knowledge (initial configurations or fuzzy 

rules) makes the algorithm start from a better initial population (see the hypervolume values 

at generation 1) and, as a consequence, the algorithm’s convergence speed is higher. 

The hypervolume corresponding to the run with a constant probability of applying the 

fuzzy rules at generation 15, is reached by the run with relaxed borders only at generation 24. 

This is a great improvement. In our experiments, running one generation on 96 cores 

belonging to an Intel Xeon powered HPC system, with cores running at 2GHz, takes around 

one day. Running with fuzzy rules we achieved the same results 9 days earlier (36% faster) 

than without fuzzy rules. Additionally, after the same amount of time (25 generations) the 

hypervolume reached by the run with fuzzy rules is never reached by the simple run. If more 

qualitative information would have been provided through the fuzzy rules, we do expect even 

better improvements. A single experiment takes around 25 days. Running all the five 

experiments took over 4 months of simulation on a HPC system using 96 cores. 

All the runs evaluate roughly the same amount of individuals: around 2200 from the 

2500 individuals sent for evaluation; the rest are reused from the database (12% reuse 

degree). This means that the produced offspring are almost all of them new/different 
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individuals. This behavior is caused by the extremely large design space. In previous 

explorations on different simulators (smaller design space – 106) a reuse degree of around 

60% was observed [114]. 

After analyzing the best results obtained during the automatic DSE process we extracted 

the parameter values for optimal configurations from either high performance or low energy 

viewpoints. The results are presented in Table 4. As it can be observed, some parameters like 

Decode width and SLVP size must have high values in order to obtain both high performance 

and low energy. 

Parameter For high 

performance 

For low energy 

DL1 cache 

Sets 2048 32 

Block size (bytes) 256 64 

Associativity 2 2 

IL1 cache 
Sets 1024 32 

Block size (bytes) 16 256 

Associativity 8 1 

UL2 cache 

Sets 8192 256 

Block size (bytes) 256 256 

Associativity 4 16 

SLVP (entries) 4096-8192 4096-8192 

Decode / Issue / Commit width 32 / 16 / 32 16-32 / 4-8 / 16-32 

ROB / LSQ / IQ size (entries) 1024 / 512-1024 / 

128 

256 / 32-64 / 64 

Number of physical register sets (int / 

fp)   

8 / 8 2 / 2 

Int / fp ALU 8 / 8 8 / 2 

Int / fp MUL/DIV 8 / 8 8 / 8 

Table 4. Parameter values for optimal configurations 

2.2.5. Summary 

We have observed that the SLVP helps maintaining a better CPI and energy 

consumption when the cache sizes are reduced. Therefore, the optimal configurations, 

obtained by both the manual and automatic design space exploration of our SLVP-based 

superscalar architecture, have lower cache sizes than the baseline architecture without SLVP. 

FADSE is able to find good configurations by evaluating a very small percentage of the 

total search space. We reduced the number of evaluated configurations to only 2500, 

representing 3*10-11% of the huge constrained design space of 77 thousands of billions 

configurations. The experimental results show that our automatic design space exploration 

provides significantly better configurations than our previous manual design space 

exploration. 

Starting FADSE with initial good configurations can accelerate the DSE process. It is 

recommended that the configurations differ on multiple parameters so that diversity is 

preserved. In our situation the configurations differed only on three parameters thus leading to 

a loss of diversity and finally it could not explore the entire Pareto front. 

Using fuzzy rules can considerably accelerate the DSE process (9 days earlier to reach 

the same result in our situation). Also the obtained results are better than the ones obtained 

with no prior information after the same amount of time. In this concrete optimization 

process, the constant probability of applying the fuzzy rules lead to better results. In our 
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previous work – where the number of rules was higher and had more linguistic terms 

associated to the membership functions – we have obtained better results by modulating the 

probability with a Gaussian function during the generations. With a larger number of rules, 

the individuals are mutated into a more diverse population. Thus, forcing the rules to be 

applied often does not lead to a loss of diversity in the population. 

We plan to repeat these experiments on SLVP-based SMT and multi-core architectures. 

Other further work possibilities are to access the SLVP only in the case of miss in both the L1 

and L2 data caches, to index the SLVP table with the memory address instead of the 

instruction address, to exploit an N-value locality instead of 1-value locality as we are 

currently exploiting, to evaluate set-associative SLVP configurations and yet another one to 

design and implement an adaptive dynamic run-time thermal manager (temporarily 

deactivating the SLVP unit, voltage scaling, frequency scaling, migrating computation, etc.). 

We also plan to explore, as the third objective, the die size needed by the memory 

architecture. 

2.3. Multicore Architectures with Load Value Predictor 

In the last years the research in computer architecture was focused on multicore and 

manycore systems which mainly exploit the parallelism from concurrent programs. Some of 

the techniques applied to increase the performance in superscalar processors can have benefits 

in multicore systems, too. One such technique is load value prediction which speculates the 

results of loads to unlock subsequent dependent instructions.  

In this section, based on our previous work published in [71] and [72], we have 

enhanced the Sniper state-of-the-art multicore simulator with load value prediction 

capabilities. For doing this, we have integrated into Sniper private (per-core) LVPTs. The 

value prediction is selectively applied only on load instructions with miss in the first level of 

data cache (DL1). In this way, by focusing only on the high latency loads, a small and fast 

LVPT is enough to take all the benefits of load value prediction in terms of performance and 

energy consumption. Thus, we have used the LVPT structure to apply the SLVP technique.  

We have investigated a simpler counter-based method and a more complex perceptron-

based one. Perceptrons have been successfully applied in [118], [119] and [120] for efficient 

dynamic branch prediction within two-level adaptive schemes that are using fast per branch 

single-cell perceptrons instead of two-bit saturating counters. The branch address is hashed to 

select the corresponding perceptron’s weights, which are used to generate a prediction based 

on the global / local branch history, however, as it was shown in [94], [95], [93], [202], [203], 

[204], [56], [57], [178] and [157], such prediction information is not always relevant in the 

case of some hard-to-predict branches. The perceptron, one of the simplest neural networks, is 

a natural choice for branch prediction because it can be efficiently implemented in hardware. 

In this section, we adapted the perceptron-based branch prediction scheme presented in [118] 

and [119] for load value prediction [72], in order to ameliorate the so-called issue bottleneck 

(data-flow bottleneck). For each load instruction stored in the LVPT, the corresponding 

perceptron’s weights are stored, too. Actually, the perceptron’s hardware structure, 

representing a binary adder (Wallace-Tree of 3 to 2 Carry-Save, having a logarithmic depth), 

is global. Based on the previous behaviors of a certain load instruction, the corresponding 

perceptron classifier (a unique hardware structure together with the load instruction’s 

corresponding weights) determines if that load instruction is predictable or not. Only if a load 

instruction is predictable, the predicted value is used to speculatively unlock the subsequent 

dependent instructions’ processing. Thus, if the prediction is correct, the dependent 

instructions are earlier executed, which contributes to a global speedup of the multicore 

system. On the other hand, if the prediction is wrong, a recovery process is necessary, in order 

to re-establish the correct architectural state of the corresponding core (thread). Therefore, 

high prediction accuracies are necessary, which can be obtained with efficient predictors 
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applied only on the load instructions which are dynamically classified as predictable. Thus, 

with good prediction accuracies on a significant number of dynamic loads, this technique can 

provide a speedup. If the speedup is sufficiently high, it can also reduce the energy 

consumption, as we already have shown in the related papers [68], [69] and [71]. 

We have applied a manual design space exploration of the proposed parameterized 

speculative architecture on the Splash-2 parallel benchmarks. Our objectives are to analyze 

the prediction accuracy of the SLVP, the speedup and the energy consumption of multicore 

microarchitectures enhanced with SLVP, as well as to investigate the correlation between the 

obtained speedups and the number of critical loads (with miss in the DL1 cache). We believe 

that the importance of our work could be significant, taken into account that, as far as we 

know, nobody investigated the benefits of implementing value prediction in multicore 

systems. 

2.3.1. Related Work 

Value prediction was first introduced by Lipasti et al. in [134] and it was further 

intensively investigated in monocore processors. Monocore architectures enhanced with direct 

mapped SLVP tables have been presented in our previous works [67], [68], [69]. In [70], we 

have parameterized the SLVP table in a monocore microarchitecture, allowing to access it 

with instruction or data address, to use multiple values per entry, set-associative table 

organization, selective access on miss in the L1 data cache or in the L2 unified cache. The 

evaluations performed with M-SIM on the SPEC 2000 benchmarks have shown that a set-

associative SLVP table is more effective than a direct mapped one and using multiple values 

per SLVP entry is better. Value prediction focused on the logical registers of superscalar 

architectures, as a low-power alternative to the instruction-centric value prediction paradigm, 

have been successfully applied by us in [205], [206] and [207]. The Sniper state-of-the-art 

multicore simulator and the Splash-2 parallel benchmark suite have been successfully used for 

microarchitectural evaluations in [54]. Further, we will limit our presentation only to some of 

the most recent valuable papers focused on this issue. 

In [146], the authors have investigated load value estimation in applications that accept 

inexactness. Thus, rollbacks are eliminated, since re-execution in the case of misprediction is 

not necessary. They show that without rollbacks, the load value estimation is still presenting 

low error in the application’s output. Spatio-value approximation is also exploited through the 

so-called Bunker Cache in [147]. In contrast, our method targets all the types of applications 

by not accepting any inexactness of the speculated data values. 

In [164], the authors proposed a confidence estimation mechanism for value prediction 

in monocore architectures. They used 3-bit confidence counters and they predicted only on 

saturated counter (so on highest value). They incremented the counters on correct prediction 

and reset them (to zero) on misprediction. The authors reported prediction accuracies between 

95% - 99%. They have also introduced the VTAGE context-based value predictor (derived 

from the previous ITTAGE predictor) which uses global branch history and path information 

to predict values. In [166], the authors proposed a block-based value prediction scheme which 

associates the predicted values with fetch blocks. They have also presented the Differential 

VTAGE predictor (D-VTAGE), which uses stride-based value prediction. The obtained 

average speedup was 11.2%. In contrast with our work, which investigates value prediction in 

a multicore system, all these authors were focused on monocore processors. 

In [165], Perais and Seznec proposed the Early Out-of-order Late Execution (EOLE) 

monocore architecture, which delays the value prediction validation within the pipeline until 

the commit stage. Thus, the authors avoid selective replay and enforce complete pipeline 

squash on misprediction, significantly simplifying the hardware design. Additionally, the 

authors further reduced the design’s complexity by dynamically classifying instructions into 

early execution, out-of-order execution and late execution instructions. The instructions 
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having immediate or predicted operands are executed early and in-order, in the front end. On 

the other hand, predicted instructions and high confidence branches are executed late and in-

order in a pre-commit processing stage. Both the early and late execution instructions avoid 

the out-of-order engine, reducing thus the pressure on this unit which led to lower energy 

consumption. The same classification of the instructions into the early execution, out-of-order 

execution and late execution categories is applied in [167], too. In contrast with this briefly 

presented work, limited to monocore approaches, we applied the value prediction on critical 

load instructions (with miss in the Data L1 Cache) processed within a complex multicore 

architecture. 

In [48], Endo et al. have evaluated the potential of value prediction in the context of the 

EOLE microarchitecture and the D-VTAGE value predictor, considering different 

compilation options. The authors observed a large benefit from load value prediction, 

especially in the case of unoptimized codes. In [160], Orosa et al. proposed a load value 

prediction mechanism which predicts the load address first. The predicted load address is then 

used to index a Value Table (VT) in order to predict the load’s value. For a better coverage, 

the authors improved the hit rate of the VT with an adaptive algorithm which is prefetching 

future predicted addresses into the VT. 

In [144], a very interesting original work, the authors have shown that value prediction 

can violate the sequential consistency in multithreaded and multicore architectures. The 

problem can occur when value prediction is applied on codes manipulating pointer-based 

shared variables. As a concrete instructive example, the authors are considering two distinct 

threads: one thread is inserting to the front of a list (writer), while the other thread is reading 

the first element of the list (reader). No further synchronization is necessary between these 

two threads. The reader or writer may execute its code first, or the instructions may occur in 

an interleaved manner. If the reader thread is executed first (with load value prediction), the 

predicted value V1 of its L1 load instruction is speculatively used as an address for another 

subsequent load instruction L2. An initially wrong prediction (V1) might be erroneously seen 

as being correct at the time of verification, reading thus a possible wrong value V2 with L2 

instruction, since another thread or core (the writer) has already modified the values V1 and 

V2, between (L1) prediction and verification (late validation). Thus, the authors have firstly 

shown that predicting the value of an instruction with later validation is not sufficient in a 

multicore architecture. Despite the fact that this process might be counterintuitive, however it 

can appear. To solve such possible consistency problems of shared variables, we applied in 

the simulator the value-based detection solution proposed in [144]. According to this 

approach, all the load instructions executed with directly or transitively predicted address are 

re-executed when the address becomes non-speculative. If the corresponding values match, 

the sequential consistency was not violated and the execution can continue. If the values do 

not match, all the subsequent data-dependent instructions are re-executed with the right 

values, restoring in this way the sequential consistency. We applied this selective re-issue 

mechanism in our work, too.  

2.3.2. Counter-Based Selective Load Value Prediction in Multicore Architectures 

The proposed SLVP technique [71] requires per-core LVPTs within the multicore 

microarchitecture. The role of the LVPT is to exploit load value locality through value 

prediction. It keeps the last data values of the critical load instructions with the hope that they 

will have the same outputs on eventual next dynamic executions, based on the value locality 

statistical principle. On next occurrences, if the attached predictability confidence is 

sufficiently high, the stored values can be speculatively used by the subsequent dependent 

instructions, increasing thus the performance. Based on the structure of a Nehalem core 

presented in [54], we provide in Figure 12 how a dual core architecture can integrate SLVP. 

Obviously, this organization can be extended to any number of cores. We have evaluated 
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configurations consisting in 1, 2, 4, 8 and 16 cores. As Figure 12 illustrates, the LVPT is 

private together with the IL1 cache, DL1 cache, L2 unified cache, branch predictor (BP), 

reordering, paging, and execution units; only the L3 cache is shared by the cores. The generic 

structure of the LVPT is presented in Figure 13. 
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Figure 12. Dual Core Microarchitecture with SLVP 
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Figure 13. The LVPT structure 

Each LVPT entry has a TAG field consisting in the most significant bits of the load 

instruction’s address, a LRU field necessary for the decisions regarding the replacements 

within the set-associative table, a history of the last distinct values, each such value V having 

associated a confidence automaton C and a vLRU field. The role of the vLRU fields is to 

decide which one of the H stored values must be replaced when a new one occurs. The vLRU 

is set to the maximum for the correct value and is decremented for the other values.  

Unpredictable Predictable Predictable
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Figure 14. Confidence automaton 
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The role of the confidence automaton is to dynamically classify each load value kept in 

the LVPT into unpredictable or predictable. We denote the confidence automata U/P, where U 

is the number of unpredictable states and P is the number of predictable states. A 3-state 1/2 

confidence automaton is depicted in Figure 14. We have implemented the confidence 

automaton as a saturating counter which is incremented on correct predictions and 

decremented on mispredictions. The initial state is the unpredictable one. 

When a load instruction with miss in the DL1 cache occurs, the SET field (consisting in 

the least significant bits of the load instruction’s address, excluding the last two bits which are 

always 0) is used to select the corresponding set from the LVPT. After that, the TAG is 

searched within the TAG field from the selected set. If it is not found, the load instruction is 

normally executed and, after this, it is inserted into the selected set of the LVPT by replacing 

the least recently used load instruction from that set (the entry with the lowest LRU). In that 

case, all the confidences are reset, the first vLRU is set to the maximum value and all the 

other vLRUs are reset. If the TAG is found, the highest confidence C is identified. If that 

confidence is in unpredictable state, the load is normally executed, without value prediction. 

If the confidence is in predictable state, its associated value V is predicted as being the result 

of the load. This predicted value is forwarded to the dependent instructions from the 

reservation stations that will be speculatively executed. After the normal execution of the 

load, the value of the real result is used to update the LVPT entry. If it is a new value, it will 

replace the least recently used value of that entry (the value having the lowest vLRU) and all 

the vLRUs and confidences are correspondingly updated. Otherwise, only the vLRUs and the 

confidences are updated. In the case of misprediction, a recovery process is also necessary 

and the dependent instructions executed with wrong values are squashed and re-executed with 

the correct values (selective re-issue). 

2.3.3. Perceptron-Based Selective Load Value Prediction 

In this section, we improve our SLVP scheme implemented in a multicore architecture 

[71] by classifying the critical load instructions into predictable or unpredictable through 

simple one-cell perceptrons instead of saturating counters [72]. The main goal is to increase 

the predictability of the SLVP unit. We adapted the perceptron-based branch prediction 

presented in [118] and [119] for load value prediction. The whole load value prediction 

process is presented in Figure 15. The LVPT has a TAG field consisting in the most 

significant part of the load instruction’s address stored in the Program Counter (PC), a LRU 

field necessary for the decisions regarding the replacements within the set-associative table, a 

Locality History Register (LHR) containing the last behaviors of the load instruction, the set 

of perceptron weights W, a history of the load instruction’s last distinct produced values, each 

such value V having associated a confidence automaton C and a vLRU field. The role of the 

vLRU fields is to decide which one of the last H stored values must be replaced when a new 

one occurs. 

Further we present the selective load value prediction mechanism, the perceptron-based 

procedure of dynamically classifying load instructions into the predictable or unpredictable 

classes, as well as the update mechanism. 

If the currently executed load instruction is involving a miss in the Data L1 Cache, the 

LVPT is accessed during its pipelined issue stage. The LVPT set is selected using the least 

significant part of the PC and then an associative search is performed for the TAG within the 

selected set. In the case of miss in the LVPT, the load instruction is considered unpredictable 

and it is normally executed through the instructions’ pipeline. If there is a hit in the LVPT, the 

highest confidence is evaluated to select the corresponding value. The LHR and the W fields 

are used for the perceptron’s forward stage, in order to determine if the load instruction is 

predictable or not. In the unpredictable case, the load is normally executed, without prediction 

and speculation. Otherwise, the value selected from the LVPT is speculatively forwarded to 
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the in-flight Read After Write (RAW) dependent instructions and they are executed in a 

speculative manner, potentially reducing the processing time. In the commit stage, the 

predicted value is compared with the real value. In the case of misprediction, a recovery 

process is necessary in order to squash the wrong speculative results and selectively re-

execute the RAW dependent instructions with the correct produced values. 
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selection TAG  LHR LRU     W     V1 C1  vLRU1 VH CH vLRUH
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Compute

O
Training Load Value

update

Sign(O)
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Figure 15. The whole load value prediction process 

During the commit stage, every critical load updates the corresponding SLVP entry: the 

confidences, the vLRU fields and, additionally, the data value, in the case of a new produced 

value. The confidence automaton is incremented for the correct value and decremented for the 

wrong values. If the actual produced value is not belonging to the stored history, it overwrites 

the value having the lowest vLRU. The vLRU fields are set to their maximum value for the 

correctly predicted value and decremented for the others. The LHR is correspondingly 

updated, too. The backward step is also applied, if necessary, to adjust the weights according 

to the simplified implemented gradient descent learning rule.  

In the case of miss in the LVPT, the entry with the lowest LRU from the set is selected. 

The new TAG is inserted into the selected entry, the V1 field is updated with the produced 

data value and all the confidences from that entry are reset. The first vLRU is set to the 

maximum, whereas all the other vLRUs are reset. Finally, the LRU of the selected entry is set 

to its maximum value and the LRUs corresponding to the other entries from the 

corresponding set are decremented. The LHR bits are reset, excepting LHR0 which is kept on 

1. The weights W are reset, too. 

The LHR contains the last n behaviors (Li, 1≤i≤n) of a certain load instruction: Li=0 

when the corresponding Load’s real output value (VR) is not in the V set, or Li=1 when the 

produced output value belongs to the V set. The V set from a certain LVPT entry is 

containing the last H distinct values produced by the previous dynamic instances of the 

corresponding load instruction. The LHR is logical right-shifted after the commit of each load 

instruction whose behavior (0 or 1) is inserted as the most significant bit (MSB) into the LHR. 

We keep LHR0 always on logical 1 (L0=1) for the bias weight w0. The detailed perceptron-

based load value prediction scheme is depicted in Figure 16. 
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Figure 16. Perceptron-Based Load Value Prediction Scheme (H=4) 

The MAX circuit works as follows: if MAX (C1, C2, C3, C4) = CK then the MAX circuit 

generates the binary value of k, codified on 2 bits. Based on this value, the 4:1 multiplexer 

(MUX) will select the predicted value Vk, k=1÷4. 

The weights are signed integers, represented on one byte, which cannot exceed the 

value of ϴ. The threshold ϴ is also used to decide if the training stage is necessary. As it was 

shown in [118], the value of ϴ is “exactly”  1493.1 n . 

2.3.3.1. The Forward Stage 

The forward stage consists in calculating the perceptron’s output sign which is used to 

decide if the corresponding load instruction is predictable or not. The output O is given by the 

following formula (as in [120] for branch prediction): 

 
 








n

1i ii

ii

0
0Lif,w

1Lif,w
wO        (10) 

where wi represent the perceptron’s corresponding weights (w0 being the bias weight). The 

formula (10) is equivalent with the following one:  

 



n

1i

i0

1iL1)(wwO        (11) 

Implementing formula (10) in hardware is not very complicated. According to [119], the 

above sum can be obtained using a Wallace-tree of 3-to-2 carry-save adder, which reduces the 

process of adding n bytes to the problem of adding just two bytes. The final two signed 

integers are added with a carry-look-ahead adder. Taking into account that the Wallace-tree 

and the carry-look-ahead adder have logarithmic depths, the computation is relatively quick. 
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Only the sign bit of the result is needed to decide if the load instruction is predictable or not. 

A prediction is generated only in the case of a positive output. 

2.3.3.2. The Backward Stage 

The backward (learning) stage is applied if the output is in contradiction with the fact 

that the real value VR belongs or not to the V set, or if the magnitude of the output is less or 

equal with the threshold ϴ. The pseudocode of the backward algorithm is given below: 

 
If (O<0 and VRV) or (O≥0 and VRV) or |O|≤ϴ then 

 If VRV then 

  If w0<ϴ then 

   w0:= w0+1 

  Endif 

 Else  

  If w0>(–ϴ) then 

   w0:=w0–1 

  Endif 

 Endelse 

 For i:=1 to n in parallel do 

  If (VRV and Li=1) or (VRV and Li=0) then 

   If wi< ϴ then 

    wi:= wi+1 

   Endif 

  Endif 

  Else 

   If wi>(–ϴ) then 

    wi:= wi–1 

   Endif 

  Endelse 

 Endfor 

Endif 

 

According to the single-cell perceptron’s stochastic gradient descent learning method, the 

simplified implemented learning algorithm increments the bias weight w0 if VR belongs to V 

and decrements it otherwise. Furthermore, it increments the weight wi if Li agrees with the 

fact that VR belongs or not to V and it decrements that weight in the case of disagreement. 

Thus, the weights with mostly agreement become positive with large magnitude and those 

with mostly disagreement become negative with large magnitude. In these cases, there is a 

high correlation between the output and the weight. The correlation between the output and a 

certain weight is weak if its magnitude is close to 0. 

2.3.3. Simulation Methodology 

In this study we have used the Sniper 6.1 multicore simulator [22] and the large datasets 

of the Splash-2 suite of parallel benchmarks [221] which are characterized as follows: Barnes 

simulates in three dimensions a system of bodies; Cholesky operates matrix factorization; 

Fmm simulates in two dimensions a system of bodies; Lu factors a dense matrix; Ocean 

studies large-scale ocean movements; Raytrace renders a three-dimensional scene using ray 

tracing; Water evaluates forces and potentials in a system of water molecules. 
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The simulations have been run on a computer with Intel Core 2 CPU at 2.4 GHz and a 

DRAM of 2 GB, under Fedora 22 (kernel 4.0.8-300). The simulated microarchitecture is Intel 

Nehalem and can include between 1 and 16 cores configured to run at 2.66 GHz. The baseline 

configuration is presented in Table 5. 

DL1 / IL1 

cache 

Size 16 KB 

Block size 64 B 

Associativity 4 

Latency 3 cycles 

L2 cache 

Size 256 KB 

Block size 64 B 

Associativity 8 

Latency 9 cycles 

L3 cache 

Size 8192 KB 

Block size 64 B 

Associativity 16 

Latency 35 cycles 

Memory Latency 175 cycles 

SLVP 
Latency 1 cycle 

Recovery 7 cycles 

Table 5. Parameters of the simulated architecture interacting with the SLVP 

The latencies have been determined using Membench in [22] and configured in 

gainestown.cfg. The cache sizes and associativity degrees have been configured in 

nehalem.cfg. The L3 cache is shared among cores. 

In order to integrate our SLVP into the Sniper simulator, it was necessary to apply the 

following setups: 

Configuration File 

[general] issue_memops_at_functional = false gainestown.cfg 

[perf_model/core] type = interval nehalem.cfg 

[perf_model/dram/queue_model] enabled = false base.cfg 

[network/emesh_hop_by_hop/queue_model] enabled = false base.cfg 

[network/bus/queue_model] enabled = false base.cfg 

Table 6. Sniper configuration 

The counters necessary for statistics like the number of loads, the number of critical loads, the 

number of load predictions and the number of correct load predictions have been defined in 

performance_model.h, registered as output metrics in performance_model.cc and written to 

the sim.out file within gen_simout.py. The predictor’s structure and functions have been 

implemented in micro_op_performance_model.cc and called in the handleInstruction function 

from the same source file. We presented these technical details because they are not 

documented. 

The performance improvement with SLVP can be roughly evaluated based on a 

simplified idealistic analytical model. The speedup of multicore architectures can be 

theoretically estimated according to Amdahl’s low: 

N

-s
s

NS
)1(

1
)(



          (12) 

where N is the number of cores, s[0,1] is the algorithm’s inherently sequential computation 

fraction. It is considered that the remaining (1-s) computation is completely parallelizable. 
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The theoretical speedup of multicore architectures with value prediction can be determined by 

generalizing Amdahl’s low as in the following formula: 

N
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         (13) 

where p[0,1] is the average value prediction accuracy. We have ideally considered that 

( ps  ) fraction of computation is performed instantaneously, due the correct value prediction. 

Thus, the speedup of a monocore architecture (N=1) is: 

p-s
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
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1
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Considering s=1 (thus, the whole program is sequential), we obtain: 

-p
SVP

1

1
)1(            (15) 

This last pure theoretical formula is identical with the simplified formula obtained in [63], 

based on an idealized stochastic mathematical model, showing thus the consistency of our 

developed theoretical model.  

Since the Instructions Per Cycle (IPC) metric of a certain core can be computed as the 

number of instructions executed by that core divided to the number of CPU cycles, we can 

define the IPC of a multicore architecture, on a certain benchmark, as the total number of 

instructions executed by all the cores divided to the longest cycle time among cores: 

C

I

IPC

N

i

i
 1

          (16) 

where Ii is the number of instructions executed by the core i, N represents the number of cores 

and C is the execution time, in cycles. The speedup of a multicore architecture extended with 

value prediction (VP), with respect to the baseline multicore architecture (B), is: 

B

VP
VP

IPC

IPC
S            (17) 

Since the total number of dynamic instructions executed by these two compared architectures 

is approximately the same (the slight differences can be neglected), the speedup can be 

computed as: 

VP

B
VP

C

C
S            (18) 

Finally, the relative speedup of a multicore architecture with value prediction can be 

computed as: 
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The energy consumption, expressed in J, can be determined using the following formula: 

CPUf

CP
E


           (20) 

where P represents the total power consumption measured in W (provided, in our case, by the 

McPAT simulator), fCPU represents the frequency of the simulated microprocessor in Hz and 

C represents the total number of execution cycles. The relative energy reduction is given by 

the following formula: 
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where, EB and EVP are the energy consumptions of the baseline and our improved 

architectures, respectively. Obviously, a positive value of Ereduction means an improved energy 

consumption. 

 We will also use Pearson’s correlation in order to determine what is influencing the 

speedup in a SLVP-based multicore architecture. Thus, we will analyze the correlation 

between the relative speedup and the DL1 miss rate, the prediction rate and the prediction 

accuracy, respectively. The prediction rate is the percentage of predicted critical loads divided 

by the total number of critical loads. The prediction accuracy is the percentage of correctly 

predicted critical loads divided by the number of predicted critical loads. 

2.3.4. Experimental Results 

2.3.4.1. Counter-Based Selective Load Value Prediction 

We started our evaluations by analyzing the LVPT’s parameters. For doing this, we 

used a dual core architecture (N=2) with the configuration presented in Table 5. 

