
Árpád Gellért Lucian N. Vinţan Adrian Florea

A Systematic Approach to

Predict Unbiased

Branches

“Lucian Blaga” University Press

Sibiu 2007

Tiparul executat la:

Compartimentul de Multiplicare al

Editurii Universităţii „Lucian Blaga“ din Sibiu,

B-dul Victoriei nr. 10, Sibiu 550024

Tel.: 0269 210 122

E-mail: editura@ulbsibiu.ro
claudiu.fulea@ulbsibiu.ro

Descrierea CIP a Bibliotecii Naţionale a României

GELLÉRT, ÁRPÁD

 A systematic approach to predict unbiased branches /

Gellért Árpád, Vinţan N. Lucian, Florea Adrian. - Sibiu : Editura

Universităţii “Lucian Blaga” din Sibiu, 2007

 Bibliogr.

 Index

 ISBN 978-973-739-516-0

I. Vinţan, Lucian N.

II. Florea, Adrian

004

Acknowledgments

 This work was supported by the Romanian Agency for Academic

Research (CNCSIS) through our research grants TD-248/2007-2008

respectively 39/2007-2008. It was also partially carried out under the HPC-

EUROPA project (RII3-CT-2003-506079), with the support of the

European Community – Research Infrastructure Action under the FP6

"Structuring the European Research Area" Programme.

We express our gratitude to Professor Theo UNGERER, PhD, from

the University of Augsburg, Germany, for the useful discussions and for all

his various support. Also our gratitude to Dr. Colin EGAN from the

University of Hertfordshire, UK, for his research collaboration for over 10

years. Our full recognition to our MSc students Ciprian RADU, Horia

CALBOREAN and Adrian CRAPCIU, from “Lucian Blaga” University of

Sibiu, who were actively involved in implementing the simulator presented

in Chapter 6, to our colleague Marius OANCEA, who has also contributed

in the unbiased branch research, his results being presented in paragraph

3.2.1, respectively to Mihai MUNTENAŞ, MSc, who brought contributions

in paragraphs 3.2.2 and 4.6.1.

The authors

 Contents

1. Introduction into Unbiased Branches Challenge __________________ 7

2. Related Work __ 9

3. Finding Difficult-to-Predict Branches _________________________ 24

3.1. Methodology of Identifying Unbiased Branches __________________ 24

3.2. Experimental Results __ 27

3.2.1. Pattern-based Correlation ___ 28

3.2.2. Path-based Correlation ___ 39

3.2.3. An Analytical Model __ 45

3.2.4. An Example Regarding Branch Prediction Contexts Influence ____________ 49

4. Predicting Unbiased Branches _______________________________ 54

4.1. The Perceptron-Based Branch Predictor ________________________ 54

4.2. The Idealized Piecewise Linear Branch Predictor _________________ 55

4.3. The Frankenpredictor__ 57

4.4. The O-GEHL Predictor ______________________________________ 57

4.5. Value-History-Based Branch Prediction with Markov Models ______ 58

4.5.1. Local Branch Difference Predictor __________________________________ 60

4.5.2. Combined Global and Local Branch Difference Predictor ________________ 61

4.5.3. Branch Difference Prediction by Combining Multiple Partial Matches ______ 62

4.6. Experimental Results __ 64

4.6.1. Evaluating Neural-Based Branch Predictors __________________________ 64

4.6.2. Evaluating the O-GEHL Predictor __________________________________ 69

4.6.3. Evaluating Local Branch Difference Predictors ________________________ 69

4.6.4. Evaluating Combined Global and Local Branch Difference Predictors ______ 75

4.6.5. Branch Difference Prediction by Combining Multiple Partial Matches ______ 78

5. Using Last Branch Difference as Prediction Information __________ 81

6. Designing an Advanced Simulator for Unbiased Branches Prediction 88

6 A Systematic Approach to Predict Unbiased Branches

6.1. Simulation Methodology ______________________________________ 89

6.2. The Functional Kernel of the Simulator _________________________ 90

6.3. The Software Design of the ABPS Simulator _____________________ 91

7. Conclusions and Further Work _______________________________ 98

References __ 101

Glossary __ 108

1. Introduction into Unbiased Branches

Challenge

Two trends – technological and architectural (conceptual) – are

further increasing the importance of branch prediction. From technological

point of view, modern high-end processors use an array of tables for branch

direction and target prediction [43]. These tables are quite large in size

(352K bits for the direction predictor in Alpha EV8) and they are accessed

every cycle resulting in significant energy consumption – sometimes more

than 10% of the total chip power [9].

From an architectural point of view, processors are getting wider and

pipelines are getting deeper, allowing more aggressive clock rates in order

to improve overall performance. A very high frequency will determine a

very short clock cycle and the prediction cannot be delivered in a single

clock cycle or maximum two cycles which is the prediction latency in the

actual commercial processors (see Alpha 21264 branch predictor) [27]. Also

a very wide superscalar processor can suffer from performance point of

view in the misprediction case when the CPU context must be recovered

and the correct paths have to be (re)issued. As an example, the performance

of the Pentium 4 equivalent processor degrades by 0.45% per additional

misprediction cycle, and therefore the overall performance is very sensitive

to branch prediction. Taking into account that the average number of

instructions executed per cycle (IPC) grows non-linearly with the prediction

accuracy [64], it is very important to further increase the accuracy achieved

by present-day branch predictors.

 The quality of a prediction model is highly dependent on the quality

of the available data. Especially the choice of the features to base the

prediction on is important. The vast majority of branch prediction

approaches rely on usage of a greater number of input features (such as

branch address, global or local branch history, etc.) without taking into

account the real cause (unbiased branches) that produce a lower accuracy

and implicit lower performance.

In this work we prove that a branch in a certain dynamic context is

difficult predictable if it is unbiased and the outcomes are shuffled. In other

words, a dynamic branch instruction is unpredictable with a given prediction

information if it is unbiased in the considered dynamic context and the

8 A Systematic Approach to Predict Unbiased Branches

behavior in that certain context cannot be modeled through Markov

stochastic processes of any order. Based on laborious simulations we show

that the percentages of difficult branches are quite significant (at average

between 6% and 24%, depending on the different used prediction contexts

and their lengths), giving a new research challenge and a useful niche for

further research. Present-day branch predictors are using limited prediction

information (local and global correlation and path information). We’ll show

that for some branches this information is not always sufficiently relevant

and, therefore, these branches cannot be accurately predicted using present-

day predictors. Consequently, we think it is important to find other relevant

information that is determining branches’ behavior in order to use it for

designing better predictors. In our opinion such relevant prediction

information could consist in branch’s condition sign (positive, negative or

zero). More precisely, a certain branch associated with its condition’s sign

value (+, -, 0) will be perfectly biased. If its condition sign will be

predictable, the branch’s behavior will be predictable too because the

branch’s output is deterministically correlated with the condition’s sign.

Thus, it appears rationale trying to predict current branch’s condition sign

based on the local/global condition histories. We can also use the last branch

condition as new prediction information in some state-of-the-art branch

predictors in order to increase prediction accuracy.

This booklet is organized as follows. Chapter 2 gives a brief

overview of related work. Chapter 3 describes our methodology of finding

difficult predictable branches. Chapter 4 describes the present-day branch

predictors used in this work and continues with some proposed condition-

history-based branch prediction methods. Chapter 5 presents some modified

present-day branch predictors that use the last known branch condition as

prediction information. Chapter 6 presents an advanced simulator for

unbiased branches’ prediction. Finally, Chapter 7 concludes the booklet and

suggests directions for further work.

2. Related Work

Representative hardware and compiler-based branch prediction

methods have been developed in recent years in order to increase

instruction-level parallelism. Branch prediction is an important component

of modern microarchitectures, despite of their deeper pipelines that

increased misprediction latency. Therefore, improvements in terms of

branch prediction accuracy are essential in order to avoid the penalties of

mispredictions. In this section we presented only the works that are most

closely related to the proposed approach.

Chang et al., introduced in [7] a mechanism called branch

classification in order to enhance branch prediction accuracy by classifying

branches into groups of highly biased (mostly-one-direction branches)

respectively unbiased branches, and used this information to reduce the

conflict between branches with different classifications. In other words, they

proposed a method that classifies branches according to their dynamic taken

rate and assigns branches from each class to different predictors. The class

of branches is determined by their overall dynamic taken rate collected

during program profiling. With their branch classification model they

showed that using a short history for the biased branches and a long history

for the unbiased branches improves the performance of the global history

Two-Level Adaptive Branch predictors. In contrast to our work, the authors

are classifying branches irrespective of their attached context (local and

global histories, etc.) involving thus an inefficient approach. Due to this

rough classification the corresponding predictors are not optimally chosen,

simply because it is impossible to find an optimal predictor for some

classes.

Mahlke et al., proposed in [33] a compiler technique that uses

predicated execution support to eliminate branches from an instruction

stream. Predicated execution refers to the conditional execution of an

instruction based on the value of a boolean source operand – the predicate of

the instruction. This architectural support allows the compiler to convert

conditional branches into predicate defining instructions, and instructions

along alternative paths of each branch into predicated instructions.

Predicated instructions are fetched regardless of their predicate value. Thus,

instructions whose predicate value is true are executed normally, while

instructions whose predicate is false are nullified. Predicated execution

10 A Systematic Approach to Predict Unbiased Branches

offers the opportunity to improve branch handling in superscalar processors.

Eliminating frequently mispredicted branches may lead to a substantial

reduction in branch prediction misses, and as a result, the performance

penalties associated with the eliminated branches are removed. The authors

use compiler support for predicated execution based on a structure called

hyperblock. The goal of hyperblock formation is to group basic blocks

eliminating unbiased branches and leaving highly biased branches. They

selected the unbiased branches based on taken frequency distributions. Their

experimental results show that leaving only highly biased branches with

predicated execution support, the prediction accuracy is higher.

Nair has first introduced dynamic branch prediction based on path

correlation [36]. The basic observation behind both pattern-based and path-

based correlation is that some branches can be more accurately predicted if

the path leading to these branches is known. Path-based correlation attempts

to overcome the performance limitations of pattern-based correlation arising

from pattern aliasing situations, where knowledge of the path leading to a

branch results in higher predictability than knowledge of the pattern of

branch outcomes along the path. Nair proposed a hardware scheme which

records the path leading to a conditional branch in order to predict the

outcome of the branch instruction more accurately. He adapted a pattern-

based correlation scheme, replacing the pattern history register with a g-bit

path history register which encodes the target addresses of the immediately

preceding p conditional branches. Ideally, all bits of the target address

should be used to ensure that each sequence of p addresses has a unique

representation in the register. Since such schemes are too expansive to be

implemented in hardware, Nair used a simplified scheme which uses a

subset of q bits from each of the target addresses. Limiting the number of

bits from the branch address could result path aliasing – the inability of the

predictor to distinguish two distinct paths leading to a branch.

Unfortunately, this path correlation scheme does not show any significant

improvement over pattern-based correlation [36]. Nair’s explanation for this

is that for a fixed amount of hardware in the prediction tables, path-based

correlation uses a smaller history than pattern-based correlation because the

same number of bits represents fewer basic blocks in the path history

register than branch outcomes in the pattern history register. Despite this,

path based correlation is better than pattern-based correlation on some

benchmarks – especially when history information is periodically destroyed

due to context switches –, indicating that with a better hashing scheme the

pattern correlation schemes could be outperformed.

A quite similar approach is proposed by Vintan and Egan in [58] –

their paper represents the genesis of this work. The authors illustrated, based

Related Work 11

on examples, how a longer history could influence the behavior of a branch

(changing it from unbiased to biased). They also showed that path

information could also reduce the branch’s entropy. The main contribution

of this paper is related to the prediction accuracy gain obtained by extending

the correlation information available in the instruction fetch stage. Based on

trace-driven simulation the authors proved for relatively short global branch

history patterns, that a path-based predictor overcomes a pattern-based

predictor at the same hardware budget. The main difference, comparing with

Nair’s approach, is that here the authors are using both the path and

respectively the history information in order to do better predictions. They

show that a scheme based on this principle performs better than a classical

GAp scheme, at the same level of complexity. Particularly useful

information has been gleaned regarding the interaction between path length

and the number of replacements required in the PHT.

Dynamic branch prediction with neural methods, was first

introduced by Vintan [57, 15], and further developed by Jiménez [26].

Despite the neural branch predictor’s ability to achieve very high prediction

rates and to exploit deep correlations at linear costs, the associated

complexity due to latency, large quantity of adder circuits, area and power

are still obstacles to the industrial adoption of this technique. Anyway, the

neural methods seem to be successfully for future microprocessors taking

into account that they are already implemented in Intel’s IA-64 simulators.

The path-based neural predictors [28] improve the instructions-per-cycle

(IPC) rate of an aggressively clocked microarchitecture by 16% over the

original perceptron predictor [26]. A branch may be linearly inseparable as a

whole, but it may be piecewise linearly separable with respect to the distinct

associated program paths. More precisely, the path-based neural predictor

combines path history with pattern history, resulting superior learning skills

to those of a neural predictor that relies only on pattern history. The

prediction latency of path-based neural predictors is lower, because the

computation of the output can begin in advance of the prediction, each step

being processed as soon as a new element of the path is executed. Thus, the

vector of weights used to generate prediction, is selected according to the

path leading up to a branch – based on all branch addresses from that path –

rather than according to the current branch address alone as the original

perceptron does. This selection mechanism improves significantly the

prediction accuracy, because, due to the path information used in the

prediction process, the predictor is able to exploit the correlation between

the output of the branch being predicted and the path leading up to that

branch. To generate a prediction, the correlations of each component of the

path are aggregated. This aggregation is a linear function of the correlations

12 A Systematic Approach to Predict Unbiased Branches

for that path. Since many paths are leading to a branch, there are many

different linear functions for that branch, and they form a piecewise-linear

surface separating paths that lead to predicted taken branches from paths

that lead to predicted not taken branches. The piecewise linear branch

prediction [29], is a generalization of neural branch prediction [26], which

uses a single linear function for a given branch, and respectively path-based

neural branch prediction [28], which uses a single global piecewise-linear

function to predict all branches. The piecewise linear branch predictors use a

piecewise-linear function for a given branch, exploiting in this way different

paths that lead to the same branch in order to predict otherwise linearly

inseparable branches. The piecewise linear branch predictors exploit better

the correlation between branch outcomes and paths, yielding an IPC

improvement of 4% over the path-based neural predictor [29].

A conventional path-based neural predictor achieves high prediction

accuracy, but its very deeply pipelined implementation makes it both a

complex and power-intensive component, since for a history length of p it

uses – to store the weights – p separately indexed SRAM arrays organized

in a p-stage predictor pipeline. Each pipeline stage requires a separate row-

decoder for the corresponding SRAM array, inter-stage latches, control

logic and checkpointing support, all of this adding power and complexity to

the predictor. Loh and Jiménez proposed in [32] two techniques to address

this problem. The first decouples the branch outcome history length from

the path history length using shorter path history and a traditional long

branch outcome history. In the original path-based neural predictor, the path

history was always equal to the branch history length. The shorter path

history allows the reduction of the pipeline length, resulting in decreased

power consumption and implementation complexity. The second technique

uses the bias-weights to filter out highly-biased branches (mostly always

taken or mostly always not taken branches), and avoids consuming update

power for these easy-to-predict branches. For these branches the prediction

is determined only by the bias weight, and if it turns out to be correct, the

predictor skips the update phase which saves the associated power. The

proposed techniques improve the prediction accuracy with 1%, and more

important, reduce power and complexity by decreasing the number of

SRAM arrays, and reducing predictor update activity by 4-5%. Decreasing

the pipeline depth to only 4-6 stages it is reduced the implementation

complexity of the path-based neural predictor.

Tarjan and Skadron introduced in [54] the hashed perceptron

predictor, which merges the concepts behind the gshare [34] and path-based

perceptron predictors [28]. The previous perceptron predictors assign one

weight per local, global or path branch history bit. This means that the

Related Work 13

amount of storage and the number of adders increases linearly with the

number of history bits used to make a prediction. One of the key insights of

Tarjan’s work is that one-to-one ratio between weights and number of

history bits is not necessary. By assigning a weight not to a single branch

but a sequence of branches (hashed indexing), a perceptron can work on

multiple partial patterns making up the overall history. The hashed indexing

consists in XORing a segment of the global branch history with a branch

address from the path history. Decoupling the number of weights from the

number of history bits used to generate a prediction allows the reduction of

adders and tables almost arbitrarily. Using hashed indexing, linearly

inseparable branches which are mapped to the same weight can be

accurately predicted, because each table acts like a small gshare predictor

[34]. The hashed perceptron predictor improves accuracy by up to 27.2%

over a path-based neural predictor.

Loh and Jiménez introduced in [31] a new branch predictor that

takes the advantage of deep-history branch correlations. To maintain

simplicity, they limited the predictor to use conventional tables of saturating

counters. Thus, the proposed predictor achieves neural-class prediction rates

and IPC performance using only simple PHT (pattern history table)

structures. The disadvantage of PHTs is that their resource requirements

increase exponentially with branch history length (a history length of p

requires 2p entries in a conventional PHT), in contrast to neural predictors,

whose size requirements increase only linearly with the history length. To

deal with very long history lengths, they proposed a Divide-and-Conquer

approach where the long global branch history register is partitioned into

smaller segments, each of them providing a short branch history input to a

small PHT. A final table-based predictor combines all of these per-segment

predictions to generate the overall decision. Their predictor achieves higher

performance (IPC) than the original global history perceptron predictor,

outperforms the path-based neural predictors, and even achieves an IPC rate

equal to the piecewise-linear neural branch predictor. Using only simple

tables of saturating counters, it is avoided the need for large number of

adders, and in this way, the predictor is feasible to be implemented in

hardware.

Desmet et al. [13] proposed a different approach for branch

classification. They evaluated the predictive power of different branch

prediction features using Gini-index metric, which is used as selection

measure in the construction of decision trees. Actually, Gini-index is a

metric of informational energy and in this case is used to identify the

branches with high entropy. In contrast to our work Desmet used as input

features both dynamic information (global and local branch history) and

14 A Systematic Approach to Predict Unbiased Branches

static information (branch type, target direction, ending type of taken-

successor-basic-block).

In [24] the authors identified some program constructs and data

structures that create “hard to predict” branches. In order to accurately

predict difficult branches the authors find additional correlation information

beyond local and global branch history. In their approach the prediction

table is addressed by a combination between structural information, value

information and history of values that are tested in the condition of

respective branch. Unlike our work, Heil et al. didn’t use the path history

information in order to do better predictions. Using the proposed prediction

method based on data values significantly improves prediction accuracy for

some certain difficult branches but the overall improvements are quite

modest. However there are some unsolved problems: they tested only

particular cases of difficult branches, and also, they didn’t approach branch

conditions with two input values. Their final conclusion suggests that

researchers must focus on the strong correlation between instructions

producing a value and, respectively, the branch condition that would be

triggered by that certain value.

In [8] the authors are focusing on some difficult predictable branches

in a Simultaneous Subordinate Micro-Threading (SSMT) architecture. They

defined a difficult path being a path that has a terminating branch which is

poorly predicted when it executes from that path. A path represents a

particular sequence of control-flow changes. It is shown that between 70%

and 93.5% of branch mispredictions are covered by these difficult paths,

involving thus a significant challenge in branch prediction paradigm. The

proposed solution in dealing with these difficult predictable branches

consists in dynamically construct micro-threads that can speculatively and

accurately pre-compute branch outcomes, only along frequently

mispredicted paths. Obviously, micro-thread predictions must arrive in time

to be useful. Ideally, every micro-thread would complete before the fetch of

the corresponding difficult branch. By observing the data-flow within the set

of instructions guaranteed to execute each time the path is encountered, it

can be extracted a subset of instructions that will pre-compute the branch.

The proposed micro-architecture contains structures to dynamically identify

difficult paths (Path Cache), construct micro-threads (Micro-Thread

Builder) and communicate predictions to the main thread. The proposed

technique involves realistic average speed-ups of up to 10% but the average

potential speed-up through perfect prediction of these difficult branches is

about 100%, suggesting the idea’s fertility. Unfortunately the authors didn’t

investigate why these paths, respectively their associated final branches, are

difficult predictable. In other words, a very important question is: why these

Related Work 15

“difficult paths” frequently lead to miss-predictions? We could suspect that

we already gave the answer in our paper because these “difficult branches”

might be, at least partially, exactly the unbiased branches in the sense

defined by us, and, therefore, difficult predictable. They could be more

predictable even in a single threaded environment, by sufficiently growing

history pattern length or extending prediction information, as we’ll show

further in this work. Thus, our hypothesis is that SSMT environment

represents a sufficient solution in order to solve these difficult branches, as

the authors shown, but not a necessary one.

In [10] the authors proposed a new approach, called ARVI

(Available Register Value Information), in order to predict branches based

on partial register values along the data dependence chain leading up to the

branch. The authors show that for some branches the correlation between

such register value information and the branch’s outcome can be stronger

than either history or path information. Thus, the main idea behind the

ARVI predictor is the following: if the essential values in the data

dependence chain, that determine the branch’s condition, should be

identified, and those values have occurred in the past, then the branch’s

outcome should be known. If the values involved in the branch condition are

the same as in a prior occurrence then the outcome of the branch will be the

same, too. Thus, if the branch’s register values are available then a look up

table can provide the last branch’s outcome occurred with the same values.

Unfortunately, the branch’s register values are rarely available at the time of

prediction. However, if values are available for registers along the

dependence chain that leads up to the branch, then the predictor can use

these values to index into a table and reuse the last behavior of the branch

occurred in the same context. Therefore, instead of relying only on branch

history or path, the ARVI predictor includes the data dependent registers as

part of the prediction information. The ARVI predictor uses a Data

Dependence Table (DDT) to extract the registers corresponding to

instructions along the data dependence chain leading up to the branch. The

branch’s PC and the identifiers of the data dependent registers are hashed

together and used to index the prediction table. The values of the data

dependent registers are hashed together and used as a tag to distinguish the

occurrences of the same path having different values in the registers. Thus,

the ARVI predictor uses both path and value-based information to classify

branch instances. A two-level predictor using ARVI at the second level

achieves a 12.6% overall IPC improvement over the state-of-the-art two

level predictors, for the SPEC’95 integer benchmarks. The authors selected

SPEC’95 integer benchmarks because their branch behavior was extensively

studied permitting comparisons between different works. In our opinion, if

16 A Systematic Approach to Predict Unbiased Branches

dynamic branches that are unbiased in their branch history or path contexts

[61] are biased in their value history context, the benefit could be

remarkable. An analysis in this sense should be effectuated.

Z. Smith in his work [48] determined through simulation on the

SPEC’95 benchmarks that the majority of branch mispredictions come from

a relatively small number of static branches. Therefore, he identified “bad”

branches based on the distribution of mispredictions – a function of the

number of mispredictions per branch using the gshare predictor with 12

history bits. An analysis of branches having a relatively high number of

mispredictions shows that they could be really less predictable but without

importance due to their relatively low number of dynamic instances, and, on

the other hand, some of them could be predictable because the number of

mispredictions is, however, far less then the number of branch’s dynamic

instances. Consequently, there is no strong correlation between branch’s

predictability or global prediction accuracy and the distribution of

mispredictions. In order to increase the predictability of mostly mispredicted

branches, Smith evaluated the possibility to predict branch outcomes based

on a value history. The idea is to use a context-based predictor whose

prediction table is indexed by a register value instead of the XOR between

the PC and global history as in gshare. In their implementation, only the

first (non-immediate) branch operand is used as prediction context, because,

as he shows, the majority of branches have the second operand equal with

zero. However, using both branch operands as prediction information could

be better. Using a history of only 2 values together with the value of the

outer loop counter (an iteration counter associated to the enclosing loop’s

branch), Smith obtained a branch prediction accuracy of 93.4%.

In [25] the authors observed that many important branches that are

hard to predict based on branch history and path become easily predictable

if data-value information is used. First, they analyzed a technique called

speculative branch execution that uses a conventional data-value predictor

to predict the input values of the branch instruction and, after that, executes

the branch instruction using the predicted values. The main disadvantage of

this method consists in the relatively high prediction latency, because the

operand-value prediction is followed by the pre-calculation of the branch’s

condition. Therefore, they proposed a Branch Difference Predictor (BDP)

that maintains a history of differences between branch source register

operands and uses it in the prediction process. Consequently, the value

history information is used directly for branch prediction, reducing thus the

latency. Since branch outcomes are determined by subtracting the two

inputs, the branch source differences correlate very well with the branch

outcomes. The branch difference history is maintained per static branch in a

Related Work 17

Value History Table (VHT) and it is retrieved using the branch’s PC. By

using branch differences, the number of patterns is very high, since a certain

static branch instruction may produce many values. Thus, predicting all

branches through this method leads either to excessive storage space

requirements or to significant table interference. Therefore, in their

prediction mechanism, only the difficult branches are predicted based on the

branch source differences using the Rare Event Predictor (REP), while most

branches are predicted using a conventional predictor (e.g. gshare). They

considered that a branch is difficult if it is mispredicted by the conventional

predictor. Therefore, REP’s updating introduces only branches mispredicted

by the conventional predictor but correctly predicted by REP. When a

branch instruction occurs, the VHT and the REP are accessed in parallel

with the PC and global branch history. If the value difference history

matches a REP tag, then the REP provides the prediction. If the REP does

not contain that certain pattern, the conventional branch predictor generates

the prediction. Their results show that the majority of prediction accuracy

improvement is gained by using a single branch difference, while adding a

second or third difference results in little additional improvement. The BDP

reduces the misprediction rate by up to 33% compared to gshare and up to

15% compared to Bi-Mode predictors, in the SPEC’95 integer benchmarks.

A first important difference between Heil’s approach and ours is that we are

focalizing on unbiased branches identified in our previous work [61] instead

of Heil’s difficult branches. However, the main difference is that we

correlate branch’s outcome with the sign of the condition’s difference while

Heil et al. correlate it with the value of the condition’s difference. As we’ll

further show, using signs instead values involves better prediction

accuracies and less storage necessities. Furthermore, we use a sign-history

of up to 256 condition differences in contrast to the value-history of up to 3

condition differences exploited in [25]. Another important difference

between the two approaches is the architectural one, since we predict

branches using some state-of-the-art Markov and neural predictors.

Thomas et al. [55] introduced new branch prediction information

that consists in affector branches. They identify for each dynamic branch

from a long global history, a set of branches called affectors, which control

the computation that directly affect the source operands of the current

dynamic branch. Since affectors have a direct effect on the outcome of a

future branch, they have a high correlation with that branch. The affector

information is represented as a bitmap having all bits corresponding to the

affector branches set to 1 and, respectively, those of non-affectors set to 0.

The affector information is maintained based on runtime dataflow

information for each architectural register as entries in an Affector Register

18 A Systematic Approach to Predict Unbiased Branches

File (ARF). When the processor encounters a conditional branch, all entries

in the ARF are shifted left by one bit and the least significant bit is made 0.

When a register-writing instruction occurs, the ARF entries corresponding

to the source registers are ORed together and written into the ARF entry of

the destination register with the least significant bit set to 1. Thus, the

affector information for the destination register is generated as a union of

the affector histories corresponding to the source registers, while the least

significant bit, set to 1, marks the last branch from the global history as an

affector. The affector branch information for a branch instruction is

inherited from the affector information corresponding to its source registers.

Therefore, when a prediction is to be made for a certain branch, the affector

information of its source registers are ORed together in order to determine

its affector branches. The authors also proposed different prediction

schemes that use the affector branch information.

In another work Thomas et al. [56] improved instruction centric

value prediction by using a dynamic dataflow inherited speculative context

(DDISC) for hard-to-predict instructions. The DDISC consists in a

compression of the PCs and the predicted values of the predictable source

producer instructions. The context is determined by assigning a signature to

each node in the dataflow graph. The signature of a predictable instruction is

its value predicted by a conventional predictor. The signature of

unpredictable non-load instructions is inherited from the signatures of its

operand producers. In the case of multiple operands, the signature of

unpredictable non-load instructions is the XOR of the signatures of their

operand producers. The signature of unpredictable load instructions is

inherited from the signature of the preceding store instruction that wrote the

value into the same memory location. The DDISC for a certain instruction is

obtained by rotating its calculated signature by a value determined by the

PC (e.g. the last five bits of the PC). Their simulation results show that

introducing dataflow-based contexts the prediction accuracy improvement

ranges from 35% to 99%.

Constantinides et al. [12] presented a method of detecting

instruction-isomorphism and its application to dynamic branch prediction. A

dynamic instruction is considered isomorphic if its component graph is

identical with the component graph of an earlier executed dynamic

instruction. The component graph of a dynamic instruction can include

information about the instruction, its dynamic data dependence graph and its

input data. Two cases of instruction isomorphism can be distinguished:

isomorphic-equality and pseudo-isomorphism. In the case of isomorphic

equality the instructions are isomorphic and they have the same outputs,

while in the pseudo-isomorphism case, the instructions are isomorphic but

Related Work 19

their outputs are not equal. The isomorphism detection process is preceded

by component-graph transformations that may convert non-isomorphism to

isomorphic-equality by removing information from the component graph

that does not affect the outcome of the instruction. The isomorphism

detection mechanism contains four units: the Register-Signature File (RSF),

the Component Graph Encoding/Transformation mechanism (CGET), the

Memory Signature File (MSF) and the Isomorphism Detection Table (IDT).

The RSF is accessed with the source register names to read the signatures –

encoded component graphs. The CGET takes the instruction’s source

signatures and creates a new signature, which represents the instruction’s

encoded/transformed component-graph. If the instruction writes to a register

the new signature is written into the RSF entry corresponding to the

destination register. To determine if an instruction is isomorphic with a

previously executed instruction, its signature – produced by CGET – is used

to access the IDT. The IDT also returns the branch direction in the case of

branch prediction. Isomorphism detection must wait for decoded instruction

information and, thus, the isomorphic branch predictor has relatively high

latency. Therefore, Constantinides et al. proposed a hybrid branch prediction

mechanism composed by a fast conventional predictor and a slower

isomorphic-based predictor. Consequently, the isomorphic prediction –

available few cycles after the conventional prediction – is used to validate

and possibly override the prediction provided by the fast base predictor.

In [22] and [23] González et al. introduced a branch prediction

through value prediction unit (BPVP) that pre-computes the outcomes of

branches by predicting their input values. Since, the accuracy of value

predictors is lower than that of the conventional branch predictors,

speculative branch pre-computation must be applied selectively. Therefore,

they proposed a hybrid branch prediction mechanism involving a correlating

branch predictor (e.g. gshare) and a BPVP that uses a conventional value

predictor. The value predictor is used together with an Input Information

Table (IIT) and, respectively, an additional logic to detect the instructions

that generate the branch’s inputs. Each architectural register has an entry in

the IIT that stores the PC of the latest instruction having the corresponding

register as destination and, respectively, the value computed speculatively

by the latest compare instruction having the corresponding register as

destination. The compare instructions are speculatively pre-executed

according to their predicted inputs and the speculative results are stored in

the IIT. The mechanism has different behaviors depending on the branch

that is predicted. In the case of branches with inputs produced by arithmetic

or load instructions, the IIT is accessed with the source register names to

read the PCs of the latest instructions that had as destination the branch’s

20 A Systematic Approach to Predict Unbiased Branches

source registers (detection of the instructions that produces the branch

inputs). The PCs are used to access the value predictor that predicts the

inputs of the branch. The branch’s outcome is speculatively pre-computed

based on the predicted inputs. In the case of branches with inputs produced

by compare instructions, the IIT is accessed with the source register names

to read the comparison’s speculative result. The outcome of the branch is

speculatively pre-computed based on this speculative comparison result.

The BPVP-gshare predictor achieves a speedup of 8% over the 2bit-gshare

predictor. The instruction centric value prediction within the BPVP should

be replaced with register centric value prediction [60], reducing the

complexity, hardware costs and power consumption. Thus, branches should

be pre-computed speculatively based on their input values predicted with an

optimized register centric value predictor (2-level adaptive value predictor

instead of PPM).

In [41] call targets are correlated with the instructions that produce

them rather than with the call’s global history or the previous branches’

targets. The proposed approach pre-computes virtual function call’s (v-call)

targets. V-calls’ targets are hard predictable even through path-history based

schemes that exploit the correlation between multiple v-calls to the same

object reference. Object oriented programming increases the importance of

v-calls. The proposed technique dynamically identifies the sequence of

instructions that computes a v-call target. Based on this instruction sequence

it is possible to pre-calculate the target before the actual v-call is

encountered. This pre-calculation can be used to supply a prediction. The

approach reduces v-call target miss-predictions with 24% over a path-based

two level predictor.

In [59] the authors proposed to pre-compute branches instead of

predicting them. Pre-computing branches means to determine the outcome

of a branch as soon as all branch operands are known. The instruction that

produced the last operand also triggers the branch condition estimation and,

after this operation, it correspondingly computes the branch outcome.

Similarly to branch history prediction, branch information is cached into a

“prediction table” (PT). Each PT entry has the following fields: TAG (the

lower part of the PC), PC1 and PC2 (the PCs of the instructions that

produced the branch operand values), OPC (the opcode of the branch),

nOP1 and nOP2 (the register names of the branch operands), PRED (for the

branch outcome) and a LRU field (Least Recently Used). The register file

has two additional fields for each register: LP (the PC of the last producer)

and RC (a reference counter which is incremented by each instruction that

modifies a register linked by a branch instruction stored in the PT and,

respectively, decremented when the corresponding branch instruction is

Related Work 21

evicted from the PT). The PC of any non-branch instruction that modifies at

least one register is recorded into the supplementary LP (Last Producer)

field of its destination register. The first issue of a particular branch in the

program is predicted with a default value (not taken). After the branch’s

execution, a PT entry is allocated and updated. Every time after a non-

branch instruction – having the corresponding RC field greater than 0 – is

executed, the PC1 and PC2 fields from the PT are searched upon its PC.

When a hit occurs, the branch stored in that PT entry is executed and the

outcome is stored into the PRED bit. When the branch is issued, its outcome

is found in the PT, as it was previously computed, and thus its behavior is

perfectly known before execution. From the pure prediction accuracy point

of view this method seems to be almost perfect. Unfortunately, the

improvement in prediction accuracy brought by this scheme must be paid in

terms of timing – because branches frequently follow too closely after the

source producer instructions – and hardware costs. Based on the pre-

computing branch concept [59] Aamer et al. presented in [1] a study

regarding the number of instructions occurred between the execution of the

instruction that produced the last operand of a branch and the execution of

that branch. Their simulations show that the average distance between the

last source producer and branch is less than the ideal theoretical distance. If

the operand producer instruction is too close to the corresponding branch

then the branch would have to postpone processing for a few cycles, until

the operand producer instruction is finished. For these branches a BTB can

be used, improving thus the performance. Thus, the branch outcomes can be

obtained far enough in advance so that some performance improvement can

be still achieved.

Aragón et al. presented in [3] a new approach to improve branch

predictors: selective branch prediction reversal. The main idea is that many

branch mispredictions can be avoided if they are selectively reversed.

Therefore, they proposed a Branch Prediction Reversal Unit (BPRU) that

reverses predictions of branches likely to be mispredicted, based on the path

leading to the branch (including the PC of the input producers) and,

respectively, the predicted values of the branch inputs. The BPRU uses the

previously presented BPVP-gshare hybrid branch predictor [22] and a

Reversal Table (RT). Each entry of the RT stores a reversal counter

implemented as an up/down saturating counter, and a tag. When a branch is

predicted, the RT is accessed by hashing together the PCs of its input

producers, the predicted input values and the path leading to the branch. The

most significant bit of the counter indicates if the predicted branch outcome

must be reversed. When the correct branch outcome is available, the

corresponding RT entry is updated by incrementing the reversal counter if

22 A Systematic Approach to Predict Unbiased Branches

the preliminary branch outcome was correct and, respectively, decrementing

the counter otherwise. The experimental results show average speedups of

6% over the original BPVP-gshare and, respectively, of 14% over the 2bit-

gshare predictor.

 In [18] the authors initially implemented a PPM-based branch

predictor using as context the global branch history. They associated a

signed saturating prediction counter ranging between [-4, 4] to each PC-

history pair. The counter was incremented if the branch outcome was taken

and decremented otherwise. When both the branch address and history

pattern were matched, the corresponding counter provided the prediction. In

the case of multiple matches for a branch with different history lengths, the

prediction counter afferent to the longest history was used. However, as they

show, the longest history match may not be the best choice, and, therefore,

they proposed another scheme called PPM with the confident longest match

that uses the prediction counter as a confidence measure. This scheme

generates a prediction only when the counter is a non-zero value. The

authors observed that in the case of multiple matches with different history

lengths, the counters may not agree with each other and different branches

may favor different history lengths. Thus, the most important scheme

introduced by Gao and Zhou in this paper, predicts branch outcomes by

combining multiple partial matches through an adder tree. The Prediction by

combining Multiple Partial Matches (PMPM) algorithm selects up to L

confident longest matches and sums the corresponding counters to make a

prediction. For the fully biased (always taken or always not taken) branches

they use a bimodal predictor, the PMPM predictor being accessed only for

not fully biased branches. The realistic PMPM predictor has seven global

prediction tables indexed by the branch address, global history and path,

and, respectively, a local prediction table indexed by the branch address and

local history. When the PMPM is accessed for prediction, up to 4 counters

from the global history tables are summed with the counter from the local

prediction table, if there is a hit. If the sum is zero, the bimodal predictor is

used. Otherwise the sign of the sum provides the prediction. The prediction

counter from the bimodal prediction table is always updated. The prediction

counter from the local prediction table is always updated in the case of hit,

while the counters of the global prediction tables that have been included in

the summation are updated only when the overall prediction is wrong or the

absolute value of the sum is less than a certain threshold. Their results show

that combining multiple partial matches provides higher prediction accuracy

than a single partial match, decreasing the average misprediction rate to

3.41%. A first important difference between the approach presented in [18]

and our branch difference prediction by combining multiple partial matches

Related Work 23

developed in paragraph 4.5.3 is that we are focalizing on the unbiased

branches identified in our previous work [19, 61] instead of “not fully

biased” branches. The authors defined a “fully biased” branch being a

branch in a certain dynamic context having set its attached bias counter to a

maximum value (the counter is incremented each time that branch has a

biased behavior and decremented otherwise). Probably it would be better to

say “highly biased” branch instead of “fully biased”, meaning that it was

highly biased (maximum counter) during the “last” processing period

(maximum counter at the current prediction moment). However, the main

difference is that they used global branch history, while we used local

branch difference history. Another important difference consists in how the

multiple Markov predictions are combined: we used majority vote (more

efficient for our approach) instead of the adder tree used by Gao and Zhou.