 

Figure 17. Varying the number of LVPT entries 

For the LVPT we fixed the associativity to 2, the history (the number of stored values 

per entry, denoted H) to 2, we have also considered an 1/2 confidence automaton and we have 

varied the number of LVPT entries (E). This initial configuration was chosen after some 

apriori laborious simulations. Figure 17 illustrates the relative speedup obtained over the 

baseline architecture using different LVPT sizes. The relative speedup has been computed 

using formula (19). As Figure 17 shows, the optimal number of LVPT entries is 32. Over this 

size the performance improvement is insignificant. On the most of the benchmarks the 

relative speedup was less than 2%, but on the ocean.cont and ocean.ncont benchmarks it was 

over 15% (see Table 7 and the explanation presented below it). Thus, the average relative 

speedup, obtained with the optimal LVPT size (E=32) was 4.01%. 

The next analyzed parameter is the LVPT associativity (A). Thus, we have fixed the 

size of the LVPT to the optimal 32 entries obtained above, the load values’ history to 2, we 

have used 1/2 confidence automata and we have varied the LVPT associativity degree. Here 

some comments are necessary. Of course, that this “hill-climbing” optimization method is not 

ideal, thus it cannot find the global optimum. On the other hand, the multi-objective automatic 

optimization problem is a NP-hard problem in this case, as we have already shown in [29]. 

Such complex optimization problems are solved using heuristic algorithms, in an approximate 
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manner. It would be the main aim of another dedicated work. Thus, in this section we will 

assume a manual optimization method. Figure 18 depicts the relative speedup over the 

baseline architecture using different LVPT associativity degrees. As the evaluations show, the 

optimal associativity is 2.  

 

Figure 18. Varying the LVPT associativity 

Next, we have evaluated the impact of the value history’s length over the relative 

speedup, using a LVPT with 32 entries, an associativity degree of 2 and also 1/2 confidence 

automata. As Figure 19 shows, the performance is quite invariant to history length’s changes. 

Therefore, we have chosen to continue the experiments with just one stored value per LVPT 

entry (H=1).  

We have continued our evaluations by analyzing different confidence automata, fixing 

the LVPT to 32 entries, associativity degree of 2, and values’ history of 1, as we previously 

obtained. Figure 20 illustrates that the optimal confidence automaton is a three-states one, 

using one predictable and two unpredictable states (denoted 1/2). 

 

Figure 19. Varying the LVPT history 



Speculative Computer Architectures 

 41 

 

Figure 20. Varying the confidence automata 

We have also evaluated the relative speedup by predicting all the critical loads without a 

classification into predictable and unpredictable. The performance in that case was 

significantly lower. Moreover, on most of the benchmarks we have observed significant 

performance degradation even related to the baseline architecture. Consequently, the role of 

the confidence automata is essential for better prediction accuracies (and thus fewer 

recoveries) which constitute the basis for the speedup of such speculative architectures. 

Benchmarks Loads Miss DL1 

[%] 

Prediction Rate 

[%] 

Prediction Accuracy 

[%] 

Relative Speedup 

[%] 

barnes 4.98 3.03 82.07 0.51 

cholesky 3.59 12.40 75.30 1.38 

fmm 1.69 25.01 89.87 0.88 

lu.cont 0.99 0.24 84.32 0.5 

lu.ncont 12.57 0.13 99.79 0.09 

ocean.cont 22.92 22.21 99.12 15.72 

ocean.ncont 22.12 23.85 99.09 17.53 

raytrace 6.01 28.30 87.00 2.59 

water.nsq 1.39 22.53 88.25 0.64 

water.sp 2.10 31.17 66.88 1.55 

average 7.84 16.89 87.17 4.14 

Table 7. Analyzing the quasi-optimal LVPT in a dual core architecture with 16 KB DL1 cache 

Further we present a detailed analysis of the current quasi-optimal LVPT configuration 

(E=32, A=2, H=1, C=1/2) in a dual core architecture with 16 KB DL1 cache. Table 7 shows 

the DL1 miss rate, the prediction rate, the prediction accuracy and the relative speedup for 

each benchmark. As Table 7 shows, we have calculated a strong positive correlation between 

the relative speedup and the percentage of loads with miss in the DL1 cache and the load 

value prediction rate, respectively, and there is a lower correlation with the prediction 

accuracy. More precisely, the Pearson correlation coefficient between the relative speedup 

and the percentage of loads with miss in the DL1 cache is 0.9. The same correlation 

coefficient between the relative speedup and the load value prediction rate is 0.9, and it 

became only 0.54 by correlating the relative speedup with the load value prediction accuracy. 

Thus, our SLVP unit is the most efficient in architectures and benchmarks that involve high 
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percentages of loads with miss in the DL1 cache (thus high DL1 miss rates) and high load 

value prediction rates. That is why we have obtained good relative speedups on some 

benchmarks (like ocean.cont and ocean.ncont), but low speedups on other benchmarks (like 

lu.ncont). In other words, high prediction rates involve a high number of dynamic loads on 

shared variables. This high number means that there is a significant communication between 

the threads belonging to a certain task (Splash-2 benchmark in our case). This explanation is 

validated by the fact that particularly the two Ocean benchmarks contain a lot of 

communication compared with the other benchmarks that are more computation-intensive, 

without so many intrinsic communication processes. Table 7 also shows some very low 

prediction rates which, in our opinion, might be the consequence of low load value localities. 

 

Figure 21. The value localities of the critical loads from the Splash-2 benchmarks 

Lipasti et al. [134] have first introduced the value locality concept as “the likelihood of 

the recurrence of a previously-seen value within a storage location”. Thus, the value locality 

represents the upper value predictability limit. Significant value localities involve significant 

prediction accuracies, and vice-versa. Measurements using the SPEC’95 benchmarks have 

shown that value locality on load instructions is about 50% using a history of one and 80% 

using a history of 16 previous instances. We have measured the value locality of the critical 

load instructions from the Splash-2 parallel benchmarks. In Figure 21, L(H) denotes the value 

locality of the critical loads considering their last H distinct data values. As Figure 21 

illustrates, the average value locality of the critical loads from the Splash-2 benchmarks is 

only 18.31% (less than the 50% from SPEC’95) considering one (the last) data value. The 

average value locality is very low with higher history lengths, too: 22.21% with 2, 23.04% 

with 3 and 23.86% with 4 data values, respectively. The value locality is less than 0.2% on 

the Lu benchmarks. This low value locality is an intrinsic characteristic of the critical loads 

from the Splash-2 parallel benchmarks and explains the low prediction rates presented in 

Table 7. The constant locality of the Ocean benchmarks, whose prediction rates were the 

highest, explains why their relative speedups are constant along different history lengths. 

Thus, the very low prediction rates presented in Table 7 are consequences of the low value 

localities of critical loads. 

Next, we have analyzed the influence of the DL1 cache size over the relative speedup. 

Thus, we have varied this parameter in both the baseline and the SLVP-based dual core 

architectures. We have considered the previously established LVPT parameters: 32 entries, 

associativity degree of 2, value history of 1 and 1/2 confidence automata. As Figure 22 

depicts, the average relative speedup is the same, about 4%, on all the evaluated DL1 cache 

sizes. Therefore, we will apply the next evaluations with the initial DL1 cache size of 16 KB. 
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Next, we have evaluated the power consumption, the energy consumption (based on (20)) for 

the baseline and the SLVP-based (E=32, A=2, H=1, C=1/2) architectures, both with DL1=16 

KB and N=2 cores. We have also determined the relative energy reduction using formula 

(21), as a measure of energy efficiency (see Table 8). The power consumption is slightly 

higher with SLVP due to the new LVPT unit, but the energy consumption is lower (by 1.25% 

at average) due to the lower processing time. Next, we have evaluated the relative speedup by 

varying the number of cores simultaneously in the baseline and in the SLVP-based 

architectures. 

 

Figure 22. Varying the DL1 cache size 

 

Benchmarks Baseline 

power [W] 

SLVP-based 

power [W] 

Baseline energy 

consumption [J] 

SLVP-based 

energy 

consumption [J] 

Relative energy 

reduction [%] 

barnes 25.4 25.8 20.22 20.43 -1.06 

cholesky 40.54 41.29 2.62 2.63 -0.45 

fmm 42.54 43.07 17.29 17.35 -0.35 

lu.cont 47.09 47.63 7.73 7.78 -0.64 

lu.ncont 43.23 43.56 7.81 7.86 -0.67 

ocean.cont 24.8 27.1 63.18 58.18 7.90 

ocean.ncont 25.9 28.76 65.42 59.91 8.42 

raytrace 24.91 25.49 10.34 10.31 0.33 

water.nsq 33.95 34.38 25.78 25.94 -0.62 

water.sp 35.1 35.78 7.55 7.58 -0.36 

average 34.35 35.29 22.79 21.80 1.25 

Table 8. Power and energy consumption evaluation 

Figure 23 presents the relative speedup averaged on all the benchmarks. The highest 

performance gains were obtained for less cores. As the number of cores grows, the relative 

speedup is lower. We have also evaluated the IPC of the SLVP-based architectures by varying 

the number of cores. Figure 24 presents the IPC averaged on all the benchmarks. As the 

number of cores increases the IPC grows only slightly non-linearly. 
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Figure 23. Varying the number of cores 
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Figure 24. The IPC of SLVP-based architectures 

2.3.4.2. Perceptron-Based Selective Load Value Prediction 

We considered as a good starting point for our evaluations the optimal configuration 

obtained in the previous paragraph. Thus, we evaluated a dual-core microarchitecture with a 

level 1 data cache of 16 KB, and a 2-way associative LVPT of 32 entries, storing just one 

value per entry. We use confidence automatons belonging to the [0, 3] interval attached to the 

load’s values, whose role is just to select for prediction the value with the highest locality. We 

have varied the size of the LHR, which is equal with the number of weights (W), and we 

compared these perceptron-based LVPT configurations with our previous counter-based 

method. The relative speedups obtained over the baseline architecture are depicted in Figure 

25. 
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Figure 25. Comparing the relative speedups of the counter-based and perceptron-based 

methods 

As Figure 25 shows, there are only insignificant differences between different LHR 

sizes. The results are in concordance with those obtained in [71]: on most of the benchmarks, 

the relative speedup is less than 2%, but on the ocean benchmarks it is over 15%. Figure 26 

focuses on the averages among benchmarks. 
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Figure 26. The average relative speedups of the counter-based and perceptron-based methods 

As Figure 26 shows, the best configuration is using 40 weights, involving thus an LHR 

of 40 bits (load instruction behaviors). With that configuration, the average relative speedup 

was 4.21% which is slightly better than the 4.14% obtained previously with the counter-based 

method. Next, we have analyzed this best perceptron-based method in comparison with the 

previous counter-based method. Table 9 presents the coverage, computed as the number of 

correctly predicted loads divided to the number of critical loads, and also the prediction 

accuracy, computed as the number of correctly predicted loads divided to the number of 

predicted loads. The results show that both indicators are better for the proposed perceptron-

based method, meaning that a higher number of loads are predicted and the prediction is 

provided with a higher accuracy. 
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Splash-2 

Benchmarks 

Counter-Based Method Perceptron-Based 

Method (W=40) 

Coverage 

[%] 

Prediction 

Accuracy 

[%] 

Coverage 

[%] 

Prediction 

Accuracy 

[%] 

barnes 2.49 82.07 2.55 86.85 

cholesky 9.34 75.30 9.70 72.73 

Fmm 22.48 89.87 24.60 86.94 

lu.cont 0.20 84.32 0.15 86.63 

lu.ncont 0.13 99.79 0.18 99.13 

ocean.cont 22.02 99.12 22.09 99.24 

ocean.ncont 23.63 99.09 23.70 99.36 

raytrace 24.62 87.00 27.06 73.17 

water.nsq 19.88 88.25 20.63 96.22 

water.sp 20.85 66.88 26.46 91.12 

average 14.56 87.17 15.71 89.14 

Table 9. Analyzing the optimal configuration 
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Figure 27. The average relative speedups of the counter-based and the optimal perceptron-

based methods considering different core numbers 

Finally, we have compared the optimal perceptron-based configuration (W=40) with the 

counter-based one, considering dual-core and quad-core architectures. Figure 27 presents the 

relative speedups obtained with respect to the corresponding baseline architectures, averaged 

on all the benchmarks. The relative speedup is lower as the number of cores grows, but the 

performance gain is at the same level. 

2.3.5. Summary  

In this section we have extended the Sniper multicore simulator with counter-based 

SLVP capabilities. Since the technique is selectively applied only on critical load instructions, 

a small and fast LVPT is enough to exploit the benefits in terms of performance and energy 

consumption. As far as we know, we are the first researchers who integrated the SLVP 

technique into a speculative multicore architecture and evaluated the speedup and the energy 

consumption reduction on native concurrent applications. 

By applying a manual design space exploration of the proposed speculative multicore 

architecture on the Splash-2 parallel benchmarks, we concluded that the optimal SLVP-based 
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multicore configuration is using a DL1 cache of 16 KB and a 2-way associative LVPT (A=2) 

with 32 entries (E=32), confidence automata having one unpredictable and two predictable 

states (C=1/2), and only the last value (H=1). The average relative speedup was about 4%, 

with a maximum of 17.53%. We have varied the number of cores and the highest performance 

gains were obtained for fewer cores within the simulated architecture. We have also observed 

a strong positive correlation between the relative speedup and the percentage of loads with 

miss in the DL1 cache and the load value prediction rate, respectively. Therefore, the SLVP 

technique is the most efficient in microarchitectures and benchmarks that involve high 

percentages of loads with miss in the DL1 cache and high load value prediction rates. The 

power consumption was slightly higher with SLVP due to the new LVPT unit, but the energy 

consumption was lower by 1.25% due to the lower processing time. 

We have also enhanced the SLVP mechanism with hardware perceptron-based 

classification of load instructions as predictable or unpredictable. Thus, we have inserted into 

the LVPT’s hardware structure two new fields, the locality history register and the set of 

weights, which are used to determine if the corresponding load instruction is predictable or 

not. The goal of the load value predictor is to anticipate the values of critical load instructions 

and to unlock in a speculative manner the subsequent RAW dependent instructions’ 

execution. Since each misprediction implies a recovery process, we are interested in obtaining 

a high prediction accuracy. Therefore, we predict only the results of critical load instructions 

identified as predictable by our developed perceptron. In the experimental process, we have 

varied the size of the perceptrons between 24 and 48 bits. The results have shown that the best 

configuration implies 40 weights within each perceptron. With the dual-core configuration, 

consisting in a level 1 data cache of 16 KB and a 2-way associative LVPT with 32 entries and 

one value per entry, we have obtained an average relative speedup of 4.21% over the baseline 

architecture (the same configuration, but without LVPT), with a maximum speedup of about 

17% (on the ocean.ncount benchmark). 

As a further work, we propose to generalise the implemented value prediction method 

to Intel Nehalem’s all long-latency machine instructions (multiplication, division, square-root, 

etc.), through some dedicated hardware value predictors. In this way, the obtained speedups 

would be, for sure, much more significant. Also, we intend to further apply an automatic 

multi-objective optimization method for our speculative multicore system, based on our 

already developed complex and effective software optimization tools [208] and [60]. 

Obviously, this automatic design space exploration will provide a better optimal solution, but, 

due to the enormous design space, not certainly the ideal one. 
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3. Prediction-Based Assembly Assistance Systems 

European jobs involving manual work represent the largest category in the manufacturing 

sector [28]. Thus, adequate training for manual work plays an important role to enable efficient 

production processes in the global market. The development of training tools based on 

information technology will provide an effective solution for a company’s competitivity. 

Many factories avoid the full automation due to either the flexibility of the human 

operators or lower production costs. Nowadays, machine-assisted human-centered 

manufacturing is the common approach. On the other hand, in the absence of full automation, 

modern factories might adapt to the workers profile for a cost-effective and resource-efficient 

production. The training stage of the workers can be more efficient if assembly assistance 

systems are used instead of human trainers. A certain level of information assistance can help to 

structure, guide and control manufacturing processes [2]. Smart assembly assistance systems can 

improve the overall performance, and simultaneously reduce the skill requirements of the 

workers [127]. The automation might be designed and implemented in an adaptive manner, since 

the adaptability of the automation can mitigate some of the costs of human-machine interaction, 

such as unbalanced mental workload [103]. The dynamic configuration possibility of automation 

levels is another requirement [181]. 

In this chapter, based on our work published in [84], [85], [86] and [87], we describe an 

automated assembly assistant system which supports the human workers by suggesting the next 

possible manufacturing steps and by detecting eventual wrong steps. We are interested in an 

accurate prediction technique which can best model the behavior of the workers. The most 

efficient predictor will be physically integrated into our assembly assistance system. The final 

adaptive human-centered training station will be able to receive real-time information about the 

worker and use it to suggest the manufacturing steps. Our training station will allow the 

following functionalities: capability of recognizing through sensors the product components and 

human features and actions, ability of learning patterns and correlate human operator contexts 

with the assembly states of a certain product, possibility of assisting the trainee in correct 

product assembly (either by recommending the next step or by detecting wrong steps), capability 

of connecting the relevant data systems for an easy training set-up. The proposed context-aware 

assistive system can replace the trainers during the training stage of unexperienced or new 

workers, but it can be useful even for experimented workers. We chose as target product a 

customizable modular tablet, but the system can be easily adapted to any other product. 

3.1. Assistive Manufacturing System using Two-Level Context-Based 

Predictors 

Assembly assistance systems designed for monotonous manufacturing tasks should not 

over-challenge or under-challenge the worker, it might adapt to the needs of the human operator 

in real-time [61] and to the constraints of the task [194]. Moreover, it must consider the skills 

and a possible functional decrease of the human worker’s capabilities [168]. Thus, interactive 

and context-aware instructions during the assembly processes become more and more important 

[62].  

In this section we present an adaptive assembly assistance system able to dynamically 

adapt the production process to the worker’s actual condition, his/her general characteristics, 

preferences and behaviors in assembling products. This human-oriented assembly assistance 

system is using a two-level context-based predictor to recommend the next assembly step based 

on the current state of both: the semi-product, and the worker. From the experiments performed 
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with 68 trainees, we extracted the relevant correlations between certain human characteristics 

and assembling behaviors. The obtained dataset was subsequently used to train and evaluate 

different predictors.  

3.1.1. Related Work 

Simple and hardware-efficient predictors have been successfully used for branch prediction 

in the microprocessors’ domain. A good description of these prediction structures was provided 

in [25]. The authors have shown that the two-level predictors are simplifications of PPM, being 

in fact Markov predictors. Advanced branch prediction schemes were presented in [55]. Some of 

the branch predictors have been adapted and successfully used in ubiquitous systems, like person 

movement prediction in smart office buildings [169]. In our opinion, these simple and efficient 

prediction schemes are appropriate for our needs and, therefore, we adapt them in this work to be 

usable for assembly assistance. Their detailed description is provided in the next section. 

In [170], a comprehensive view of a cyber-physical system is provided, by showing that 

even simple automated systems have the key features of an anthropocentric cyber-physical 

system: integrality, sociability, locality, irreversibility, adaptivity and autonomy. The interaction-

based architectural design of a manual assembly module is detailed. The augmented cognition 

feature is addressed through an integrative engineering approach in designing cyber-physical 

production systems. Their proposed reference architecture can be applied as a template for the 

architecture of cyber-physical production systems. 

Worker and assembly context adaption in assistance stations are researched also from the 

worker’s cognitive perspective. In [46], the authors analyzed the feasibility to use biodata from 

sensors within assembly assistance systems for manual operations that can adapt to the workers’ 

cognitive state. Moreover, in [61] an assembly assistant system is presented revealing the 

challenges and importance of cognitive-feedback by using activity recognition for context-

awareness in order to keep an appropriate cognitive load (i.e., challenge level). An interesting 

review of the research challenges in the product assembly domain is presented in [196]. It 

synthesizes the integration, design and collaboration issues of recent anthropocentric approaches. 

3.1.2. Prediction-Based Assembly Assistance System 

The assembly assistance system depicted in Figure 28 is a prototype designed to enable 

execution of a broad-spectrum of training scenarios for manual operations, from the simplest 

ones (e.g., predefined instructions and training flow) to complex ones (e.g., adaptive instructions 

based on context-awareness and real-time data from biosensors). 

From a hardware perspective, the assembly assistance system consists of the following 

components: lower frame with embedded electrical motors for easy table height adjustment, 

large dimension touch screen integrated in the table to display instructions including also 

microphone and speakers to support voice interaction, upper frame enabling flexible mounting of 

sensors or bins for instruments or components, sensor (e.g., Kinect 360, Kinect Azure) to detect 

body segment’s movement as well as facial expression, and sensor (e.g., 3D camera) to detect 

objects and hand movement. Additionally, wearable biosensors to estimate human states or 

emotions can be used to adapt the training experience. 

In order to be able to recommend the next step of a manual assembly process, our system 

must recognize the current context consisting in the previously assembled components, but it 

might also correlate with the current features of the human operator. Since in this work we focus 

on a customizable modular tablet, we must codify all its possible states. The tablet consists in 

eight components (see Figure 29): a mainboard, a screen and six modules which can be speakers, 

flashlights and power banks.  
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Figure 28. Assembly assistance system set-up example 

 

Figure 29. Customizable modular tablet 

Thus, seven steps are necessary in a correct assembly process of such a table. We have chosen a 

binary codification (usable as decimal, too). The mainboard is the main component and the 

reference for the other assembled components. If a component was placed in the mainboard and 

it was in its correct slot, it was marked as 1. If no component is attached to the slot or the 

component is in the wrong slot, it is marked with 0. Because there are seven slots on the 

mainboard, there is a 7-bit representation of the tablet’s assembly progress. The numbers from 

Figure 30 represent the bits’ positions that can be activated or deactivated, 6 being the most 

significant bit and 0 the least significant bit. 

 

Figure 30. The codification of the customizable modular tablet 
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Based on the code of a certain state, we can anytime determine which components were already 

assembled. By comparing the codes of two consecutive states, we can determine which 

component changed between them. 

3.1.3. Two-Level Context Based Predictor 

The assembly process codified through the above-described method can now be modeled 

using a two-level context-based predictor. The first level consists in a left-shift register 

containing the last R states, R being the order of the predictor. The second level of the predictor 

is a pattern history table with two columns: the pattern and the state. Each entry of the table 

contains a context of R consecutive assembly states in the pattern column and the corresponding 

next state in the state column. The structure of the two-level context-based predictor with simple 

states is presented in Figure 31. 

A B C       D  

A B C Pattern   StateContext:

A B C       D  

A B C Pattern   StateContext:

 

Figure 31. The two-level context-based predictor of order 3 (R=3) 

In the example depicted in Figure 31, C is the current state, A and B are the previous two 

states, thus A, B and C forming the current context, whereas D is the predicted next state. In the 

learning stage, the predictor is populated with the occurring contexts and their corresponding 

next states. After the learning stage, the stored data can be used for prediction during the 

assembly process. As an example, for the sequence ABCDABABC, the prediction with a third 

order two-level context-based predictor would be D, since after the context ABC we have last 

seen D in the past. In our application, the states are the 7 bits long decimal codes reflecting the 

assembly stage of the tablet, as we described above. Thus, a certain bit on 0 means that the 

corresponding component is not yet mounted, or a wrong component is mounted there, and 1 

means correctly mounted component. 

The two-level context-based predictor presented in Figure 31 can be enhanced with two-

state automata. The automata provide more stability with respect to the variations in the 

observation sequence. A two-state automaton has a weak state and a strong state. One bit is 

necessary to store the additional information: a logical 0 if the state is weak or a logical 1 if it is 

strong. When an observation occurs again and the automaton is in weak state, it will change to 

strong state. When the same observation occurs again and the automaton is in strong state, it will 

remain in the strong state. When different observation occurs and the automaton is in weak state, 

it will store the new observation in a weak state. When different observation occurs and the 

automaton is in strong state, it will keep the old observation but in a weak state. The structure of 

the two-level context-based predictor with two-state automata is presented in Figure 32. 

A B C      D1  

A B C Pattern   StateContext:

B C D      A0  

A B C      D1  

A B C Pattern   StateContext:

B C D      A0  

 

Figure 32. The two-level context-based predictor of order 3 (R=3) with two-state automata 
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If we consider the observation sequence ABCDBABCDABC, the BCD pattern is followed 

first by B (the stored weak state is B0) and it is also followed last time by A (B0 is replaced with 

the weak state A0). The ABC pattern is followed first by D (the stored weak state is D0) and is 

followed last time by D again (the state is changed to the strong D1). In Figure 32, ABC is again 

the current context, and the prediction is D. In our application, the states are 8 bits long decimal 

codes in which the first bit reflects the weakness (0) or the strongness (1) and the rest of the bits 

are describing the assembly state of the tablet (0 meaning unmounted or wrongly mounted 

component and 1 meaning correctly mounted component). 

3.1.4. Experimental Methodology 

The 68 participants (2nd year BSc students) in our experiment, had to freely assemble, 

without any guidance, the earlier mentioned customizable modular tablet (presented in Figure 

29). When the subjects entered in the room, they listened to an audio message stating that the 

tablet should be assembled using all the components as indicated in the images and only after the 

audio finished playing, they could start assembling. During the whole process they could only 

view the images illustrating how the different components of the tablet should be assembled. The 

recordings were saved and transformed into an encoding that could be utilized in our predictors 

implemented in C#. Right now, the dataset is composed of correct and incorrect assembly steps 

and disassembly steps as well. The training and testing dataset had to be extracted. For the 

predictor’s training, only correct assembly steps were selected, while for testing all the 

unrepeating steps have been selected. 

The evaluation metrics are the prediction rate, the coverage, the error detection indicator 

and the prediction accuracy. The prediction rate is the percentage of predictions with respect to 

the total number of assembly steps. The coverage is the percentage of correct predictions with 

respect to the total number of assembly steps. The error detection indicator is the percentage of 

correctly detected assembly errors from the total number of errors (occurred when the real state 

and the prediction were different). Finally, the prediction accuracy is the percentage of correct 

predictions with respect to the total number of predictions. 

3.1.5. Experimental Results 

First, we evaluated and compared the two-level context-based predictor with simple states 

(depicted in Figure 31) and the one with two-state automata (presented in Figure 32).  

 

Figure 33. Prediction accuracy of the two-level predictors by considering different context sizes 
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Figure 33 presents the prediction accuracy obtained with these two predictors considering 

different context sizes. We can observe that these two compared predictors have about the same 

accuracy. Only on the context sizes 1 and 2 the predictor with two-state automata is slightly 

better. On the higher context sizes both predictors provide the same accuracy. We can also 

observe that the accuracy is increasing up to a context size of 6. The reason of the accuracy 

decrease starting with the context size of 7 is that such long contexts are rarely matched during 

the assembly process, which is shown by the extremely low coverage (see Figure 34). 

 

Figure 34. The coverage of the two-level predictors by considering different context sizes 

We can see that both predictors have almost the same coverage. As we expected, as higher 

is the context size, as lower is the predictor’s coverage. The chances are good to find short 

patterns, but low or very low to find long patterns. A limitation is introduced by the fact that only 

seven steps are necessary to correctly assemble the tablet. Analyzing Figures 33 and 34, we can 

conclude that the two-state automata introduced an insignificant improvement. Thus, the simpler 

prediction scheme proved to be more efficient.  

Next, we present the error detection capability of the analyzed predictors. This is an 

important indicator, since we are going to use such predictors to detect also possible wrong 

assembly steps beside the useful indications they can provide during the manufacturing process. 

 

Figure 35. Error detection capability of the two-level predictors with different context sizes 
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As Figure 35 shows, the error detection capability is quite good for both analyzed 

predictors. For long context sizes (6 and 7) it reaches even 100%. However, we would like to see 

such good error detection capabilities for shorter contexts, since they can assure better coverage 

and higher prediction accuracy.  

3.1.6. Summary 

Context-aware assistive systems and collaborative robots can support people to manage the 

increased variability and complexity of products while reducing the number of errors. These 

systems can potentially provide a diversity of dissimilar opportunities for manufacturing, such as 

training employees with less experience or even eliminate the need for training, quality 

assurance, reducing the cognitive complexity associated with assembly tasks, and integrating 

elderly and disable people into the workplace. Although there are various opportunities to 

employ advanced technologies such as augmented and virtual reality, artificial vision and 

biosensors, a user-centered approach is critical to the success of these systems. Beside the 

specific context of the assembly task and the manufacturing environment, assistive systems 

should adapt the instructions in real-time based on the workers’ psychomotor capabilities. This 

becomes even more obvious in mixed-initiative human-robot collaboration where the proper 

allocation of tasks between humans and robots requires great flexibility to achieve optimal joint 

human-robot performance. It includes models and evaluation criteria for the optimal task-

allocation between human and robot in a dynamic environment (i.e., the stochastic nature of the 

manufacturing process and models of human status and performances). 

Pattern recognition in the manufacturing process is an essential enabler to provide the 

assembly assistance functionalities. Although prediction methods have been used in many 

domains, to our knowledge there is no research to predict the behavior of human operators in 

manufacturing assembly tasks. In this section, we have analyzed the possibility of using two-

level context-based predictors as assembly assistance of the manufacturing operators. The 

evaluation results shown that the optimal prediction scheme was the two-level context-based 

predictor with simple states, which can be either used to assist the trainees during their learning 

stage or to help the workers by detecting wrong assembly steps. The training stations enhanced 

with such predictive capabilities allow to replace a fixed and thus static assembly sequence with 

a dynamic one which is adapted to each human operator, providing flexibility and efficiency. 