 In [52] the authors proposed a hybrid branch prediction scheme that

employs two PPM predictors, one predicts based on local branch history and

the other predicts based on global branch history. For both the local and

global PPM predictors, if the local and, respectively, global history were not

matched, then shorter patterns are searched, and so on, until a match is

found. When a pattern match occurs, the outcome of the branch that

succeeded the pattern during its last occurrence is returned as prediction.

The two independent predictions are combined through a perceptron. The

output of the perceptron is computed as Y=W0 + W1PL + W2PG, where the

inputs PL and PG corresponds to the predictions generated by the local and,

respectively, global PPM predictor (-1 if not taken and +1 if taken). The

final prediction is taken if the output Y is positive and not taken if Y is

negative. The table of weights is indexed by the lower 20 bits of the

branch’s PC. The perceptron is updated by incrementing the weights whose

inputs match the branch outcome and decrementing those with mismatch.

The Neuro-PPM branch predictor achieves an average misprediction rate of

3%.

3. Finding Difficult-to-Predict Branches

Our first goal is to find the difficult predictable branches in the

SPEC2000 benchmarks [50]. As we already pointed out, we consider that a

branch in a certain context is difficult predictable if it is unbiased – meaning

that the branch behavior (Taken/Not Taken) is not sufficiently polarized for

that certain context (local branch history, global history, etc.) – and the

taken and not taken outcomes are shuffled. The second goal is to improve

prediction accuracy for branches with low polarization rate, introducing new

feature sets that will increase their polarization rate and, therefore, their

predictability.

3.1. Methodology of Identifying Unbiased Branches

A feature is the binary context on p bits of prediction information

such as local history, global history or path. Each static branch finally has

associated k dynamic contexts in which it can appear (pk 2). A context

instance is a dynamic branch executed in the respective context. We

introduce the polarization index (P) of a certain branch context as follows:










5.0,

5.0,
),max()(

01

00

10
ff

ff
ffSP i

 (3.1)

where:

  kSSSS ...,,, 21 = set of distinct contexts that appear during all

branch instances;

 k = number of distinct contexts,
pk 2 , where p is the length of the

binary context;


NTT

NT
f

NTT

T
f





 10 , , NT = number of “not taken” branch

instances corresponding to context Si, T = number of “taken” branch

Finding Difficult-to-Predict Branches 25

instances corresponding to context Si, ki ...,,2,1)( , and

obviously 110  ff ;

 if kiSP i ...,,2,1)(,1)( , then the context iS is completely

biased (100%), and thus, the afferent branch is highly predictable;

 if kiSP i ...,,2,1)(,5.0)( , then the context iS is totally

unbiased, and thus, the afferent branch is not predictable if the taken

and not taken outcomes are shuffled.

If the taken and respectively not taken outcomes are grouped

separately, even in the case of a low polarization index, the branch is

predictable. The unbiased branches are not predictable only if the taken and

not taken outcomes are shuffled, because in this case, the predictors cannot

learn their behavior. For this study we introduce the distribution index for a

certain branch context, defined as follows:















0,

),min(2

0,0

)(
t

t

t

i
n

TNT

n

n

SD (3.2)

where:

 nt = the number of branch outcome transitions, from taken to not

taken and vice-versa, in context Si;

),min(2 TNT = maximum number of possible transitions;

 k = number of distinct contexts, pk 2 , where p is the length of the

binary context;

 if kiSD i ...,,2,1)(,1)( , then the behavior of the branch in

context Si is “contradictory” (the most unfavorable case), and thus its

learning is impossible;

 if kiSD i ...,,2,1)(,0)( , then the behavior of the branch in

context Si is constant (the most favorable case), and it can be

learned.

As it can be observed in Figure 3.1, we want to systematically

analyze different feature sets used by different present-day branch predictors

26 A Systematic Approach to Predict Unbiased Branches

in order to find and, hopefully, to reduce the list of unbiased branch contexts

(contexts with low polarization P).

GH XOR PC
16 bits

GH
16 bits

LH
16 bits

GH XOR PC
20 bits

GH
20 bits

LH
20 bits

GH XOR PC
p bits

GH
p bits

LH
p bits

U

U

U

U

U

U

U

U Unbiased

branches

GH XOR PC
16 bits

GH
16 bits

LH
16 bits

GH XOR PC
16 bits

GH XOR PC
16 bits

GH
16 bits

GH
16 bits

LH
16 bits

LH
16 bits

GH XOR PC
20 bits

GH
20 bits

LH
20 bits

GH XOR PC
20 bits

GH XOR PC
20 bits

GH
20 bits

GH
20 bits

LH
20 bits

LH
20 bits

GH XOR PC
p bits

GH
p bits

LH
p bits

GH XOR PC
p bits

GH XOR PC
p bits

GH
p bits

GH
p bits

LH
p bits

LH
p bits

U

U

U

U

U

U

U

U Unbiased

branches

Figure 3.1. Reducing the number of unbiased branches through feature set

extension.

We approached an iterative methodology: a certain Feature Set is

evaluated only on the unbiased branches determined with the previous

Feature Sets, because the rest were solved with the previously considered

Feature Sets. Gradually this list is shortened by increasing the lengths of

Feature Sets and reapplying the algorithm. Thus, the final list of unbiased

branches contains only the branches that were unbiased for all their

contexts. The contexts’ lengths were varied from 16 bits to 28 bits. For the

final list of unbiased branches we will try to find new relevant feature sets in

order to further improve their polarization index and, therefore, the

prediction accuracy.

This approach is more efficient than one which repeats each time the

algorithm on all branches. Beside producing some unpleasant aspects

related to simulation time (days / benchmark) and memory (gigabytes of

memory needed), the second method would prove even not very accurate.

This is because some of the branches that are not solved by a long context

can be solved by a shorter one. Through our iterative approach we avoided

the occurrence of false problems extending the context.

Finding Difficult-to-Predict Branches 27

0 1 1 0 1 0 1 0

Context (8 bits)

– 750 T and 250 NT  P=0.75

0 0 1 1 0 1 0 1 0

1 0 1 1 0 1 0 1 0

– 500 T, 0 NT  P=1.0

– 250 T, 250 NT  P=0.5

Context (9 bits)

Context (9 bits)
Context extension

Context extension

0 1 1 0 1 0 1 0

Context (8 bits)

– 750 T and 250 NT  P=0.75

0 0 1 1 0 1 0 1 0

1 0 1 1 0 1 0 1 0

– 500 T, 0 NT  P=1.0

– 250 T, 250 NT  P=0.5

Context (9 bits)

Context (9 bits)
Context extension

Context extension

Figure 3.2. The goal of context extension.

Figure 3.2 presents a suggestive example on how unbiased branch

contexts can be solved through their extension. We considered that a branch

context is unbiased if its polarization index (see relation (3.1)) is less than

0.95. The branch contexts with polarization greater than 0.95 are predictable

and will obtain relatively high prediction accuracies (around 95%). More

details are presented in paragraph 3.2.4 on a real example from the Stanford

Perm benchmark [17].

In our experiments we concentrated only on benchmarks with a

percentage of unbiased branch context instances (obtained with relation

(3.3)), greater than a certain threshold (T=1%) considering that the potential

prediction accuracy improvement is not significant in the case of

benchmarks with percentage of unbiased context instances less than 1%. If

the percentage of unbiased branch contexts is 1%, if they would be solved,

the prediction accuracy would increase with maximum 1%. This maximum

can be reached when all discovered difficult predictable branches in this

stage are solved by the predictor.

01.0
i

i

NB

NUB
T (3.3)

where NUBi is the total number of unbiased branch context instances on

benchmark i, and NBi is the number of dynamic branches on benchmark i

(therefore, the total number of branch context instances).

3.2. Experimental Results

All simulation results are reported on 1 billion dynamic instructions,

skipping the first 300 million instructions. We note with LH(p)-GH(q)-

28 A Systematic Approach to Predict Unbiased Branches

GHPC(r) branches unbiased on local history (LH) of p bits, global history

(GH) of q bits, and global history XOR-ed by branch address (GHPC) on r

bits. In the same manner, for all feature set extensions simulated in this

work, LH(p)-GH(q)-GHPC(r)→F(s) denotes that we measure the

polarization rate using feature F on s bits (if the feature is the local history,

global history or global history XOR-ed by branch address) and/or on s PCs

(in the case of path), evaluating only the branches unbiased for local history

of p bits, global history of q bits, and global history XOR-ed by branch

address on r bits.

3.2.1. Pattern-based Correlation

We started our study evaluating the branch contexts from SPEC2000

benchmarks [50] on local branch history of 16 bits: LH(0)-GH(0)-

GHPC(0)→LH(16). In Table 3.1, for each benchmark we presented the

percentages of branch contexts with polarization indexes belonging to five

different intervals. The column Dynamic Branches contains the number of

all dynamic conditional branches for each benchmark. The column Static

Br. contains the number of static branches for each benchmark. For each

benchmark we generated using relation (3.1) a list of unbiased branch

contexts, having polarization less than 0.95. We considered that the branch

contexts with polarization greater than 0.95 are predictable and will obtain

relatively high prediction accuracies (around 0.95), therefore, in these cases

we considered that the potential improvement of the prediction accuracy is

quite low.

SPEC

2000

Dynamic

Branches

Static

Br.
Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0]

mcf 118321124 370 10.06 10.50 8.17 8.52 62.74 6812313 5.76%

parser 85382841 1777 6.67 5.90 3.68 4.56 79.19 17589658 20.60%

bzip 42591123 211 15.86 16.50 8.58 6.94 52.12 11252986 26.42%

gzip 71504537 136 15.08 15.63 11.03 9.50 48.76 27692102 38.73%

twolf 70616018 239 14.49 12.72 6.92 5.34 60.54 31763071 44.98%

gcc 90868660 17248 3.06 2.68 1.72 2.30 90.24 9809360 10.80%

Mean 79880717 3330 10.87 10.65 6.68 6.19 65.59 17486582 24.55%

Table 3.1. Polarization rates of branch contexts on local history of 16 bits.

The column Unbiased Context Instances contains – for each benchmark –

the number of unbiased context instances and respectively the percentage of

unbiased context instances reported to all context instances (dynamic

Finding Difficult-to-Predict Branches 29

branches). As it can be observed in Table 3.1, the relatively high

percentages of unbiased branches (at average 24.55%) show high

improvement potential from the predictability point of view.

We continue our work analyzing a global branch history of 16 bits

only on the local branch contexts that we already found unbiased for local

branch history (see Table 3.1 – last column). In other words, we used a

dynamic branch in our evaluations only if its 16 bit local context is one of

the unbiased local contexts: LH(16)-GH(0)-GHPC(0)→GH(16). In Table

3.2, for each benchmark we presented the percentages of branch contexts

with polarization indexes belonging to five different intervals. The column

Simulated Dynamic Branches contains the number of evaluated dynamic

branches (LH(16)-GH(0)-GHPC(0)) and respectively their percentages

reported to all dynamic branches. The column Simulated St. Br. represents

the number of static branches evaluated within each benchmark. For each

benchmark we generated using relation (3.1) a list of unbiased branch

contexts on local and global history of 16 bits (LH(16)-GH(16)-GHPC(0)),

having polarization less than 0.95. The last column contains the number of

unbiased branch context instances and respectively their percentages

reported to all dynamic branches. Analyzing comparatively Tables 3.1 and

3.2, we observe that the global branch history reduced the average

percentage of unbiased branch context instances from 24.55% to 17.48%.

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 6812313 5.76% 25 14.57 11.94 9.25 8.13 56.10 3887052 3.28%

parser 17589658 20.60% 707 6.87 6.98 5.71 6.18 74.26 11064817 12.95%

bzip 11252986 26.42% 83 19.34 16.62 14.36 13.80 35.88 9969701 23.40%

gzip 27692102 38.73% 62 8.98 10.09 9.01 10.88 61.04 20659305 28.89%

twolf 31763071 44.98% 132 8.46 7.43 6.39 9.89 67.83 22893014 32.41%

gcc 9809360 10.80% 4923 4.02 4.13 3.14 3.56 85.15 3563776 3.92%

Mean 17486582 24.55% 988 10.37 9.53 7.97 8.74 63.37 12006278 17.48%

Table 3.2. Polarization rates of branch contexts on global history of 16 bits

evaluating only the unbiased local branch contexts of 16 bits.

The next feature set we analyzed is the XOR between a global

branch history of 16 bits and the lower part of branch address (PC bits

18÷3): LH(16)-GH(16)-GHPC(0)→GHPC(16). We used again only the

branch contexts we found unbiased for the previous feature sets (local and

global branch history of 16 bits). In other words, we used a dynamic branch

in our evaluations only if its 16 bit local context is one of the unbiased local

30 A Systematic Approach to Predict Unbiased Branches

contexts (Table 3.1), and its 16 bit global context is one of the unbiased

global contexts (Table 3.2). In Table 3.3, for each benchmark we presented

the percentages of branch contexts with polarization indexes belonging to

five different intervals. For each benchmark we generated again using

relation (3.1), a list of unbiased branch contexts with polarization less than

0.95 (LH(16)-GH(16)-GHPC(16)).

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 3887069 3.28% 19 30.78 25.21 19.54 17.17 7.30 3887050 3.28%

parser 11065068 12.95% 504 23.84 24.27 19.87 21.56 10.46 11063791 12.95%

bzip 9969757 23.40% 76 28.45 24.43 21.12 20.30 5.70 9969678 23.40%

gzip 20659343 28.89% 51 20.34 22.85 20.43 24.66 11.72 20659290 28.89%

twolf 22893103 32.41% 112 21.11 18.53 15.93 24.69 19.75 22892985 32.41%

gcc 3565197 3.92% 2642 24.05 24.93 18.93 21.46 10.63 3561998 3.91%

Mean 12006590 17.48% 567 24.76 23.37 19.30 21.64 10.92 12005798 17.47%

Table 3.3. Polarization rates on the XOR between global history and branch

address on 16 bits evaluating only the unbiased local and global branch contexts of

16 bits.

The last column contains for each benchmark the number of unbiased

branch context instances and respectively their percentages reported to all

dynamic branches. The high percentages of unbiased branch context

instances in the case of bzip, gzip and twolf benchmarks represent a

potential improvement of prediction accuracy.

For the determined unbiased branch contexts we are analyzing now

if the taken and respectively not taken outcomes are grouped separately.

This is necessary, because if the branch outcomes are not shuffled they are

predictable using corresponding two-level adaptive predictors, but if these

outputs are shuffled the branches are not predictable. We used relation (3.2)

in order to determine the distribution indexes for each unpredictable branch

context per benchmark. We evaluated only the unbiased dynamic branches

obtained using all their contexts of 16 bits (LH(16)-GH(16)-GHPC(16)).

Table 3.4 shows for each benchmark the percentages of branch contexts

with distribution indexes belonging to five different intervals in the case of

local branch history. In the same way, Tables 3.5 and 3.6 present the

distribution indexes in the case of global history and respectively the XOR

between global history and branch address.

 Tables 3.4, 3.5 and 3.6 show that in the case of unbiased branch

contexts, the taken and respectively not taken outcomes are not grouped

separately, more, they are highly shuffled.

Finding Difficult-to-Predict Branches 31

SPEC

2000

Simulated Dynamic

Branches

Simu-

lated

St. Br.

Distribution Rate (D) [%]
[0,

0.2)

[0.2,

0.4)

[0.4,

0.6)

[0.6,

0.8)

[0.8,

1.0]

mcf 3887069 3.28% 19 9.21 11.02 46.30 13.32 20.15

parser 11064250 12.95% 483 20.23 9.50 42.44 9.63 18.19

bzip 9969752 23.40% 75 6.78 6.45 44.00 16.80 25.98

gzip 20659339 28.89% 51 5.10 5.38 38.70 20.98 29.85

twolf 22893094 32.41% 110 14.63 5.81 43.42 16.71 19.43

gcc 3564489 3.91% 2553 39.07 9.11 33.32 6.00 12.50

Mean 12006332 17.47% 548 15.83 7.87 41.36 13.90 21.01

Table 3.4. Distribution rates on local history of 16 bits evaluating only the

branches that were unbiased on all their 16 bit contexts (on local history, global

history and respectively XOR of global history and branch address).

SPEC

2000

Simulated Dynamic

Branches

Simu-

lated

St. Br.

Distribution Rate (D) [%]
[0,

0.2)

[0.2,

0.4)

[0.4,

0.6)

[0.6,

0.8)

[0.8,

1.0]

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31

parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50

bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13

gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91

twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75

gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15

Mean 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79

Table 3.5. Distribution rates on global history of 16 bits evaluating only the

branches that have all their 16 bit contexts unbiased (on local history, global

history and respectively XOR of global history and branch address).

SPEC

2000

Simulated Dynamic

Branches

Simu-

lated

St. Br.

Distribution Rate (D) [%]
[0,

0.2)

[0.2,

0.4)

[0.4,

0.6)

[0.6,

0.8)

[0.8,

1.0]

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31

parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50

bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13

gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91

twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75

gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15

Mean 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79

Table 3.6. Distribution rates on the XOR between global history and branch

address on 16 bits evaluating only branches having all 16 bit contexts unbiased (on

local and global history and the XOR of global history and branch address).

32 A Systematic Approach to Predict Unbiased Branches

The percentage of unbiased branch contexts having highly shuffled

outcomes (with distribution index greater than 0.4) is 76.3% in the case of

local history of 16 bits (see Table 3.4), 89.37% in the case of global history

of 16 bits (see Table 3.5), and 89.37% in the case of global history XOR-ed

by branch address on 16 bits (see Table 3.6). We obtained the same

distribution indexes for both the global history and respectively the XOR

between global history and branch address (Tables 3.5 and 3.6).

A distribution index of 1.0 means the highest possible alternation

frequency (with taken or not taken periods of 1). A distribution index of 0.5

means again a high alternation, since, supposing a constant frequency, the

taken or not taken periods are only 2, lower than the predictors’ learning

times. In the same manner, periods of 3 introduce a distribution of about

0.25, and periods of 5 generate a distribution index of 0.15, therefore we

considered that if the distribution index is lower than 0.2 the taken and not

taken outcomes are not shuffled, and the branch’s behavior can be learned.

We continued our evaluations extending the lengths of feature sets

from 16 bits to 20, 24 and respectively 28 bits, our hypothesis being that the

longer feature sets will increase the polarization index and, therefore, the

prediction accuracy. We started with a local branch history of 20 bits (Table

3.7), evaluating again only the branch contexts we found unbiased for the

previous feature sets of 16 bits: LH(16)-GH(16)-GHPC(16)→LH(20).

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 3887050 3.28% 19 8.41 7.96 5.28 5.97 72.37 3147989 2.66%

parser 11063878 12.95% 476 8.50 6.70 3.87 4.44 76.49 7838166 9.18%

bzip 9969651 23.40% 75 8.93 4.69 2.10 2.17 82.11 6493881 15.24%

gzip 20659242 28.89% 51 9.98 7.47 4.55 4.84 73.16 17753722 24.82%

twolf 22892904 32.41% 110 12.79 10.91 5.17 3.93 67.20 17540719 24.83%

gcc 3563213 3.91% 2546 7.79 6.31 3.68 4.56 77.66 2061136 2.26%

Mean 12005990 17.47% 546 9.40 7.34 4.10 4.31 74.83 9139269 13.17%

Table 3.7. Polarization rates on local history of 20 bits evaluating only the

branches that have all their 16 bit contexts unbiased (on local history, global

history and respectively XOR of global history and branch address).

The column Polarization Rate from Table 3.7 presents the percentages of

branch contexts with polarization indexes belonging to five different

intervals. The last column of Table 3.7 shows for each benchmark the

number of unbiased dynamic branches (LH(20)-GH(16)-GHPC(16)), and

respectively their percentage reported to all dynamic branches.

Finding Difficult-to-Predict Branches 33

Table 3.8 shows the results obtained using a global branch history of

20 bits: LH(20)-GH(16)-GHPC(16)→GH(20). The last column of Table 3.8

shows the number of unbiased dynamic branches (LH(20)-GH(20)-

GHPC(16)) and their percentage reported to all dynamic branches.

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 3148005 2.66% 18 20.06 20.55 13.08 10.60 35.71 3057312 2.58%

parser 7838384 9.18% 446 15.44 14.61 10.83 11.04 48.09 7166404 8.39%

bzip 6493918 15.24% 74 15.86 17.02 12.45 12.43 42.24 6228047 14.62%

gzip 17753750 24.82% 45 15.32 16.89 15.88 17.75 34.16 17215762 24.07%

twolf 17540776 24.83% 103 13.96 12.79 11.63 17.61 44.00 16240443 22.99%

gcc 2062167 2.26% 2299 14.59 13.77 9.35 9.93 52.37 1767385 1.94%

Mean 9139500 13.17% 497 15.87 15.93 12.20 13.22 42.76 8612559 12.43%

Table 3.8. Polarization rates on global history of 20 bits evaluating only the

unbiased branches on local history of 20 bits, global history of 16 bits, and the

XOR of global history and branch address on 16 bits.

In the same manner, Table 3.9 shows the results obtained using a XOR of

20 bits between global history and branch address: LH(20)-GH(20)-

GHPC(16)→GHPC(20). The last column of Table 3.9 shows for each

benchmark the number and percentage of unbiased dynamic branches:

LH(20)-GH(20)-GHPC(20).

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 3057327 2.58% 18 30.53 31.28 19.91 16.14 2.13 3057309 2.58%

parser 7166723 8.39% 429 27.62 26.16 19.37 19.76 7.08 7166215 8.39%

bzip 6228107 14.62% 73 26.21 28.12 20.57 20.53 4.57 6228010 14.62%

gzip 17215799 24.07% 45 20.78 22.96 21.58 24.13 10.55 17215749 24.07%

twolf 16240535 22.99% 101 21.26 19.48 17.70 26.81 14.74 16240434 22.99%

gcc 1769008 1.94% 2019 28.28 26.84 18.17 19.29 7.41 1766800 1.94%

Mean 8612917 12.43% 447 25.78 25.80 19.55 21.11 7.74 8612420 12.43%

Table 3.9. Polarization rates on the XOR of 20 bits between global history and
branch address evaluating only the branches unbiased for local and global history

of 20 bits respectively the XOR of global history and branch address on 16 bits.

As it can be observed a considerable number of unbiased branches become

biased if the feature sets are extended from 16 bits to 20 bits. Extending the

feature set length from 16 bits to 20 bits, the percentage of unbiased

dynamic branches decreased at average from 17.47% (see Table 3.3) to

34 A Systematic Approach to Predict Unbiased Branches

12.43% (Table 3.9). Using the same simulation methodology, we extend the

feature sets to 24 bits.

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 3057318 2.58% 18 9.04 7.95 4.59 5.41 73.01 2632531 2.22%

parser 7166415 8.39% 424 10.88 8.16 4.19 4.44 72.34 5083585 5.95%

bzip 6228031 14.62% 73 8.41 4.71 2.46 2.84 81.59 4250654 9.98%

gzip 17215734 24.07% 45 9.20 6.19 3.64 4.19 76.78 13753938 19.23%

twolf 16240411 22.99% 101 10.14 5.40 2.21 1.95 80.31 12308193 17.42%

gcc 1768113 1.94% 1980 11.73 9.02 5.11 6.14 68.00 1227407 1.35%

Mean 8612670 12.43% 440 9.90 6.90 3.70 4.16 75.33 6542718 9.36%

Table 3.10. Polarization rates on local history of 24 bits only for branches that
were unbiased on all their 20 bit contexts (on local history, global history and

respectively XOR of global history and branch address).

Table 3.10 shows the results obtained using a local branch history of 24 bits:

LH(20)-GH(20)-GHPC(20)→LH(24). The last column of Table 3.10 shows

for each benchmark the number and percentage of unbiased dynamic

branches: LH(24)-GH(20)-GHPC(20).

Table 3.11 shows the results obtained using a global branch history

of 24 bits: LH(24)-GH(20)-GHPC(20)→GH(24). The last column of Table

3.11 shows the number of unbiased dynamic branches (LH(24)-GH(24)-

GHPC(20)) and their percentage reported to all dynamic branches.

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 2632542 2.22% 18 15.20 13.79 7.13 5.90 57.98 2568911 2.17%

parser 5083795 5.95% 414 18.82 16.61 10.90 10.41 43.25 4664394 5.46%

bzip 4250689 9.98% 73 12.10 11.31 7.12 7.60 61.87 3799893 8.92%

gzip 13753960 19.23% 44 18.43 18.17 15.37 16.36 31.67 13480788 18.85%

twolf 5459637 17.42% 93 16.99 14.90 10.91 13.88 43.32 5144339 7.28%

gcc 1228364 1.35% 1856 17.16 14.61 9.94 10.15 48.14 1097445 1.20%

Mean 5401498 9.36% 416 16.45 14.89 10.22 10.71 47.70 5125962 7.31%

Table 3.11. Polarization rates on global history of 24 bits evaluating only the

branches unbiased for local history of 24 bits, global history of 20 bits and

respectively XOR of global history and branch address on 20 bits.

Table 3.12 presents the results obtained using the XOR between global

branch history and branch address on 24 bits: LH(24)-GH(24)-

Finding Difficult-to-Predict Branches 35

GHPC(20)→GHPC(24). The last column of Table 3.12 shows for each

benchmark the number and percentage of unbiased dynamic branches:

LH(24)-GH(24)-GHPC(24). Extending the feature set length from 20 bits to

24 bits, the percentage of unbiased dynamic branches decreased at average

from 12.43% (see Table 3.9) to 7.31% (Table 3.12).

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 2568928 2.17% 18 35.55 32.24 16.67 13.79 1.75 2568910 2.17%

parser 4664693 5.46% 398 31.21 27.52 18.08 17.25 5.93 4664273 5.46%

bzip 3799936 8.92% 72 30.43 28.45 17.91 19.13 4.07 3799859 8.92%

gzip 13480825 18.85% 41 24.64 24.29 20.55 21.87 8.66 13480783 18.85%

twolf 5144419 7.28% 89 27.03 23.73 17.38 22.10 9.76 5144327 7.28%

gcc 1098795 1.20% 1668 30.73 26.27 17.87 18.39 6.75 1097009 1.20%

Mean 5126266 7.31% 381 29.93 27.08 18.07 18.75 6.15 5125860 7.31%

Table 3.12. Polarization rates on the XOR of 24 bits between global history and
branch address evaluating only the branches unbiased for local history of 24 bits,

global history of 24 bits and XOR of global history and branch address on 20 bits.

We extended again the feature sets to 28 bits. Table 3.13 shows the

results obtained using a local branch history of 28 bits: LH(24)-GH(24)-

GHPC(24)→LH(28). The last column of Table 3.13 shows for each

benchmark the number of unbiased dynamic branches (LH(28)-GH(24)-

GHPC(24)) and their percentage reported to all dynamic branches.

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 2568923 2.17% 18 10.62 8.64 4.69 5.35 70.69 2174101 1.83%

parser 4664502 5.46% 395 11.17 7.09 3.72 4.07 73.95 3301587 3.86%

bzip 3799904 8.92% 71 10.16 5.90 3.04 3.59 77.30 2728593 6.40%

gzip 13480777 18.85% 41 9.76 6.14 3.50 4.14 76.46 10691142 14.95%

twolf 5144325 7.28% 87 9.03 4.44 2.81 3.76 79.96 4208376 5.95%

gcc 1098269 1.20% 1644 13.68 10.29 5.68 6.76 63.59 774654 0.85%

Mean 5931686 8.54% 122 10.14 6.44 3.55 4.18 75.67 4620759 6.60%

Table 3.13. Polarization rates on local history of 28 bits only for branches that

were unbiased on all their 24 bit contexts (on local history, global history and

respectively XOR of global history and branch address).

As it can be observed, in the case of the gcc benchmark, extending the

feature set length to 28 bits, the percentage of the unbiased context instances

36 A Systematic Approach to Predict Unbiased Branches

is less than the threshold T of 1% (see relation (3.3)), and thus we eliminate

it from our next evaluations. We consider that the conditional branches from

the gcc benchmark are not difficult predictable using feature lengths of 28

bits. As a consequence the results obtained with the gcc benchmark are not

included in the average results from Table 3.13.

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 2174117 1.83% 18 15.41 11.53 6.18 5.29 61.60 2149108 1.81%

parser 3301768 3.86% 370 21.26 17.06 10.39 10.18 41.11 3041426 3.56%

bzip 2728627 6.40% 69 11.81 8.86 5.07 5.55 68.72 2280197 5.35%

gzip 10691161 14.95% 41 19.36 17.05 13.50 14.84 35.25 10405692 14.55%

twolf 4208418 5.95% 85 16.53 14.43 10.21 13.55 45.29 4007088 5.67%

Mean 4620818 6.60% 116 16.87 13.78 9.07 9.88 50.39 4376702 6.19%

Table 3.14. Polarization rates on global history of 28 bits evaluating only the
branches unbiased for local history of 28 bits, global history of 24 bits and

respectively the XOR of global history and branch address on 24 bits.

Table 3.14 presents the results obtained when we used a global branch

history of 28 bits: LH(28)-GH(24)-GHPC(24)→GH(28). The column

Unbiased Context Instances from Table 3.14 presents for each benchmark

the number and percentage of unbiased dynamic branches: LH(28)-GH(28)-

GHPC(24).

Finally, Table 3.15 shows the results obtained using the XOR of

global branch history and branch address on 28 bits: LH(28)-GH(28)-

GHPC(24)→GHPC(28). The last column of Table 3.15 shows for each

benchmark the number of unbiased dynamic branches (LH(28)-GH(28)-

GHPC(28)) and their percentage reported to all dynamic branches.

SPEC

2000

Simulated

Dynamic

Branches

Simu-

lated

St. Br.

Polarization Rate (P) [%] Unbiased Context

Instances (P<0.95) [0.5,

0.6)

[0.6,

0.7)

[0.7,

0.8)

[0.8,

0.9)

[0.9,

1.0]

mcf 2149125 1.81% 18 39.26 29.37 15.73 13.46 2.17 2149107 1.81%

parser 3041691 3.56% 357 34.21 27.48 16.71 16.39 5.22 3041301 3.56%

bzip 2280240 5.35% 69 36.29 27.22 15.57 17.05 3.87 2280161 5.35%

gzip 10405726 14.55% 41 27.56 24.28 19.22 21.13 7.81 10405684 14.55%

twolf 4007152 5.67% 82 27.73 24.21 17.12 22.73 8.21 4007068 5.67%

Mean 4376787 6.19% 113 33.01 26.51 16.87 18.15 5.45 4376664 6.19%

Table 3.15. Polarization rates on the XOR of 28 bits between global history and

branch address evaluating only the branches unbiased for local and global history

of 28 bits respectively the XOR of global history and branch address on 24 bits.

Finding Difficult-to-Predict Branches 37

Extending the feature set length from 24 bits to 28 bits, the percentage of

unbiased dynamic branches decreased at average from 7.31% (see Table

3.12) to 6.19% (see Table 3.15). Despite of the feature set extension, the

number of unbiased dynamic branches remains still high (6.19%), and thus,

it is obvious that using longer feature sets is not sufficient.

 The global history solves at average 2.56% of the unbiased dynamic

branches not solved with local history (see Figure 3.3). The hashing

between global history and branch address (XOR) behaves just like the

global history, and it does not improve further the polarization rate. In

Figure 3.3 can be also observed that increasing the branch history, the

percentage of unbiased dynamic branches decreases, suggesting a

correlation between branches situated at a large distance in the dynamic

instruction stream. The results also show that the “ultimative predictibility

limit” of history context-based prediction is approximatively 94%,

considering unbiased branches as completely unpredictable. A conclusion

based on our simulation methodology is that 94% of dynamic branches can

be solved with prediction information of up to 28 bits (some of them are

solved with 16 bits, others with 20, 24 or 28 bits).

0

5

10

15

20

25

30

16 bits 20 bits 24 bits 28 bits

Feature Set Length

D
y

n
a

m
ic

 U
n

p
o

la
ri

z
e

d
 C

o
n

te
x

ts

[%
]

LH

GH

GH xor PC

Figure 3.3. Reduction of average percentages of unbiased context instances

(P<0.95) by extending the lengths of feature sets.

 In another work we have studied the polarization of branches but

using a little different simulation methodology [37]. We evaluated local

history concatenated with global history. The simulation methodology is

presented in Figure 3.4.

38 A Systematic Approach to Predict Unbiased Branches

LHR
16 bits

GHR
16 bits

LHR
16 bits

GHR
20 bits

LHR
20 bits

GHR
24 bits

LHR
24 bits

GHR
28 bits

LHR
28 bits

GHR
32 bits

LHR
32 bits

Remaining
unbiased branches

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

LHR
16 bits

GHR
16 bits

LHR
16 bits

GHR
20 bits

LHR
20 bits

GHR
24 bits

LHR
24 bits

GHR
28 bits

LHR
28 bits

GHR
32 bits

LHR
32 bits

Remaining
unbiased branches

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

Figure 3.4. Identifying unbiased branches by using the local history concatenated

with the global history.

The evaluation results presented in Table 3.16 show that these longer

contexts, due to their better precision, have higher polarization index.

Comparing our results, it is obvious that a certain feature set LH(p)-GH(p)

from Table 3.16 is approximatively equivalent in terms of polarization rate

with feature set GH(p+4) from Tables 3.8, 3.11 and 3.14. In other words, the

same percentage of unbiased context instances is obtained for both LH(p)-

GH(p) and GH(p+4) feature sets, but the number of bits in the correlation

information is different: (p+p) bits of local and global history, and

respectively (p+4) bits of global history.

Benchmark LH(0)-GH(0)

->LH(16)-

GH(0)

LH(16)-

GH(0)

->LH(16)-

GH(16)

LH(16)-

GH(16)

->LH(20)-

GH(20)

LH(20)-

GH(20)

->LH(24)-

GH(24)

LH(24)-

GH(24)

->LH(28)-

GH(28)

LH(28)-

GH(28)

->LH(32)-

GH(32)

bzip 26.42% 12.83% 7.53% 4.70% 3.08% 2.10%

gzip 38.73% 24.58% 17.84% 12.67% 9.12% 6.16%

mcf 5.76% 3.09% 2.44% 2.09% 1.78% 1.49%

parser 20.61% 7.42% 4.77% 3.01% 1.98% 1.40%

twolf 44.98% 23.94% 12.79% 8.28% 5.70% 3.90%

gcc 10.85% 2.50% 1.41% 0.88% 0.58% 0.39%

Average 24.56% 12.39% 7.80% 6.15% 4.33% 3.01%

Table 3.16. The percentages of unbiased context instances, after each context

length extension, obtained by using only the local history concatenated with the

global history.

Finding Difficult-to-Predict Branches 39

Taking into account that increasing the prediction accuracy with 1%,

the IPC (instructions-per-cycle) is improved with more than 1% (it grows

non-linearly) [64], there are great chances to obtain considerably better

overall performances even if not all of the 6.19% difficult predictable

branches will be solved. Therefore, we consider that this 6.19% represents a

significant percentage of unbiased branch context instances, and in the same

time a good improvement potential in terms of prediction accuracy and IPC.

Focalising on these unbiased branches – in order to design some efficient

path-based predictors for them [36, 58] – the overall prediction accuracy

should increase with some percents, that would be quite remarkable. The

simulation results also lead to the conclusion that as higher is the feature set

length used in the prediction process, as higher is the branch polarization

index and hopefully the prediction accuracy (Figure 3.3). A certain large

context (e.g. 100 bits) – due to its better precision – has lower occurrence

probability than a smaller one, and higher dispersion capabilities (the

dispersion grows exponentially). Thus, very large contexts can significantly

improve the branch polarization and the prediction accuracy too. However,

they are not always feasable for hardware implementation. The question is:

what feature set length is really feasable for hardware implementation, and

more important, in this case, which is the solution regarding the unbiased

branches? In our opinion, as we’ll further show, a feasable solution in this

case could be given by path-predictors.

3.2.2. Path-based Correlation

 The path information could be a solution for relatively short history

contexts (low correlations). Our hypothesis is that short contexts used

together with path information should replace significantly longer contexts,

providing the same prediction accuracy. A common criticism for most of the

present two-level adaptive branch prediction schemes consists in the fact

that they used insufficient global correlation information [58]. There are

situations when a certain static branch, in the same global history context

pattern, has different behaviors (taken/not taken), and therefore the branch

in that context is unbiased. If each bit belonging to the global history will be

associated during the prediction process with its corresponding PC, the

context of the current branch becomes more precisely, and therefore its

prediction accuracy could be better. Our next goal is to extend the

correlation information with the path, according to the above idea [58].