Our approach fits well the widely applied machine-assisted human-centered manufacturing 

paradigm. 

In the next section, we will develop and evaluate some more complex prediction schemes, 

like Markov chains or the PPM algorithm. We will choose the most efficient prediction method 

to be integrated into our smart assembly training station. Until now we did not find any 

significant correlation between the assembly style and the worker’s profile. This issue requires 

further investigations with an extended set of experiments over different user types (i.e., 

personas). 

3.2. Decision Support System with Stochastic Models 

Due to the flexibility of the human operators, many factories avoid the full automation and 

apply machine-assisted human-centered manufacturing solutions. Human trainers can be 

replaced with smart training stations to train the workers, making thus possible their easier 

relocation. Moreover, assembly assistance systems can be useful also for experimented workers, 

especially in detecting wrong assembly steps, but it can decrease monotony, too, by adapting the 

assembly process to the workers’ needs and styles. Thus, particularly under frequent changes in 

work order, smart assembly assistance systems can highly increase production efficiency and 

reduce the error rates. 
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In this section, we propose an adaptive assembly assistant system which is using Markov 

predictors or PPM to recommend the next assembly step. First, the predictors are trained with 

correct assembly patterns. After the training stage, the predictors can be used to determine the 

next assembly step based on the current context consisting in the worker’s last assembly steps. 

We evaluated the predictors and compared them with others on a dataset collected during an 

experiment performed on 68 inexperienced manufacturing operators. The experimental 

methodology was presented in 3.1.4. The final goal is to physically integrate the best predictor 

into our smart assembly station to avoid uncertainty and mental stress for workers by 

recommending possible steps for assembling the product. 

3.2.1. Related Work 

Assembly assistance systems can increase manufacturing efficiency and can reduce the 

skill requirements of the human workers [127]. Such systems should be adaptive in order to 

mitigate some human-machine interaction costs, like the unbalanced mental workload [103]. The 

adaptability can be assured by interactive systems able to provide context-aware instructions to 

the workers during the assembly processes [62]. In [126], the gamification is used to achieve a 

mental state in which a worker is fully immersed in activity, with energized focus and the belief 

in the success of that activity. 

In [84], we evaluated the first predictors for our context-aware assistive system. The two-

level context-based predictor uses a left-shift register in its first level and a pattern history table 

in the second level storing pairs of assembly patterns and recommended next assembly steps. 

The predictor is considered of order R if the left-shift register from the first level and the patterns 

from the second level table are composed of R consecutive assembly states. An improved 

version uses two-state automata for better stability to possible changes in the assembly sequence. 

Each next assembly state stored in the pattern history table has associated such an automaton on 

one bit which can be in weak state (0 logic) or strong state (1 logic). When a certain assembly 

pattern is followed again by the same assembly state, the associated automaton changes to 1 if it 

was 0 or remains 1 if it was 1. When a different assembly state occurs and the automaton is 0, it 

will store the new assembly sate and the automaton remains 0. When different observation 

occurs and the automaton is 1, it will keep the old assembly state and the automaton switches to 

0. The experimental results have shown that this more complex scheme with the automata cannot 

provide higher prediction accuracy. Another improvement was to store multiple possible next 

assembly states for each pattern within the pattern history table. This scheme could not increase 

the prediction accuracy, since the predicted next assembly state was always the last state seen 

after the current assembly pattern, but it could significantly increase the error detection rate. 

In [180], the authors present a human-machine centered assembly station and a case study 

in a mini-factory laboratory, switching from a manually production to a hybrid assembly system 

combined with a lightweight robot. The safety risks of the workers have been evaluated, also 

providing the appropriate measures. The presented mini-factory laboratory is equipped with 

devices for manual assembly and devices used for automated or hybrid assembly. The manual 

workstations have flexible plug-in system of tubular frames and tables equipped with electric 

screwdriver systems and grab containers. Other elements are the lean Kanban flow racks to apply 

material commission. The laboratory has software systems and several robots usable for 

automated assembly demonstrations. The case study with manual assembly consists in 

simulating a manual assembly of pneumatic cylinders by groups of students. As a next goal, the 

authors extended this case study with human-machine interaction by developing a safety-

oriented hybrid workstation for assembling pneumatic cylinders. 

In [96], the authors developed a virtual training system for the automotive manufacturing 

domain. They proposed an automated virtual training technique, integrating the relevant planning 

data of the IT structures within digital factories. The goal was to increase the production process 

transparency for the human operator and to allow fast adaptation to new manufacturing 
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requirements. The cost-effective scalable hardware-setup relies on game-based user interaction 

and, therefore, it is widely accepted by the users. The trainees can acquire relevant knowledge 

regarding the involved components, as well as assembly positions, modalities and sequences. 

The learning process consists in three stages: an easy mode for familiarization, a medium mode 

and finally a hard mode when the appropriate components must be actively chosen. The 

knowledge is further strengthened through specific games. The automated training content is 

generated by an interoperable information interface which combines heterogeneous enterprise 

data from planning processes in a unified information model, used as input by the virtual training 

module. In [199], the authors analyzed the impact of the virtual reality learning procedures over 

the workers’ training process and concluded that the virtual simulation preceding the real 

assembly improved the score of correctly assembled modules and shortened the assembly time. 

In [138], the authors proposed a semantic service discovery and ad-hoc orchestration 

system, adaptable to context changes. The processes are generated taking into account the 

current structure of the production plant and the ability of the field devices to apply semantic 

discovery and service selection. Their context-based orchestration framework is composed of 

three layers: service registration, service discovery and selection and service orchestration. The 

authors developed a structure of modular ontologies used for semantic reasoning in matching and 

selection processes. The modeled ontologies are then used for the semantic description of the 

web services provided by field devices. The service with the highest score, weighted among 

several matching criteria, is selected. The process is then decomposed in atomic processes and 

the corresponding services are invoked for the resulting composite process in order to control the 

manufacturing of the current product. In contrast with the above-described works, our assembly 

assistance system relies on its prediction capability for the next assembly step, and consequently 

detecting the wrong ones. 

Markov models were used as stochastic models and proved to be efficient in several 

different areas like computational biology [192], web access mining [80], image processing [76], 

energy management systems [73], etc. In our opinion, this powerful prediction method can be 

efficiently integrated into smart assembly stations and used to support the manufacturing 

processes by providing the next assembly step. Therefore, in this section, we extend the 

prediction scheme presented in [84] with frequencies associated to each possible next assembly 

state. The pattern history table keeps the evidence of state-frequency pairs for all the assembly 

contexts encountered in the training stage. Then, during the assembly process, the predictor will 

recommend the next assembly step as being the most frequently seen state after the current 

assembly context. Thus, the proposed scheme is in fact a Markov predictor. Context-aware 

assembly assistance systems have been presented in [46] and [61], but they are not relying on 

prediction, nor on Markov chains. 

3.2.2. Assembly Assistance using Markov Predictor 

The manufactured product used in this work is a customizable modular tablet composed of 

eight components, as it was described in paragraph 3.1.2. Seven steps, in no predefined 

sequential order, are needed to correctly build up such a tablet. In order to be able to model the 

assembly process of the tablet using Markov chains, we codified all its possible states as we 

explained in 3.1.2.  

In Markov chains of order 1, the current state depends on the previous state. Such a model 

can be described by equation (22):  

 ][]...,,[ 111   tttt qqPqqqP   (22) 

where tq  is the state at time t.  In Markov chains of order R, the current state depends on R 

previous states. Such a superior order Markov chain is described by equation (23): 
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 ]...,,[]...,,[ 111 Rttttt qqqPqqqP     (23) 

In our application, the states are the assembly stages of the tablet. We implemented the Markov 

predictor as a two-level prediction scheme [85]. Figure 36 presents the structure of a Markov 

predictor of order R. The patterns in this work are composed of human worker characteristics 

( 41,...,CC ) and assembly sequences ( 1,...,  tRt qq ). The next state can be predicted if the current 

context is found in the pattern field of the table and then the state tq  with the highest frequency 

from that entry will be the prediction. 

 

Figure 36. Rth order Markov predictor 

The first level is the context built up as a left-shift register containing the previous R states of the 

tablet, and it is updated after each assembly step. The second level is a pattern history table 

composed of the Pattern and States fields. Each entry of the pattern history table contains a 

certain pattern of R consecutive assembly states in the Pattern column and a list of possible next 

states together with their frequencies in the States column. The frequency associated to a certain 

state is determined in the training stage as the number of occurrences of that state after the 

considered pattern. After the training stage, based on this information, the predictor can provide 

the most probable state in any assembly context. An example with a 3rd order Markov predictor 

is presented in Figure 37. 

A B C    D:2, E:1  

A B C Pattern     States Context:

A B C    D:2, E:1  

A B C Pattern     States Context:

 

Figure 37. The Markov predictor (R=3) 

If we consider the ABCDABCDABCEABC observation sequence, after the pattern ABC 

we have seen the state D twice and the state E once. These two states are stored together with 

their frequencies in a list associated to the ABC pattern from the prediction table. If we use the 

trained predictor to suggest the next state after the pattern ABC, it will provide the state D, 

because it has the highest frequency. We have implemented the pattern history table as an 

unlimited dictionary storing key-value pairs. The keys are integer values representing the 

patterns. The values associated to the keys are lists of next possible states stored as integers 

together with their frequencies which are also integers. 

3.2.3. Markov Predictor with Padding 

As we explained in the previous section, in superior order Markov chains, the current state 

depends on a limited number of previous states (see equation (23)). In a Markov chain with 

padding, equation (23) additionally has the following property: 
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meaning that if there are not enough states to build up the pattern, then zeros are used instead of 

the missing states. This padding mechanism makes possible to use the Rth order predictor even if 

we do not have yet the entire context of length R. The predictor can be designed as a table 

having two columns [86]: the first one for the patterns and the second one for the list of possible 

next states and their frequencies. The prediction table is indexed with a left-shift register 

containing the context or zeros for the missing context states. The state having the highest 

frequency within the selected entry is provided by the assembly assistance system as the 

recommended next manufacturing step. The prediction table was implemented as an unlimited 

dictionary containing pairs of patterns and their corresponding unlimited lists of possible next 

states. 

 An example with a 2nd order Markov predictor is presented in Figure 38. If we consider 

the state sequence ABCABCABDAB, the predictor is trained with all the extracted pairs 

consisting in patterns of size 2 and their next state. For the incomplete patterns the padding 

mechanism is applied. 

A B      C:2, D:1  

A B Pattern     States 

Context:

[0]

0 A          B:1

B C          A:2

C A          B:2

B D          A:1

D A          B:1

CA B      C:2, D:1  

A B Pattern     States 

Context:

[0]

0 A          B:1

B C          A:2

C A          B:2

B D          A:1

D A          B:1

C

 

Figure 38. Example of 2nd order Markov predictor with padding 

 Thus, the first pattern 0A is followed once by the state B. The pattern AB is followed 

twice by C and once by D. In the same manner, the pattern BC is followed twice by A, CA is 

followed twice by B, BD is followed once by A and DA is followed once by B. Now, at the end 

of the sequence we are interested in the next state prediction. The current context of size 2 

(extracted from the end of the state sequence), in this case AB, is used to index the prediction 

table. Therefore, the entry having the pattern AB will be selected. From the associated list of 

states, the state with the highest frequency is provided as the predicted one. Thus, after the 

exemplified sequence, the system will recommend C as next state. Obviously, in our assembly 

assistance system, and implicitly in the predictor, the states are represented by values (generated 

through the codification proposed and used in [84]). Optionally, the predictor can be configured 

to generate multiple choices for the next assembly step, in descending probability order. 

 Since in our application the state sequence is very fragmented (a correct manufacturing 

process takes only 7 steps), the padding mechanism is very useful at the beginning of each new 

assembly procedure. Thus, through padding, the system will be able to predict more often.  

3.2.4. Prediction by partial Matching 

As we described in [87], a PPM of order R tries to provide a prediction with the Markov 

predictor of order R and, if it can do that, its prediction is returned by the PPM. Otherwise, the 
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order of the Markov predictor is iteratively decremented until a prediction can be provided. If the 

Markov predictor of order 1 cannot issue a prediction, then the PPM itself is not able to do that. 

The PPM’s prediction mechanism is depicted in Figure 39. For the PPM implementation, the 

Markov predictor with padding (presented in the previous section) is used. The Markov predictor 

was enhanced to also use the workers’ characteristics. Upon instantiation of the PPM algorithm, 

the order R should be provided as parameter. For each order, starting from R and moving down 

to 1, a Markov predictor is created. After all the R Markov predictors are created, they are sorted 

in descending order. When the prediction algorithm is called, it will iterate sequentially through 

the Markov predictors to find one which has a match for the assembly pattern. If the Markov 

predictor of order R has no match, then the next Markov predictor from the sorted list is checked. 

The first Markov model that has knowledge of the assembly pattern is the one that will make the 

final prediction. If no Markov model can find a matching sequence, then the PPM algorithm is 

going to return –1, meaning that it cannot make a prediction. As far as we know, PPM has not 

been used for next assembly step prediction before. The novelty of this method consists in the 

combination of different order Markov predictors, which ensures that matches for the occurring 

assembly patterns can be found easier. 

 

Figure 39. The prediction mechanism of the PPM 

There are over 5000 possible ways of assembling the tablet and 4 characteristics that can 

define the behavior of a worker, each one with 2 possible outcomes. Thus, the tablet could have 

over 80,000 unique assembling possibilities. Because of the high diversity of assembly patterns, 

the current context cannot always be found in the prediction table of the prediction scheme 

presented above, which negatively affects the prediction rate. Therefore, an enhanced scheme 

was considered, which explores neighboring characteristics of the user, whenever the current 

context (with the actual user characteristics) does not have an exact match. This approach would 

be practicable even if several additional characteristics were considered. 

Neighboring context exploration involves changing one characteristic of the worker at a 

time. A single trait of the worker is changed sequentially at a time, after which making a 

prediction is attempted. For example, if the user is a tall male wearing eyeglasses that slept well 

the previous night, and there is no match for this combination, predictions will be made by 

varying his characteristics (one at a time), obtaining four different neighboring states. In one of 

them, the gender is the changed variable, so that a prediction for a tall female wearing eyeglasses 

that slept well the previous night is made. Afterwards, the variable for height will be changed, 

then the one related to whether the worker slept well, and lastly the one related to wearing 

glasses. This approach might yield up to 4 predictions, given that the model has knowledge about 

the neighbors. The step that was predicted the most from the neighboring states will be 



Prediction-Based Assembly Assistance Systems 

 60 

considered the next assembly step (majority voting). Ties are resolved by selecting the most 

frequent prediction, having the lower index in the prediction list. If the model has no match for 

the assembly state paired with the user’s characteristics, nor with neighboring characteristics, 

then no predictions can be made. 

3.2.6. Experimental Results 

3.2.6.1. Markov Predictor 

Next, we present the evaluation results of the proposed Markov predictor in comparison 

with the two-level context-based predictor presented in [84]. Other assistive assembly systems 

are not considered in this comparative evaluation, since none of them are relying on prediction. 

The evaluations were performed on the dataset obtained through an experiment involving 68 

trainees assembling without any guidance the customizable modular tablet presented in the 

previous section. The experiment was presented in 3.1.4. After we trained the predictors on some 

extracted correct assembly patterns, we tested them on the collected data. The training set 

consists in 357 assembly states and the dataset used for evaluation contains 388 states. 

 

Figure 40. Prediction accuracy 

 

Figure 41. Coverage 



Prediction-Based Assembly Assistance Systems 

 61 

Figure 40 presents comparatively the prediction accuracy obtained for different context 

sizes. The prediction accuracy is the percentage of correct predictions with respect to the number 

of predictions. We can observe that the Markov predictor is more accurate than the two-level 

context-based predictor, the highest gain being obtained for a context size of 1. As higher is the 

order of the models, as lower is the gain for the Markov predictor, which means that the 

additional frequency information can be avoided if the context information is sufficiently long. 

However, the higher order models can provide fewer predictions, as we can see in Figure 41 

depicting the coverage (percentage of correct predictions with respect to the total assembly 

steps). Even if the first order models have lower prediction accuracy, they can provide a higher 

number of correct predictions, by predicting more often. 

 

Figure 42. Error detection capability 

The highest measured difference between the compared predictors was obtained in their 

error detection capabilities (see Figure 42), which is over 99% for the Markov predictor and only 

about 43% in the case of the two-level context-based predictor. This better error detection is 

possible due to the multiple assembly states stored for each entry of the Markov predictor in 

contrast to the single state stored for the two-level context-based predictor. Thus, if the Markov 

predictor is trained with sufficiently high number of different assemblies, it can identify the 

wrong assembly steps with a higher confidence. 

3.2.6.2. Markov Predictor with Padding 

The evaluations started by measuring the prediction rate compared to Markov predictors 

without padding. The order of the predictor was varied between 1 and 7. Higher orders are not 

justified, considering that a correct assembly process takes seven steps. Obviously, the padding 

has no sense in the case of the first order predictor, that is why the same results can be observed 

with both predictors. 

Figure 43 depicts that a lower order of the predictor is associated with a higher prediction 

rate. This is because the shorter contexts searched by the lower order predictors are found more 

often (almost 100% in the case of a first order predictor). Long contexts are very hard to find, 

especially the contexts of length 7. But with the padding mechanism applied, even such long 

contexts are easily found (almost 90%), because the incomplete contexts are filled from the left 

with zeros, in both training and testing stages. This is a great advantage of the padding 

mechanism, since it can significantly improve the coverage for the higher order Markov 

predictors. Figure 44 presents comparatively the coverage of the Markov predictor with and 

without padding, considering different orders. 
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Figure 43. The prediction rate obtained with predictors of different orders 

 

Figure 44. The coverage obtained with predictors of different orders 

The benefits of the coverage improvement shown in Figure 44 are remarkable, since with 

the considerably higher number of correct predictions, the Markov predictor with padding can 

better model the assembly processes. The padding mechanism improved the coverage from 

41.42% to 65.53%, at average, which is considerable. It means that in 65.53% of the cases, the 

predictor can reproduce exactly the next state. Moreover, the difference between the prediction 

rate of 91.97% and the coverage of 65.53% consists in other 26.44% of cases when the predictor 

can give a feasible next assembly step.  

A drawback of the padding mechanism is the lower prediction accuracy (see Figure 45). A 

slight deterioration in accuracy starting with the second order predictor can be observed, where 

the padding is applied. But the accuracy is not crucial since even a misprediction can be 

considered in fact a correct next step recommendation. The predictor was trained only with 

correct assembly steps and, therefore, even if it cannot guess sometimes the intention of a human 

worker in a certain context, it can provide useful (and correct) next step choices. 
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Figure 45. The prediction accuracy obtained with predictors of different orders 

Thus, the coverage is the main indicator of our predictor’s usefulness. With a coverage of 

almost 66%, the Markov predictor with padding mechanism is a very good candidate to be 

integrated into our assembly assistance system in order to recommend the next assembly steps. 

Both predictors provide the same error detection rate – 95.65% for the first order predictors and 

100% for the higher order predictors – and thus, they can be used also to identify eventual wrong 

assembly steps performed by human workers. 

3.2.6.3. Prediction by Partial Matching 

This subsection presents the results of the proposed predictor, which will also be compared 

with other existing prediction methods. The aim is to compare both the capacity of learning the 

entire dataset and the capacity to adapt to new assembly scenarios. Three metrics have been 

chosen to evaluate the performance of the prediction algorithms: prediction rate, accuracy and 

coverage. The prediction rate measures how many times the algorithm was able to make a 

prediction. The prediction rate is computed in relation to the size of the testing dataset. The 

accuracy measures how many of the predictions made were correct and the coverage considers 

the correct predictions in relation to the whole testing dataset. 

In the tables presented below, for each metric there are two columns “100/100” and 

“75/25”. These two columns refer to how the algorithms were evaluated: “100/100” indicates 

that both the training and testing datasets were generated using 100% of the dataset, while 

“75/25” means that 75% of the dataset was used on the training of the model and the rest of 25% 

was considered for testing. 

PPM 

Order 

Prediction Rate (%) Accuracy (%) Coverage (%) 

100/100 75/25 100/100 75/25 100/100 75/25 

1 95.62 54.46 80.05 61.82 76.55 33.66 

2 95.62 54.46 82.21 61.82 78.61 33.66 

3 95.62 54.46 82.48 61.82 78.87 33.66 

4 95.62 54.46 82.48 61.82 78.87 33.66 

5 95.62 54.46 82.48 61.82 78.87 33.66 

6 95.62 54.46 82.48 61.82 78.87 33.66 

7 95.62 54.46 82.48 61.82 78.87 33.66 

Table 10. Evaluation of the PPM algorithm on the “Trainees” dataset 
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Table 10 presents the three metrics for the PPM algorithm of orders 1 to 7, on the 

“Trainees” dataset. The prediction rate remains constant throughout the orders for both testing 

methods. For the “100/100” testing method, the accuracy and coverage increase in small 

amounts up to order 3, where maximum percentages are achieved. Due to higher orders, the 

sequence can be more tailored to the worker, thus an increase of the accuracy and coverage can 

be observed. For new data, it seems that the metrics remain constant throughout all the orders. 

The PPM predictor was improved by enabling it to search in all the neighboring states 

(when it is necessary) for a possible assembly. The PPM with neighboring is further denoted 

PPMN. Table 11 presents the results of the PPMN on the “Trainees” dataset. On known data 

(with the “100/100” testing method), a small increase can be observed in terms of coverage, a 

2% increase in the prediction rate, while the accuracy was slightly lower than that of the PPM 

without neighboring states. When it comes to new data (“75/25” testing method), the coverage 

increased by over 10% compared to the PPM without neighboring search and the prediction rate 

by over 20%. Although there is a slightly lower accuracy, the use of this enhanced algorithm is 

preferred. 

PPMN 

Order 

Prediction Rate (%) Accuracy (%) Coverage (%) 

100/100 75/25 100/100 75/25 100/100 75/25 

1 97.68 77.23 78.89 57.69 77.06 44.55 

2 97.68 77.23 81 57.69 79.12 44.55 

3 97.68 77.23 81.27 57.69 79.38 44.55 

4 97.68 77.23 81.27 57.69 79.38 44.55 

5 97.68 77.23 81.27 57.69 79.38 44.55 

6 97.68 77.23 81.27 57.69 79.38 44.55 

7 97.68 77.23 81.27 57.69 79.38 44.55 

Table 11. Evaluation of the PPMN on the “Trainees” dataset 

After evaluating the two implementations of the PPM algorithm, with and without 

neighboring states, it can be observed that the optimal order for both algorithms is 3. The optimal 

configurations of these two algorithms will now be compared with the Markov model with 

padding enhanced to use human characteristics. For the Markov model with padding, the optimal 

order is 2. The comparisons are presented on both the “Trainees” and “Workers” datasets. Both 

the capacity to learn and to adapt to new challenges will be measured. 

Figure 46 makes the comparisons in terms of prediction rate. The PPMN has the top 

prediction on the “Trainees” dataset with the “100/100” testing method. On new data (“75/25” 

testing), compared to PPM, the PPMN predicts over 10% more often on the “Workers” dataset 

and over 20% more often on the “Trainees” dataset, with a prediction rate of 91.18% and 

77.23%, respectively. 

 

Figure 46. Prediction rate 
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Both the PPM and PPMN have a similar prediction accuracy across all datasets, with PPM 

being slightly higher (see Figure 47). On “100/100 testing”, the Markov predictor has the highest 

prediction accuracy.  

 

Figure 47. Prediction accuracy 

The coverage measures the capacity of these prediction methods to model existing data and 

to adapt to new data. As Figure 48 depicts, PPMN is the best prediction method to model 

existing data and has a coverage of 44.55% on the “Trainees” dataset and 71.18% on the 

Workers dataset, considering the “75/25” testing method. Taking into account that the coverage 

is an important efficiency indicator, as it expresses the ratio of correct predictions, these results 

are remarkable. The combination of different order Markov predictors, as well as the exploration 

of the neighboring states, proved to be a good solution. The PPMN can easier find matching 

assembly patterns to provide next step prediction. 

 

Figure 48. Coverage 

3.2.7. Summary 

In this section, we analyzed the possibility to provide the next assembly steps by 

employing Markov predictors in assembly support systems. The experimental results obtained on 

68 trainees, have shown increased prediction accuracies for the schemes of orders 1 and 2, with 

respect to the simpler two-level prediction schemes presented in [84]. With higher order 

prediction schemes, we have obtained similar prediction accuracies with the existing two-level 

prediction schemes. Consequently, if the context is sufficiently long, we can avoid the additional 

frequency data. However, the Markov predictor can keep the error detection capability very close 

to 100%. Since we obtained the highest coverage with the first order Markov predictor, we 
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consider this configuration as being optimal. Another great advantage of the Markov predictor is 

that it can provide multiple choices for the next assembly step, in their descending probability 

order, and consequently better capture the dissimilar psychophysiological profiles of workers. 

For time-critical decisions, it can be configured to provide only the most probable assembly 

solution. 

Markov chains with padding mechanism were also analyzed as possible prediction 

component. By completing the missing elements of the contexts with zeros, a significantly 

higher prediction rate was achieved. Thus, the coverage is substantially increased, even though 

the prediction accuracy is lower. The experimental results have shown a much higher number of 

correctly predicted assembly steps, meaning that this improved Markov predictor can better 

model the behavior of the human workers. The coverage, which is one the most important 

indicator for our goal, increased from 41.42% to 65.53%. Thus, the proposed predictor proved to 

be efficient in recommending the next assembly step and in identifying the errors of the workers. 

Moreover, it can efficiently adapt to each worker’s assembly style, which would be hard for a 

human trainer. The predictor can be applied for assembling any product, the difference being 

only the number of states determined by the number of components. 

We have also evaluated the PPM algorithm. The experiments have shown that the optimal 

PPM is of order 3. For a higher prediction rate, a PPM enhanced with a neighbor-states checking 

mechanism, the PPMN was used. Thus, when the algorithm could not find the current state 

(consisting of the worker’s characteristics and the sequence of the last assemblies), it also 

checked the states which were neighbors from the human characteristics point of view and, in 

case of success, the next assembly step was determined by majority voting among such existing 

neighbor states. The PPMN has a significantly higher coverage on new data: 44.55% in the case 

of trainees and 71.18% in the case of factory workers. It also clearly outperforms the Markov 

models in terms of coverage. 

The possibility to anticipate the next assembly state through Hidden Markov Models and 

Dynamic Bayesian Networks will be analyzed in our future work. Hidden Markov Models are 

doubly embedded stochastic processes consisting in a hidden stochastic process that relies on a 

set of observable stochastic processes. Hidden Markov Models were applied with very good 

results in speech recognition [151], smart buildings [75], computational biology [227], etc. These 

powerful stochastic models could be further used as prediction methods to provide the next 

assembly step in manufacturing processes. 
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4. Anticipative Systems for Smart Buildings 

Ubiquitous systems strive for adaptation to user needs by utilizing information about the 

current context in which a user’s appliance works [210]. A new quality of ubiquitous systems 

may be reached if context awareness is enhanced by predictions of future contexts based on 

current and previous context information. Such a prediction enables the system to proactively 

initiate actions that enhance the convenience of the user or that lead to an improved overall 

system. 

Humans typically act in a certain habitual pattern, however, they sometimes interrupt their 

behavior pattern and they sometimes completely change the pattern [209]. Our aim is to relieve 

people of actions that are done habitually without determining a person’s action. The system 

should learn habits automatically and reverse assumptions if a habit changes. The predictor 

information should therefore be based on previous behavior patterns and applied to speculate on 

the future behavior of a person. If the speculation fails, the failing must be recognized, and the 

predictor must be updated to improve future prediction accuracy. 

One of the major societal concerns is the energy consumption and the environmental 

footprint of consumers (like buildings, city street lighting, IT servers of data centers, etc.). The 

Environment Protection Agency of USA highlighted that computing systems, in particular data 

storage centers, consume the same amount of energy as civil aviation (about 2% of the world's 

total energy in 2010) [42]. Without a considerable energy efficiency improvement, high-end 

parallel computers will be of questionable economic viability and most of mobile computing, 

wearables and Internet of Things (IoT) devices will suffer from a lack of autonomy. Energy-

saving solutions must follow two directions. On one hand, the total energy consumption must 

decrease. Electronic devices must be made more efficient from the energetic viewpoint by using 

less energy-hungry applications on smartphones and in other embedded systems or by 

diminishing the energy per floating-point operation. On the other hand, it is necessary to research 

safe alternative energy sources (wind power, renewable sources obtained through passive solar 

techniques, photovoltaic panels, biomass and hydropower) to replace current energy sources. 