Extending the correlation information in this way, suggests that at different

40 A Systematic Approach to Predict Unbiased Branches

occurrences of a certain static branch with the same global history context,

the path contexts can be different.

 We started our evaluations regarding the path, studying the gain

obtained by introducing paths of different lengths. The analyzed feature

consists of a global branch history of 16 bits and the last p PCs. We applied

this feature only to dynamic branches that we already found unbiased

(P<0.95) for local and global history of 16 bits and respectively global

history XOR-ed by branch address on 16 bits.

Benchmark LH(16)-

GH(16)-

GHPC(16)

LH(16)-GH(16)-

GHPC(16)

->PATH(1)

LH(16)-GH(16)-

GHPC(16)

->PATH(16)

LH(16)-GH(16)-

GHPC(16)

->PATH(20)

LH(16)-GH(16)-

GHPC(16)

->LH(20)

bzip 23.40% 23.35% 22.16% 20.38% 15.24%

gzip 28.89% 28.88% 28.17% 27.51% 24.82%

mcf 3.28% 3.28% 3.28% 3.20% 2.66%

parser 12.95% 12.89% 12.01% 10.95% 9.18%

twolf 32.41% 32.41% 31.46% 27.10% 24.83%

gcc 3.91% 3.91% 3.56% 3.02% 2.26%

Average 17.47% 17.45% 16.77% 15.36% 13.17%

Gain 0.02% 0.70% 2.11% 4.30%

Table 3.17. The gain introduced by the path of different lengths (1, 16, 20 PCs)

versus the gain introduced by extended local history (20 bits).

Column LH(16)-GH(16)-GHPC(16) from Table 3.17, presents the

percentage of unbiased contexts for each benchmark. Columns LH(16)-

GH(16)-GHPC(16)→PATH(1), LH(16)-GH(16)-GHPC(16)→PATH(16)

and LH(16)-GH(16)-GHPC(16)→PATH(20) presents the percentages of

unbiased context instances obtained using a global history of 16 bits and a

path of 1, 16 and respectively 20 PCs. The last column presents the

percentages of unbiased context instances extending the local history to 20

bits (without path). For each feature is presented the gain opposite to the

first column average. It can be observed that a path of 1 introduces a not

significant gain of 0.2%. Even a path of 20 introduces a gain of only 2.11%

related to the more significant gain of 4.30% introduced by an extended

local branch history of 20 bits. The results show (Table 3.17) that the path is

useful only in the case of short contexts. Thus, a branch history of 16 bits

compresses and approximates well the path information. In other words, a

branch history of 16 bits spreads well the different paths that lead to a

certain dynamic branch.

 We continue our work evaluating – on all branches (non-iterative

simulation) – the number of unbiased context instances (P<0.95) using as

Finding Difficult-to-Predict Branches 41

prediction information paths of different lengths (p PCs) together with

global histories of the same lengths (p bits).

Bench. p=1 p=4 p=8 p=12 p=16 p=20 p=24

bzip 58.54% 39.00% 37.24% 35.08% 32.41% 31.29% 28.01%

gzip 49.85% 45.93% 43.58% 35.67% 34.10% 33.31% 33.02%

mcf 27.85% 21.30% 6.38% 5.89% 6.35% 5.58% 5.20%

parser 57.75% 44.64% 36.37% 30.63% 27.25% 23.00% 20.03%

twolf 67.49% 59.07% 51.28% 43.51% 37.12% 31.47% 28.47%

gcc 34.17% 26.34% 17.65% 12.61% 9.51% 7.85% 6.64%

Average 49.28% 39.38% 32.08% 27.23% 24.46% 22.08% 20.23%

Table 3.18. The percentages of unbiased context instances using as context only

the global history of p bits.

Bench. p=1 p=4 p=8 p=12 p=16 p=20 p=24

bzip 38.99% 36.93% 34.41% 32.16% 30.15% 27.52% 23.90%

gzip 48.53% 44.81% 42.20% 34.45% 33.21% 32.73% 32.31%

mcf 26.01% 20.98% 6.23% 5.85% 6.48% 5.57% 5.19%

parser 48.42% 39.50% 32.13% 27.48% 24.66% 20.82% 18.65%

twolf 62.65% 55.68% 49.47% 42.60% 35.81% 30.66% 27.88%

gcc 28.51% 20.42% 13.84% 10.53% 8.44% 7.12% 6.14%

Average 42.19% 36.39% 29.71% 25.51% 23.13% 20.74% 19.01%

Table 3.19. The percentages of unbiased context instances using as feature the

global history of p bits together with the path of p PCs.

The results are presented in Table 3.19, and in Figure 3.5 they are compared

with the results obtained using only global history (see Table 3.18). In the

case of the ‘mcf’ benchmark we obtained higher percentage of unbiased

context instances when we extended the correlation information (Table

3.19) from 12 bits of global history and 12 PCs (p=12) to 16 bits of global

history and 16 PCs (p=16). This growth is possible because a certain biased

context (P≥0.95), through extension is splitted into more subcontexts, and

some of these longer contexts can be unbiased (P<0.95), thus increasing the

number of unbiased branches. Again, the results obtained with long global

history patterns (contexts) are closer to those obtained with path patterns of

the same lengths, meaning that long global history (p bits) approximates

very well the longer path information (p PCs).

 As it can be observed in Figure 3.5, an important gain is obtained

through path in the case of short contexts (p<16). A branch history of more

than 12 bits, compresses well the path information, and therefore, in these

cases, the gain introduced by the path is not significant.

42 A Systematic Approach to Predict Unbiased Branches

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

p=1 p=4 p=8 p=12 p=16 p=20 p=24

Context Length

U
n

b
ia

s
e
d

 C
o

n
te

x
t

In
s
ta

n
c
e
s

GH (p bits)

GH (p bits) + PATH (p

PCs)

Figure 3.5. The gain introduced by the path for different context lengths –

SPEC2000 benchmarks.

Desmet shows in her PhD thesis [14] that complete path (all

branches) is more efficient than simple path (only conditional branches)

from the entropy point of view. This is in contradiction with our results

presented in Table 3.20, where we compared these types of path from the

unbiased branch percentage point of view. This contradiction can be

justified (?) by observing the following differences between our

measurements:

 Desmet measured per branch entropy and presented the

average entropy, while we measured per branch-context

polarization and presented the average percentage of branch

contexts having polarization less than 0.95;

 Desmet’s path consists in the PCs corresponding to the target

instructions (as Nair did), while our path consists in the PCs

of branches;

 Desmet uses short histories (p=1, 2, 5 PCs), while our

evaluations were generated on a considerable larger interval

(p=1, 4, 8, …, 24 PCs).

As we explain below, paradoxically, the simple path is more rich in

information than complete path (for the same number of PCs), justifying our

results presented in Table 3.20. Let’s consider the following sequence of

instructions:

... bne1 ... bne2 ... jr ... bne3 ... bne4 ... bne5=?

Finding Difficult-to-Predict Branches 43

If we use a path history of 4 PCs (p=4), then:

 simple path = bne1, bne2, bne3, bne4;

 complete path = bne2, jr, bne3, bne4.

The unconditional branch jr brings less information, because it is

always taken, and therefore, between bne2 and bne3 through jr only one

path is possible, while through conditional branches two paths are possible.

Thus, the path consisting exclusively in conditional branches is better than

complete path (see Table 3.20).

Context p=1 p=4 p=8 p=12 p=16 p=20 p=24

GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23

GH (p bits) +
FullTargetPath (p PCs) 46.74 37.23 30.72 26.50 23.89 21.58 19.88

GH (p bits) +

FullPath (p PCs) 43.21 37.03 30.49 26.41 23.86 21.56 19.86

GH (p bits) +

CondTargetPath (p PCs) 45.13 36.41 29.76 25.56 23.18 20.77 19.09

GH (p bits) +

CondPath (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01

Table 3.20. Percentages of unbiased branches on the SPEC2000 benchmarks [%].

We also compared the path consisting in PCs of branches with the path

consisting in PCs of target instructions. The path of branch PCs is slightly

better, however the difference is unsignificant (see Table 3.20).

Further, we present some results obtained applying the same

methodology on Branch Prediction World Championship benchmarks –

proposed by Intel [5, 6, 30]. We continue to evaluate – on all branches using

the non-iterative simulation – paths of different lengths (p PCs) used

together with global histories of the same lengths (p bits). The results are

presented in Table 3.22, and in Figure 3.6 they are compared with the

results obtained using only global history (see Table 3.21).

As it can be observed from Tables 3.21, 3.22 and from Figure 3.6, the

results produced (unbiased context instances ratio) by the Intel benchmarks

have the same profile like that obtained on the SPEC2000 benchmarks.

Actually, rich contexts (long patterns) reduce almost to zero the advantage

introduced by using the path information.

44 A Systematic Approach to Predict Unbiased Branches

Benchmark p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32

dist-fp-1 25.70 21.11 18.45 16.38 14.61 12.64 10.62 9.74 9.46

dist-fp-2 20.47 9.11 8.48 5.18 5.19 5.43 5.36 5.20 5.32

dist-fp-3 3.04 1.82 0.95 0.18 0.00 0.00 0.00 0.00 0.00

dist-fp-4 11.41 8.96 4.58 3.92 3.59 3.00 2.27 1.73 1.37

dist-fp-5 68.91 30.11 16.81 6.09 5.19 5.19 4.46 3.72 3.72

dist-int-1 47.98 40.00 28.97 24.93 20.52 16.39 14.01 10.80 9.38

dist-int-2 55.98 48.24 39.61 32.81 27.46 22.97 19.54 17.19 15.11

dist-int-3 66.26 55.74 47.23 38.35 31.21 26.20 22.74 20.10 17.56

dist-int-4 45.31 42.29 29.53 21.11 16.50 13.77 11.18 9.92 8.89

dist-int-5 2.50 1.48 1.10 0.91 0.78 0.72 0.67 0.67 0.66

dist-mm-1 72.68 66.29 56.09 52.16 47.16 44.32 40.95 37.14 33.04

dist-mm-2 39.43 37.51 33.48 30.65 28.65 26.75 24.79 22.56 20.20

dist-mm-3 19.33 15.62 13.43 11.54 10.20 6.80 6.17 5.42 5.20

dist-mm-4 8.41 6.11 6.86 5.91 5.01 4.24 3.13 3.08 2.98

dist-mm-5 38.16 29.02 22.08 16.97 14.53 12.17 10.64 9.22 7.91

dist-serv-1 16.63 11.60 7.92 6.01 5.21 4.03 3.17 2.75 2.57

dist-serv-2 15.59 11.08 7.66 5.91 4.81 3.76 3.11 2.72 2.44

dist-serv-3 29.87 25.68 20.52 16.84 14.06 12.37 9.02 8.26 7.47

dist-serv-4 15.53 11.04 8.00 7.06 5.86 5.17 4.63 4.22 3.93

dist-serv-5 15.94 11.27 7.95 7.21 6.17 5.38 5.08 4.55 4.15

Average 30.96 24.20 18.99 15.51 13.33 11.56 10.08 8.95 8.07

Table 3.21. The percentages of unbiased context instances using as context only

the global history of p bits – Intel benchmarks [%].

Benchmark p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32

dist-fp-1 25.72 20.97 17.44 15.56 13.11 11.54 10.03 9.16 8.93

dist-fp-2 20.46 8.92 8.21 5.32 5.33 5.58 5.52 5.41 5.27

dist-fp-3 2.77 1.73 0.86 0.00 0.00 0.00 0.00 0.00 0.00

dist-fp-4 10.86 8.95 4.45 3.78 3.59 2.99 2.26 1.73 1.36

dist-fp-5 65.40 28.47 15.91 5.56 5.19 4.46 3.72 3.72 3.72

dist-int-1 44.02 32.67 26.51 23.05 18.05 15.16 12.40 10.28 8.63

dist-int-2 52.98 42.77 34.33 28.62 24.01 20.79 18.07 16.03 14.25

dist-int-3 64.24 55.42 46.82 38.04 31.10 26.15 22.56 20.00 17.51

dist-int-4 43.98 38.08 26.22 20.29 15.74 12.88 10.87 9.78 8.84

dist-int-5 2.27 1.22 0.93 0.82 0.75 0.71 0.66 0.66 0.65

dist-mm-1 71.98 60.26 50.31 48.23 44.58 41.28 37.59 33.59 29.38

dist-mm-2 36.70 35.11 31.19 29.01 27.52 26.09 24.00 21.65 19.18

dist-mm-3 18.21 14.57 13.09 11.42 9.83 6.76 6.13 5.41 5.20

dist-mm-4 8.33 5.86 6.86 5.90 5.00 4.21 3.12 3.08 2.98

dist-mm-5 35.82 26.83 19.60 15.60 13.74 11.72 10.24 8.85 7.66

dist-serv-1 14.71 9.12 6.57 5.08 4.32 3.37 2.98 2.52 2.19

dist-serv-2 13.85 8.79 6.38 4.74 3.79 3.29 2.75 2.48 2.17

dist-serv-3 27.88 20.43 15.28 14.02 12.50 11.45 8.36 7.61 6.94

dist-serv-4 13.77 9.03 6.88 6.16 5.43 4.82 4.51 4.08 3.74

dist-serv-5 14.16 9.42 6.77 6.47 5.74 5.16 4.93 4.38 3.91

Average 29.41 21.93 17.23 14.38 12.46 10.92 9.53 8.52 7.63

Table 3.22. The ratio of unbiased context instances using as features the global

history of p bits together with the path of p PCs – Intel benchmarks.

Finding Difficult-to-Predict Branches 45

18.99%

17.23%

5%

10%

15%

20%

25%

30%

35%

p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32

Context Length

U
n

b
ia

s
e
d

 C
o

n
te

x
t

In
s
ta

n
c
e
s
 [

%
]

GH (p bits)

GH (p bits) + PATH (p PCs)

Figure 3.6. The gain introduced by the path for different context lengths – Intel

benchmarks.

The main difference observed, analyzing the Figures 3.5 and 3.6, consists in

the different values of these ratios (much bigger on SPEC benchmarks) –

due to their different characteristics and functions [30]. However, it must

mentioned that while SPEC benchmarks were simulated on 1 billion

dynamic instructions the Intel benchmarks were entirely simulated, but the

total number of dynamic instructions is lower (under 30 million).

Summarizing the statistics reported on the SPEC2000 benchmarks,

546 static branches generate 77,683,129 dynamic instances at average

(142,120 instances / static branch). Focalizing now on those detected

unbiased (with LH=28 bits, GH=28 bits, and GH XOR PC=28 bits), 113

static branches generate 4,376,664 dynamic instances at average (38,731

instances / static branch). Therefore the unbiased branches are generated by

a few static branches having many dynamic instances. As a consequence,

taking into account the enormous number of dynamic unbiased branches per

a static branch, an adequate predictor has plenty of time to learn its

behavior. The real problem is to find the right prediction information that

changes such unbiased branches into biased ones.

3.2.3. An Analytical Model

High prediction accuracy is vital especially in the case of multiple

instruction issue processors. Further, we assume the analytical model

46 A Systematic Approach to Predict Unbiased Branches

proposed in [7, 62], a superscalar processor that ignores stalls like cache

misses and bus conflicts focalizing only about the penalty introduced by

branch missprediction. Considering Branch Penalty (BP) as the average

number of wasted cycles due to a branch missprediction for each dynamic

instruction, it can be written the relation:

BP= C·(1-Ap)·b·IR [wasted clock / instruction] (3.4)

Where we denoted:

C = number of penalty cycles wasted due to a branch missprediction;

Ap = prediction accuracy;

b = the ratio of branches (the number of branches reported to the total

number of instructions);

IR = the average number of instructions that are executed per cycle

(the superscalar factor of architecture; >1).

Following, we computed how many cycles take the execution of each

instruction for a real superscalar processor that includes a branch predictor:

CPIreal = CPIideal + BP [clock cycle / instruction] (3.5)

Where:

CPIideal = represents the average number of cycles per instruction

considering a perfect branch prediction (Ap=100% 

BP=0). It is obvious that CPIideal < 1.

CPIreal = represents the average number of cycles per instruction

considering a real branch prediction (Ap<100%  BP>0 

CPIreal > CPIideal).

Therefore, the real processing rate (the average number of instructions

executed per cycle) results immediately from the following formula:

IRreal =
BPCPI

1

CPI

1

idealreal 
 [instruction / clock cycle] (3.6)

Finding Difficult-to-Predict Branches 47

The relation (3.6) proves the non-linear correlation between

processing rate (IR) and prediction accuracy (Ap). With these metrics, we

adapted the model to our results obtained in Chapter 3. Further, we use the

following notations:

x = the ratio of biased context instances;

1 - x = the ratio of unbiased context instances.

In our simulations presented in [19] we obtained using the gshare

predictor [34] the global prediction accuracy Apglobal = 93.60% (prediction

applied to all branches) and respectively the accuracy of unbiased branch

prediction Apunbiased = 72.2% (only unbiased branches were predicted).

Since Apglobal represents a weighted mean among predictions accuracies

applied both to bias and unbiased branches, it can be determined the biased

prediction accuracy Apbiased.

Apglobal = X * Apbiased + (1-x) * Apunbiased (3.7)

For previous example, 0.936 = 0.8253*Abiased + 0.1747*0.722, resulting that

Apbiased = 0.9813.

Obviously, predicting the unbiased branches with a more powerful

branch predictor having, to say, 95% prediction accuracy, determines a gain

proportional with ratio of unbiased context instances: Accuracy_gain

=(0.95-0.722)*(1-x). More than that, this accuracy gain involves a

processing rate speed-up according to (3.4) and (3.6). This gain justifies the

importance and the necessity of finding and solving the difficult predictable

branches. However, finding predictor that obtains so high prediction

accuracy is beyond the scope of this paper.

Therefore, further we determined how much is influenced the branch

penalty (BP) by the increasing of context length and what is the speed-up in

these conditions. For this, we softly modified Chang’s model [7] by

substituting Ap with our Apglobal, according to relation (3.7). Thus, the

penalty introduced for missprediction of biased branches is the term (1-

Apbiased)*x, respectively for considered wrong prediction of all unbiased

branches (Apunbiased=0) is the term (1-x).

Model proposed by

Chang

Our modified model

BP= C·(1-Ap)·b·IR BP=C·b·IR·[1– x·Apbiased] (3.8)

48 A Systematic Approach to Predict Unbiased Branches

Figure 3.3 shows a decreasing of unbiased branches (1-x) by

extending the context length that leads to a reduction of branch penalty (BP)

according to (3.8), and implicitly to a greater IR according to (3.6). It can be

written:

Context (Features Set) Length  => x  => BP  => IR  =>  Relative

Speed-up>0.

Next, we computed the IR relative speed-up, varying the context length.

Starting from the well known metric Speed-up 1
)16(

)(


IR

LIR
, where L is the

feature’s length, L  {20, 24, and 28}, we obtained the relative speed-up:

Relative Speed-up 0
)16(

)16()(





IR

IRLIR
 (3.9)

Figure 3.7 illustrates the IR speed-up obtained extending the context.

The baseline processor model has an IRideal of 4 [instruction / clock cycle]

and incorporates a branch predictor with 98.13% prediction accuracy for

biased branches. The considered number of penalty cycles wasted due to a

branch missprediction in our model is 7. The ratio of simulated branches

(the number of simulated branches reported to the total number of simulated

instructions) is b=8% (see Table 3.1).

Relative IR Speed-up extending the context

19.61

49.35

57.94

0

10

20

30

40

50

60

70

20 24 28

Context Length

R
e
la

ti
v
e
 S

p
e

e
d

-u
p

 [
%

]

Relative IR Speed-up
[%] over the IR obtained
having context length of
16 bits

Figure 3.7. The IR relative speed-up obtained growing the context length.

Finding Difficult-to-Predict Branches 49

Figure 3.7 illustrates not only the necessity of a greater number of prediction

features to improve the processor performance, but also the necessity of new

performing branch predictors that can consider a larger amount of

information in making predictions (but whose size does not scale

exponentially with the length of the input feature set).

3.2.4. An Example Regarding Branch Prediction Contexts

Influence

In this section we analyze the contexts used by present day branch

predictors (global and local histories respectively path information) from the

point of view of their limits in predicting unbiased branches. The main idea

is: in a perfect dynamic context all branch instances should have the same

outcome. If the outcome is not the same a first solution might consists in

extending the context information. After we varied the context length we

observed that some dynamic contexts remained unpredictable despite of

their length.

Related to the first part of our investigation – identifying the

difficult-to-predict branches and quantifying them on testing programs, we

used the traces obtained based on the eight C Stanford integer benchmarks,

designed by Professor John Hennessy (Stanford University), to be

computationally intensive and representative of non-numeric code while at

the same time being compact. All these benchmarks were compiled by the

HSA gnu C compiler, which targets the HSA (Hatfield Superscalar

Architecture) instruction set. A dedicated HSA simulator [53] that generates

the corresponding traces simulated the resulted HSA object code. These

helpful tools were developed at the University of Hertfordshire, Research

Group of Computer Architecture, UK. The average instruction number is

about 273.000 and the average percentage of branch instructions is about

18%, with about 76% of them being taken. Derived from HSA traces,

special traces were obtained, containing exclusively all the processed

branches. Each branch belonging to these modified HSA traces is stored in

the following format: branch's type, the address of the branch (PC –

program counter) and its target address. Some of these benchmarks are well

known as very difficult to be predicted. For example, as Mudge et al. proved

very clearly [35], 75% accuracy could be an ultimate limit on "quick-sort"

benchmark.

Following our aims, we developed an original dedicated trace-driven

simulator that uses the above-mentioned traces [40]. The most important

input parameters for this simulator are the local/global history length (HRl

50 A Systematic Approach to Predict Unbiased Branches

bits (l) / HRg bits (k)), number of entries in prediction table, the type of

predictor, the simulated benchmark. As outputs, the simulator generates

prediction accuracy, number of difficult-to-predict branches, and other

useful statistics. Further, we present partially the C and assembly code of

Stanford Perm benchmark that generates a suite of permutations. We detect

unbiased branches and we focused on two of the most important branch

instructions (having PC=35 and PC=58 after compiling process).

Permute (int n){

 int k;

 pctr = pctr+1;

 if(n != 1) { # the first branch instruction analyzed (PC=35)

 Permute(n-1);
 for(k = n-1; k >= 1; k--){ # the second branch instruction analyzed (PC=58)

 Swap(&permarray[n], &permarray[k]);

 Permute(n-1);

 Swap(&permarray[n], &permarray[k]);

 };

 }

}

_Permute:

 SUB SP, SP, #128

 ST 0(SP), RA
 ST 8(SP), R17

 ST 12(SP), R18

 ST 16(SP), R19

 ST 20(SP), R20

 MOV R20, R5

 LD R13, _pctr

 ADD R13, R13, #1

 ST _pctr, R13

 EQ B1, R20, #1

 BT B1, L8 (#0) # after compiling process this branch has the address 35

(PC=35)
 ADD R17, R20, #-1

 MOV R5, R17

 BSR RA, _Permute (#0)

 MOV R18, R17

 LES B1, R18, #0

 BT B1, L8 (#0)

 ASL R13, R20, #2

 MOV R7, #_permarray

 ADD R19, R13, R7

 ASL R13, R18, #2

 ADD R17, R13, R7

Finding Difficult-to-Predict Branches 51

L12:
 MOV R5, R19

 MOV R6, R17

 BSR RA, _Swap (#0)

 ADD R5, R20, #-1

 BSR RA, _Permute (#0)

 MOV R5, R19

 MOV R6, R17

 BSR RA, _Swap (#0)

 ADD R17, R17, #-4

 ADD R18, R18, #-1

 GTS B1, R18, #0
 BT B1, L12 (#0) # after compiling process this branch has the address 58

(PC=58)

In the following simulations [17] the settled parameters are: Path = not

selected, Unbiased polarization degree = 0.95, HRl and HRg being the local

and global history. We define polarization index (bias) of a certain branch

context as:

)
NTT

NT
 ,

NTT

T
max(bias


 (3.9)

where T and NT represent number of “taken” respective “not taken” branch

instances corresponding to that certain context.

1. Parameters: HRl = not selected, HRg on 3 bits, => Unbiased contexts: 25.0[%]

From the unbiased branches list we selected just two branch instructions in two global

contexts:

PC: 35 HRg: 101 T: 2520 NT: 1100 Bias: 0.696

PC: 58 HRg: 111 T: 1419 NT: 3620 Bias: 0.718

2. Parameters: HRl = not selected, HRg on 4 bits, => Unbiased contexts: 17.813[%]

PC: 35 HRg: 0101 T: 840 NT: 260 Bias: 0.763

PC: 35 HRg: 1101 T: 1680 NT: 840 Bias: 0.667

PC: 58 HRg: 0111 T: 1419 NT: 1100 Bias: 0.563

PC: 58 HRg: 1111 T: 0 NT: 2520 Bias: 1.000 => The branch with the address PC: 58

in context HRg: 1111 became fully biased. Practically it doesn’t appear in the unbiased

branch list.

3. Parameters: HRl on 1 bit, HRg on 4 bits, => Unbiased contexts: 17.813[%]

PC: 35 HRg: 0101 HRl: 0 T: 840 NT: 260 Bias: 0.763

PC: 35 HRg: 0101 HRl: 1 – this context doesn’t occur

PC: 35 HRg: 1101 HRl: 0 T: 1680 NT: 840 Bias: 0.667

PC: 35 HRg: 1101 HRl: 1 – this context doesn’t occur

PC: 58 HRg: 0111 HRl: 0 T: 1419 NT: 1100 Bias: 0.563

PC: 58 HRg: 0111 HRl: 1 – this context doesn’t occur

52 A Systematic Approach to Predict Unbiased Branches

4. Parameters: HRl on 2 bits, HRg on 4 bits, => Unbiased contexts: 9.673[%]

PC: 35 HRg: 0101 HRl: 00 T: 840 NT: 260 Bias: 0.763

PC: 35 HRg: 0101 HRl: 10 – this context doesn’t occur
PC: 35 HRg: 1101 HRl: 00 – this context doesn’t occur

PC: 35 HRg: 1101 HRl: 10 T: 1680 NT: 840 Bias: 0.667

PC: 58 HRg: 0111 HRl: 00 T: 1419 NT: 260 Bias: 0.845

PC: 58 HRg: 0111 HRl: 10 T: 0 NT: 840 Bias: 1.000=> The branch with the address

PC: 58 in context HRg: 0111 and HRl: 10 became fully biased. Practically it doesn’t

appear in the unbiased branch list.

…

5. Parameters: HRl on 2 bits, HRg on 7 bits, => Unbiased contexts: 9.668[%]

PC: 58 HRg: 1110111 HRl: 00 T: 1419 NT: 260 Bias: 0.845

6. Parameters: HRl on 2 bits, HRg on 8 bits, => Unbiased contexts: 8.134[%]

PC: 58 HRg: 01110111 HRl: 00 T: 579 NT: 260 Bias: 0.690

PC: 58 HRg: 11110111 HRl: 00 T: 840 NT: 0 Bias: 1.000=> The branch with the

address PC: 58 in context HRg: 11110111 and HRl: 00 became fully biased.

Practically it doesn’t appear in the unbiased branch list.

Conclusion: As it can be observed, increasing the context length, some branches in

certain contexts became fully biased, but a great percentage still remains unbiased.

Comparing the previous results it can be observed that as or richer

the context became, as smaller the unbiased branches percentage became.

From the 1st case to 2nd one, the unbiased branches percentages decrease

with 7.187% and it can be observed how the two unbiased branches, in

small contexts, are still unsolved. However, the branch with the address PC:

58 became fully biased in context HRg: 1111 decreasing the number of

unbiased branches with 2520. Practically it does not appear in the unbiased

branch list. In the 3rd case (adding one bit of local history) the unbiased

branches percentage remains unchanged. In the 4th local history is set on 2

bits and much more contexts became biased (the unbiased branches

percentage decreases with 8.14%). Although, there are some contexts that

remain unbiased (see above: PC: 35 HRg: x101 HRl: x0 – where x could be

0 or 1).

Analyzing the code sequence it can be observed that to reach

conditional branch 58, the previously 3 branches are every time Taken

(return from permute function, call of swap function and return – not

necessarily correlated with the branch 58). One reason for the larger

percentage of unbiased branches refers to the fact that the branches within

the global history length may not have correlation with the current branch,

or the relevant history might be too far away. If the context would permit it

could be seen a correlation between branches situated at a large distance in

the dynamic instruction stream. Recurrence and function calls hide some

branches that are really correlated with the analyzed one. Also, the local

Finding Difficult-to-Predict Branches 53

correlation reduces the noise included in global history. Similar examples

we found in tower benchmark that solves the Hanoi towers problem.

The insufficiency of global correlation information is remarked also

in the case of programs or data structures, which produce a variable number

of history bits as the data changes (data correlation). This occurs in the link

lists or trees cases where the address of an element is tested (usually

comparison with 0) and then a recurrent call of the same function is

generated to test the next element in the tree (left or right sub-tree). The

same situation does occure in the hash table cases having link lists to solve

the collisions. A possible solution could be to use data values or structural

information to keep the predictor more synchronized with data. We tried

such an approach in [21].

4. Predicting Unbiased Branches

 This section presents some important present-day branch predictors

and, respectively, some proposed condition-history-based branch predictors,

all of them being used to evaluate, in terms of prediction accuracy, the

unbiased branches identified in [19, 61].

4.1. The Perceptron-Based Branch Predictor

Jiménez and Lin [26] proposed a two-level scheme that uses fast

single-layer perceptrons instead of the commonly used two-bit saturating

counters. The branch address is hashed to select the perceptron, which is

used to generate a prediction based on global branch history. In [27] the

authors developed a perceptron-based predictor that uses both local and

global branch history in the prediction process. Figure 4.1 presents the

architecture of the perceptron-based branch predictor.

PC

Table of

Perceptrons

Selected Perceptron

Selected LHR

Local Branch

History Table

GHR

Prediction

LH GHPC

Table of

Perceptrons

Selected Perceptron

Selected LHR

Local Branch

History Table

GHR

Prediction

LH GH

Figure 4.1. The perceptron-based branch predictor.

Predicting Unbiased Branches 55

The lower part of the branch address (PC) selects a perceptron in the table of

perceptrons (weights’ matrix) and, respectively a local history register in the

local branch history table. Both local and global branch history are used as

inputs for the selected perceptron in order to generate a prediction.

4.2. The Idealized Piecewise Linear Branch Predictor

 The piecewise linear branch prediction [29], is a generalization of

perceptron branch prediction [26] and path-based neural branch prediction

[28]. The path-based neural predictor begins the branch’s output

computation in advance of the prediction, each computation step being

processed as soon as a new element of the path is executed. Thus, the vector

of weights used to generate prediction, is selected according to the path

leading up to a branch – based on all branch addresses belonging to that

path – rather than according to the current branch address alone as the

original perceptron does. This selection mechanism improves significantly

the prediction accuracy, because, due to the path information used in the

prediction process, the predictor is able to exploit the correlation between

the output of the branch being predicted and the path leading up to that

branch. On the other hand, the prediction latency is almost completely

hidden because the output’s computation begins far in advance of the

effective prediction. The most critical-timing operation is the sum of the

bias weight and the current partial sum. To generate a prediction, the

correlations of each component of the path are aggregated. This aggregation

is a linear function of the correlations for that path. Since many paths are

leading to a branch, there are many different linear functions for that branch,

and they form a piecewise-linear surface separating paths that lead to

predicted taken branches from paths that lead to predicted not taken

branches. The piecewise linear branch prediction [29], is a generalization of

perceptron branch prediction [26], which uses a single linear function for a

given branch, and respectively path-based neural branch prediction [28],

which uses a single global piecewise-linear function to predict all branches.

The piecewise linear branch predictors use a piecewise-linear function for a

given branch, exploiting in this way different paths that lead to the same

branch in order to predict – otherwise linearly inseparable – branches. The

predictor has the same architecture as the perceptron-based branch predictor

(see Figure 4.1). The weight selection mechanism of the idealized piecewise

linear branch predictor is presented in Figure 4.2, where GH is the global

history, PC is the branch’s address and GA is the path – an array of the

56 A Systematic Approach to Predict Unbiased Branches

addresses afferent to the last executed branches. Thus, the weight Wbpg

corresponds to branch b (Bb 1), its global history bit g (Gg 1) and

the pth PC (Pp 1) from its path.

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

PC

GA

GH

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

PC

GA

GH

Figure 4.2. The weight selection mechanism of the idealized piecewise linear

branch predictor.

For the Idealized Piecewise Linear Branch Predictor we used dynamically

adjusted history lengths [29]. The predictor counts the number of static

branches whose bias magnitude, noted |W0|, exceeds 2. If this number

exceeds 300, then the predictor switches to lower global and local history

lengths, otherwise, it uses higher global and local history lengths. This

heuristic is applied after 300,000 branches have passed.

 Related to Jiménez’s research, we gave an original interpretation of

his dynamically adjusting history length mechanism [29], through our

previously introduced “unbiased branches” concept [19, 61]. Thus, his

heuristics work as follows: if more than 300 “relatively biased” branches are

encountered (branches having |W0|>2), then it switches to lower global/local

history length. Otherwise (meaning that there were encountered many

“perfectly unbiased” branches, having |W0|≤2) it switches to higher

global/local history length. From our point of view, this is justified by the

fact that increasing history length reduces the number of unbiased branches.

Predicting Unbiased Branches 57

4.3. The Frankenpredictor

 The Frankenpredictor [30] is a gskew-agree global history predictor

combined with a path-based neural predictor. The prediction mechanism of

the Frankenpredictor is presented in Figure 4.3.

PC

Table of

Perceptrons
Selected Perceptron

Gskew-agree

GHR

Prediction

GHA1

A2

A3

AM

PHT3

PHT2

PHT1

PC

Table of

Perceptrons
Selected Perceptron

Gskew-agree

GHR

Prediction

GHA1

A2

A3

AM

PHT3

PHT2

PHT1

Figure 4.3. The Frankenpredictor’s architecture.

The gskew-agree predictor avoids interference by mapping potential

conflicting branches to different entries from three different tables. Three

different predictions are provided, the final prediction being made by taking

majority vote. The agreement approach uses a default BTFNT (backward

taken forward not taken) static prediction (bias) for each branch. The

predictions (P1, P2 and P3) generated by the selected pattern history table

entries are further compared with the bias. The neural predictor provides the

ability of working with long branch histories and it also provides the

hybridization by including the predictions of the gskew-agree predictor as

additional bits in the perceptron’s input vector – the agreement bits (A1, A2

and A3) provided by the three PHTs (Ai is 1 if Pi agrees with the bias and 0

otherwise, 1≤i≤3) and the majority vote (AM).

4.4. The O-GEHL Predictor

 The Optimized GEometric History Length (O-GEHL) predictor [44]

uses M distinct prediction tables indexed with hash functions of the branch

address and the global branch history. Distinct history lengths of up to 200

58 A Systematic Approach to Predict Unbiased Branches

bits and a path history of up to 16 bits, consisting of 1 address bit per

branch, are used to index the prediction tables. Table T0 is indexed using the

branch address. The history lengths used to index tables Ti, 1≤i<M, form a

geometric series:

)1()(1 LiL i   (4.1)

The prediction tables store predictions as signed counters. To compute a

prediction, a single counter is read from each prediction table. The

prediction is computed as the sign of the sum S of the M counters. The

prediction is taken if S is positive and not-taken otherwise. The prediction

mechanism of the O-GEHL predictor is presented in Figure 4.4.

+ Prediction = Sign+ Prediction = Sign

Figure 4.4. The O-GEHL predictor.

4.5. Value-History-Based Branch Prediction with

Markov Models

The context-based predictor predicts the next value based on a

particular stored pattern (context) that is repetitively generated in the value

sequence. Theoretically they can predict any stochastic repetitive sequences.

A context predictor is of order k if its context information includes the last k

values, and, therefore, the search is done using this pattern of k values

length. In fact, in this case the prediction process is based on a simple

Markov model [39].

Predicting Unbiased Branches 59

S1 S2

S3

a12

a21

a22

a32

a23

a33

a13

a31

a11

Figure 4.5. A Markov chain with 3 states.

A first order discrete Markov process may be described at any time as being

in one of a set of N distinct states }...,,,{ 21 NSSSS  , as illustrated in

Figure 4.5. A full probabilistic description of discrete Markov chain requires

specification of the current state as well as all the predecessor states (the

current state in a sequence depends on all the previous states). For the

special case of a discrete, first order, Markov chain, this probabilistic

description is truncated to just the current and predecessor state (the current

state depends only on the previous state):

][...],,[121 itjtktitjt SqSqPSqSqSqP   (4.2)

where tq is the state at time t. Thus, for a first order Markov chain with N

states, the set of transition probabilities between states Si and Sj is }{ ijaA  ,

where][1 itjtij SqSqPa   , Nji  ,1 , having the properties

0ija and 1
1




N

j

ija .

 For a Markov chain of order R the probabilistic description is

truncated to the current and R previous states (the current state depends on

R previous states). The following example shows the necessity of using

superior order Markov models. If the sequence of states is

AAABCAAABCAAA, the Markov models of order 1 and respectively 2

mispredict A, and only a Markov Model of order 3 predicts correctly the

next state B. This example is also presented in Figure 4.6.

60 A Systematic Approach to Predict Unbiased Branches

Sequence: aaabcaaabcaaa?

9 2 2

a b c

0st order Markov

Prediction: a

6 2 0

a b c

1st order Markov

Predictione: a

Context a

3 2 0

a b c

2nd order Markov

Prediction: a

Context aa 0 2 0

a b c

3rd order Markov

Prediction: b

Context aaa

Sequence: aaabcaaabcaaa?