The current economic approach that basically amounts to a linear industrial model where 

materials are taken, transformed into products, and then disposed with, is evolving into a circular 

economy which encourages reduction, reuse, and recycling. The value of resources is thus 

maintained for as long as possible, resulting in energy savings and in lower greenhouse gas 

emissions. 

The transition from linear to circular economy has received support from the European 

Commission through a package adopted in 2015. In the same year, the Paris Agreement was 

signed under the United Nations Framework Convention on Climate Change. The electrical 

power sector must undergo a thorough metamorphosis to achieve the ambitious targets in 

greenhouse gas reduction set out in the agreement. Given the growth in trade volumes and 

diversity of products exhibited by the market of electricity derivatives, electrical energy plays an 

increasingly important role on the market. Electricity spot prices are driven largely by demand. 

Reducing the uncertainty relative to non-elasticity of demand (and, in case of renewable 

electricity, supply) and non-storability of electricity is essential when one is confronted with the 

arduous task of modelling spot prices [219]. 

Perhaps one of the most obvious advantages of predicting electricity consumption and 

production is the spreading of awareness of the negative environmental impact of a high 

consumption, the importance of balancing between production and consumption, and the benefits 

from intelligent energy management in buildings. Prediction of electricity patterns with different 

time granularities (day/week/month/year), isolation of ascending and descending trends, 

depending on geographic region and the lifestyle of consumers, will help consumers become 
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more aware of their electricity consumption and enable them to develop intervention strategies 

according to their pattern of consumption. Furthermore, consumers who have direct and frequent 

access to consumption and production measurements and patterns specific to them, will likely 

become more ecologically aware about environmental issues. 

In a renovated electrical grid, data are collected and used as a basis for decisions, with the 

aim of improving the efficiency, reliability, and sustainability of electricity production and 

distribution. The automatization degree of this process plays an important role, as well as the 

self-monitoring and feedback capabilities offered to customers. In order to have accurate 

measurements of the operating conditions of the electricity grid, sensors need to be placed 

throughout it, in particular on production, transmission, and distribution systems, in addition to 

consumer access points [226]. Processing the collected data, which falls into the realm of big 

data analytics, helps decision makers to measure the level of energy supply they should 

guarantee and to estimate reasonable safety margins. In addition, predictions of energy demand 

can be used to determine innovative, flexible, and dynamic pricing plans that are closely tailored 

to usage patterns [3]. In this context, the availability of individual predictions complements and 

completes centralized analysis systems. 

The prediction of electricity consumption could be used as a monitoring and diagnostic 

solution embedded in the self-healing feature of modern smart grid technologies [184]. If some 

piece of equipment would require an unusual amount of electricity or if there is a defective 

component inside the network (buildings, factories or city street lighting), our application could 

send a notification to the maintenance team that will then perform an on-site diagnosis on the 

identified component, deciding about the appropriate action: further close monitoring, repair, or 

replacement. Such an approach can reduce costs by preventing component loss, while avoiding 

unexpected electrical interruptions. Another implication in practice of our developed tool refers 

to predict electricity demand in order to know in advance when to start ventilation and cooling of 

electrical systems in data centers, to efficiently manage the networks and target interventions 

designed to reduce or time-shift peak loads. In general, the usefulness of predictions will be 

amplified whenever actuators with some latency are present. 

In increasingly crowded cities, a detailed and current knowledge of the number of 

inhabitants becomes useful and necessary for city authorities in planning public transportation 

and traffic, and accurately managing public transport fleets. Prediction of electricity consumption 

could provide considerable opportunities to find out household characteristics. Our solution can 

be used to generate household consumption profiles and link these data to the number of people 

in buildings in order to implement a smart census process. In an experiment in UK presented in 

[5], the authors analyze the feasibility of using household energy consumption for a specified 

period to infer their characteristics as a first step in aggregating them with other population and 

geographic location metrics. These area level population statistics could represent new insights 

for enhancing the census taking process with digital trace data. 

4.1. Energy Management in Buildings by Contextual and Computational 

Prediction 

Among economic sectors, infrastructure is somewhat special, in that it is normally invisible 

– unless it breaks down. Transfer of information has traditionally played a marginal role in the 

electricity grid, most often with the information flow in the form of a monthly bill and usage 

report. Bringing information to an infrastructure and observing the effects on processes and on 

the behavior of actors is an opportunity to focus attention on the impact of information in the 

reorganization of a sector [156]. Data collection, both at the supply side and the demand side, 

facilitates the balancing of the grid, a critical requirement for an appropriate supply of energy to 

be maintained. In a smart grid, households could be expected to react accordingly when the 

electricity grid requires an adjustment, for example when a reduction of intake is desired and 



Anticipative Systems for Smart Buildings 

 69 

achieved through the signaling of instant price increments [156]. The effects of a technology-

induced reorganization of the smart grid when users are no longer passive participants in the 

relationship between them and the infrastructure, but they become active and the information 

flow becomes bidirectional, can be profound and should be studied with great attention. 

Data analysis is one of the nine key factors that characterize data-based value creation 

[132]. Through the interconnection of sensing and actuating devices, data collected from the 

smart grid can support decision makers in devising appropriate decisions with respect to the 

adjustment of the supply level of electricity. In addition, smart grid data analytics can help 

predict future demand, helping in planning expansions [104]. Such prediction is, though, 

centralized. If the electricity grid infrastructure is viewed from a socio-political perspective, a 

reflection on issues regarding power and control comes forward, because infrastructures are 

essential systems for living and a complete control over them implies potential expedients for 

enhanced power [156]. The availability of autonomous, independent predictive systems might 

represent a valid protection mechanism. 

Production and distribution of hardware devices is not the sole business model enabled by 

the mechanism proposed here. The complexity of smart homes and smart grid suggests that it 

may not be viable for a single actor to build a comprehensive management solution alone. 

Companies operating in the area will have to establish partnerships among them and such data 

analysis partnerships are foreseen to be among the most important building blocks in shaping 

new business models [39]. For example, the analysis of readings from the device proposed in this 

section could be integrated and augmented with the corresponding information coming from a 

smart thermostat used to monitor their pattern of use of heating. 

Energy systems tend to become increasingly distributed due to the resilience and 

sustainability needs and the advanced researches in the field of distributed energy resources 

[110]. The penetration of distributed energy resources is determined by governmental policies, 

economic incentives and the social pressure on companies and individuals to perceive them 

green and progressive. The use of distributed energy resources results less transmission losses 

with respect to the centralized power systems and allows an intelligent management, being thus 

more efficient and in trend with the smart city concept. 

Nowadays, photovoltaics allow decentralized electricity production at a cost lower than 

that of the power grid. Costs are even lower if energy storage systems are included. Self-

consumption, i.e., the consumption of self-produced electricity, can be significantly increased 

with an intelligent energy management system which is able to streamline electricity production 

and consumption. The software architecture of such a system was proposed in [52], applying 

Artificial Neural Networks (ANN) to anticipate the future electricity consumption and 

production. Based on these predictions, the energy management system can make decisions in 

order to increase self-consumption, thus reducing the electricity intake from the power grid, 

finally decreasing the total annual operating cost [183]. The energy management system can 

decide to activate some electrical appliances when cheap electricity is available and delay their 

activation when only high-cost electricity is available. Self-consumption will also reduce losses 

in distribution networks, improving efficiency. 

In smart grids, households must react accordingly when the electricity grid requires an 

adjustment, for example when a reduction of intake is desired and achieved through the signaling 

of instant price increments [156]. Data analysis is a key factor in data-based value creation [132]. 

Through the interconnection of sensing and actuating devices, data collected from the smart grid 

can support decision making with respect to the adjustment of the electricity supply level. 

Additionally, smart grid data analytics can support the prediction of future demand, helping in 

planning expansions [104]. 

This section compares based on [73] different prediction techniques on the data recorded 

by the FENECON Energy Management System (FEMS) [52]. We evaluate the performance of 

Markov chains as electricity consumption and production predictors. Markov chains are widely 

used context-based methods which can provide predictions. Electrical power data cannot be 
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applied directly as input in Markov chains, since that would imply a huge number of states and, 

thus, the predictor would be inefficient. Therefore, we preprocessed the input data in order to 

enable the usage of Markov chains with a reasonable number of states for an efficient prediction 

process. We also analyze the possibility to apply stride predictors which are using the last strides 

from a sequence of values to predict future values. The previously mentioned preprocessing of 

the input data is necessary for the stride predictor, too. We will also study the combination of 

Markov chains and stride predictors for hybrid electricity forecasting. Such an adaptive hybrid 

prediction would take the advantage of each of its components based on their dynamic behavior. 

We analyze the accuracy of the proposed predictors on real data with the goal of minimizing the 

mean absolute error. We will determine the most appropriate configuration for electricity 

forecasting. We will also compare our optimal prediction method with the already existing 

neural network approach. Accurately predicting energy consumption could help improve energy 

management, grid performance, and reduce maintenance costs by pre-planning inspections and 

replacing equipment susceptible to damage. Moreover, it could improve the social and economic 

benefits by alerting the population if certain consumption thresholds are overtaken. 

4.1.1. Related Work 

In [100], the authors emphasized the advantages of big data and cloud computing 

technology for storing and analyzing massive electricity data, and to explore the pattern of 

electricity consumption. Several algorithms are analyzed such as Deep Learning, Fuzzy C-Means 

(FCM) clustering method, including social network-based predictors, suggesting a new 

perspective for describing the energy consumption behavior of consumers: in the time 

dimension, user dimension and spatial dimension. 

Traditional energy resources (fossil fuels) tend to be exhausted. Without rethinking energy 

management, critical situations will be reached (researchers estimate in 2040) when energy 

demand will exceed the world’s estimated energy production. To further exacerbate the problem, 

electrical energy is not uniformly distributed on the planet and does not cover the minimum 

required for everyone. In 2016 there were over 1 billion people with limited or no access to 

electricity [217]. Renewable energy solutions like wind power or photovoltaic energy generation 

represent the key in the fight against climate change. However, the unpredictability of 

meteorological and climatic parameters (the wind does not constantly beat, the lack of sunny 

days, rare rain and drought) contrasts with the need for a continuous and stable energy supply, 

and this represents a drawback of renewable energy systems. Smart solutions are required 

regarding the locations of wind farms and solar panels, or the introduction of energy storage 

stations is necessary. 

Solar energy is one of the most important renewable energy sources supporting the 

decarbonization efforts. Over the past twenty years, technology for power generation and storage 

associated to photovoltaics (PV) has known an impressive development. Due to environmental 

conditions, fossil fuel depletion, governmental support or just plainly looking for a cleaner 

energy source, PV were widely adopted. As solar energy depends on many factors and is not 

constant, prediction is indispensable. There are many studies, some using only solar irradiation 

while others also considering air temperature, humidity or wind speed. The predictions of energy 

production contribute to the identification of the right time for plant maintenance and to the 

establishment of adequate prices for electricity on the day-ahead market. 

Moreover, predictions can be made for energy production, but also for energy 

consumption. Predictions can also be categorized based on their time range: short-term 

predictions (covering usually a time slot of a few hours), average predictions (ranging from 

several weeks to one year) and long-term predictions (more than one year). Prediction models 

have been developed for consumers of different size: individual households, buildings, grids and 

plants. Most prediction methods aim at determining the minimum and average levels of energy 

consumption and the economic costs involved. The ultimate goal is to raise awareness, apply 
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corrections to actions already performed, and stimulate customers to increase efficiency, reduce 

energy consumption, or choose alternative (renewable) resources. 

Energy prediction and reduction solutions in Smart Buildings are based on automation of 

lighting, heating, ventilation and air conditioning (HVAC), security and surveillance, garden 

irrigation systems [183], on the basis of information inferred from past data or provided by data 

sources such as environmental sensors, laser beams, weather forecasts, building occupancy 

profiles, or number of parked cars. An accurate measurement (using Smart Meter instruments) of 

the energy consumption became a commonly used practice, given the increase in energy prices. 

However, predicting the electricity load is difficult because demand patterns generally differ 

among consumers, increasing the uncertainty of prediction. In [64], the authors propose, in a 

short-term approach, two types of predictors – based on ANNs and Support Vector Machines 

(SVM) – to forecast the electricity demand of individual households for 24 hours ahead. The 

benefit to customers is that they will be able to better understand their energy consumption and 

the afferent costs. 

Numerous factors influence and even limit the energy performance of buildings [231]. 

Among these factors we recall the environmental conditions, the buildings architecture, features 

and occupancy degree, behavior of inhabitants, and the operating regime of lighting and HVAC 

subsystems. The large number of input parameters involves a high algorithmic complexity in the 

prediction of energy consumption. The previously mentioned paper highlights some existing 

solutions for solving the energy prediction problem using statistical and ANN-based methods, 

and also further prospects are proposed. 

The main difference between the works referred above and our solution is that most of the 

state-of-the-art solutions are using ANNs, SVMs or time series models, whereas our proposed 

approach applies context-based methods like Markov predictors, computational (stride) 

predictors, and the hybridization of these two techniques. 

4.1.2. Electricity Prediction 

We present Markov chains, stride prediction and their hybridization as methods of 

forecasting electricity consumption and production. Our goal is to adapt them to be functional in 

energy management systems with photovoltaics and energy storage. In particular, techniques 

amenable to efficient implementation in hardware devices are studied. The reason for this 

decision is that energy management is foreseen to be integrated in lightweight devices such as 

those used in IoT. The scheme of the electrical installation used in the experiments is depicted in 

Figure 49. 
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Figure 49. The energy production and storage system 

As Figure 49 illustrates, the energy storage system is connected with two photovoltaics of 

12.24 kWp (PV1 and PV2) and also with three grid phases (Ph1, Ph2 and Ph3). The energy 
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produced by PV1 and PV2 is kept in the storage system with a capacity of 8.5 kWh. Consumers 

can take electricity from the storage system or from the grid. 
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Figure 50. The prediction process in an energy management system 

Figure 50 depicts how the prediction process is integrated into an energy management 

system. In the first stage, data about produced and consumed electricity must be collected. In the 

next stage, the recorded data must be checked for erroneous values, which must be corrected. 

Such problems (especially huge values) can occur during data collection. We corrected such 

identified erroneous data by replacing the wrong value with the previous recorded value. We also 

encode all the data. After the preprocessing step, the predictor computes the electric power for 

the next period, based on the data relative to previous periods. These predicted electricity 

production and consumption values are then used to make decisions by the energy management 

system to increase self-consumption. Next, we present the prediction methods evaluated in this 

section. All these methods are returning the next forecasted electric power, or a special value 

(here, -1) whenever they are unable to deliver a prediction. In such unpredictability cases, we 

will forecast the next electric power value as being equal to the previous one.  

4.1.2.1. Markov Predictors 

Observed levels of energy (production or consumption) constitute a sequence where 

subsequent samples are not independent. Such sequences can be described as being generated by 

a parametric random process, whose parameters can be learned from a training sample of 

sequences. 

Since the high number of possible distinct electric power values would highly increase the 

state complexity of the Markov chain, a classical implementation could be inefficient for 

prediction. Therefore, we implement the Markov chain-based prediction algorithm in an efficient 

way, as we did in [82] for web access prediction. Instead of predicting the next electric power 

through trees, graphs or transition tables, we generate the prediction by performing simple 

searches in the electric power sequence. This way of implementation will make possible to use 

Markov chains with significantly higher number of states. We will further decrease the state 

complexity of the Markov chain by preprocessing the input data. All the input electric powers 

will be encoded to intervals, each interval being represented by an integer value. The output will 

be determined by decoding the predicted interval (scaling to an approximated electric power 

value). 

In the Markov chains used in this section, states are represented by electric power values in 

Watts. In a Markov chain of order 1, the current state depends on the history only through the 

previous value: 
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][]...,,[ 111   tttt eePeeeP        (25) 

where te  is the electric power at time t.  In a famous sentence, P. Lévy stated this property as 

“the past influences the future only through the present”. If we generalize, in a Markov chain of 

order R, the current electric power is deduced based on R previous electric powers [82]: 

]...,,[]...,,[ 111 Rttttt eeePeeeP         (26) 

Markov chains can be used to anticipate the electric power by searching for the current 

electric power context in the stored electric power history. The predicted power level is the state 

for which the estimated transition probability from the current state is the highest. Figure 51 

presents an example of electricity forecasting with a Markov chain of order 1, using intervals of 

10, on a real sequence of nine electric power values extracted from the PV1 dataset. 
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Figure 51. An example of electricity prediction with a Markov chain of order 1 

As Figure 51 illustrates, the electric power history (composed of nine values) is codified by 

division to the interval value (which in this certain case is 10). The codified context is 15. The 

Markov chain predicts 14, since it occurred with the highest frequency after the context 15. The 

predicted value 14 is decoded (by multiplying with 10) to the electric power value 140, which is 

the final prediction. Figure 52 presents the flowchart of the prediction process using a first order 

Markov chain. 

c=0

Ec=EH-1

P[Ec+1]= P[Ec+1]+1

c=c+1

c<H-1

Pm=max{P}

Pm>0

yes

yes

yes

no

no

no

E={E0, E1, …, EH-1}

return mreturn -1

c=0

Ec=EH-1

P[Ec+1]= P[Ec+1]+1

c=c+1

c<H-1

Pm=max{P}

Pm>0

yes

yes

yes

no

no

no

E={E0, E1, …, EH-1}

return mreturn -1
 

Figure 52. Flowchart of the prediction process with a Markov chain of order 1 



Anticipative Systems for Smart Buildings 

 74 

The pseudocode of the general Rth order Markov prediction algorithm, used for electricity 

forecasting, is presented below: 

 

  1.   MARKOV (E, R) 

  2.       for c := 0 to R-1 do 

  3.           C[c] := E[H-R+c] 

  4.       endfor 

  5.       for h := R to H-1 do 

  6.           IS_CONTEXT := TRUE 

  7.           for c := 0 to R-1 do 

  8.               if E[h-R+c] != C[c] then 

  9.                   IS_CONTEXT := false 

10.                   break 

11.               endif 

12.           endfor 

13.           if IS_CONTEXT then 

14.               P[E[h]] := P[E[h]] + 1 

15.           endif 

16.       endfor 

17.       PREDICTION := 0 

18.       MAX := P[0] 

19.       for i := 1 to N-1 do 

20.           if P[i] > MAX then 

21.               MAX := P[i] 

22.               PREDICTION := i 

23.           endif 

24.       endfor 

25.       if MAX > 0 then  

26.           return PREDICTION 

27.       endif 

28.       return -1 

29.   end     

where R is the order of the Markov chain, E is the electric power sequence, the context C is 

containing the last R values from the electric power sequence, H is the length of the electric 

power sequence, P is the probability distribution for N distinct electric power values, 

PREDICTION is the predicted electric power value, and MAX is the frequency of the predicted 

electric power value occurring after the context. If the current context is not found in the electric 

power sequence, which is expressed by returning -1, the Markov chain is unable to deliver a 

prediction. The Java implementation of such a Markov predictor is presented in [92]. 

On the lines 2-4 the context C is extracted from the electric power sequence E. After that, 

on lines 5-16 the context C is searched within the electric power sequence E and each time the 

context is found, we increase the probability of the electric power value that follows the context. 

In this way, we compute the probability of some possible electric power values to be the next 

one in the sequence. On the lines 17-24, we determine the highest probability. On the lines 25-

27, if the highest probability is not 0, we return the electric power value corresponding to that 

probability. Otherwise, if all the probabilities are 0, we return -1 on the line 28, meaning that the 

algorithm is unable to predict. 

In this algorithm, we limit the value of H and thus we use a limited history of recorded 

electric powers. We will vary the parameter H in the experimental setup. 
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4.1.2.2. Stride Prediction 

The stride predictor is a trend-based computational prediction method which determines 

the next value as the sum of the immediate previous value and a stride [90]. The stride is the 

difference between the two most recent values. In our algorithm we chose as condition the 

equality between the last two strides. Thus, we generate a prediction only if the stride between 

the last three values was constant. Figure 53 presents an example of prediction with the stride 

predictor, using intervals of 10, on a real electric power sequence extracted from the PV1 

dataset. 
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Figure 53. An example of prediction with the stride predictor 

As Figure 53 depicts, the electric power history (composed of three values) is codified by 

division to the interval value (which in this case is 10). After a constant stride of -3 is detected, 

the prediction is generated by adding the stride -3 to the last value 28. Then, the predicted value 

25 is decoded (by multiplying with 10) to the electric power value 250, which is the final 

prediction in this case. Figure 54 presents the general stride prediction mechanism. 
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Figure 54. The stride prediction mechanism 

As Figure 54 shows, we compute the stride S1 as the difference between EH-3 and EH-2 and also 

the stride S2 between EH-2 and EH-1. Only if S1 and S2 are equal, we predict the next electric 

power value EH as the sum between the last electric power value EH-1 and the stride S1. Next, we 

present the pseudocode of the stride prediction algorithm. 

  1.   STRIDE (EH-1, EH-2, EH-3) 

  2.       PREDICTION := -1 

  3.       S1 := EH-1 - EH-2 

  4.       S2 := EH-2 - EH-3 

  5.       if S1 = S2 then 

  6.           PREDICTION := EH-1 + S2 

  7.       endif 

  8.       return PREDICTION 

  9.   end 

where PREDICTION is the predicted electric power value, which is -1 whenever the stride 

predictor is unable to predict. On the lines 3-4 the last two strides are computed. On the lines 5-7 
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the predicted electric power value is determined. This computational predictor should be able to 

identify and exploit constantly increasing or decreasing electric power sequences. 

4.1.2.3. Hybrid Prediction 

Since our previous experiments on different problems (branch and value prediction in the 

microarchitecture domain or webpage prediction) pointed out that a single predictor usually 

strives in capturing all the various types of predictability patterns that occur in real scenarios, we 

implemented a hybrid scheme for enabling high prediction accuracy. The hybrid prediction 

mechanism includes as components the above presented Markov and stride predictors. The 

hybrid predictor maintains a 4-state saturating counter for each component: CM for the Markov 

predictor and CS for the stride predictor. When a component produces correct predictions, its 

associated confidence counter is incremented. On the other hand, when a predictor is 

mispredicting, its counter is decremented. We consider the prediction generated by the 

component predictor with the largest confidence counter. Thus, the hybrid predictor is 

dynamically adapting based on the behavior of its components and each time will select the most 

confident predictor. A low number of states in the saturating counters, assures fast adaptation to 

possible behavior changes in the electricity consumption or production. The hybrid prediction 

mechanism is presented in Figure 55.  
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Figure 55. The hybrid prediction mechanism 

The MAX unit returns 1 if CM is greater than CS and 0 otherwise. Such a hybrid predictor can 

take the advantage of its components. It can be obviously extended to include more than two 

predictors. 

4.1.3. Experimental Results 

The performance of the proposed algorithms will be evaluated from the Mean Absolute 

Error (MAE) viewpoint, which is computed as follows: 





N

i

ii FR
N

MAE
1

1
         (27) 

where Ri is the observed electric power at time i, Fi is the forecasted electric power at time i and 

N is the number of recorded electric power values. MAE has been preferred over the Mean 
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Squared Error because the latter tends to exaggerate the influence of outliers. A manual 

exploration of the space of hyperparameters has been carried out to determine the best-

performing models. Such analysis also provides insights into the dynamics of the data-generating 

process. We have evaluated the proposed methods on the datasets recorded by FEMS: two 

datasets with produced electricity (PV1 and PV2) and three datasets with consumed electricity 

(Ph1, Ph2 and Ph3). The electric power values, expressed in Watts, were collected in 2015 

between 1st January and 31st May, with one record per 5 minutes [52]. 

We started the evaluation with the Markov predictor. Figure 56 shows the MAE for 

different context sizes (Markov chain orders). We varied R between 1 and 5 and we used an 

electric power history size of 300 and an interval of 10. 

 

Figure 56. Varying the Markov chain’s order 

Figure 56 shows that as the higher is the Markov chain’s order, the higher is the MAE. Thus, for 

this type of data, lower order Markov predictors (with shorter context information) are more 

appropriate.  

We continue the evaluations by fixing the order R to 1 and we will now vary the history 

size. We still keep the (electric power) interval size on 10. 

 

Figure 57. Varying the history size 

As Figure 57 illustrates, the lowest MAE was obtained with a history size of 100. With longer 

histories the MAE is slightly higher. Therefore, we fixed the history size H to 100. Lower values 

were not evaluated because of the bias-variance trade off. 

Next, we have evaluated the interval size I, considering the previously optimized order of 1 

and history length of 100. 
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Figure 58. Varying the interval size 

As Figure 58 depicts, a lower interval size provides better results. The lowest MAE was obtained 

with an interval size of 1, meaning that we consider the integer part of the electric power values 

in the codification process. With the interval size of 1, the decoding step becomes unnecessary. 

The history length of 100 seems to be sufficiently long to allow an interval size of 1, since the 

electric power values are mostly found in the electric power sequence. Consequently, the best 

Markov predictor is of order 1 and it is using a history length of 100 and an interval size of 1. 

Finally, we have evaluated the stride predictor in conjunction with the Markov chain. We 

have also integrated the stride predictor and the best Markov predictor configuration (R=1, 

H=100, I=1) to a hybrid predictor which will dynamically select its most confident component. 

 

Figure 59. Comparing the Markov, stride and hybrid predictors 

 

Figure 60. Comparing the Markov and neural predictors 
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As we can observe in Figure 59, the stride predictor has a considerably higher MAE than the 

Markov predictor. Due to the weakness of the stride predictor, the more complex hybrid 

predictor is not better than its Markov predictor component. Moreover, a hybrid predictor would 

induce higher costs than a single Markov predictor. Therefore, we can conclude that the Markov 

predictor is the most appropriate for electricity forecasting among the techniques analyzed in this 

section. In Figure 60 we compare our best method with the neural forecasting technique 

proposed in [52]. As Figure 60 illustrates, the Markov predictor provided significantly better 

results than the neural forecasting technique presented in [52]. Next, we will further analyze the 

Markov predictor by comparing the real electric power values with the Markov chain-based 

predictions, on three days from the PV1 dataset. 

 

Figure 61. Comparing the real PV1 with the Markov predictions 

As Figure 61 shows, the Markov chain can accurately forecast electric power, since the two 

curves – the real one and the predicted one – are almost completely overlapped. The above 

presented results validate the Markov predictor as a powerful electricity modelling technique, 

which can be used for decision making in intelligent energy management systems like FEMS. 

4.1.4. Summary 

In this section, we proposed a method for intelligent energy management in buildings, 

aimed at reducing uncertainty about the demand of electricity and its production from renewable 

sources. Within the framework of a decentralized energy production infrastructure, a network of 

networks where components are influencing each other, technology must support coordination, 

communication, and control. Predictions contribute to balance and smoothen the electricity 

intake from the power grid, with desirable consequences on both the operation of distribution 

grids and the stability of prices. 

Systems that can be deployed as lightweight hardware devices reduce costs and facilitate 

diffusion and integration with existing infrastructure. We have applied Markov chains, stride 

prediction and also hybrid prediction to forecast electric power values based on previous values. 

We have implemented the Markov chains in an efficient manner, avoiding trees, graphs and 

transition tables so that an adaptation of the mechanism into miniaturized hardware will be not 
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only possible, but very easy. We have further decreased the state complexity of the Markov 

chain by preprocessing the input data. We evaluated our methods on both produced and 

consumed electricity recorded by a real energy management system. The mean absolute error 

measured on the above-mentioned datasets was 34 W. Thus, Markov chains proved their ability 

to anticipate electricity production and consumption and can be integrated into energy 

management systems and immediate integration with IoT is contemplated. Moreover, we have 

shown that our context-based predictor outperforms the ANN-based prediction method – one of 

the main methods used for prediction of electricity consumption in buildings even if it has 

disadvantages like slow convergence, fluctuations, and oscillation during training [225]. 

A possible limitation of our prediction algorithm, that will be treated in a future approach, 

is the lack of environmental-specific input parameters. Knowing some information about the 

building’s surface, temperature inside and outside of it, humidity, day of the week (workday or 

not), holiday or not, and weather characteristics like wind speed, may influence the prediction 

algorithm to increase its accuracy. These data will be fetched from weather stations or from 

environmental protection agencies. Measurements from locally installed sensors can also be used 

to automatize and trigger some activities taking into account some outside meteorological 

conditions like temperature or wind intensity. 

In addition, further study will be dedicated to recurrent neural networks and Hidden 

Markov models used as predictors in energy management systems. Big data and cloud 

computing favour studying the electricity consumption on long term. Keeping large data sets for 

analysis leads to more accurate results. 

4.2. Electricity Production and Consumption Prediction through Long 

Short-Term Memory 

In this section, we analyze the efficiency of a Long Short-Term Memory (LSTM) 

(introduced by Hochreiter and Schmidhuber in [108]) in forecasting the electricity consumption 

and production in a smart house [7]. 

The ANNs are composed of a multitude of neurons representing simple processing 

elements that operate in parallel [65]. A great advantage of the artificial neural networks is their 

capacity to learn based on examples (supervised learning). In order to solve a problem 

traditionally, we have to elaborate its model, and after that we have to indicate a succession of 

operations that represents the solving algorithm of the problem. However, there are practical 

problems with a high level of complexity, and for this kind of problems it is very hard or even 

impossible to establish a deterministic algorithm. 

In the connectionist models like neural networks, we are not forced to give a solving 

algorithm dedicated to a certain problem; we have to offer to the ANN only a multitude of 

consistent examples in order to learn and generalize them. The network extracts the information 

from the training samples. In this way, it is able to synthesize implicitly a certain model of the 

problem. In other words, the neural network builds up alone an algorithm to solve a problem. 

The capacity of the neural network to solve complex practical problems using a multitude of 

samples gives them a highly large potential of applicability. 

LSTM is a Recurrent Neural Network (RNN). RNNs represent one of the most optimal 

choices when working with data organized in time series models. Their work principle is based 

on combining nonlinear activation functions in a recurrent structure, which makes prediction 

possible and provides improved prediction accuracy, as stated in [1]. In contrast to the standard 

neural networks, which are usually represented using feedforward architectures, RNNs allow the 

information to be transferred both forward and backward, with the help of their feedback 

connections. Therefore, these neural networks benefit from the ability to work with dynamic 

data. An analysis regarding the applicability of RNNs for prediction purposes is presented in 

[162]. 
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4.2.1. Related Work 

The authors in [50] proposed a short-term approach to forecast the total power 

consumption of buildings using ANNs. The specificity of their approach consists in the 

prediction mechanism and its target. The multilayer perceptron neural network uses in the 

training process the type of day (labor activity parameter). Thus, for the prediction of 

consumption in a certain day the ANN will be trained only using days of the same type and 

weather characteristics as well. The goal of prediction is to accurately determine the load curve 

of energy consumption by identifying the energy process of each individual consumer, that will 

be aggregated later. The advantage is that each end user is independently related to network 

input parameters (schedule, weather, etc.). The solution has been tested at the University of 

Valencia, a complex institution with more than 60 buildings and whose energy consumption is 

about 11.5 MW, similar to the one of a big commercial consumer. 

Optimization of energy consumption can also be achieved by adapting production to 

consumer demand. An important drawback of microgrids is represented by the dynamicity and 

irregularity of load curves in contrast to larger environments like national or regional power 

grids, more stationary from this point of view. In this sense, for microgrids a smart prediction 

mechanism is required to model the relation between consumption and demand of energy, taking 

into account all the parameters that influence this process, and it must be able to quickly adapt to 

any changes. In [106], the authors describe a three-tier architecture for load prediction in 

microgrids. The first layer includes a self-organizing map (SOM) dedicated to classifying 

patterns of electricity consumptions based on historical data. On the second layer, the K-means 

clustering algorithm is applied to the SOM-generated partitions. The last layer consists in the 

multilayer perceptron which predicts the load curve for each cluster. Weather characteristics, day 

and month type are used as ANN inputs for predicting the electricity demand. The model was 

validated with data from microgrids situated in Castile and León, Spain, facilitated by the 

Iberdrola company. SOM-based prediction is applied also in [26]. There, a complex model is 

described that forecasts PV power using a radial basis neural network which is trained through a 

system composed of the K-means clustering, nearest-neighbor and least squares methods. The 

SOM is used to classify the inputs of the weather predictions. The average daily values of 

parameters like solar irradiance, wind speed, humidity, and temperature represent the neural 

network’s inputs, while the predicted daily power of PV plant is the output. 

In [112], the power values produced by a small-scale solar PV panel are used as inputs for 

a multilayer perceptron using the Levenberg-Marquardt learning algorithm, aiming to find the 

time horizon with the best prediction accuracy of the generated electricity. For April, the best 

time horizons were 5 minutes for short term prediction and 35 minutes for medium term 

prediction while the best time horizons relative to August were 3 and 40 minutes, respectively. 

Due to small variations of the climatic parameters in August, the prediction of electricity with 

ANNs is facilitated. In this case, the prediction could be determined by averaging the power of 

PV panels on wider time horizons. 

In [4], the authors predict the power one hour ahead using ANNs. The inputs of the ANN 

consist in the solar irradiance and the temperature, each value being predicted by a distinct 

nonlinear autoregressive neural network. Such dynamic ANNs have the great advantage that they 

can correlate the output not only with the current input, but with previous inputs, too. The 

proposed method was validated on the data of a PV generator from the University of Jaen, Spain. 

Two experiments regarding a grid-connected photovoltaic (GCPV) plant of 20 kWp are 

presented in [145] and [12]. In the first one, the power generated by the GCPV plant is predicted 

with the help of two complex neural predictors. The system was installed and tested on the roof 

top of the Italian city Trieste. Two ANNs are tested – a multivariate and a univariate one – 

aiming to determine the influence of climate conditions on the functional regime of the GCPV. 

The main difference between them is that the univariate model receives as an input parameter 

just the solar irradiance while the multivariate model also considers air temperature. In [12], two 
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forecasting methods are combined: a time series method based on Seasonal Auto-Regressive 

Integrated Moving Average (SARIMA) and the SVM method. The hybrid model performs better 

than each method separately. 

Another system which anticipates the energy provided by a GCPV plant is presented in 

[53]. The predictive mechanism consists in a chain of three modules. The first two make 

predictions of meteorological parameters starting from coarse-grained coverage of environmental 

data (global forecasting information provided by the Spanish national center) and continuing 

with more accurate information (fine-grained weather prediction for points situated in the 

neighborhood of the location). The final module of the system that performs energy prediction 

over a 39-hour interval (15 hours from the first day and the whole next day) consists in different 

types of predictors like k-nearest neighbors (k-NN), multilayer perceptron, or time series models. 

In [150], Monteiro et al. evaluate short-term statistical prediction of photovoltaic electricity 

production. Two models are proposed: one of them is analytical and the other one is using an 

MLP. The prediction relies on weather forecasting tools focused on the location of the 

photovoltaic plant, as well as on hourly recorded photovoltaic electricity production. The 

analytical model computes the sky irradiation based on hourly radiation forecasts and adjusts it 

with irradiation attenuation index and photovoltaic production attenuation index. The neural 

network was selected and configured using genetic algorithms and is using weather forecasts as 

input information. The proposed models were evaluated and compared on the same data 

collected from a grid-connected photovoltaic plant. The authors concluded that the two models 

have similar results and both are usable in the sight of selling electricity to the markets. 

 In [51], Fan et al. evaluated the hybrid prediction through data mining techniques of the 

next-day energy consumption in buildings. The proposed method has three steps. In the first step, 

an outlier identification and removal is performed. In the second step, a recursive feature 

elimination is applied in order to use the optimal inputs for the eight different predictors. In the 

final step, an ensemble model is optimized for the predictors through a genetic algorithm. The 

authors concluded that the proposed ensemble model can be efficient in fault detection. 

4.2.2. Electricity Prediction through Long Short-Term Memory 

An RNN can have multiple layers, steps or stages. Their work principle is described in 

Figure 62. Each stage from the above scheme corresponds to a given time T. The RNN at the 

time T+1 will use the RNN from the time T as one of its inputs. Each stage will send its output to 

the next stage.  

Input at time T1 Output at time T1RNN

Input at time T2 Output at time T2RNN

Input at time Tn Output at time TnRNN

 

Figure 62. RNN 
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The key mechanism which makes the RNN to work well is represented by the hidden state 

information propagated from a certain stage to the next. The hidden state works as a memory 

capable of retaining information of the current stage. A layer from the RNN is processing the 

input data and is returning its internal state which is going to be used as an input in the next 

stage. More specifically, each stage is trained to transform the target sequence from a moment T 

into the input sequence but with a T+1 timestep offset. To achieve this, a backpropagation 

algorithm is used. The value of the loss obtained for each parameter is used to change the 

parameter values in the reverse direction with the purpose of minimizing the loss. As this 

movement is time based, each timestep contains its own loss value. In the process of modeling 

the dependencies between value sequences, the gradient of the timestep T depends on the 

gradient of the timestep T-1 and so on, and because of this, the further we progress with the 

timesteps, the gradient of the latter timestep matters less and less. This is known as the 

“vanishing gradient problem” whose effect is that the network cannot learn from long term 

dependencies, because the gradients of the early stages become smaller. LSTM networks are a 

solution to this problem.  

LSTMs are RNNs that work with data that varies through time or sequentially, like 

language, stock market prices, weather recording sensors, etc. The way they work is similar to 

other RNNs, by using the outputs of a layer at a timestep T as inputs for the same layer at a 

timestep T+1. They have a component that acts as a memory which helps to transfer information 

learned at the timestep T to the next timesteps, and they can also forget irrelevant information 

from the preceding state and update the current state, allowing only important parts of the state to 

reach the output. The networks use activation functions to induce nonlinearity to the data. 

Among the most used activation functions are the sigmoid and the hyperbolic tangent. As in our 

datasets we had no negative values, we decided to use the sigmoid function in our LSTM 

network, as the interval of this function is [0,1]: 
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 As mentioned before, LSTMs are capable of remembering and choosing which data is 

relevant as future inputs. They do this by using three gates that release data between hidden state 

and cell state. These gates are called “forget gate”, “input gate” and “output gate”. An LSTM 

neuron incorporates a cell, an input gate, an output gate, as well as a forget gate. The 

transformation process of information passing through a cell is described in [97], as follows. All 

the gates of the cell are collecting activations from the block and from the outside. A recurrent 

connection with the weight 1 keeps the current internal state of a cell. The input and output gates 

scale the input and output of the cell by using activation functions. The forget gate decides which 

information must be eliminated from the cell state. That is a sigmoid layer, which provides 

output values between 0 and 1, and scales the internal state, so as the values exiting the gate are 

ranged in the interval mentioned above. 

 For the purpose of our experiment [7], we implemented the LSTM network using Python 

and the TensorFlow framework with the Keras API. As input data, we used the datasets provided 

by the FENECON Energy Management System (FEMS) described in [52]. 

4.2.3. Experimental Results 

In this section we focus on the results we obtained from our experiment presented in [7]. 

We tuned the LSTMs parameters in an effort to try and find the best configuration that would 

produce the smallest value for the MAE. We started with a standard configuration of 5 inputs, 

two hidden layers each containing 50 neurons, a learning rate of 0.01 and 30 epochs. The first 

parameter that we varied was the number of neurons in the first hidden layer, going from 5 
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values to 10, 25, 50 and 100, leaving the rest of the configuration unchanged. Due to the fact that 

the LSTM provides slightly different results in different runs because of its random initialization, 

we ran each dataset through the network 5 times for each changed parameter and calculated the 

average of the obtained MAE values. By increasing the input number, we noticed that the MAE 

value was increasing. After a series of experiments towards this direction, we concluded that 10 

is the optimal value, and thus we obtained the MAE equal to 102.23 for this configuration. 

Figure 63 shows a graph with the values obtained following the tests. 

 

Figure 63. The influence of the number of neurons from the first hidden layer 

Next, we varied the number of neurons from the second hidden layer, following the same 

pattern that we used for the previous varied parameter. Starting with the base configuration and 

adding the optimal value 10 for the first hidden layer, we experimented with the second layer 

starting with 5 neurons, then 10, 25, 50 and 100, and the smallest MAE value we obtained was 

101.47, for 5 neurons on the second hidden layer. We established this value as being the optimal 

tune for this parameter. Figure 64 describes the results obtained by experimenting with the 

above-mentioned values through all the datasets. 

 

Figure 64. The influence of the number of neurons from the second hidden layer 
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 The next parameter we tuned was the learning rate, starting from a value 0.01 and slightly 

increasing it to 0.02 and 0.03. We noticed that by increasing the learning rate, the MAE value 

also increased, to the point where we reached the value 107.1 with a 0.03 learning rate, so we 

decided to stop increasing it. The optimal configuration here is with a value of 0.01, having a 

MAE of 101.47, which means that this parameter already had an optimal value. The graph with 

the results can be seen in Figure 65. 

 

Figure 65. The influence of the learning rate 

 The next parameter we varied was the number of inputs. Having reached the MAE equal 

to 101.47 with our current configuration using 5 inputs, we increased the number to 10, 15, 20 

and 25. We noticed that the higher the number of the inputs, the higher the value of the MAE 

became. So, we also decided to try a smaller number than the starting one and, thus, we went 

with 4 inputs. This proved to be the right decision, as we reached a MAE equal to 100.99. The 

results are visible in the graph from Figure 66. 

 

Figure 66. The influence of the input vector size 

 The last parameter that we decided to vary was the number of epochs. Our base 

configuration had 30 epochs which achieved the above-mentioned MAE, so we decided to 

increase this number. We varied through 50, 100 and 500 epochs. The results we obtained drove 

us to the conclusion that 50 epochs was the best configuration, having obtained a MAE equal to 
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100.77. We also tried to go below the starting value and we decided to run a series of tests with 

25 epochs, but as we can see in the graph from Figure 67, the MAE was higher than the one we 

obtained with the optimal configuration. 

 

Figure 67. The influence of the number of epochs 

After the experiment we concluded that the optimal LSTM configuration has 4 inputs, a 

first hidden layer with 10 neurons, a second hidden layer with 5 neurons, a learning rate of 0.01 

and 50 epochs. Next, we made a comparison of our results with other methods used to calculate 

the MAE on the same datasets. 

 

Figure 68. Comparison with other forecasting methods 

As Figure 68 portraits, with a MAE of 100.77 Watts, our LSTM network outperformed the 

MLP, which had a MAE equal to 211.07, but had poorer performance than a Markov predictor 

with MAE 34.43. 

4.2.4. Summary 

In this section, we analyzed the LSTM used as a predictor of the electricity consumption 

and production in a smart house. The goal is to integrate such a predictor into a smart energy 

management system of a household, that might keep a balance between the electricity 
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consumption and production avoiding demands from the grid. The evaluations performed on the 

datasets collected from a real household have shown that the LSTM’s mean average error is 

100.77 Watts, which is half of the mean average error encountered by the MLP. The LSTM 

proved to be less accurate than the Markov predictor, but we can classify it among the best 

methods.  
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5. Image Restoration through Prediction Models 

This chapter will present prediction-based image restoration methods proposed by us in 

[76], [77] and [79]. The well-known Markov chains were adapted to work with pixel intensities 

from 2D image areas. First, we will focus on predictive impulse noise filtering and we will 

evaluate different configurations of the proposed Markov model. Finally, we will adapt this 

Markov model to be applied for image inpainting. 

5.1. Predictive Noise Filtering  

 

As digital images are affected by noise during their acquisition or transfer, we are 

proposing a context-based method to eliminate salt-and-pepper noise from grayscale images, 

with an improved prediction scheme based on Markov chains. Salt-and-pepper is an impulse 

noise, consisting in white and black pixels altering the image. Our main goal is to restore the 

missing information and to preserve the unaffected pixels. Therefore, we are replacing the noisy 

pixel with the intensity having the highest number of occurrences in similar contexts within a 

limited surrounding area, like in a Markov chain. By using context information, our proposed 

filter can rebuild details in images altered by salt-and-pepper noise. In [77], we have applied a 

complete search in the limited surrounding area of the context, consisting in all the neighbor 

pixels. In [76], we have continued our research by studying different search methods and 

different context shapes. 

For validation, we have compared our technique with several denoising methods from the 

current literature, by measuring the mean square error (MSE) on some well-known test images 

like “Cameraman”, “Boat” and “Airplane”. The experiments have shown that our Markov filter 

significantly outperforms many existing impulse noise filters. 

5.1.1. Related Work 

The median filter is one of the most employed methods to reduce impulse noise, with the 

drawback of being suitable only for low noise levels. Therefore, different improved median filter 

variants have been proposed over the years, which worked better on high noise densities. In [11], 

the authors proposed a method to overcome the shortcomings faced by the classical median filter 

at high noise densities, by considering only those pixels that are informative in the neighborhood. 

A filter employing two stages was proposed in [129], the noisy pixel being detected in the first 

stage, and replaced by the mean value of a 2×2 area noise-free pixels in the second stage. In 

[191], Srinivasan and Ebenezer proposed a decision-based method, which applies a 3×3 

denoising window only on black and white pixels. A modified decision-based unsymmetrical 

median filter is proposed in [49], replacing the noisy pixel by the trimmed median value of the 

non-noisy pixels. When all the pixel values are 0 and 255, the noisy pixel is replaced by the 

mean value of the entire window. In [140], the authors recommend a modified directional-

weighted-median filter to reconstruct images corrupted by salt-and-pepper noise. If the central 

pixel of a certain window is classified as noisy, it is replaced by a weighted median value on an 

optimum direction. In [102], the authors have introduced another median filter-based method, 

which relaxes the order statistic for intensity substitution. The authors of [213] have presented 

the progressive switching median filter, which applies through several iterations an impulse 

noise detection algorithm and filtering. Wang et al. presents in [214] a modified switching 
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median filter, employing a two-phase denoising method. In the first phase, the adaptive vector 

median filter detection identifies pixels likely to have been corrupted by salt-and-pepper noise. In 

the second phase, the noisy candidates are evaluated by using four one-dimensional Laplacian 

operators, which allows edge preserving. The proposed approach can effectively preserve thin 

lines, fine details and edges. A soft-switching median filter for impulse noise removal was 

presented in [40], while Jassim [116] is proposing a Kriging interpolation filter to reduce salt and 

pepper noise from grayscale images. First, a sequential search is performed using k×k window 

size to determine non-noisy pixels. The non-noisy pixels are then passed to the Kriging 

interpolation method to predict their absent neighbor pixels detected in the first phase as being 

noisy. The experimental results are showing that the Kriging interpolation filter can achieve 

noise reduction without damaging edges and details. 

In [200], the authors have introduced a two-level noise-adaptive fuzzy switching median 

filter. It identifies in the first stage the noisy pixels based on a histogram and replaces in the 

second stage the noisy pixels with the median of uncorrupted pixel values, applying also fuzzy 

reasoning. In [223], the authors introduced an adaptive progressive filtering technique, which 

detects corrupted pixels based on two-dimensional geometric and size features of the noise. 

Based on the result of the first stage, an adaptively sized and shaped filtering window (which in 

our work is fix sized and shaped) is employed in the second stage. Another two-stage scheme has 

been presented in [155] by Nasri et al., with noise detection in the first stage and Adaptive 

Gaussian Filtering in the second stage. The pixels detected as being noisy are stored in a binary 

noise matrix. The uncorrupted pixels from a fixed-size window are weighted by a Gaussian 

function. Then the denoised pixel intensity is computed as the normalized sum of these weighted 

values. In [133] Lin identifies impulse noise with Support Vector Machine and removes it with a 

fuzzy filter. Nair and Shankar [153] make use of a neural network to identify impulse noise in 

corrupted images and a modified median filter to remove the detected noise. The authors of [195] 

present another hybrid technique implying a neural network in the detection stage and a 

switching filter in the removal stage. 

The main difference between the above-described methods and our denoising scheme is 

that we use context information and therefore we can reconstruct better the details in the 

corrupted images. Our Markov filter could be also applied for defect detection, as in [128]. Other 

context-based filters have been also proposed. In [120], the authors presented a probabilistic 

denoising technique consisting in Markov-Chain Monte Carlo sampling. A method employing a 

dissimilarity measure for the local neighborhood of the noisy pixel was presented by Berkovich 

et al. [8]. The content-based kernel uses a statistical model to exclude dissimilar intensities from 

the weighted average. The kernel was adjusted to the image content to preserve the edges or 

textures. 

Universal filtering algorithms, which can be used on different types of noise, have been 

also proposed. Such a universal noise removal algorithm [27], working on both Gaussian and 

impulse noise, is introducing the spatial gradient into the Gaussian filtering framework for 

Gaussian noise removal and integrate their directional absolute relative differences statistic for 

impulse noise removal and combine them into a hybrid noise filter. Another two-stage filter 

which removes mixed impulse and Gaussian noise is proposed in [229]. Besides the very 

common impulse noise, a Poisson type noise distribution was analyzed by Mishra et al. [148]. 

This variety of noise is present especially in medical x-Ray imaging and affects low intensity 

regions. A modified version of the Bilateral Filter was introduced, followed by a performance 

comparison. In [189], Smolka and Kusnik presented a robust local similarity filter to reduce 

mixed Gaussian and impulse noise from the affected images. In order to determine the distortion 

level of a pixel, they compute the similarity of the pixels from the processing region and a small 

filtering window centered on the pixel being restored, as a sum of the smallest distances. 

The denoising operation is generally affecting areas with discontinuities, producing an 

unwanted smoothing effect. In the paper of Rouf and Ward [182], the fact that chromatic 

discontinuities have lower gradients than luminance was used in order to restore image areas 
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affected by noise. The method can be employed to recover deleted information and improve the 

denoising process. In the same direction, the Sorted Switching Median Filter presented in [109], 

is a three-stage filtering process that classifies the pixels and avoids the smoothing effect on 

uncorrupted areas. The multistage filtering process has been also employed by Liu et al. [135], 

with a new statistical process called ROD-ROAD and a fuzzy logic rule for the pixel 

classification at first, followed by a weighted mean filtering. 

5.1.2. Filtering Impulse Noise Images with Markov Chains 

Markov chains can be applied to compute the probability of a certain value in a sequence, 

as its number of occurrences in a considered context. Markov chains have been used in different 

computer science fields like bioinformatics [113], web access mining [82], pervasive computing 

[66], image retrieval [211], computational linguistics [151], etc. In an Rth order Markov model, 

the probability of the current state is computed based on R previous states, as follows:  

]...,,[...],,[ 121 Rtttttt qqqPqqqP          (29) 

where tq  is the state at time t and R is the order of the Markov chain. A general prediction 

algorithm with Markov models, determining the next state of a 1D sequence based on the 

transition frequencies from the current state, was described in [92]. 

In [77], we reconstructed the grayscale images corrupted by impulse noise using Markov 

chains adapted for pixel intensities from 2D areas. The probability of pixel intensity in a certain 

context is computed as the number of its occurrences in similar contexts. The noisy pixel must be 

replaced with the predicted next state. The surrounding pixel values constitute the context and 

the search area is encoding the previous states. Thus, in grayscale images, the states are pixel 

intensities from the [0, 255] interval. The adjusted Rth order Markov model is given in (30), 

where CS is the context size (the width of the context square) and W and H specify the image 

width and height. Since the context is surrounding one pixel, its size can have only odd values. A 

certain pixel intensity qx,y depends on the neighbor context intensities. We have considered noisy 

the black and white pixels, as in [191]. 
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Equation (30) implies searching the contexts in the entire image, which leads to a major 

disadvantage from the timing point of view. Therefore, we limit the search area, based on the 

search distance SD, as follows: 
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The adjusted Markov filter given in (31) is depicted in Figure 69, where the noisy pixel N 

is colored with black, the context pixels C are dark gray and the search area is light gray. A noisy 

pixel is replaced with the most frequent noise-free intensity occurred in similar contexts within a 

larger surrounding area limited by SD (without leaving the image boundaries). As it can be 

observed in Figure 69, in [77] we have applied a full search within the search area (limited by 

SD) of a full context consisting in all the neighboring pixels. Further, we denote that filter 

S0_C0. 
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Figure 69. Image denoising with the S0_C0 Markov filter 

In this section, we have investigated other simpler search rules and also different simpler 

context shapes. The goal is to improve the denoising performance and speed of the context-based 

filter. We tried to replace the full search (used in [77]) with a search in form of “+”, “X” and also 

their combination in form of “*”. We tried also to replace the full context (used in [77]) with 

different context shapes: the context in form of “+”, “X” and their combination in form of “*”. 

The most efficient combination (determined on the test images), search in form of “*” for 

contexts in form of “+”, is given in (32). This Markov filter is denoted S*_C+. Despite equation 

(32) seems more complicated than (31), in fact it is significantly simpler because it implies 

processing fewer pixels and, thus, we expect a faster filtering. We will also evaluate 

comparatively (31) and (32) and other variants in terms of denoising performance. Figure 70 

presents the S*_C+ Markov filter. The considered context pixels are highlighted with dark gray 

(forming a “+”) and the search rule with light gray (forming an “*”). 
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  (32) 

Obviously, we have implemented and tested all the following combinations in which S 

denotes the search type and C the context type: S0_C0 [77], S0_C+, S0_CX, S+_C0, S+_C+, 

S+_CX, SX_C0, SX_C+, SX_CX and S*_C+. 
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Figure 70. Image denoising with the S*_C+ Markov filter 

The algorithm which replaces a noisy pixel through the S*_C+ Markov model is described 

in the following pseudocode: 
 

Markov(x, y, CS, SD, T) 

  For j:=y-SD to y+SD, 0≤j<H 

    If j=y then Continue 

    If SAD(x, y, x, j, CS)<T  

      AND NOT Salt_Pepper(x, j) then  

        Q[Color(x, j)]:=Q[Color(x, j)]+1 

  For i:=x-SD to x+SD, 0≤i<W  

    If i=x then Continue 

    If SAD(x, y, i, y, CS)<T  

      AND NOT Salt_Pepper(i, y) then  

        Q[Color(i, y)]:=Q[Color(i, y)]+1 

  For k:=-SD to SD, 0≤x+k<W, 0≤y+k<H 

    If k=0 then Continue 

    i:=x+k 

    j:=y+k 

    If SAD(x, y, i, j, CS)<T  

      AND NOT Salt_Pepper(i, j) then  

        Q[Color(i, j)]:=Q[Color(i, j)]+1 

  For k:=-SD to SD, 0≤x-k<W, 0≤y+k<H 

    If k=0 then Continue 

    i:=x-k 

    j:=y+k 

    If SAD(x, y, i, j, CS)<T  

      AND NOT Salt_Pepper(i, j) then  

        Q[Color(i, j)]:=Q[Color(i, j)]+1 

  If Q[Max(Q)]=0 then Return Color(x, y) 

  Return Max(Q) 
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The parameters of the Markov function are: the line and the column of the current pixel, 

the context size CS, the search distance SD and the similarity threshold value T. The first two for 

instructions are performing the “+” search and the last two the “X” search for similar contexts. 

These two search rules used together constitutes the “*” search. We considered two image areas 

similar if the sum of absolute differences is less than T. 

The following pseudocode presents how we compute the similarity degree as a Sum of 

Absolute Differences (SAD) in the S*_C+ Markov filter, the context having a “+” shape: 
 

SAD(x1, y1, x2, y2, CS) 

  S:=0 

  For j:= -CS/2 to CS/2, 0≤j+y1<H, 0≤j+y2<H do 

    If j=0 then Continue 

    S:=S + |Color(x1, j+y1)-Color(x2, j+y2)| 

  For i:= -CS/2 to CS/2, 0≤i+x1<W, 0≤i+x2<W, do 

    If i=0 then Continue 

    S:=S + |Color(i+x1, y1)-Color(i+x2, y2)| 

  Return S 
 

The first for instruction is processing the pixels from the vertical line and the second one from 

the horizontal line of the “+” context shape, both avoiding the middle pixel.  

The frequencies of the noise-free pixel values occurring in similar contexts are kept in Q. 

The Max function returns the most frequent intensity which will replace the noisy pixel. The 

noisy pixel is not changed if the Markov function cannot find any similar context. The 

Salt_Pepper function checks if a pixel is noisy, by returning TRUE for black and white pixels. 

The Markov_Filter function, which calls the previously presented Markov function, is the same 

as in [77] and it is presented in the following pseudocode: 
 

Markov_Filter(CS, SD, T) 

  For i:=0 to W-1 do 

    For j:=0 to H-1 do 

      If Salt_Pepper(i, j) then 

        Set_Color(i, j, Markov(i, j, CS, SD, T)) 

 

where the Set_Color function changes the intensity of the noisy pixel (i, j) with the value 

returned by the Markov function. 

5.1.3. Evaluation Results 

The proposed Markov filter was implemented in C# and we used for comparisons the 

available Matlab source codes of several filters. We performed the evaluations on the 

Cameraman, Boat and Airplane 512×512 grayscale PNG images having salt-and-pepper noise 

levels between 10% and 90%. The denoising performance has been determined using the MSE 

metric whose computation is given in (33): 
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        (33) 

where W and H are the image width and height. The goal is to obtain the MSE as low as 

possible. 

First, we have evaluated the S0_C0 filter by varying CS on a fixed SD=5 and T=500. As 

we have explained in 5.1.2, the CS can have only odd values and it must be at least 3. The MSE 

values obtained on the test images are presented in Figures 71-73. 
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Figure 71. The MSE of the Cameraman image denoised using S0_C0 with different context sizes 
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Figure 72. The MSE of the Boat image denoised using S0_C0 with different context sizes 
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Figure 73. The MSE of the Airplane image denoised using S0_C0 with different context sizes 
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Figures 71-73 have shown that the best value for CS is 3, the S0_C0 filter being inefficient 

for higher contexts. A richer context leads to higher precision, but if it is too rich, the probability 

to find it is low. Therefore, usually the performance is increasing together with the context up to 

a certain size (which in our application is 3), after which it starts to decrease. 