9 2 2

a b c

0st order Markov

Prediction: a

9 2 29 2 2

a b ca b c

0st order Markov

Prediction: a

6 2 0

a b c

1st order Markov

Predictione: a

Context a 6 2 0

a b c

1st order Markov

Predictione: a

Context a

3 2 0

a b c

2nd order Markov

Prediction: a

Context aa 3 2 0

a b c

2nd order Markov

Prediction: a

Context aa 0 2 0

a b c

3rd order Markov

Prediction: b

Context aaa 0 2 0

a b c

3rd order Markov

Prediction: b

Context aaa

Figure 4.6. Markov predictors of different orders.

The predictors that implement the “Prediction by Partial Matching”

algorithm (PPM) [42] represent an important class of context-based

predictors. Mudge et al. [35] demonstrates that all two-level adaptive

predictors implement special cases of the PPM algorithm that is widely used

in data compression. It seems that PPM provides the ultimate predictability

limit of two-level predictors. The PPM-based predictor contains a set of

simple Markov predictors as it can be seen in Figure 4.6. It is predicted the

value that followed the context with the highest frequency. In the case of

complete-PPM predictor, if a prediction cannot be generated with the

Markov predictor of order k, then the pattern length is shortened and the

Markov predictor of order k-1 tries to predict and so on.

4.5.1. Local Branch Difference Predictor

Figure 4.7 presents the speculative branch execution mechanism

using a local PPM branch-difference predictor. The Branch Difference

History Table (BDHT) maintains for each static branch the values or the

signs of the inputs’ differences (two approaches) corresponding to the

branch’s last h dynamic instances (B1, B2, ..., Bh). It would be possible to

keep the differences corresponding to the previous h branches, therefore a

global correlation approach instead of a local approach. Obviously, hybrid

global-local approaches should be possible and useful too. Regarding the

approach that uses only the signs of the input differences, a value of 1 in the

history indicates that the corresponding branch difference was positive, a -1

Predicting Unbiased Branches 61

indicates a negative difference, while a 0 indicates equality between the

branch inputs. The BDHT entry is selected by the branch address (PC of

B0). The branch differences from the selected BDHT entry represent the

PPM’s input. Thus, the sign of the input difference (-1, 1, or 0)

corresponding to the current branch (B0) is predicted, using the complete-

PPM algorithm of order k, where k<h (see Figure 4.6). The branch B0 is

executed speculatively using the predicted inputs’ difference only if the

considered pattern of length k is repeated in the string of last h differences

with a frequency greater or equal than a certain threshold.

dif(Bh)

Branch Difference

History Table

Predicted

dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching

(PPM)

PC of B0

Pattern

length

Speculative

execution of B0

dif(Bh)

Branch Difference

History Table

Predicted

dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching

(PPM)

PC of B0PC of B0

Pattern

length

Speculative

execution of B0

Speculative

execution of B0

Figure 4.7. Speculative branch execution using local complete-PPM branch-

difference predictors.

4.5.2. Combined Global and Local Branch Difference

Predictor

Figure 4.8 presents the hybrid speculative branch execution

mechanism using a combined global and local PPM-based branch-difference

predictor. The Global History Register (GHR) contains the global history:

the global branch difference history or the global branch outcome history

(two different approaches). For each global history pattern, a distinct BDHT

is maintained. Thus, the BDHT is selected by the GHR. A certain BDHT

62 A Systematic Approach to Predict Unbiased Branches

contains for each static branch the inputs’ differences corresponding to the

branch’s last h dynamic instances (B1, B2, ..., Bh). The selected BDHT is

indexed by the branch address (PC of B0). The branch differences from the

selected BDHT entry represent the input for the PPM. Thus, the sign of the

input difference (-1, 1, or 0) corresponding to the current branch (B0) is

predicted, using the complete-PPM algorithm of order k, where k<h (see

Figure 4.6). The branch B0 is executed speculatively using the predicted

inputs’ difference only if the considered pattern of length k is repeated in the

string of last h differences with a frequency greater or equal than a certain

threshold.

Predicted

dif(B0)

Prediction by Partial Matching

(PPM)

PC of B0

Pattern

length

Speculative

execution of B0

GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Predicted

dif(B0)

Prediction by Partial Matching

(PPM)

PC of B0PC of B0

Pattern

length

Speculative

execution of B0

Speculative

execution of B0

GHR of B0GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Figure 4.8. Speculative branch execution using global-local complete-PPM

branch-difference predictors.

4.5.3. Branch Difference Prediction by Combining Multiple

Partial Matches

Figure 4.9 presents the speculative branch execution mechanism

using the Branch-Difference Predicion by Combining Multiple Partial

Matches algorithm. The Branch Difference History Table (BDHT)

Predicting Unbiased Branches 63

maintains for each static branch the signs of the inputs’ differences (a value

of 1 in the history indicates that the corresponding branch difference was

positive, a -1 indicates a negative difference, and a 0 indicates equality

between the branch’s inputs) corresponding to the branch’s last h dynamic

instances (B1, B2, ..., Bh). A BDHT entry is selected by the branch’s address

(PC of B0), as in the previous approaches. The branch differences from the

selected BDHT entry represent the input for Markov predictors of different

orders. Thus, the sign of the input difference (-1, 1, or 0) corresponding to

the current branch (B0) is predicted using multiple Markov predictors of

orders ranging between [1, n], n<h (see Figure 4.9). The final branch

difference prediction is generated through the majority vote.

PC of B0

Branch Difference

History Table (BDHT)

dif(Bh) dif(B2) dif(B1)

Predicted

dif(B0)

(-1, 0, +1)

Speculative

execution of B0

Markov

ord. 1

Predicted

dif(B0)

(-1, 0, +1)

Predicted

dif(B0)

(-1, 0, +1)

Predicted

dif(B0)

(-1, 0, +1)

Voter

Markov

ord. k

Markov

ord. n

PC of B0PC of B0

Branch Difference

History Table (BDHT)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

Predicted

dif(B0)

(-1, 0, +1)

Speculative

execution of B0

Speculative

execution of B0

Markov

ord. 1

Markov

ord. 1

Predicted

dif(B0)

(-1, 0, +1)

Predicted

dif(B0)

(-1, 0, +1)

Predicted

dif(B0)

(-1, 0, +1)

Voter

Markov

ord. k

Markov

ord. k

Markov

ord. n

Markov

ord. n

Figure 4.9. Speculative branch execution by combining multiple Markov branch-

difference predictions.

Another possibility is to provide the final branch difference prediction

through confidence-based voting. In this case, each BDHT entry maintains n

saturated confidence counters associated to the n Markov predictors. The

confidence counters ranging in our application between [-4, 4] are updated

only if the corresponding Markov predictors provided a prediction (the

pattern of length k, 1 kn, was found at least once in the history of h

values), by incrementing them in the case of a correct prediction and

decrementing them otherwise. The confidence-based voting takes the

majority, considering each Markov prediction as many times as the

corresponding counter’s value shows (only if this value is greater than zero).

64 A Systematic Approach to Predict Unbiased Branches

We implemented and evaluated both these voting methods. Finally, the

branch B0 is executed speculatively using the predicted inputs’ difference.

4.6. Experimental Results

The perceptron and our branch difference predictors were

implemented by extending the sim-bpred simulator from SimpleSim-3.0

[46]. We also implemented the unbiased branch selection mechanism and,

thus, the predictors can be evaluated on unbiased branches too. We evaluate

programs from the SPECcpu2000 benchmark suite, especially those that

indicated a high percentage of unbiased branches [19, 61]. The

Championship Branch Prediction (CBP-1) simulators afferent to the

Frankenpredictor [30] and respectively the Piecewise Linear Branch

Predictor [29] were extended to work with the same unbiased branch

selection mechanism. In order to exploit these predictors we used the CBP-1

branch prediction framework which includes twenty traces (5 integer

programs, 5 floating point, 5 multimedia applications and 5 server

benchmarks) and a driver that reads the traces and calls the branch predictor

[5]. The traces are approximately 30 million instructions long and include

both user and system codes. The two predictors were implemented within

the constraints of a storage budget of (64K + 256) bits.

All simulation results are reported on 1 billion dynamic instructions

skipping the first 300 million instructions from the SPEC2000 benchmarks

[50] and, respectively, on all instructions from the INTEL benchmarks [5].

We note with LH(p)-GH(q) prediction information consisting in local

history (LH) of p bits, and global history (GH) of q bits. We also note with

PPM(tdim, hlen, plen, thres, htype) a complete-PPM branch-difference

predictor using a Branch Difference History Table (BDHT) of tdim entries,

a history length of hlen differences, a search pattern length of plen

(specifying the current state), a threshold of thres, and considering a history

of branch difference values or branch difference signs (htype=value/sign).

4.6.1. Evaluating Neural-Based Branch Predictors

In the first stage of this work, we’ll measure with present-day branch

predictors the prediction accuracy on all branches and, respectively, only on

the final list of unbiased branches identified in [61], using different local

and global history lengths. Table 4.1 shows comparatively the results

Predicting Unbiased Branches 65

obtained on the SPEC2000 benchmarks using a simple perceptron-based

predictor integrated into Simplesim-3.0 [46].

 LH(28)-GH(0) LH(0)-GH(28) LH(28)-GH(28) LH(14)-GH(14) LH(28)-GH(40)

Bench All Unb. All Unb. All Unb. All Unb. All Unb.

bzip 87.3 70.1 90.7 74.8 90.6 74.8 90.5 74.8 90.6 74.7

gzip 85.7 77.9 91.5 79.1 91.9 79.3 91.6 79.3 92.1 79.9

mcf 87.3 51.0 98.5 69.4 98.7 72.5 98.3 67.5 98.8 73.7

parser 85.2 60.7 93.5 69.0 93.9 69.7 93.3 68.4 94.0 70.6

twolf 79.9 60.2 86.2 66.2 87.0 68.2 85.6 66.0 87.2 68.2

Mean 85.1 64.0 92.1 71.7 92.4 72.9 91.9 71.2 92.5 73.4

Table 4.1. The prediction accuracies obtained with the perceptron predictor using

different prediction information on all branches and, respectively, only on unbiased
branches from the SPEC2000 benchmarks. We used a table of perceptrons with

256 entries.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

LH
(2

8)
-G

H
(0

)

LH
(0

)-
G
H
(2

8)

LH
(2

8)
-G

H
(2

8)

LH
(1

4)
-G

H
(1

4)

LH
(1

6)
-G

H
(0

)

LH
(0

)-
G
H
(1

6)

LH
(8

)-
G
H
(8

)

LH
(2

8)
-G

H
(4

0)

History

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.10. The average prediction accuracies obtained with the perceptron

predictor using different prediction information on all branches and, respectively,
only on unbiased branches from the SPEC2000 benchmarks. We used a table of

perceptrons with 256 entries.

Table 4.1 intends to find an optimal LH(p)-GH(q) configuration within an

enormous space of possible solutions. We did not use a well-known

heuristic search method (e.g. genetic algorithms), preferring an empirical

one based on our experience in the branch prediction field. As Table 4.1 and

Figure 4.10 show, when we used the best configuration of the perceptron

predictor (a local history of 28 bits and a global history of 40 bits –

66 A Systematic Approach to Predict Unbiased Branches

determined based on laborious simulations), we obtained a prediction

accuracy of 92.58% on all branches and, respectively, of only 73.46% on the

unbiased branches.

Figures 4.11 and 4.12 show comparatively on the SPEC2000

benchmarks the prediction accuracies obtained with different present-day

branch predictors on all branches and, respectively, only on the final list of

unbiased branches identified in [19, 37] using the XOR between the global

history of 32 bits and the path of 32 PCs.

94.18%

76.08%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip

m
cf

pa
rs

er

tw
ol

f

A
ve

ra
ge

Benchmark

P
re

d
ic

ti
o

n
 a

c
c

u
ra

c
y

All

Unbiased

Figure 4.11. The average prediction accuracies obtained with the Frankenpredictor

on the SPEC2000 benchmarks.

94.92%

77.30%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip

m
cf

pa
rs

er

tw
ol
f

Ave
ra

ge

Benchmark

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.12. The average prediction accuracies obtained with the piecewise linear

branch predictor on the SPEC2000 benchmarks.

Predicting Unbiased Branches 67

We measured the prediction accuracies with the Frankenpredictor [30], and

the Idealized Piecewise Linear Branch Predictor [29], both described in the

previous sections. We used the original Idealized Piecewise Linear Branch

Predictor where the global history length is dynamically adjusted between

18 and 48 bits and, respectively, the local history length between 1 and 16

bits. For the Frankenpredictor we used a global history of 59 bits. Even if

the Idealized Piecewise Linear Branch Predictor doesn’t solve satisfactory

the unbiased branches problem, it predicts them with an average accuracy of

77.3% that is better than all the other simulated branch prediction schemes.

 Frankenpredictor Piecewise

Benchmark All Unb. All Unb.

dist-fp-1 98.5 71.9 98.4% 78.2

dist-fp-2 99.1 95.4 99.0% 97.5

dist-fp-3 99.6 96.0 99.6% 99.1

dist-fp-4 99.9 90.3 99.8% 95.2

dist-fp-5 99.9 84.7 99.8% 96.8

dist-int-1 97.6 79.9 98.3% 87.9

dist-int-2 93.4 81.5 94.0% 85.7

dist-int-3 91.3 71.7 93.2% 79.2

dist-int-4 98.9 91.4 98.6% 92.1

dist-int-5 99.7 74.1 99.7% 88.0

dist-mm-1 92.8 83.8 93.0% 85.7

dist-mm-2 90.6 84.6 91.0% 89.3

dist-mm-3 99.1 67.9 99.4% 87.0

dist-mm-4 98.6 98.7 98.6% 98.9

dist-mm-5 95.2 85.4 95.2% 88.8

dist-serv-1 97.8 83.5 97.5% 89.4

dist-serv-2 97.7 83.7 97.6% 89.2

dist-serv-3 95.6 84.8 95.1% 88.9

dist-serv-4 96.3 77.5 96.4% 83.2

dist-serv-5 96.7 75.2 96.7% 82.2

Average 96.9 83.1 97.0% 89.1

Table 4.2. The prediction accuracies obtained with the piecewise linear branch

predictor and the Frankenpredictor on the Intel benchmarks.

Table 4.2 and Figures 4.13 and 4.14 show comparatively on the CBP-1 Intel

benchmarks [5] the prediction accuracies obtained on all branches and,

respectively, only on the final list of unbiased branches identified in [19, 37]

using the XOR between the global history of 32 bits and the path of 32 PCs.

We measured the prediction accuracies on the Intel benchmarks with the

Idealized Piecewise Linear Branch Predictor [29] and the Frankenpredictor

[30]. We used for both predictors the same configurations as on the

68 A Systematic Approach to Predict Unbiased Branches

SPEC2000 benchmarks. Even if the Idealized Piecewise Linear Branch

Predictor doesn’t solve satisfactory the unbiased branches problem, it

predicts them with an average accuracy of 89.1% that is better than all the

other simulated branch prediction schemes. However, we are reserved

regarding the CBP-1 Intel benchmarks due to their shortness. Furthermore,

the Second Championship Branch Prediction Competition (CBP-2) [6] have

used all the twelve CPUintSPEC2000 benchmarks and eight

JavaSPECjvm98 benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

dist-fp dist-int dist-mm dist-serv

Benchmark type

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

PA/all

PA/unbiased

Figure 4.13. The average prediction accuracies obtained with the Frankenpredictor

on the Intel benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

dist-fp dist-int dist-mm dist-serv

Benchmark type

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

PA/all

PA/unbiased

Figure 4.14. The average prediction accuracies obtained with the piecewise linear

branch predictor on the Intel benchmarks.

Predicting Unbiased Branches 69

We empirically found out that the behavior of difficult branches – as

we defined them – cannot be sufficiently learned neither by neural

predictors. Figures 4.11, 4.12, 4.13 and 4.14 confirm us again, that the

unbiased branches, identified in our previous work [61, 19], are hard-to-

predict with present-day branch predictors.

4.6.2. Evaluating the O-GEHL Predictor

We have also evaluated the Optimized GEometric History Length

(O-GEHL) predictor [44], described in section 4.4 (see Figure 4.4). We used

an 8-table O-GEHL predictor. The experimental results obtained on the

SPEC2000 benchmarks are presented in Figure 4.15.

94.02%

75.25%

65%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip

m
cf

pa
rs

er

tw
ol
f

A
ve

ra
ge

Benchmark

P
re

d
ic

ti
o

n
 a

c
c

u
ra

c
y

All

Unbiased

Figure 4.15. The average prediction accuracies obtained with the O-GEHL

predictor on the SPEC2000 benchmarks.

As it can be observed, the neural branch predictors provided higher

prediction accuracy then the O-GEHL predictor (see comparatively Figures

4.11, 4.12 and 4.15).

4.6.3. Evaluating Local Branch Difference Predictors

We’ll continue this work by evaluating the prediction accuracy of

the complete-PPM branch-difference predictor (see Figure 4.7) on all

70 A Systematic Approach to Predict Unbiased Branches

branches and, respectively, only on the final list of unbiased branches

(identified in [61]). We started our simulations by evaluating different local

history lengths. Table 4.3 shows comparatively the results obtained on the

SPEC2000 benchmarks, using a history of branch difference values and,

respectively, a history of branch difference signs (-1 if negative, 1 if

positive, or 0), considering an unlimited BDHT, a pattern length of 3, and a

threshold of 1.

 History of Branch

Difference Values

History of Branch

Difference Signs

History All Unb. All Unb.

LH(8) 85.78% 64.76% 86.56% 65.33%

LH(16) 86.84% 66.35% 88.34% 68.26%

LH(24) 86.79% 66.52% 88.66% 68.61%

LH(32) 86.83% 66.87% 88.88% 68.78%

LH(40) 86.81% 66.91% 89.03% 68.98%

LH(48) 86.77% 67.04% 89.11% 69.12%

LH(56) 86.78% 67.33% 89.19% 69.23%

LH(64) 86.76% 67.43% 89.26% 69.37%

LH(128) 86.56% 67.52% 89.45% 69.70%

LH(256) 86.39% 67.94% 89.58% 69.75%

Table 4.3. The average prediction accuracies on all branches and, respectively,

only on unbiased branches from the SPEC2000 benchmarks, using branch-

difference predictors with different local history lengths.

60%

65%

70%

75%

80%

85%

90%

95%

LH
(8

)

LH
(1

6)

LH
(2

4)

LH
(3

2)

LH
(4

0)

LH
(4

8)

LH
(5

6)

LH
(6

4)

Local history

P
re

d
ic

ti
o

n
 a

c
c

u
ra

c
y

All-Sign

Unbiased-Sign

All-Value

Unbiased-Value

Figure 4.16. The average prediction accuracies on the SPEC2000 benchmarks,

using a PPM(tdim=unlimited, hlen=varied, plen=3, thres=1, htype=value and

sign) branch difference predictor with different local history lengths.