We have continued our evaluations by varying the search distance SD between 2 and 5, 

considering the best CS=3 and a fixed T=500. The MSE values obtained on the test images are 

presented in Figures 74-76. 
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Figure 74. The MSE of the Cameraman image denoised using S0_C0 with different search 

radius values 
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Figure 75. The MSE of the Boat image denoised using S0_C0 with different search radius values 

One can observe that on the Boat image, an S0_C0 filter with SD value of 3 is better up to 

60% noise level and for SD of 4 is better only starting with 70% noise density. On the Airplane 

image the SD of 2 is better up to 50%, while SD of 3 and 4 are very close and better starting with 

a noise of 60%. On the Cameraman image an SD of 4 performs best, it being just slightly 

outperformed by an SD of 2 on a noise up to 20%. Therefore, we consider that the optimal SD 

value will be 4. The conclusion after this evaluation step was that the search area might be 
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sufficiently high to find the context, but if it is too high (SD≥5), the multiple pixel value choices 

can lead to uncertainty and thus to lower denoising ability. 
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Figure 76. The MSE of the Airplane image denoised using S0_C0 with different search radius 

values 

 The next stage of our analysis consists in varying the similarity threshold T between 450 

and 600, in steps of 50. As we have already explained, when we have searched for the context of 

the current noisy pixel, we have taken into account all the contexts whose similarity degree, 

computed as SAD, is less than T. Figures 77-79 present the MSE obtained for different similarity 

threshold values, considering the best CS=3 and the optimal SD=4. 

Figures 77-79 showed that the best similarity threshold value is 500 up to 70% noise on the 

Boat image and even up to 80% noise on the Cameraman and Airplane images. Only on very 

high noise density, a threshold of 550 or 600 is slightly better. Therefore, we have considered 

that the optimal similarity threshold value will be T=500. A difference of 500 in the SAD 

between two compared image blocks, taking into account the best CS=3 (contexts of 8 pixels), 

results in a reasonable average per pixel difference of 62. Consequently, the optimal S0_C0 filter 

has SR=4, CS=3 and T=500.  
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Figure 77. The MSE of the Cameraman image denoised using S0_C0 with different search 

similarity thresholds 
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Figure 78. MSE of Boat denoised using S0_C0 with different search similarity thresholds 
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Figure 79. MSE of Airplane denoised using S0_C0 with different search similarity thresholds 
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Figure 80. The MSE of the 30% noised Cameraman image filtered with S+_C+ using different 

similarity thresholds 
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Next, we analyze other simpler search rules and also different simpler context shapes. 

First, we have checked again the SD and CS parameters and the optimal values are the same as 

in [77]: CS=3 and SD=4. The optimal value of T for a full context was 500 in [77]. Since the 

number of pixels is reduced to the half in the “+” and “X” contexts, we expect a reduction of the 

optimal T to around 250 in the filters implying such contexts. In Figure 80 we have measured the 

MSE by varying the similarity threshold T around the expected optimal value. For this first 

parametrical setup we have chosen the S+_C+ Markov filter and the Cameraman test image with 

30% noise. Figure 80 has shown that in the case of a “+” context the best value for T is 300. As 

we checked, for an “X” context the best T value is the same, which is obvious, since it implies 

the same number of pixels. Further we will use T=500 for a full context and T=300 for the “+” 

and “X” contexts. 

Next, we have compared different search rule and context shape combinations. The MSE 

values obtained on the Cameraman, Boat and Airplane images are presented in Figures 81, 82 

and 83, respectively. Since S0_CX was less performing than S0_C+ and also SX_C0 was less 

performing than S+_C0, we have checked but not included the other models that imply “X” 

search or “X” contexts (S+_CX, SX_CX and SX_C+) in these figures. 

Noise 

density 

Cameraman Boat Airplane 

S0_C0 S*_C+ S0_C0 S*_C+ S0_C0 S*_C+ 

10% 9.38 2.29 10.63 2.63 10.51 2.41 

20% 18.27 4.33 19.92 4.80 18.68 4.48 

30% 26.56 6.27 27.88 6.74 26.64 6.39 

40% 33.08 7.91 35.30 8.45 33.90 8.08 

50% 40.02 9.49 41.87 9.96 41.00 9.68 

60% 46.76 10.97 48.28 11.32 47.69 11.13 

70% 53.21 12.45 54.43 12.59 53.81 12.50 

80% 59.60 13.79 60.00 13.82 59.64 13.71 

90% 65.95 14.88 66.51 14.84 66.38 14.82 

Table 12. Comparison of the computation times in seconds 
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Figure 81. The MSE of the Cameraman test image denoised with different types of Markov 

models 
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Figure 82. The MSE of the Boat test image denoised with different types of Markov models 
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Figure 83. The MSE of the Airplane test image denoised with different types of Markov models 

As Figures 81-83 show, the S*_C+ is the best Markov filter on all the three test images. 

Thus, even if an “X” search is less performing than a “+” search, their combination into “*” 

search provides the best results. The proposed S*_C+ model is significantly outperforming the 

initial S0_C0 filter from [77], on all the noise levels. The denoising speed also decreased on all 

noise levels. As Table 12 shows, the S*_C+ Markov filter is about four times faster than S0_C0.  

The second best model is S+_C+, which is outperforming the initial S0_C0 on the 

Cameraman and the Airplane images but it is worse on Boat with noise between 40-80%. 

Further, we have compared this best S*_C+ Markov filter with other existing filters: our 

S0_C0 filter [77], the Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) [200], the 

Decision Based Algorithm (DBA) [191], the Median Filter (MF), the Progressive Switching 

Median Filter (PSMF) [213], the Relaxed Median Filter (RMF) [102] and the Analysis Prior 

Algorithm (APA) [142], whose source codes were available. Figures 84-86 are presenting 

comparatively the MSE for all the considered methods on the Cameraman, Boat and Airplane 

test images. 
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Figure 84. Comparing the MSE on the Cameraman image denoised with different existing 

methods 

0

2000

4000

6000

8000

10000

12000

14000

16000

10 20 30 40 50 60 70 80 90

Noise Level [%]

M
S

E

S*_C+

S0_C0

NAFSMF

DBA

MF

PSMF

RMF

APA

 
Figure 85. Comparing the MSE on the Boat image denoised with different existing methods 
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Figure 86. Comparing the MSE on the Airplane image denoised with different existing methods 
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Figures 84-86 show that the proposed S*_C+ Markov filter is better than the MF, PSMF, 

RMF and S0_C0 on all the noise levels. It is also better than APA on noise densities up to 30%. 

It is just slightly worse than the NAFSMF and DBA. 

Figure 87 shows the Cameraman image having 60% salt-and-pepper noise (a) and the 

outputs obtained with our proposed S*_C+ Markov filter (b), as well as using S0_C0 (c), 

NAFSM (d), DBA (e), MF (f), PSMF (g), RMF (h), APA (i). 

                
a.        b.        c. 

                
d.        e.        f. 

                
g.        h.        i. 

Figure 87. Denoising the Cameraman image having 60% noise (a) using the S*_C+ Markov 

filter (b), S0_C0 Markov filter (c), NAFSM (d), DBA (e), MF (f), PSMF (g), RMF (h), APA (i) 

As Figure 87 depicts, our proposed S*_C+ Markov filter is better than the S0_C0, MF, 

PSMF, RMF and APA techniques. We can observe again that the quality of the image denoised 

with the S*_C+ Markov filter is very close to the quality of the images filtered with NAFSM and 

DBA. 

5.1.4. Summary 

In this section, we have improved a context-based filter proposed in [77], to denoise 

grayscale images corrupted by impulse noise. Our filter is using Markov chains to replace the 

noisy pixel intensity with the pixel value having the highest number of occurrences in similar 

contexts. The context of a noisy pixel consists in the intensities of its neighbor pixels and is 
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searched in a larger but limited surrounding area. The original contribution published in [76] 

consists in analyzing different search rules and different context shapes. 

We have replaced the full search used in [77] with a search in form of “+”, “X” and also 

their combination in form of a “*”. We have also replaced the full context used in [77] with 

different context shapes: “+”, “X” and “*”. The MSE results obtained on the Cameraman, Boat 

and Airplane test images show that the most efficient model is the proposed S*_C+ Markov filter 

which applies the search in form of “*” of contexts in form of “+”. This filter is better than our 

previous S0_C0 filter on all the noise levels, but also than the MF, PSMF, RMF and partially 

than APA and it is just slightly worse than the NAFSMF and DBA denoising methods. Beside 

the better denoising performance, the computational time has been also significantly improved 

with respect to the previous S0_C0 filter. The context information is a great advantage of our 

method, whereas the computational time, despite it was significantly improved, is still a slight 

disadvantage compared with some of the existing techniques. 

A further work direction could try to adjust dynamically the search distance or the context 

size. Other research directions are the run-time computation of the similarity threshold 

proportionally with the context size and the utilization of the Markov filter together with fuzzy 

and neural techniques. Yet another further work direction is to make Markov filter usable on 

random-valued impulse noise, which implies an additional noise detection stage through machine 

learning techniques such as MLP, Long Short-Term Memory (LSTM) or fully convolutional 

networks. 

5.2. Prediction-Based Image Inpainting  

Inpainting is a technique which is replacing missing or affected parts from digital images 

or damaged films (regularly small areas). Three main categories of inpainting algorithms can be 

distinguished in the literature: structural, textural and combinations of both. All these methods 

are using the information from the unaffected areas in order to reconstruct the affected or 

missing areas. The structural inpainting is using geometrical operations to reestablish missing 

pixel colors. Textural inpainting algorithms are building up stochastic models based on the 

information from unaffected image areas and are using the obtained models to reconstruct the 

affected or missing areas, being thus able to restore textures, too. The combination of structural 

and textural inpainting in a hybrid approach, can exploit the advantage of both methods.  

In this section, we are proposing a new context-based inpainting technique, which is 

relying on Markov chains to replace affected or missing image areas [79]. The area which must 

be reconstructed is defined by the user through points, which are connected afterwards by lines. 

The reconstruction is started from the exterior of the affected area, with pixels whose context 

(consisting in the surrounding pixels) is at least partially in an unaffected area. The unaffected 

context part is searched within a limited surrounding window. The affected or missing pixel is 

replaced with the color having the highest probability to occur in similar contexts or context 

parts. In the next iterations of the reconstruction process, the restored pixel colors can be used to 

restore other pixel colors. By using context information, the proposed method is appropriate to 

rebuild textures and details in images. 

5.2.1. Related Work  

Inpainting algorithms classified on categories, have been presented in [163], [99] and in 

[45].  

A stochastic model based on Markov random fields has been used in [44], where the 

algorithm is reconstructing texture by starting from one pixel. Similar contexts are queried by 

using the Sum of Squared Differences (SSD) similarity metric. One of the intensities surrounded 

by contexts determined as being similar is randomly chosen to replace missing pixel. In contrast 
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with this work, we use the Sum of Absolute Differences (SAD) as similarity metric and we build 

up a Markov chain model using the current context and similar contexts situated in a limited 

surrounding area. We replace the missing pixel color with the most probable color discovered in 

similar contexts. Thus, our method can better rebuild textures.  

In [9], the authors proposed an inpainting method which restores the marked area by 

continuing in the same angle the isophote lines that arrive to the boundaries of the region. An 

important disadvantage of their technique is that it cannot restore textures [18]. Therefore, in [10] 

the authors are combining the structural inpainting algorithm presented in [9] with the texture 

synthesis algorithm proposed in [44], the results of both operations contributing to reconstruct 

the image.  

Another technique which can replicate both structure and texture has been presented in 

[33]. In the proposed exemplar-based inpainting method, the reconstruction process is performed 

in the order given by the priority values computed for the patches along the fill front. High 

priority values are associated to the patches continuing strong edges and to the ones surrounded 

with high confidence pixels. The key difference between [33] and our work is that we apply 

pixel-level filling instead of patch-level filling. By focusing on a single pixel at each iteration of 

the algorithm, we expect to obtain better results. Exemplar-based inpainting using a locally linear 

neighbor embedding technique with low-dimensional neighborhood representation has been 

presented in [98]. In [6], the authors have analyzed the exemplar-based inpainting method from a 

variational viewpoint.  

In [218], the authors presented a domain-based structural-aware image inpainting 

technique. They designed an iterative structure searching algorithm for structural restoration, by 

connecting the adjacent patches to form a repairing domain which assures coherency and 

accuracy. In [105], the authors proposed an inpainting method for images containing textures 

with gradually changed illumination. Based on an energy function model of the problematic area, 

gradually modified from the center to the boundary, a gradually changed directional priority 

function is used for the gradual propagation of texture synthesis. In [230], the authors combined 

a base reconstructor containing low-frequency information with a detail reconstructor containing 

high frequency information. The base layer can grasp the basic information, whereas the detail 

layer provides the local details. These two components are combined within a so-called base-

detail generator. In [159], the authors proposed an inpainting technique which extends the 

isotropic diffusion model with diffusion barriers provided by the user. An improved model was 

introduced in [101]. 

Convolutional neural networks have been applied for image inpainting in [130] and [215]. 

In [136], the authors applied partial convolution by using only unaffected pixel intensities. 

Region-wise convolution have been combined in [141] with non-local correlation among 

regions. In [224], the authors proposed a hybrid inpainting approach which combines 

convolutional neural networks and multi-scale neural patch synthesis. In [222], the authors 

presented a foreground-aware image inpainting system which learns to predict the foreground 

contour and inpaints the missing region based on the predicted contour. The contour completion 

is performed by combining a generator and a discriminator used to encourage the generator to 

provide sharp contours. The generator is a cascade of a coarse network and a refinement 

network. 

5.2.2. Inpainting with Markov Chains 

The first step requests to the user to select the image area wanted to be reconstructed. The 

selection is performed by clicking on different points onto the boundary of the target area. These 

selected points are stored in a list and connected by lines. All the pixels falling inside and on this 

polygon defined by the user are considered as belonging to the target area which must be 
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reconstructed. The selection is depicted in Figure 88 on the famous “cracked-plate” portrait of 

Abraham Lincoln, taken in 1865 by Alexander Gardner. 

 

Figure 88. Image area selection for inpainting on the photo of Abraham Lincoln 

The next step consists in using a stochastic method relying on Markov chains to 

reconstruct each pixel belonging to the selected target area. Markov chains can be used to 

determine the next probable value in a sequence, and have been successfully applied in 

bioinformatics [113], web mining [82], ubiquitous computing [75], speech recognition [151], 

image retrieval [211], image denoising [76], energy consumption modeling [73], etc. In a 

Markov chain of order R, the probability of the current state is depending on R previous states 

[77], as follows:  

]...,,[...],,[ 121 Rtttttt qqqPqqqP          (34) 

where qt is the state of the Markov chain at time t. A general prediction method relying on 

Markov chains, applied on 1D sequence, was described in [92]. In [76] and [77], we repaired 

grayscale images affected by impulse noise using Markov chains adapted for pixel intensities 

from 2D image areas. Similarly with the current work, the probability of a pixel color in a 

context was determined as the number of its occurrences in similar contexts.  

For the inpainting, we have adapted the application to be able to work with colors instead 

of grayscale intensities. Thus, the states are pixel colors. Further, we adopted the notations 

already established in the inpainting literature, denoting with Ω the affected image area, with δΩ 

the boundary of the affected area, with Φ the search window and with Ψp the context of the 

replaceable pixel px,y. 

In our proposed context-based method, the affected pixel color px,y is replaced with the 

predicted color (next state). The unaffected surrounding pixel colors compose the context Ψp and 

the search window Φ is encoding the previous states. The adjusted Markov model of order R is 

presented in (35), where CS is the size of the context Ψp (more exactly its width, see Figure 89), 

SD is the search distance (used to define the search window Φ, as it is depicted in Figure 89), W 

is the width and H is the height of the image. As it can be observed, the color of a certain pixel 

px,y depends on the neighbor colors (the context). 
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The adjusted Markov model from (35) is illustrated in Figure 89, where the replaceable 

pixel from the center of the window is marked with red and the unaffected context pixels from its 

vicinity are marked with green.  That context is searched within the surrounding window (limited 

by SD without leaving the image). All the pixel colors (marked with red in the top-left corner of 

Figure 89) which are situated in similar contexts (marked with green in the top-left corner of 

Figure 89) are considered as candidates to replace the color of the affected pixel. The similarity 

is determined based on the SAD metric. After the search process, the color of the affected pixel 

is replaced with the most frequent unaffected color found in similar image contexts (without 

leaving the image boundaries). 

 

Figure 89. Image inpainting with the Markov chain (on an area extracted from the photo of 

Abraham Lincoln) 

The next pseudocode presents the Markov function which replaces a certain pixel px,y 

belonging to the affected area Ω: 
 

Markov(x, y, CS, SD, T) 

  For i:=x-SD to x+SD, 0≤i<W  

    For j:=y-SD to y+SD, 0≤j<H 

      If (i=x AND j=y) OR Pixel(i, j)ϵ Ω then  

        Continue 

      If SAD(x, y, i, j, CS)<T then  

        F[Color(i, j)]:=F[Color(i, j)]+1 

  Return Max(F) 

 

The input parameters of the above presented Markov function are: the row and the column 

of the current pixel, the search distance SD, the context size CS and the similarity threshold T. 

Inside the for instructions, we are searching for similar contexts, avoiding obviously the current 

one centered in x, y. The similarity degree measurement applied between the context of the 

replaceable pixel p and the contexts of the candidate pixels q is given in (36): 
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As lower the SAD value, as more similar the two compared contexts are. We have considered 

two contexts as being similar, if their SAD is less than T. The pseudocode of the SAD function, 

computing the similarity degree between two contexts, is defined as follows: 
 

SAD (x1, y1, x2, y2, CS) 

  S:=0 

  For i:= -CS/2 to CS/2, 0≤i+x1<W, 0≤i+x2<W, do 

    For j:= -CS/2 to CS/2, 0≤j+y1<H, 0≤j+y2<H do 

      If i=0 AND j=0 then 

        Continue 

      S:=S + |I(i+x1, j+y1)-I(i+x2, j+y2)| 

  Return S 

 

The for instructions are summing the absolute differences between the pixels from the same 

position of the two contexts, avoiding the middle (which is not part of the context). The function 

can work with grayscale intensity (I) differences or with cumulative color component 

differences.  

The frequencies of the unaffected pixel colors found in similar contexts are kept in F. The 

Max function returns the most frequent color which will be used to replace the color of the 

affected pixel px,y. The replacement is not performed if the Markov function fails finding similar 

contexts. Finally, the Inpainting function, which calls the Markov function, is given in the 

following pseudocode: 
   

Inpainting(CS, SD, T) 

  For each px,y ϵ Ω do 

    Set(x, y, Markov(x, y, CS, SD, T)) 

 

where the Set function is changing the color of px,y with the color returned by the Markov 

function. 

5.2.3. Evaluation 

For a wider applicability and a higher processing speed, we have implemented our 

proposed inpainting method in a Windows Forms application, in C#.  

 

Figure 90. Artificial defect of 849 pixels on the Lena image 
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We performed the evaluations on the Lena, Peppers and Baboon color images, having 

artificial defects of different sizes. The defects were manually applied in arbitrary shape, size and 

position. Figure 90 presents an example of artificial defect (849 affected pixels) on the Lena 

image. We have also used in our evaluations the color photography of Abraham Lincoln, 

mentioned earlier in this section. 

The inpainting performance has been determined using the mean square error (MSE) and 

the peak signal-to-noise ratio (PSNR) metrics. The MSE is given in (37): 
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where W and H are the image width and height, R is the repaired image and O is the original 

(obviously unaffected) image. The goal is to obtain low MSE values. The PSNR computation is 

presented in (38): 

MSE
PSNR

2

10

255
log10           (38) 

Our goal is to obtain high PSNR values. The MSE can be computed based on the PSNR values 

as follows: 
 

102 10255

PSNR

MSE


          (39) 

 

The proposed Markov inpainting model has been configured step by step on the Lena, 

Peppers and Baboon test images. First, we have varied the SD parameter (and thus implicitly the 

size of the search window Φ), by maintaining CS on 3, and T on 300. The MSE and PSNR 

measurements are presented in Figures 91 and 92, respectively. It can be observed that the best 

SD value is 5. Lower values than 5 are not feasible since the search window Φ would be too 

small, with fewer chances to find the searched context. On the other hand, with high SD values, 

the search window Φ would be too large and not specific to the target area Ω which must be 

repaired. 
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Figure 91. MSE by varying SD with fixed CS=3 and T=300 

Next, we have varied the value of the CS parameter, by fixing the SD on 5 and still 

maintaining T on the initial value 300. The obtained MSE and PSNR values are depicted in 

Figures 93 and 94, respectively. As we can see, the best evaluated CS value is 7. Higher CS 
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values would increase the processing time and would also reduce the chances to find a large 

context in a small search window Φ, already fixed in the previous step by SD=5.  
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Figure 92. PSNR by varying SD with fixed CS=3 and T=300 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lena Peppers Baboon Average

Images

M
S

E

CS=3

CS=5

CS=7

 

Figure 93. MSE by varying CS with fixed SD=5 and T=300 
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Figure 94. PSNR by varying CS with fixed SD=5 and T=300 
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The next varied parameter is the similarity threshold T. The MSE and PSNR measurements 

presented in Figures 95 and 96, respectively, were obtained by fixing the SD on 5 and the CS on 

7. We can observe that the initial threshold value (T=300) was the optimal. Higher values of T 

are increasing the MSE and are decreasing the PSNR. In comparison with the value obtained in 

[76] and [77] for the same parameter T in image denoising, the optimal value 300 obtained here 

is reasonable, taking into account that the context is quite large. We have tried also lower values 

for T, but with poor inpainting results, since the lower similarity threshold implies the necessity 

of finding contexts with low SAD values, which is often impossible. 
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Figure 95. MSE by varying T with fixed SD=5 and CS=7 
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Figure 96. PSNR by varying T with fixed SD=5 and CS=7 

Figure 97 presents the Lena image after the Markovian inpainting of the artificial defect 

presented in Figure 90. One can observe that the artificial defect was very well replaced. 

Next, we will use this optimal configuration of our inpainting algorithm for comparisons 

with other existing techniques, in terms of MSE and PSNR. Figures 98 to 103 are presenting 

comparatively our Markov inpainting method (SD=5, CS=7, T=300) and the techniques 

developed by Bertalmio et al. [9], Oliveira et al. [159], Hadhoud et al. [101], Efros et al. [44] and 

Criminisi et al. [33], described in Section 2. As the comparative evaluations show, our proposed 

Markov inpainting method clearly outperforms all the other techniques on the Lena test image on 

all mask sizes (see Figures 98 and 99). On the Peppers test image, it is better than all the other 

techniques on high mask size and provides similar results on low and medium mask sizes (see 
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Figures 100 and 101). On the Baboon image, it is better than the methods developed by Oliveira 

et al., Hadhoud et al. and Criminisi et al. on high mask size and is similar with the method of 

Hadhoud et al. on low and medium mask sizes (see Figures 102 and 103). 

 

Figure 97. The Lena image with artificial defect of 849 pixels after Markovian inpainting 
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Figure 98. Comparing the MSE of our optimal Markov inpainting method with other existing 

techniques on the Lena image 

30

35

40

45

50

55

849 1348 1806 2636

Mask Size

P
S

N
R

Markov

Bertalmio et al.

Oliveira et al.

Hadhoud et al.

Efros et al.

Criminisi et al.

 

Figure 99. Comparing the PSNR of our optimal Markov inpainting method with other existing 

techniques on the Lena image 
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Figure 100. Comparing the MSE of our optimal Markov inpainting method with other techniques 

on the Peppers image 
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Figure 101. Comparing the PSNR of our optimal Markov inpainting method with other 

techniques on the Peppers image 
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Figure 102. Comparing the MSE of our optimal Markov inpainting method with other techniques 

on the Baboon image 
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Figure 103. Comparing the PSNR of our optimal Markov inpainting method with other 

techniques on the Baboon image 

   

Figure 104. Markovian inpainting on the photo of Abraham Lincoln (the original on left, the 

repaired one on right) 

Finally, we present the result of our inpainting method on the photograph of Abraham 

Lincoln. As Figure 104 shows, the crack could be successfully removed, being replaced with 

highly reliable colors. Some details in the background, but also in Lincoln’s hair, were very well 

reconstructed due to the context information used by our method. 

5.2.4. Summary 

In this section, we introduced a new contextual inpainting method which is using Markov 

chains in order to repair pixel colors from images affected by external factors or to replace pixel 

colors belonging to image areas covered by objects or texts. The user must select the target 

(replaceable) area. Our inpainting algorithm is replacing each pixel from the target area based on 

the surrounding unaffected context information. Therefore, the restoration process is applied 

from the exterior to the interior within the selected target area. For the replacement of a certain 

pixel, we explored a limited surrounding image area to identify the color occurring with the 

highest probability in similar contexts. Since we use context information, the proposed 

inpainting technique can very well rebuild the image details. We have determined in our 
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experiments the best parametrical configuration of the proposed Markov inpainting technique 

consisting in a context size of 7, a search distance of 5 and a similarity threshold of 300. We 

have compared our optimally configured method with other existing inpainting techniques and 

the results were better on some test images and comparable on others. The results obtained on 

the famous “cracked-plate” portrait of Abraham Lincoln, were remarkable. 

In our opinion, this new inpainting method still has a good future development potential. 

As a further work direction, we intend to integrate our context-based technique, together with a 

structural one, into a hybrid inpainting method. 
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6. Predictive Web Prefetching 

This chapter will present the prediction-based models proposed by us in [80] and [82] to 

prefetch web objects based on the users’ web browsing history with the goal of decreasing the 

access latencies. We analyzed the PPM algorithm (a hybrid model with static prioritization), as 

well as Dynamic Decision Trees (hybrids with dynamic prioritization of their components). 

6.1. Web Usage Mining through Prediction by Partial Matching 

Nowadays the access to the Internet becomes more prevalent worldwide and often there 

are requests for higher bandwidths. Clients are frequently confronted with delays in accessing 

web pages, especially those ones that are limited by low-bandwidth modems or wireless routers. 

Many latency-tolerant techniques have been developed during the last years, the most important 

being caching and prefetching. Caching exploits the temporal locality principle by keeping the 

accessed pages and files in a cache structure, whereas prefetching anticipates the next accesses 

and loads the corresponding web pages or files into the cache. If the user accesses a web page or 

a file which is available in the cache, the browser can load it without any delays. Thus, when the 

users have long browsing sessions, prediction-based prefetching can be very effective by 

minimizing the access latencies. 

In this section we analyze web page prefetching through prediction by partial matching 

(PPM) enhanced with a dynamic confidence mechanism [82]. The number of states used in such 

models tends to rise exponentially as the order of the model increases [36]. Therefore, we 

implemented the PPM algorithm as simple searches in the observation sequence instead of using 

high complexity tree-, graph- or table-based modelling. Our simple representation allows 

superior order Markov chains with high number of states and long histories, at low complexity. 

Thus, the proposed PPM implementation is significantly more efficient than previous 

implementations. We have also enhanced the predictor with a confidence mechanism, which 

classifies dynamically web pages as predictable or unpredictable. Predictions are generated 

selectively only from web pages classified as predictable, improving thus the accuracy. The 

confidence mechanism consists in dynamically adapted saturating counters attached to each web 

page. We evaluate the proposed predictor in terms of prediction accuracy on the BU benchmark 

set, generated by the “Ocean Group Research” from Boston University [34]. The goal is to find 

the most appropriate prediction technique for anticipating and prefetching web pages and to 

integrate it as an extension into browsers. 

6.1.1. Related Work 

In our previous work [83], we compared Markov chains, Hidden Markov Models and 

graph algorithms as web page prediction methods. We applied multi-page prediction by 

prefetching all the pages that appeared in the history after the considered context. The best 

prediction accuracy has been obtained with a hybrid predictor consisting in a Hidden Markov 

Model (HMM) and a graph-based predictor. The proposed hybrid predictor prefetched the web 

pages anticipated by both component predictors. In contrast, in this section we use the prediction 

by partial matching algorithm which combines different order Markov chains exploiting thus the 

advantage of each one. In order to reduce the additional network traffic, in this work we prefetch 

only one predicted web page from each confident state. 

Link prediction based on Markov chains was presented in [188]. In [122] the author 

applied the Markov model together with the k-nearest neighbor classifier algorithm to enhance 
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the performance of traditional Markov chains in predicting web pages. He obtained lower 

consumed memory, quite similar build time and evaluation time and higher accuracy. In [123] 

and [124] clustering is used to group homogeneous user sessions. Low order Markov chains are 

built on these clustered sessions and when Markov models cannot make clear predictions the 

association rules are used. In [125], the authors presented a survey of web page ranking for web 

personalization. They concluded that low order Markov models have higher accuracy and lower 

coverage, whereas the higher order models have a number of limitations associated with higher 

state complexity, reduced coverage and sometimes even worse prediction accuracy. 

The PPM was first introduced by Cleary and Witten in [32] for data compression and 

represents an important context-based prediction method. It contains a set of simple Markov 

predictors. It uses the highest order Markov predictor which can provide prediction. The 

predicted value is the value that followed the context with the highest frequency. In [36], the 

authors used different PPM techniques for web page prefetching. They observed that as the order 

of the model increases, the number of states used for the model also increases dramatically. They 

reduced the complexity of the model by eliminating many of its states that are expected to have 

low prediction accuracy. But the behavior of a certain user can change in time and a state with 

low prediction accuracy can become a state with high accuracy and vice versa. In contrast, we 

select dynamically the confident states through the saturating counters attached to each web 

page. The great advantage of the saturating counters is that they can adapt fast to any changes in 

the user’s behavior. We reduced the complexity of PPM modelling by keeping all the states. 

In [31], the authors proposed a page rank algorithm to predict the next page that will be 

visited by a web surfer. For the first set of sessions, they applied the page rank algorithm which 

provides the ranks for web pages. For each web page their method determines to which pages the 

user can navigate and, using the page ranks, it computes the probability of visiting them by 

dividing each rank to the sum of ranks, and the number of links to the total number of links, 

respectively.  

In [21], Canali et al. proposed adaptive algorithms that combine predictive and social 

information and dynamically adjust their parameters according to the continuously changing 

workload characteristics. Their experimental results showed that such adaptive algorithms can 

achieve performance close to theoretical ideal algorithms. In [212], Wan et al. proposed an 

approach based on a vector space model, called random indexing, for the discovery of the 

intrinsic characteristics of web user activities. The underlying factors are then used for clustering 

individual user navigational patterns. The clustering results are used to predict and prefetch web 

requests for grouped users.  

In [197], Temgire et al. presented a review on web prefetching techniques. User behavior 

prediction has been applied also in online advertisement industry [131] and financial service 

industry [232]. 

6.1.2. Web Page Prediction 

Our goal is to integrate the most efficient PPM configuration as an extension into 

browsers, as in [83]. The browser extension, presented in Figure 105, collects and pre-processes 

the links accessed by the user: each link is codified with a unique number, ports and relative 

parts are eliminated from links, if there are two consecutive accesses of the same link only one is 

considered, links having the extension .gif and .xbm, which are usually small images, are also 

eliminated. The browser extension keeps a certain history of the accessed links. When the 

current link is accessed, the next link is anticipated using the PPM algorithm based on the history 

of the previously visited links. The predicted web page or file is prefetched in the cache in order 

to be available if the user accesses it. 
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Figure 105. The structure of the application 

In order to improve the prediction accuracy, the predictor is enhanced with a confidence 

mechanism as in [83], which consists in saturating counters, attached to all the links kept in the 

history sequence. The associated saturating counters are incremented on correct prediction and 

decremented on misprediction. A prediction is generated only if the confidence counter of the 

current link is in a predictable state. By using such a confidence mechanism, the number of 

predictions is lower, but the prediction accuracy is significantly higher. For a low traffic level, 

the proposed predictors are providing only one predicted web page, instead of a multi-page 

prediction presented in [83]. 

6.1.2.1  Markov Predictors 

In a first order Markov chain with N states, the current state depends only on the previous 

state:  

][]...,,[ 111   tttt qqPqqqP        (40) 

where tq  is the state at time t.  In a Markov chain of order R, the current state depends on R 

previous states [83]: 

]...,,[]...,,[ 111 Rttttt qqqPqqqP         (41) 

In our application the states are represented by the web pages. The Markov chains can be 

used to predict the next web page by searching for the current context within the history of 

visited web pages. The web page that followed the context with the highest frequency is the 

predicted one. Figure 106 presents an example of prediction with a first order Markov chain: the 

context is the current link 1 and the prediction is 5 since it occurred the most frequently after 1. 

1 5 2 4 1 3 1 5 4 1 51 5 2 4 1 3 1 5 4 1 5
 

Figure 106. Prediction with a first order Markov chain 

In a Markov chain of order R, the context consists in the last R web pages. The Markov 

predictor used for web page prefetching is presented in the following pseudocode: 

 
MARKOV (SEQ, R) 

    for k := 0 to R-1 do 

      C[k] := SEQ[H-R+k] 

    for i := R to H-1 do 

      IS_CONTEXT := TRUE 

      for k := 0 to R-1 do 

        if SEQ[i-R+k] != C[k] then 

          IS_CONTEXT := false 

          break 
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      if(IS_CONTEXT) 

        P[SEQ[i]] := P[SEQ[i]] + 1 

    PRED := 0 

    MAX := P[0] 

    for k := 1 to N-1 do 

      if P[k] > MAX then 

        MAX := P[k] 

        PRED := k 

    if MAX > 0 then return PRED 

    return -1 

 

where R is the order of the Markov chain, SEQ is the observation sequence, C is the context (the 

last R web pages from SEQ), H is the length of SEQ, P keeps the probability distribution for N 

distinct web pages, PRED is the predicted web page, and MAX is the number of occurrences of 

the predicted web page after the context C. If the context C is not found in SEQ, expressed by 

returning -1, we do not predict any web page. We have also presented the Java implementation 

of such a Markov predictor in [92]. 

Tree-, graph-, or transition table-based implementations are also possible, but such 

methods are inefficient for a high number of web pages and superior order Markov models. The 

temporal complexity of our Markov model implementation is Θ(H×R). The memory request is 

even lower: it needs to keep the web page sequence of size T in SEQ, the context of size R in C, 

the probability distribution of size N in P and other few variables (IS_CONTEXT, PRED, 

MAX), which is remarkable especially for systems with memory constraints. 

6.1.2.2. Prediction by Partial Matching 

The PPM of order R first tries to predict with the Markov model of order R based on the 

web page sequence SEQ. If the Markov model of order R cannot predict, then the Markov model 

of order R-1 is used, and so on, the last trial being the Markov model of order 1. In other words, 

if the Markov model of a certain order cannot provide prediction, it triggers the next lower order 

Markov chain. Figure 107 presents an example of prediction with a PPM of order 3: the Markov 

chain of order 3 cannot predict because it could not find the context of 3 links, thus the 

prediction 3 is generated by the Markov chain of order 2 because it followed once the context 

within the link sequence. 

1 5 2 4 1 3 1 5 4 1

1 5 2 4 1 3 1 5 3

1 5 2 4 1 3 1 X5 4 1

14
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1 5 2 4 1 3 1 5 3
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Figure 107. Prediction with PPM of order 3 

We have not included the Markov model of order 0 because it is not using any contextual 

information. The PPM algorithm is given in the following pseudocode: 
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PPM (SEQ, R) 

    for r := R downto 1 do 

         PRED := MARKOV(SEQ, r) 

     if PRED != -1 then return PRED  

    return -1 

The prediction mechanism is presented in Figure 108. 
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Figure 108. Prediction by partial matching 

Since, in the most unfavourable case, the MARKOV function is called R times, the 

complexity of the PPM algorithm is Θ(H×R2). The memory request of the proposed PPM is 

similar with that of the above presented Markov model, which is remarkable, and significantly 

better than that of the other existing PPM implementations. 

6.1.2.3. Graph-Based Prediction 

The graphs are data structures used in many types of applications to model different 

processes. A graph consists in vertices which can be connected by edges. Figure 109 depicts a 

directed weighted graph whose vertices represent the accessed links.  An edge between two 

vertices means at least one transition from a link to another in the direction shown by the arrow, 

whereas the weights are keeping the transition numbers.  
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Figure 109. Modeling web page accesses using graphs 
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The graph-based predictor anticipates the next link as being the vertex whose edge with the 

current vertex has the highest weight. In fact, it is a first order Markov predictor implemented 

using a directed graph. The algorithm is presented in the following pseudocode: 

 
DGRAPH() 

    A := C.GET_PAIRS() 

    MAX := A[0] 

    foreach Edge E from A 

        if E > MAX then MAX := E 

    if MAX > 0 then return E.GET_PAIR(C) 

    return -1 

 

where C is the vertex corresponding to the current link, GET_PAIRS returns a list with all the 

adjacent vertices and GET_PAIR gives the pair vertex of a certain vertex from a given edge E. 

We assume that when the function is called, the directed graph is already constructed based on 

the sequence of visited web pages. 

6.1.3. Experimental Results 

The first step of our research is to analyze the proposed algorithms from the prediction 

accuracy point of view, by varying their input parameters. Such a study can be better highlighted 

on a set of log files. Therefore, the above presented algorithms have been implemented in Java 

and evaluated on the BU benchmarks. 

The BU dataset was generated by the “Ocean Group Research” from Boston University 

[34] and consists in log files collected during 7 months on 37 workstations, spanning the 

timeframe from 21 November 1994 to 8 May 1995. Each log file name contains a user ID 

number, the machine on which the session took place and the Unix timestamp when the session 

started. Each line in a log corresponds to a single URL requested by the user; it contains the 

machine name, the timestamp when the request was made, the URL, the size of the document 

(including the overhead of the protocol) and the object retrieval time in seconds. The average 

number of links in the BU benchmarks is 1905. After we have pre-processed the original log 

files, as we described in Section 3, we named them conX where X is the user ID. 
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Figure 110. Prediction accuracy of 3rd order PPM (R=3) for different histories 
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First, we have evaluated a 3rd order PPM by varying the size of the web page sequence, 

also called history (H). We used 4-state confidence counters, identified in [83] as being optimal 

for web page prediction. The results are presented in Figure 110. As Figure 110 presents, the 

highest average prediction accuracy has been obtained with a history length of 600. We can 

observe an increase in accuracy until H=600 and a fall after that, meaning that a rich history can 

lead to higher accuracy, but starting with a certain length it can behave as noise and the accuracy 

decreases. In fact, the accuracies obtained with history lengths of 500, 600 and 700 are very 

close – 70.14%, 70.42% and 70.40%, respectively –, therefore, we consider that the optimal 

history length is 500. 

We have continued our study by varying the order of the confidence-based PPM, 

considering the optimal history length of 500 web pages. The results are presented in Figure 111: 
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Figure 111. Prediction accuracy obtained with PPM of different orders and history of 500 

(H=500) 

Figure 111 shows that the prediction accuracy increases with the order of the PPM, but 

there is marginal benefit of increasing the order beyond 4. On some benchmarks we can observe 

inflexion points followed by accuracy decrease. For those benchmarks, the Markov chains of 

higher orders than the inflexion point have more mispredictions at higher complexity. The 

average prediction accuracies show that the PPM of order 4 is the optimal. 

 

Figure 112. Comparing the optimal PPM (H=500, R=4) with and without confidence 
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We have compared the optimal PPM (H=500, R=4) with a PPM having the same 

configuration but without the 4-state confidence mechanism. As Figure 112 depicts, the 4-state 

confidence counters have a very high benefit. With this confidence mechanism we are able to 

selectively predict only from confident web pages, increasing thus the average prediction 

accuracy from 31.54% to 71.11%. Figure 113 shows how the prediction rate (the number of 

predicted web pages divided to the total number of web pages) is influenced by the selectivity of 

the 4-state confidence mechanisms in the case of the optimal PPM (H=500, R=4).  

 

Figure 113. Comparing the prediction rates of the optimal PPM (H=500, R=4) with and without 

confidence 

It can be observed that the attached 4-state confidence counters reduce the number of 

predictions from 62% to 10% but improve the accuracy from 31.54% to 71.11%. To not increase 

too much the network traffic, we prefer to predict fewer times but accurately. 

 

Figure 114. Simulation time 

Finally, Figure 114 depicts the efficiency of our PPM implementation opposite to a graph-

based implementation, as simulation time. The implementations which are implying transition 

tables, trees or graphs, as in [36] and [188], become very inefficient or even intractable for high 
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number of distinct web pages and superior order models, because of the high state complexity. In 

Figure 114, Graph 1 is a first order Markov predictor implemented using a directed weighted 

graph, whereas Markov 1 and PPM 4 are our first order Markov and 4th order PPM 

implementations. We reported the time necessary to process and eventually predict all the links 

from each benchmark. As the evaluations show, our proposed Markov model implementation is 

more efficient than the graph-based one, and more important, our proposed PPM implementation 

has almost the same time-efficiency even for higher orders. The average execution time with the 

first order graph-based Markov predictor is 29.77 s, while with our first order Markov predictor 

and our 4th order PPM it was only 10.18 s and 11.27 s, respectively.  

6.1.4. Summary 

In this study we proposed prediction-based web prefetching methods in order to reduce the 

delays necessary to load the web pages and files visited by the users. We have presented an 

efficient way to implement the prediction by partial matching as simple searches in the 

observation sequence. By avoiding tree-, table- and graph-based implementations, the memory 

necessity of the proposed PPM is similar with that of the Markov model. This low complexity is 

remarkable, especially for the superior order models with high number of states, and 

significantly better than in the other existing PPM implementations. Our time-evaluations show 

that the prediction latency of the proposed model is just slightly affected by the order of the 

model, opposite to the implementations using the above-mentioned data structures where the 

order of the model affects exponentially the complexity.  

The confidence mechanism has a high benefit because it allows to predict selectively from 

high-confidence contexts, decreasing thus the prediction rate from 62% to 10%, but increasing in 

the same time the accuracy from 31.54% to 71.11%. The optimal prediction accuracy of 71.11% 

was obtained with the PPM of order 4 using a history of 500 web pages and 4-state confidence 

counters.  

A further work direction is the analysis of using neural networks for web page prediction 

as a first prediction level in a two-stage predictor. Another further work direction consists in 

developing and evaluating different hybrid predictors. The PPM is a hybrid predictor with 

prioritization-based static component selection and we intend to evaluate also dynamic selection 

in order to use the best predictor at a certain moment, for possible prediction accuracy 

improvements. Finding and exploiting similarity among users is another research challenge. 

6.2. Hybrid Web Access Prediction through Dynamic Decision Trees 

Several low-latency web access techniques have been proposed during the last years. 

Caching exploits the temporal locality principle by keeping the accessed pages and files in a 

cache structure. Prefetching anticipates the next accesses and loads the corresponding web pages 

or files into the cache. If the user accesses a web page or a file which is already in the cache, the 

browser can load it without any delays. Thus, when the users have long browsing sessions, 

prediction-based prefetching can be very effective by minimizing the access latencies. In this 

section, we investigate web prefetching through dynamic decision tree (DDT) which acts like a 

hybrid web predictor having different order Markov chains as components [80]. The idea of 

using such a hybrid predictor is based on our observation that in different log files, due to 

different user behaviors, Markov chains of different orders can predict better. Thus, we expect 

that a hybrid predictor, which can dynamically select the most appropriate component, could 

provide better prediction accuracy than any of the components considered alone. This dynamic 

component selection is performed, in our case, by the DDT. The novelty of the proposed method 

is that we use the predictions generated by the component Markov predictors as DDT features to 

anticipate the next accessed link. 
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The decision tree is a commonly used inductive inference machine learning method and 

due to its simplicity and accuracy it is best suited for our needs. Decision trees can classify items 

by keeping them sorted from the root to the leaf nodes [149]. Each node in the tree denotes a test 

of some feature and each descending branch corresponds to one possible value of that certain 

feature. An item is classified by testing the feature specified by the root and moving down on the 

branch corresponding to the value of that feature. The process is repeated in a recursive manner 

on the current subtree. The value of the leaf node situated at the end of the selected path 

represents the output of the decision tree. 

The Markov chains are using as input the web access history of a certain size consisting in 

a codified web sequence. We consider as context the most recently accessed web files. Thus, a 

Markov chain of order R is using as context the R previous web files accessed by the user and 

predicts the web file that followed that context with the highest frequency as being the next 

access. For efficiency, the Markov chain is implemented as simple searches in the observation 

sequence, as in [82], instead of using high complexity tree-based modelling. 

We use the decision tree to dynamically select the most predictive features from a 

considered feature set and we consider only the selected features to generate predictions. In our 

application the feature set includes the current link, the type of the current link (HTML, non-

HTML) as well as the predictions of different order Markov chains. The first step of the 

algorithm is to choose the root of the tree from the existing attributes. That chosen attribute has 

the highest information gain on the entire set of examples and it does best classify this set. After 

that, for each possible value of the selected attribute a new attribute will be recursively chosen 

from the remaining attributes as the root of the subtree that will be created as a branch. After the 

tree is learned we will use it to predict and prefetch the next web page or file based on the 

current context. For a higher prediction accuracy, we have also attached a dynamic confidence 

mechanism to the predictor. We have evaluated the prediction accuracy of the proposed hybrid 

predictor on the Boston University benchmark set (BU), generated by the “Ocean Group 

Research” [34].  

6.2.1. Related Work 

In our previous work [83] we compared Markov chains, Hidden Markov Models and graph 

algorithms as web page prediction methods from their accuracy point of view. We applied multi-

page prediction by prefetching all the web files occured in the user access history after the 

considered context. The best prediction accuracy has been obtained with a hybrid predictor 

consisting in a HMM and a graph-based predictor. The proposed hybrid predictor prefetched the 

web pages anticipated by both component predictors. In contrast, in this section we use DDT-

based prediction which combines different order Markov chains, exploiting thus the advantage of 

each one. To keep low network traffic, in this work we predict and eventually prefetch only one 

web file at a time. 

In [82], we have analyzed the prediction by partial matching (PPM) algorithm for web 

prefetching. We have implemented it in an efficient way, allowing thus long web access histories 

and higher order component Markov chains at low complexity. The evaluations performed on 

the BU dataset have shown that the optimal PPM configuration was the 4th order one, with a 

prediction accuracy of 71.11%. The PPM is a hybrid predictor with prioritization-based static 

component selection. In contrast, for higher prediction accuracy, in this work we use a DDT-

based dynamic selection in order to use the best component predictor at a certain moment. 

In [161], the authors combined All-kth order Markov models with fuzzy Adaptive 

Resonance Theory for web page request prediction and obtained a prediction accuracy less than 

40%. In contrast, we dynamically select the order of the Markov chain using a DDT and we 

expect a better adaptability to different users and also to changes in the behavior of the same 

user. 



Predictive Web Prefetching 

 124 

In [41] the authors proposed a hybrid web page prediction method which combines support 

vector machines (SVM), association rule mining and Markov chains in order to enhance the 

efficiency. Their experimental results showed that the proposed hybrid method provided a 

prediction accuracy of about 63%, outperforming the individual predictors. Their method needs a 

pretraining stage, while our method is based only on run-time training and we expect faster 

adaptation to user behavior changes. In [14], the authors proposed a three-level technique in 

which they combined Markov models, association rule mining and clustering. The prefetching 

and prediction is done by preprocessing the user accesses and integrating the three mentioned 

techniques. They used only a first order Markov model and, therefore, we expect higher 

prediction accuracy with our superior order models. In [154], the authors proposed another 

hybrid predictor which combines Markov model and HMM. In our opinion, the complexity of a 

HMM-based prediction algorithm increases dramatically in the case of higher order model and 

high number of different accessed links. 

In [139], Lowd and Davis improve Markov network structure learning with decision trees. 

In their approach, a tree is learned to predict the value of each variable and then the trees are 

converted into sets of conjunctive features. All the learned features are merged into a single 

global model. The weights of these features are then learned globally by a Markov network. In 

contrast, in this work we include the predictions of different order Markov chains as features 

within a dynamically adapted decision tree which provides the final prediction. A temporal 

modelling of web user behavior has been proposed by Radinsky et al. in [177] for future 

behavior prediction. They presented several modelling techniques based on time-series to 

capture trends, periodicities and surprises in web usage behavior. A decision tree is learned 

during a training stage to choose the best performing temporal model. In contrast, in our work 

we use different order Markov predictors in a decision tree which dynamically learns which one 

is better in each context.  

6.2.2. Web Prediction using Markovian DDT 

The browser extension, presented in Figure 115, collects and preprocesses the links 

accessed by the user: each link is codified with a unique number, ports and relative parts are 

eliminated from the links, if there are two consecutive accesses of the same link only one is 

considered, and the links having .gif and .xbm extension, which are usually small images, are 

eliminated. The browser extension keeps a link history of size H. When the current link is 

accessed, it is introduced into the link history which can be truncated to the last H unique web 

accesses.  

User

DDT

Markov

Order 1 … Order k

Link

Type

Link History

Link 1 Link H…

Link

…

Prediction

User

DDT

Markov

Order 1 … Order k

Link

Type

Link History

Link 1 Link H…

Link

…

Prediction

 

Figure 115. The structure of the application 
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The goal is to anticipate the next link using the DDT algorithm based on the history of the 

previously visited links as well as the type of the current link. For this, the proposed hybrid 

technique is composed of two prediction levels. The link history is translated into Markovian 

features consisting in the predictions using Markov chains of different orders. These Markovian 

features are used together with the link type feature (HTML and non-HTML) and the current link 

feature as input for the DDT algorithm to generate the final prediction. The predicted web page 

or file is prefetched into the cache in order to be available if the user will access it in the future. 

For a higher prediction accuracy, the predictor is enhanced with a confidence mechanism 

as in [83], consisting in 4-state saturating counters attached to all the links kept in the history. 

The saturating counter associated to the current link is incremented on correct prediction and 

decremented on misprediction. A prediction is generated only if the confidence counter of the 

current link is in a predictable state. For a low traffic level, we predict and eventually prefetch 

only one web file at a time, instead of a multi-page prediction presented in [83]. In our 

application the states within the Markov chain are represented by the links (web pages and files). 

In a Markov chain of order R, the current link depends on R previous links [83]: 

],1[,]...,,[]...,,[ 11 NiqqLqPqqLqP RttitiHttiti      (42) 

where tq  is the link at time t and Pi is the probability of the link (web page) Li at time t, N is the 

number of distinct web pages and H is the size of the used web access history.   

The Markov chain is implemented as in [82] as simple searches for the current context 

within the observation sequence, represented by the history of visited web pages. The web page 

that followed the context with the highest frequency is the predicted one. In a Markov chain of 

order R, the context consists in the last R web pages. The prediction of the Rth order Markov 

chain is computed as follows: 

]...,,[max, 11 RttktkNkiiR qqLqPPLM       (43) 

The Java implementation of this Markov predictor is given in [92]. Now we will describe 

the DDT method for predicting the next web page. We have used the ID3 learning algorithm 

[176] to create the decision tree from a training set of examples. Then we have used this tree to 

predict the next web page to be prefetched.  
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Figure 116. The structure of the DDT 
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Figure 116 presents the structure of our DDT. As it can be seen, we use two types of 

features, the static ones, which are the current link and the link type taken from the server logs, 

and the dynamic ones generated at runtime which are the predictions provided by the Markov 

models. We considered in our evaluations Markov chains with the order ranging between 0 and 7 

and we observed that the best results were obtained with four Markov features: M1, M2, M3 and 

M4 (with MR defined in equation (43)). As we detail below, the entropy and the information gain 

are used for feature selection.  

The ID3 algorithm receives as parameters the set of examples S and the features F. It is a 

greedy algorithm that builds the decision tree T from top to down, by selecting at each node the 

feature that best classifies the training examples. The ID3 algorithm is given in the following 

pseudocode, where the union operation denotes node insertion:  

ID3(S, F) 

    T := Ø 

    If F= Ø 

        T := T ∪{the most common prediction in S} 

    Endif 

    Else 

        Foreach Fk ϵ  F 

            Gmax := 0 

            



c

i

ii ppSE
1

2 )log(:)(   

            

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)()(:),(

kFValuesv

v

v

k SE
S
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SEFSG   

            If G(S, Fk) > Gmax 

                N := Fk 

         Gmax := G(S, Fk) 

            Endif 

        Endforeach 

        T := T ∪{N} 

        Foreach possible v of N 

            If Sv = Ø 

                T := T ∪{the most common prediction in S} 

            Endif 

            Else  

                T := T ∪ID3(Sv, F-{N}) 

            Endelse 

        Endforeach 

    Endelse 

    Return T 

End 
 

where c is the number of possible values of the target feature, N is the selected node, F denotes 

the features, Sv is the subset of the example set S for which feature F has the value v, E is the 

entropy and G is the information gain. The entropy represents the impurity of an example set. At 

the computation of the entropy, pi is the proportion of S belonging to class i. The information 

gain is computed for each feature based on the entropy and it shows how well an attribute 

separates the training examples. The first feature that will be chosen does best split the set of 

examples S and will be the root of the tree. For each possible value of the selected feature a 

branch will be created whose descendent node will be recursively chosen from the remaining 

eligible features. The feature that has the highest information gain (meaning the lowest entropy) 
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will be chosen as a node for the current branch.  The tree is reconstructed after 100 links and the 

tree root can change, so it can provide good knowledge on the current situation. After this 

learning step, we use the DDT to predict the next link. 
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Figure 117. DDT Example 

Figure 117 depicts a small example showing how a DDT-based prediction mechanism 

works by emphasizing the path from the root to the predicted leaf. The internal nodes 

(represented by circles) denote tests of the input features, the branches (represented by arrows) 

are the outcomes of the tests, whereas the leaf nodes (represented by squares) are the output 

classes. The feature with the highest information gain is M3 and, when the input data is 

available, that feature will be checked first choosing thus the branch that corresponds to that 

specific value. In this case, we have for the feature M3 the value 7, which corresponds to the left 

sub-tree in which the root is M1. The value for the M1 feature in this example is 2 and we go 

through that branch reaching the Type node. The value of this feature is HTML, meaning that we 

go through the left branch and reach the leaf node 3 which will be the predicted value for this 

case. Basically, this step is a tree traversal having as input the static data provided by the link and 

the dynamic data provided by the Markov chains. 

6.2.3. Experimental Results 

We used the BU dataset to evaluate the proposed method which was implemented in Java. 

The BU benchmark set was generated by the “Ocean Group Research” from Boston University 

[34]. Each log file name contains a user ID number, the machine on which the session took place 

and the Unix timestamp when the session started. Each line in a log corresponds to a single URL 

requested by the user; it contains the machine name, the timestamp when the request was made, 

the URL, the size of the document in bytes (including the overhead of the protocol) and the 

object retrieval time in seconds. 

We used as measures the prediction accuracy, the coverage and the prediction rate. The 

prediction accuracy is computed by dividing the number of correctly predicted links to the 

number of predicted links. The coverage is the division between the number of correctly 

predicted links and the total number of links. The prediction rate is the number of predicted links 

divided to the total number of links. The performance of prefetching techniques can be measured 

based on the hit rate and the additional bandwidth. In this work, the hit rate is expressed as 
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prediction accuracy (PA). Since the bandwidth increase is directly proportional with the 

prediction rate (PR), we can approximate the relative prefetching benefit of a certain method 1 

compared to another method 2, as being: 

2

2

1

1

PR

PA

PR

PA

B            (44) 

Obviously, there is a benefit if B is greater than 1. For all the evaluated methods we used a 4-

state confidence mechanism as in [83]. First, we analyzed the proposed Markovian DDT 

algorithm from the prediction accuracy point of view, by varying its input parameters. 

Figure 118 compares DDTs composed of different order Markov predictors using a history 

of 1000 links and 4-state confidence counters. DDT-M1 contains only a Markov predictor of 

order 1, DDT-M1-2 contains Markov predictors of orders 1 and 2, and so on. We denote DDT-

Mx-y a decision tree using as features the predictions generated by Markov chains having the 

order between x and y. As Figure 118 shows, the inclusion of Markov chains having the order 

higher than 4 into the hybrid predictor is not improving the prediction accuracy, meaning that 

usually the web access patterns are not longer than 4. The DDT-M1-4 which uses the Markov 

predictors having the orders between 1 and 4 is the optimal since the inclusion of higher order 

Markov chains is not significantly improving the accuracy. 
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Figure 118. Average prediction accuracies obtained with different DDT predictors 
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Figure 119. Average prediction accuracies obtained with Markov predictors of different orders 

and the optimal DDT-M1-4 predictor 
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Figure 119 compares the optimal DDT-M1-4 predictor with the Markov predictors having 

the orders from 0 to 7. All these compared predictors are using a history of 1000 links and 4-state 

confidence counters. As Figure 119 shows, the prediction accuracy is increasing together with 

the order of the Markov chain up to order 2 after which we can observe a decrease tendency, 

especially beyond order 4, which explains again the superiority in accuracy of DDT-M1-4 in 

Figure 118. In fact, we observed that starting with the Markov chain of order 6, the number of 

predictions was 0 on multiple benchmarks because the too rich contexts were not found within 

the web access history and/or the confidence counters were in unpredictable states. 

The optimal DDT-M1-4 hybrid method outperforms all the evaluated Markov predictors, 

being thus an efficient two-level predictor, which provides better accuracy than all its 

components. The high average prediction accuracy of 72.57% is possible due to the 4-state 

confidence counters which dynamically classify the web pages as predictable or unpredictable 

and allow to predict and prefetch selectively only from high confidence contexts. Figure 120 

shows comparatively the prediction rates and coverages of the same methods. 

As Figure 120 depicts, due to the selective approach, the prediction rates are low. Only 

6.7% of the web pages are predicted and, as the coverage shows, 5.18% of the total number of 

web accesses are correctly anticipated with the DDT-M1-4 predictor. By focusing on these 6.7% 

web page contexts, which were dynamically classified as predictable, the proposed hybrid 

technique can provide the prediction accuracy of 72.57%, outperforming all its components (see 

Figure 119). It is also outperforming the PPM algorithm presented in [82], whose average 

prediction accuracy is 71.11% (with a prediction rate of 10%) on the same dataset. By making 

fewer predictions but with good accuracy, we can avoid a high number of additional useless 

prefetches which helps to keep the traffic at reasonable level. The relative prefetching benefit of 

the optimal DDT-based method compared to the previous PPM-based technique, computed using 

equation (44), is 1.52. 
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Figure 120. Comparing the average prediction rates and coverages on the BU dataset 

Next, we varied the history size. Figure 121 presents the prediction accuracies obtained on 

the BU benchmarks using the optimal DDT-M1-4 predictor with 4-state confidence mechanism. 

We can observe that the optimal history size is 1000. For a history of 1500 the prediction 

accuracy is just slightly better. 

Finally, we have extended the optimal DDT-M1-4 hybrid predictor with a Markov 

predictor component of order 0. A Markov chain of order 0 is not using any context information, 

it predicts the most frequent link from the considered history. Figure 122 presents comparatively 

the prediction accuracies obtained using DDT-M1-4 and DDT-M0-4, respectively. We have used 

the optimal history length of 1000 links. 
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Figure 121. Prediction accuracies obtained with the DDT-M1-4 predictor using different link 

history lengths 
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Figure 122. Extending the DDT-M1-4 hybrid predictor with a Markov predictor of order 0 

As Figure 122 depicts, on some benchmarks is better to include the Markov predictor of 

order 0 and on others it is better without, such that the average prediction accuracies are almost 

the same: 72.57% without and 72.48% with 0 order Markov predictor, respectively. The Markov 

chain of order 0 cannot improve the average prediction accuracy due to its lack of context 

information. Thus, we prefer the DDT-M1-4 due to its simplicity with respect to the more 

complex hybridisation which additionally includes the 0 order Markov chain without any gain in 

accuracy. Thus, the optimal method remains DDT-M1-4 with an average prediction accuracy of 

72.57%, but reaching almost 90% on some benchmarks (con112, con172). 

6.2.4. Summary 

In this section we presented a two-level hybrid web page prediction method consisting in a 

DDT with Markovian features. In the first level, the link history is translated into Markovian 
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features represented by the predictions using Markov chains of different orders. These 

Markovian features are then used together with the static attributes, consisting in the current link 

and the link type, as input for the DDT algorithm to generate the final second level prediction. 

We have also used a confidence mechanism consisting in 4-state saturating counters, attached to 

all the links kept in the history, which allows selective prediction from high confidence contexts, 

improving thus the accuracy. The predicted web page or file is prefetched into the cache in order 

to be available for possible next accesses. The experiments performed on the BU dataset show 

that the optimal method is the DDT which uses as features the current link, the link type and the 

predictions provided by the Markov chains of orders 1-4. This optimal predictor uses a history of 

1000 web accesses and achieves an average accuracy of 72.57%, outperforming all the Markov 

chains applied separately. It is also outperforming the PPM algorithm presented in [82] whose 

average prediction accuracy is 71.11%, measured on the same dataset. The DDT-based method 

has a relative prefetching benefit over the PPM-based algorithm of 1.52, which is remarkable. 

Furthermore, it is significantly outperforming the methods presented in [41], [123], [124] and 

[161], whose prediction accuracies have been mentioned in Section 2.  

As further work, we intend to investigate other DDT features which can be relevant for 

even better prediction accuracy. Another further work direction consists in developing and 

evaluating SVM-based web page predictors. 
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II. DEVELOPMENT PLANS 

7. Further Developments 

Next, I will present my academic development plans in terms of teaching and research. I 

plan to always keep my teaching activities correlated with the research outcomes. Therefore, I 

will extend my lectures by covering the methods developed and applied during my research 

activities and the corresponding results and by exchanging information at national and 

international level. I will try to continuously improve my pedagogical skills and I intend to 

involve more the students in learning and research, especially at my courses from the master 

programs. I will support, attract and encourage students to work in research projects, to write 

scientific papers and to participate at conferences, scientific sessions and competitions. I will 

continue guiding students in elaborating bachelor and master theses and the Ph.D. students 

during their studies. I also intend to strengthen my collaborations with both academia (through 

projects, mobilities and joint research papers) and industry (through partnerships with 

companies). Some local and international collaborations were initiated within my recent research 

projects and I am going to start new such collaborations through other such projects. The 

research will be realized through projects and dissemination of the solutions and results in 

international journals and conferences and will focus on the topics and ideas presented in the 

next sections. 

7.1. Anticipative Techniques in Multicore Architectures 

In the previous works we focused on selective load value prediction as a hardware scheme 

which can improve superscalar, SMT and multicore microarchitectures in terms of performance 

and energy consumption. We would like to continue the investigations by developing such a 

selective predictor for other relatively high latency instructions too, like the multiply and the 

division. This time the selection can be performed earlier in the pipeline, more exactly in the 

dispatch stage, after the instruction is decoded and the opcode is available. However, the 

prediction table can be checked for hit or miss in the fetch stage. Taking into account the latency 

of such instructions, the gain will not probably be as high as in the case of load value prediction. 

The predicted results are forwarded to the dependent instructions which can thus be earlier 

executed. We are interested in accurate prediction, since any misprediction must be followed by 

a time-consuming recovery in order to reestablish the correct processor state.  

Dynamic instruction reuse is another anticipative technique which can be applied 

selectively on the multiply and division instructions. We have previously applied this technique 

on superscalar and SMT architecture and we would like to evaluate its benefits in terms of 

performance and energy reduction in multicore architectures, too. As we concluded in [90] and 

[91], the reuse table can be accessed during the issue stage, because most of the multiply and 

division instructions do not have their operands ready in the dispatch stage. In contrast with the 

above-mentioned prediction method, dynamic instruction reuse is a non-speculative technique. If 

the multiply or division operation is found in the reuse buffer together with the actual operand 
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values, the result can be forwarded to the dependent instructions whose earlier executions 

contribute to a better performance.  

To evaluate the benefits of value prediction and reuse focused on the high-latency 

arithmetical operations in a multicore architecture, we need a simulator which provides access to 

the input and output operand values. Unfortunately, the necessary data is not available in the 

Sniper simulator [22] which was used in our recent research and, thus, we started to extend it 

with such capabilities. Sniper is a state-of-the-art multi-core simulator which uses the interval 

simulation method instead of a detailed cycle-by-cycle simulation of most of the existing 

simulators. The main idea is to approximate the performance of the cores using time intervals 

obtained using the encountered miss events (wrong branch prediction, cache misses, etc.) and to 

apply an analytical model to approximate the timing inside the intervals. 

Sniper’s internal architecture contains four main clusters: frontend, Sniper Internal File 

Format (SIFT) pipes, scheduler and the backend. As a functional overview, the frontend is 

responsible to feed the scheduler via SIFT pipes with dynamic information about the executed 

instructions. The scheduler will associate for each application thread a simulated core 

performance model. The simulation flow starts with the binary file of a benchmark, which is 

executed on the host computer in real-time. Before execution, the binary file is instrumented in 

the simulator’s frontend. It uses the Intel Pin Tool to instrument, execute and analyze the binary 

file. During the execution of the program, the analyzer collects data about the execution flow and 

instructions. The data is feed in real-time towards the backend of the simulator via SIFT pipes. 

Sniper can also work with offline traces saved in previous runs, those can be loaded and sent 

directly to SIFT pipes. The frontend also adapts the instrumentation mode according to the 

selected simulation mode: fast-forward, warm-up or detailed. The Sniper Internal File Format 

trace contains an instruction stream which was generated by the execution of a program. Besides 

the execution order of instructions, it also contains additional information for each instruction. 

 

Figure 123. Instrumentation flow after adaptations 

Next, we present the modifications which were necessary in Sniper to access the operand 

values. The current version of Sniper 7.3 has limited access to the values of operands in the 

backend. The information is available only for branch instructions. We have adapted the 

simulator to provide details about the operands for multiple categories of instructions. In the 
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frontend we take a snapshot of the values for all operands, before and after the execution of each 

instruction, and send it towards the backend using the SIFT pipes. 

The frontend is the place where one can insert all the necessary callbacks, related to the 

instrumentation and analysis of a binary file. This process is done using the Intel Pin Tool. 

Initially it passes statically through basic blocks of instructions and inserts user defined calls for 

each instruction (code injection). This part is called binary instrumentation. It is performed at 

runtime on the already compiled binary files and there is no need to compile them again. The 

inserted code is executed during the program execution, this part being named the analysis 

process. For example, the injected code can receive access to specific context information 

(register contents, memory) snapshot, which gives possibilities to further analyze the behavior of 

the program.  

The instrumentation process is done only once for all the static instructions, and the 

analysis is done for each dynamic instance of an instruction. Because of this, a connection 

between static information (program counter, opcode, number of operands, type of operands, 

etc.) and dynamic instruction data (e.g., effective addresses, value of operands, etc.) must be 

established. To store and later access the static information, we considered a thread-safe hash 

map using the program counter as the key. 

Currently only one callback function is configured to be called for each instruction within a 

basic block trace. It starts with the execution of the benchmark via the Intel Pin Tool. The 

sendInstruction function is called for each dynamic instruction. Inside this function, all the 

dynamic information about the current instruction is gathered and sent via the corresponding 

SIFT Pipe. The information is propagated until the backend. 

We adapted the frontend and added more callbacks (they are pointed with a star in Figure 

123). Some of them are called before and others after the execution of each instruction. 

Depending on the simulation mode, those callbacks can be called or not. They are called in the 

detailed simulation mode. Those calls are registered in the instrumentation phase, for each static 

instruction. Also, at this point we store the static information about each instruction. Such 

information is: the instruction address (program counter), the number of operands and details 

about each operand (direction: read/write, type: register/memory/immediate, etc.). This static 

information is needed later in the analysis (dynamic) phase.  

Those function calls will occur during the execution of each dynamic instruction. The 

execution order is as specified in the picture, first the getEffectiveAddresses function is called. 

Here the effective address of the memory operands is calculated and stored for later use (to read 

the memory location before/after the execution of the instruction). Next, the 

getValuesBeforeExecution and getValuesAfterExecution functions are called. In these functions 

the value for each operand is read either from a register or a memory location, the function name 

suggesting the reading point. The last called function from this chain is sendInstruction, which 

propagates the operand values, along with other dynamic information, to the backend of the 

simulator. 

Further modifications were made also to the SIFT pipe infrastructure and the core 

performance model. The changes are related to extensions of data types to support additional 

information about the operands (value, type, and direction). The information is now available in 

the backend, more concrete, inside the core performance model. 

The instruction reusability degree was measured in [17] using the following concept. A 

unique list was defined for each dynamic instruction. An element of the list contains the snapshot 

values of all the input (read) operands for this instruction at one execution point. The size of the 

list was varied. After the execution of each instruction, the list is updated in the following 

manner. If the list is empty, the elements will be added in order. The one at the end of the list 

will always be the newest. Before adding an element, all the existing elements are compared with 

the new operand values and if an existing element has the same value, then this element will be 

promoted as the newest. No new element will be added to the list in that case. This means that 

the instruction is executed again with the same input values, therefore it will be marked as 
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reusable. In case the list is full and the current operand values are not present in the list, then the 

oldest element is removed and a new one is added with the actual operand values. Based on the 

presented results, the measured reusability looks promising and paves the way to implement a 

Dynamic Instruction Reuse (DIR) scheme in Sniper. We plan to enhance the Reuse Buffer (RB) 

from the DIR technique, to use a multi-value set-associative RB. It will be interesting to study 

the impact of the reuse technique, in a multi/many-core environment, considering the following 

microarchitectural metrics: computing performance, power consumption, total energy 

consumption and die temperature. It is also a point of interest for us to measure the performance 

gain by unlocking instruction chains due to data dependencies and compare them with our initial 

estimates.  

A next step will be to also implement a selective value prediction technique in a multi-core 

system and to compare it with the DIR technique in fair conditions (to exploit the same value 

locality degree). The implementation should be done on the presented instruction types. The 

selectiveness is needed to consume less energy, because nowadays performance/Watt is more 

important than performance itself. A big challenge will be to correctly implement these 

techniques, taking care to not corrupt the coherency of the shared variables which are predicted 

by different execution threads.  

Further, the proposed multi-core microprocessor architectures will be optimized using 

existing state-of-the-art multi-objective optimization techniques, integrated in an automatic 

design space exploration process. To achieve this, we plan to use FADSE, since it was specially 

developed to accelerate the design space exploration process using different methods (multi-

objective heuristic algorithms, integrate human expert knowledge expressed through fuzzy rules, 

etc.). The optimization will be enhanced with novel multi-objective genetic algorithms (located 

in the Pareto-Fuzzy paradigm), using response surface modeling techniques and expert domain 

knowledge representation (e.g., fuzzy rules expressed in fuzzy logic). 

7.2. Adaptive Assembly Assistance Systems 

We intend to analyze the usefulness of a LSTM in modeling assembly processes, the idea 

being described in [173]. Thus, we will evaluate the ability of a LSTM to provide a possible next 

state, considering as input data the current state. In [86], we observed correlations of the 

assembly score and duration with the following characteristics of the workers: gender, eyeglasses 

wearer or not, height, and sleep quality in the preceding night. Therefore, besides the current 

assembly state we used all this additional input information in the prediction process. The LSTM 

is a recurrent neural network and therefore it could be appropriate in recognizing patterns in the 

input data.  

LSTM has been specifically designed to deal with the long-term dependency of the 

information. In its current form, a LSTM unit is composed of a cell, tasked with memorising 

information over arbitrary periods of time, and three gates (the forget gate, the input gate and the 

output gate) tasked with regulating the flow of information in and out of the cell. The forget gate 

drops information that the model deems unnecessary in the decision-making process. The 

previous hidden state and the current input values are passed through a sigmoid function that 

dictates how much of the previous cell state should be dropped, with 0 representing drop all and 

1 keep all. The input gate decides what new information should be learned. Like in the forget 

gate, the hidden state together with the input passes through the sigmoid in order to determine 

how much of the new information should be learned (ignore factor). Then, the hyperbolic 

tangent function squishes those values between -1 and 1. The cell state, the long-term memory, 

persists information from previous timesteps. The new cell state is obtained by multiplying the 

old state with the forget factor to which the new information from the input gate is added. The 

output gate decides what the next hidden state should be. First, we pass the current hidden state 

and the input through a sigmoid function. Then the newly modified cell state is passed through 

the tanh function. The information provided by the sigmoid and hyperbolic tangent functions is 
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then multiplied in order to decide what information should the next hidden state carry. The 

newly computed hidden state is also the one used for predictions.  

Due to the vast assembly possibilities of the tablet used as target product in the previous 

researches and lack of sufficient data, an LSTM network will be used to model the assembly 

process. The network is able to adapt to new assembly scenarios. For our implementation we will 

use the tensorflow library together with Keras. We will start the evaluations with a pre-

configured LSTM and we will perform a design space exploration by systematically varying the 

main LSTM parameters in order to determine the optimal configuration for our application. 

HMM is another candidate model. HMMs are doubly embedded stochastic processes 

composed of a hidden stochastic process and a set of observable stochastic processes, each state 

from the hidden stochastic process having associated an observable stochastic process (see 

Figure 124). 

 

Figure 124. A generic HMM 

There are three fundamental problems that an HMM should solve. These problems were 

introduced by Rabiner in his work [175]. We denote the observation sequence with O and the 

model with ),,( BA   where   is the set of initial hidden state probabilities, A is the set of 

transition probabilities between hidden states and B is the set of observable state probabilities. 

The first problem that an HMM should solve is called the likelihood problem, also known as the 

evaluation problem. It states that, given the HMM model ),,( BA   and the observation 

sequence O, the model should be able to determine the likelihood of that observation sequence, 

)|( OP . The second problem, called the decoding problem, states that given the model 

),,( BA   and observation sequence O, the model should be able to tell what was the hidden 

state sequence that produced the observations. In the third problem, the learning problem, given 

the model   and the observation sequence O, the model should adjust its parameters },,{ BA  

such that )|( OP  is maximized. According to Stamp [193], the third problem is used to train 

the model and the first problem is used to score the likelihood for a given observation sequence. 

A possible HMM implementation is from the Pomegranate library. Pomegranate is a 

Python library developed by Jacob Schreiber that, among others, offers a good HMM 

implementation. The library offers us the possibility to train the model based on assembly 

sequences. The assembly steps are wrapped in an ObservableState, a wrapper class that contains 

information about the current assembly state and the worker’s characteristics, such as the gender 

(0 for female, 1 for male), height (0 for short and 1 for tall), eyeglass wearer or not (1 and 0, 

respectively), as well as sleep quality in the preceding night (0 for bad and 1 for good). After the 

model is trained on the assembly sequences, it can then be used to start predicting the next piece 

that the worker should mount. 

To predict the next piece assembled by the worker, we need the history of assemblies done 

on the product so far. If no piece is assembled, then the history will contain an empty assembly 

(since the product has just begun being assembled) with the worker’s characteristics. The 

algorithm then proceeds to identify all the steps left to be done in the assembly sequence. After 

all the pieces left to be assembled have been identified, for each piece, a shadow assembly 

sequence containing the current assembly sequence and the piece that needs to be mounted is 

generated. Each shadow assembly sequence is then tested against the model to find the 

maximum likelihood of a shadow assembly to occur. The piece in the shadow assembly with the 

maximum likelihood is the one considered to be the next piece that should be assembled. Using 
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this approach, of determining the maximum likelihood of an assembly sequence, enables the use 

of this algorithm for modeling unknown (earlier unseen) assemblies. A possible HMM-based 

implementation is proposed in [89]. Further in-depth comparisons are necessary. 

We will also take into consideration Dynamic Bayesian Networks (DBN) as possible 

predictors in our assembly assistance system, some preliminary results being already presented 

in [172]. A Bayesian network, known also as a belief or causal network, is a probabilistic 

graphical method that models variables together with their conditional dependencies using a 

directed acyclic graph. The Bayesian networks that can model sequences considering the time 

factor and the evolution of variables through it, are known as DBN and are also called temporal 

Bayesian networks. A DBN connects variables to each other over adjacent time steps. The DBN 

can also be considered a two-time-slice Bayesian network (2TBN) since, at any given time, a 

variable’s value can be computed using the internal regressors and the actual variable’s value at 

time 1t . In the modelling of time series, the values of variables are observed at different time 

steps. Since time can move in only one direction, forward, the design of these networks is 

simplified and the directed edges should follow the direction of time.  

Another possibility to build up assembly models is through decision trees (some 

preliminary results being presented in [190]) and through the A* algorithm (see the idea 

described in [88]). 

7.3. Smart Energy Management Systems 

Since Markov predictors are context-based, their main drawback is that predictions are 

solely based on the history accessed during the last time period. If a pattern appears for the first 

time, the context-based predictor cannot generate a prediction. Therefore, the next goal is to 

analyze some statistical modelling techniques such as the ARIMA and TBATS models. 

The AutoRegressive Integrated Moving Average (ARIMA) model was introduced in 1970 

by Box and Jenkins [13], and it is still widely used. The forecast R package provides a 

convenient interface to fitting an ARIMA model to data. These fitting and forecasting steps are 

somewhat equivalent to the "training" and "testing" terminology from the domain of neural 

networks for example. The ARIMA and SARIMA models only include information about the 

time-series itself in the model. The (S)ARIMAX algorithm incorporates external regressors. 

The ARIMA model needs to be fed only with stationary data to yield good results. Data are 

said to be stationary when the statistical properties do not change regardless of the time window. 

This also means that statistical parameters of a time series, such as mean and variance, will be 

stable over time [111]. A statistical test that can determine whether a data set is stationary or not 

is the augmented Dickey-Fuller test [38]. The result of the test is a negative number. The lower 

this number, the higher the chances that the null hypothesis should be rejected (i.e., the tested 

time-series is non-stationary with a given percentage of confidence). Alternative stationarity tests 

also exist [47]. 

Seasonal time-series are not stationary, their properties changing depending on which time 

they are observed at. Transformations can be applied to them to make them stationary. One such 

transformation is differencing. Higher-order differences can be computed if needed. In a similar 

way, seasonal differencing is applied to seasonal data with a seasonal period of m. As noted in 

the description of SARIMA, the order of seasonal differences will be denoted by the D 

parameter for the model. Other examples of data transformations which make the series 

stationary include calendar transformations, logarithm transformations, power transformations, 

and the Box-Cox transformations that encompasses the preceding two [111]. 

The autocorrelation will drop to zero quite quickly for a stationary time series, while on the 

other hand the autocorrelation function of a non-stationary time series will decrease very slowly 

[111]. The autocorrelation and the partial autocorrelation will guide to choose the order of the 

autoregressive part and the order of the moving average part and also their seasonal counterparts 



Further Developments 

 138 

[111]. Once the parameters for the model are chosen and the model is fitted on the data, the 

residuals might be examined. Residuals should be zero-meaned, homoscedastic, not 

autocorrelated and ideally normally distributed [111]. The Ljung-Box test has been specifically 

developed for use with residuals generated by ARIMA models and this test statistic becomes 

helpful when comparing two ARIMA models [137]. 

SARIMA works best when individual observations represent aggregated data, because 

aggregation reduces the effect of noise and cyclic behavior is more evident. With data of finer 

granularity, dynamic harmonic regression could be better suited [111]. The seasonal pattern is 

modeled using Fourier series and the residuals are handled using ARIMA. The dynamic 

harmonic regression is included in the ARIMAX model, ARIMA with exogenous regressors. To 

determine how many Fourier terms to include, we will vary the number of Fourier terms and 

select the best performing model. 

One-time events, for example public holidays, concerts or sport events that may last 

several days and influence electrical energy consumption can be modeled with indicator 

variables conventionally denoted as dummies. 

Another statistical model is TBATS (Trigonometric Seasonal, Box-Cox Transformation, 

ARMA residuals, Trend and Seasonality) which can decompose seasonal time series into trend, 

seasonal and irregular components. The trigonometric terms from TBATS do not need 

normalization and the overall seasonal component can be decomposed to multiple seasonal 

components having different frequencies. TBATS allows automated model selection, which 

makes it easier to apply in comparison with ARIMA. Such statistical methods have been applied 

in [74] but further analysis and development is necessary. 

Electricity consumption and production modeling is also possible through fuzzy logic, 

some preliminary results being presented in [158]. According to Figure 125, the fuzzy controller 

consists of four different modules or blocks: the fuzzification block, the inference engine, the 

rule base and the defuzzification block. Each module has its own set of tasks and they are all 

linked together in order to offer a result at the exit of the controller. 

 

Figure 125. The structure of the fuzzy controller 

We will follow the steps presented in [216] where a generic method of generating fuzzy 

rules from numerical data is shown. The first step consists of dividing the input and output data 

from the numerical data into fuzzy regions. This step is done in the fuzzification block and it is 

part of the preprocessing of the data. The fuzzification block will generate fuzzy rules from the 

data obtained in the previous step. Once the fuzzy regions are determined and the fuzzy rules are 

generated, the fuzzy rule base is created.  

The next step would be finding the rules that would generate the output of the system. The 

defuzzification strategy for the pair of input values consists of combining the last fuzzy rules 

using the multiplication operation to determine the output corresponding to the given input. The 



Further Developments 

 139 

rules are chosen by applying the input data onto every rule in the Fuzzy Rule Base. Thereby, if 

we have N rules in the rule base, it will generate N mappings, each one representing the 

membership degree of the input data to the rule. Fuzzy operators are used to determine the result 

of each mapping. The most common ones for “OR” and “AND” rules are the min and max 

operators. Finally, all the results are combined through the inference engine. It uses an inference 

method to compute all the mapping results and to determine the defuzzification area. 

There are several defuzzification methods that can be used to process the output of the 

inference block. There is no method that would work on all the systems so it can be one of the 

configurable parameters of the system to find the best match. The most popular ones are the 

mean of maxima method, the weighted fuzzy mean method and the centroid method. 

Using this five-step system, we end up choosing the fuzzification method, the membership 

function, the type of inference and the defuzzification method. To find the best configuration of 

the system, we need to analyze each output and change the parameters with the most suitable 

ones. Also, each block is linked to one another so a change in one block may affect the results of 

another one. 

7.4. Context-Based Image Restoration 

We have presented different context-based denoising and inpainting techniques implying 

Markov models. We intend as further work directions to extend the Markov filter to work not 

only on salt-and pepper noise, but also on random-valued impulse noise and, respectively, to 

apply Markov models to identify defects in images. 
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Figure 126. The scheme of the SVM-based Markov filter 
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Random-valued impulse noise is a pulse-type noise that alters pixels with random values 

over the entire range of [0, 255]. Therefore, to denoise images affected by such type of noise, 

first the noisy pixels might be identified and then the noisy pixels should be repaired. The pixels 

can be classified into noisy or unnoisy through different machine learning methods. We have 

already obtained some preliminary results in [78] by applying SVM, but further investigations 

are necessary. The method has two components: the SVM-based noise detection and the context-

based filter applied on the detected noisy pixels. The scheme of the method is presented in 

Figure 126. 

As Figure 126 illustrates, the differences between the intensity of the current pixel and the 

intensities of the surrounding 8 pixels are used by the SVM classifier to decide if the current 

pixel is noisy or not. If the current pixel is classified as unnoisy, then its intensity is not changed. 

On the other hand, if it is classified as noisy, then its intensity is replaced with the intensity 

provided by the Markov filter. We intend to apply also other potential neural classifiers such as 

MLP, LSTM or fully convolutional networks. 

On the other hand, for defect detection in textured images we propose a context-based 

model to compute the difference between a defective and non-defective pixel in terms of 

intensity using values from their contexts. The given method can be used for textured images, 

where there is a greater diversity of pixel intensities, therefore we will use Markov chains to 

calculate the probability of occurrence for every pixel in the image. If the difference between the 

contexts is significant and the probability of the pixel occurring is small, we will consider the 

pixel as defective and we will highlight it. Compared to most defect detection methods for 

grayscale images, we propose a method that is able to identify defects in textured color images, 

to highlight the defect and to retain its color. Basically, for a certain pixel, the SADs between its 

context and the contexts of the pixels in the whole image are calculated. The contexts with SAD 

smaller than a threshold value were considered similar. We counted these similarities to obtain a 

frequency and based on that a probability of the pixel in the given context. In the end, if the 

probability is smaller than a probability threshold, we considered the initial pixel characterized 

by its context to be defective. A drawback of the method is the significantly increased execution 

time produced by the number of computations and another drawback is the difficulty of finding a 

threshold for different types of images that show specific differences in pixel intensity values. 

For a test image that has a larger difference between the two regions (texture and defect), the 

threshold value is different and considerably higher than a threshold value for an image in which 

the colors of the two regions (texture and defect) are closer. 

 To simplify the logic of the algorithm and at the same time to reduce the execution time, 

we intend to have a single data structure to store the information about the pixels. While before 

we used the SAD that went through two contexts pixel-by-pixel summing a maximum of eight 

differences for each RGB component every time we iterated through the image, now we intend 

to calculate only three differences, one for each RGB component, namely the differences 

between the arithmetic mean of each RGB component of the pixels from the two compared 

contexts. Thus, we approximate the SAD computed at the pixel level with the sum of average 

RGB distances, which can be obtained significantly faster. 

7.5. Web Prefetching by Neural Hybrid Prediction 

After we have evaluated the PPM algorithm which is a hybrid predictor with prioritization-

based static component selection and the DDT which is a hybrid predictor with dynamic 

component selection, we would like to analyze also a neural hybrid web prefetching method 

based on the idea presented in [81]. Artificial neural networks are connectionist models 

composed of neurons organized on layers and can learn from examples to associate outputs to 

the given inputs. Each connection between two neurons has a weight, which indicates how 

strong a connection is. The inputs applied to the neural network are traversing the layers, being 
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transformed according to the weights. If the output is wrong, the error can be backpropagated 

through the layers in order to correspondingly adjust the weights. The computation of the output 

for the given inputs does not require a specific algorithm, neural networks being thus widely 

used to solve high-complexity practical problems. Since we observed that the correct prediction 

is not provided always by the same predictor (it can differ among users, or it can change in time 

even for a certain user), a hybrid predictor could exploit the advantage of all its components. The 

structure of the browser extension is presented in Figure 127. 
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Figure 127. The structure of the browser extension 

The proposed two-level predictor is using a neural network in its first level and contextual 

predictors in its second level. Our contextual predictors are Markov chains of different orders. 

The neural network from the first level selects based on the last behaviors of the component 

Markov chains of different orders from the second level, the one to be used to generate the 

prediction. The behaviors of a certain Markov model can be provided as codified confidence 

counters or as a limited history of correct / wrong predictions. The final prediction is then 

provided by the selected Markov model. The predicted web resources are prefetched into the 

cache of the browser in order to be available if the user will access them again in the future. The 

neural network has a good adaptability to dynamically select the best predictor. We expect that 

this novel neural hybrid web prefetcher will outperform the previously developed techniques in 

terms of prediction accuracy and rendering speedup, but further analysis and development is 

necessary.
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