Predicting Unbiased Branches 71

Figure 4.16 shows the difference’s value prediction accuracies

obtained on the SPEC2000 benchmarks, using an unlimited BDHT

containing the values respectively the signs of the last branch differences, a

pattern length of 3, and a threshold of 1. As simulations show (Figure 4.16),

branch differences can be better predicted when only difference signs are

used as history instead of difference values. Consequently, the sign of the

current branch difference is better correlated with the signs of its previous

differences than with the values of those differences.

The experimental results also show that the performance is relatively

saturated starting with a local history length of 24 bits. Why is better to use

only the signs of differences as history information instead of the values of

differences? The number of distinct symbols that can occur in a value

history is huge reported to only three symbols that can appear in a sign

history. Thus, the frequency of symbols in a value history is very low. In the

following example only a Markov predictor of order 1 can be used for the

value history, and it generates a misprediction, while in the case of the sign

history, even a Markov predictor of order 5 can be used, which generates the

correct prediction:

 Value history: -126, -34, 7, -42, -28, 75, -829, -7982, 102, -542, -42, ?

 Sign history: -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, ?

Obviously, through a sign history much deeper correlations can be

exploited than with a value history.

0.42%

95.64%

22.54%

6.68%

67.59%

1.21% 2.73% 3.19%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

markov-0 markov-1 markov-2 markov-3

Markov predictors

U
s
a
g

e

Sign

Value

Figure 4.17. The average usage rates of Markov predictors using

PPM(tdim=unlimited, hlen=24, plen=3, thres=1, htype=sign and value) branch

difference predictors on all branches.

72 A Systematic Approach to Predict Unbiased Branches

Figure 4.17 compares the sign history with the value history in terms of

usage rate afferent to Markov predictors of different orders. We used the

optimal history length 24 and a pattern length of 3, and therefore, we

evaluated the usage rates corresponding to Markov predictors of orders 0, 1,

2 and 3. As Figure 4.17 shows, more often are used superior order Markov

predictors by using a sign history, and thus, deeper correlations can be

exploited. Therefore, we continued by evaluating different pattern lengths

using an unlimited BDHT, a sign history of 24 branch difference signs, and

a threshold of 1. As Figure 4.18 shows, the best PPM’s pattern length is 3,

considering the optimal local history of 24 branch difference signs.

88.66%

68.61%

65%

70%

75%

80%

85%

90%

1 2 3 4 5 6 7 8

Pattern length

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.18. The average prediction accuracies on all branches and, respectively,

only on unbiased branches from the SPEC2000 benchmarks, using a

PPM(tdim=unlimited, hlen=24, plen=varied, thres=1, htype=sign) branch

difference predictor with different pattern lengths.

88.66% 89.51%

68.61% 70.14%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

LH(24)-

P(3)

LH(32)-

P(4)

LH(64)-

P(5)

LH(128)-

P(6)

LH(256)-

P(6)

PPM configuration

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.19. The average prediction accuracies on SPEC2000 benchmarks using a

PPM(tdim=unlimited, hlen=varied, plen=varied, thres=1, htype=sign) branch

difference predictor exploring different local history lengths and pattern lengths.

Predicting Unbiased Branches 73

Figure 4.19 explores the space of local history lengths and pattern lengths

using a threshold of 1 and confirms that an acceptable choice (taking into

account a good accuracy/complexity trade-off report) is to use a history of

24 branch difference signs with a pattern length of 3.

65%

70%

75%

80%

85%

90%

95%

100%

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8

Threshold

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All

Unbiased

Figure 4.20. The average confidence on all branches and, respectively, only on

unbiased branches from the SPEC2000 benchmarks, using a PPM(tdim=unlimited,
hlen=24, plen=3, thres=varied, htype=sign) branch difference predictor with

different threshold values.

Threshold Lost predictions [%]

T=1 0.00

T=2 7.59

T=3 13.37

T=4 17.31

T=5 20.50

T=6 23.40

T=7 25.13

T=8 26.98

Table 4.4. Average percentages of predictions lost with different thresholds.

We also studied the influence of the threshold’s value over the prediction

accuracy, using an unlimited BDHT, a local history of 24 branch difference

signs, and a pattern length of 3. The threshold’s value means how many

times the current search pattern must be found in the history string in order

to generate a prediction, implementing thus a confidence degree (otherwise,

no prediction is generated). Strictly considering the confidence metric, the

experimental results presented in Figure 4.20 show that the optimal

threshold value is 7. However, in this case, the total number of predictions

decreases at average with 25.13% (see Table 4.4). Considering T=1, the

74 A Systematic Approach to Predict Unbiased Branches

global prediction accuracy on unbiased branches A(T=1) is 68.61%. In

contrast, considering T=7, the global accuracy A(T=7) is 74.87%x78.33% =

58.64% and, respectively, for T=2, A(T=2) is 92.41%x71.16% = 65.75%.

Therefore, from the global accuracy point of view T=1 is optimal. The last

parameter we varied is the dimension of the BDHT.

60%

65%

70%

75%

80%

85%

90%

95%

100%

64 128 192 256 unlimited

Local history entries

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c

y

All(T=1)

Unbiased(T=1)

All(T=7)

Unbiased(T=7)

Figure 4.21. The average prediction accuracies on the SPEC2000 benchmarks

using a PPM(tdim=varied, hlen=24, plen=3, thres=1 and 7, htype=sign) branch

difference predictor considering different BDHT dimensions.

Figure 4.21 shows that a BDHT with 256 entries provides the same results

as an unlimited BDHT does. Consequently, we determined that the optimal

branch difference predictor configuration is PPM(tdim=256, hlen=24,

plen=3, thres=1 or 7, htype=sign). The signs of branch differences can be

predicted considering this optimal configuration with an accuracy of

68.60% on the unbiased branches and 88.66% on all branches and,

respectively, a confidence of 78.33% on the unbiased branches and 96.05%

on all branches.

The next step consists in speculatively executing branches based on

their predicted input differences. The final confidence branch prediction

accuracies – evaluating all branches and, respectively, only unbiased

branches –, obtained using the speculative branch differences generated with

the optimal branch difference predictor, are presented in Tables 4.5 (without

threshold) and 27 (with threshold).

The average prediction accuracy obtained without threshold on the

unbiased branches is only 71.76% (see Table 4.5). Using a threshold of 7, it

grows to 79.69% (see Table 4.6).

Predicting Unbiased Branches 75

 Branch Prediction Accuracy [%]

Benchmark All Unb.

bzip 89.92 74.50

gzip 88.95 79.06

mcf 97.10 66.25

parser 91.47 66.01

twolf 85.29 73.00

Average 90.55 71.76

Table 4.5. The final branch prediction accuracies on all branches and, respectively,

only on unbiased branches, obtained by using the speculative branch differences

generated with the optimal branch-difference predictor without threshold.

 Branch Prediction Accuracy [%]

Benchmark All Unb.

bzip 96.88 79.94

gzip 95.99 86.28

mcf 99.19 75.14

parser 96.71 73.26

twolf 93.40 83.83

Average 96.43 79.69

Table 4.6. The final branch prediction accuracies on all branches and, respectively,
only on unbiased branches, obtained by using the speculative branch differences

generated with the optimal branch-difference predictor using a threshold of 7.

The average prediction accuracy measured only on unbiased branches and,

respectively, on all branches is lower for the complete-PPM predictor

comparing with the perceptron predictor. Consequently, unbiased branches

remain hard-to-predict even with the sign of the condition’s difference in the

local approach, due to the quasi-random values afferent to the branch

condition. Therefore, a hybrid global-local approach is necessary.

4.6.4. Evaluating Combined Global and Local Branch

Difference Predictors

 In the combined global and local approach, each global history

pattern points to its own BDHT (see Figure 4.8). The selected BDHT is

indexed by the PC, as in the local approach. First, we evaluated the

predictor by maintaining in the GHR (see Figure 4.8) the global branch

76 A Systematic Approach to Predict Unbiased Branches

difference history: the signs of the inputs’ differences corresponding to the

previous h branches. Figure 4.22 shows comparatively the results obtained

with and without threshold on all branches and, respectively, only on the

unbiased branches from the SPEC 2000 benchmarks.

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 1 2 3 4

Global history length

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All(T=1)

Unbiased(T=1)

All(T=7)

Unbiased(T=7)

Figure 4.22. The average confidence on the SPEC2000 benchmarks using a

PPM(tdim=256, hlen=24, plen=3, thres=1 and 7, htype=sign) branch difference

predictor considering different global branch difference history lengths.

We also evaluated the predictor by maintaining in the GHR the

global branch outcome history (Taken / Not Taken). Our simulation results

show that the confidence is slightly better on unbiased branches if we use

the global difference-sign history. Considering a global history length of 4

(GH=4), we obtained a confidence of 68.81% with the global difference-

sign history, opposite to 67.84% obtained with global branch outcome

history. The difference-sign history can be more efficient because, due to its

additional information, it can efficiently exploit shorter contexts, too. The

following example presents the situation for bgez:

Difference history: 138, 52, 47, 0, -591, 5783, 4, 702, 0, -35, 721, 5, 14, 0, ?

Sign history: +, +, +, 0, -, +, +, +, 0, -, +, +, +, 0, ?

Output history: T, T, T, T, NT, T, T, T, T, NT, T, T, T, T, ?

If after “0” statistically follows “-“ (and, in the case of bgez, “0” is

associated together with “+” to Taken) a first order Markov can correctly

predict in the case of sign history, while, in the case of outcome history, the

Markov predictor must be of order 4 or higher for correct prediction.

Predicting Unbiased Branches 77

The signs of branch differences can be predicted, considering a

PPM(tdim=256, hlen=24, plen=3, thres=1, htype=sign) having a global

branch difference history of 4, with an accuracy of 68.81% on the unbiased

branches and, respectively 90.47% on all branches (see Figure 4.22). The

next step consists in executing branches based on their predicted input

differences. The final branch prediction accuracies – evaluating all branches

and, respectively, only unbiased branches –, obtained by using the

speculative branch differences generated with this global-local branch

difference predictor, are presented in Table 4.7. The results show that even

the global-local PPM cannot improve the branch prediction accuracy

obtained with the perceptron predictor.

 Branch Prediction Accuracy [%]

Benchmark All Unb.

bzip 92.32 75.69

gzip 90.59 78.33

mcf 98.22 64.24

parser 93.90 69.14

twolf 86.62 70.28

Average 92.33 71.54

Table 4.7. The final branch prediction accuracies on all branches respectively only

on unbiased branches, obtained using the speculative branch differences generated

with the optimal global-local branch-difference predictor without threshold.

 Branch Prediction Accuracy [%]

Benchmark All Unb.

bzip 97.62 84.44

gzip 96.70 86.36

mcf 99.53 74.46

parser 98.07 78.56

twolf 95.26 82.41

Average 97.44 81.25

Table 4.8. The final branch prediction accuracies obtained by using the optimal

global-local branch-difference predictor with a threshold of 7 (confidence).

The final branch prediction accuracies – evaluating all branches and,

respectively, only unbiased branches –, obtained by using the speculative

branch differences generated using this global-local branch difference

predictor with a threshold of 7, are presented in Table 4.8. As it can be

observed, the global-local approach improves significantly the average

prediction accuracy on all branches to 97.44%, if a threshold of 7 is used.

78 A Systematic Approach to Predict Unbiased Branches

However, the average prediction accuracy remains still low on unbiased

branches: 81.25%.

4.6.5. Branch Difference Prediction by Combining Multiple

Partial Matches

 Branch differences are predicted by five Markov predictors of orders

ranging between [1, 5]. The final prediction is provided through majority

voting, as we already presented in paragraph 4.5.3. We started our

evaluations using a BDHT of 256 entries, local branch difference history of

24 values. Figure 4.23 presents the results obtained on the SPEC2000

benchmarks considering simple voting respectively confidence-based

voting.

 It can be observed that through confidence-based voting the branch

differences can be predicted with a slightly higher accuracy than through

simple voting.

60%

65%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip

m
cf

pa
rs

er

tw
ol

f

A
ve

ra
ge

Benchmark

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

All-Simple-Voting

All-Conf-Voting

Unbiased-Simple-Voting

Unbiased-Conf-Voting

Figure 4.23. Branch difference prediction accuracies by combining multiple partial

matches through simple voting and confidence-based voting.

Table 4.9 presents the final branch prediction accuracies – evaluating all

branches and, respectively, only unbiased branches – obtained using the

speculative branch differences generated by combining multiple partial

matches through confidence-based voting.

Predicting Unbiased Branches 79

 Branch Prediction Accuracy [%]

Benchmark All Unb.

bzip 91.52 75.54

gzip 90.28 79.50

mcf 97.32 66.75

parser 92.27 67.13

twolf 86.55 72.30

Average 91.59 72.24

Table 4.9. The final branch prediction accuracies on all branches and, respectively,

only on unbiased branches, obtained using the speculative branch differences

generated by combining multiple partial matches through confidence-based voting.

Figure 4.24 shows again, that the unbiased branches identified in [19, 37,

61] cannot be accurately predicted even with condition-history-based

Markov predictors. The highest average prediction accuracy on the unbiased

branches, of 77.30%, was provided by the piecewise linear branch predictor.

77.30%

60%

65%

70%

75%

80%

85%

bzip gzip mcf parser twolf Average

Benchmark

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

Local PPM

Global-Local PPM

Multiple Markov

Perceptron

Piecewise

Frankenpredictor

O-GEHL

Figure 4.24. The final branch prediction accuracies obtained without threshold

using the perceptron-based predictors, the O-GEHL predictor, the local complete-
PPM, the global-local complete-PPM and respectively prediction by combining

multiple partial matches through confidence-based voting, only on unbiased

branches.

We also studied the influence of the threshold’s value over the

prediction accuracy by combining multiple partial matches through

confidence-based voting, using a BDHT with 256 entries, and a local history

of 24 branch difference signs. In this case, the confidence-based voting

takes the majority, considering only Markov predictions found in the history

string after the considered pattern at least T (threshold) times.

80 A Systematic Approach to Predict Unbiased Branches

91.61%

91.23%

90.12%

71.51%

69.93% 70.24%

65%

70%

75%

80%

85%

90%

95%

T=1 T=2 T=3 T=4 T=5 T=6 T=7

Pattern length

P
re

d
ic

ti
o

n
 a

c
c

u
ra

c
y

All

Unbiased

Figure 4.25. Branch difference prediction accuracies by combining multiple partial

matches through confidence-based voting with different thresholds.

Threshold Lost predictions [%]

T=1 2,25

T=2 5,20

T=3 6,62

T=4 8,06

T=5 9,40

T=6 10,78

T=7 13,02

T=8 2,25

Table 4.10. Average percentages of predictions lost by using different thresholds.

The experimental results presented in Figure 4.25 and Table 4.10 show that

the optimal threshold value is 2. Thus, the final branch prediction accuracy

by combining multiple partial matches through confidence-based voting

with a threshold of 2 is 73.05% on unbiased branches.

5. Using Last Branch Difference as

Prediction Information

Further, we evaluated the percentage of unbiased context instances

using the last known branch condition difference together with global

histories of p bits (1≤p≤24). A branch condition difference consists in the

difference of the operand values implied in the branch condition. More than

two branch condition differences are not necessary [48, 25]. Table 5.1 and

Figure 5.1 compares the percentages of unbiased branches using the global

history (GH), the global history concatenated with the path (GH + PATH),

respectively the global history concatenated with the last branch difference

(GH + LBD).

Context p=1 p=4 p=8 p=12 p=16 p=20 p=24

GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23

GH (p bits) + PATH (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01

GH (p bits) + LBD 36.99 32.25 26.94 22.39 19.91 17.85 16.24

Table 5.1. The gain introduced by the path respectively last branch difference

(LBD) for different context lengths – SPEC2000 benchmarks [%].

15%

20%

25%

30%

35%

40%

45%

50%

p=1 p=4 p=8 p=12 p=16 p=20 p=24

Context Length

U
n

b
ia

s
e

d
 C

o
n

te
x
t

In
s
ta

n
c
e
s

GH (p bits)

GH (p bits) + PATH (p PCs)

GH (p bits) + LBD

Figure 5.1. The gain introduced by the path respectively last branch difference

(LBD) for different context lengths – SPEC2000 benchmarks.

82 A Systematic Approach to Predict Unbiased Branches

The results, presented in Figure 5.1, show that the last branch

condition is more efficient than the path information: it decreased the

percentage of unbiased branches for all evaluated context lengths (1≤p≤24).

Therefore we can use this new prediction information in some state-of-the-

art branch predictors in order to increase prediction accuracy [20, 21].

Global Pattern History Table (GPHT)

Predicted PC Prediction bits
W

L2size

LBD

W bits

XOR

GHR

W bits

Global Pattern History Table (GPHT)

Predicted PC Prediction bits
W

L2size

LBD

W bits

XORXOR

GHR

W bits

Figure 5.2. The GAg predictor using the last branch difference (LBD).

We first analyzed a GAg scheme that uses the last branch difference (LBD)

by XORing it with the GHR (as the Gshare XORed the PC with the GHR).

The predictor is presented in Figure 5.2. Table 5.2 presents the prediction

accuracies obtained with the modified GAg predictor on unbiased branches.

Bench
GHPC16

(gshare) GHLBD16

LBD4-

GHLBD12

LBD8-

GHLBD8

Shifted-

GHLBD16

Shifted-

LBD4-

GHLBD12

Shifted-

LBD8-

GHLBD8

LBD4-

GH12

Signed-

LBD4-

GHLBD12

bzip 67.40 66.16 69.66 70.26 66.55 69.45 70.01 70.12 69.64

gzip 71.89 68.86 73.62 75.54 69.25 73.55 74.46 74.30 73.47

mcf 82.44 81.30 78.63 72.27 82.13 77.24 70.97 78.40 78.71

parser 64.96 63.23 66.39 68.93 62.72 65.75 66.40 67.62 66.05

twolf 57.78 56.15 58.12 60.20 56.29 57.54 59.52 58.93 58.14

Mean 68.89 67.14 69.28 69.44 67.39 68.71 68.27 69.87 69.20

Table 5.2. Prediction accuracies of the modified GAg predictor on unbiased

branches.

The following contexts have been used with the modified GAg predictor

(Table 5.2):

Using Last Branch Difference as Prediction Information 83

 GHPC16: the 16 least significant bits of the branch PC (shifted to

right by 3 bits) XORed with 16 bits of global history (gshare

predictor);

 GHLBD16: 16 least significant bits of last branch difference XORed

with 16 bits of global branch history;

 LBD4-GHLBD12: 4 least significant bits of last branch difference

concatenated with the XOR between 12 least significant bits of last

branch difference and 12 bits of global branch history;

 LBD8-GHLBD8: 8 least significant bits of last branch difference

concatenated with the XOR between 8 least significant bits of last

branch difference and 8 bits of global branch history;

 Shifted-GHLBD16: the 16 least significant bits of last branch

difference (shifted to right by 3 bits) XORed with 16 bits of global

history;

 Shifted-LBD4-GHLBD12: 4 least significant bits of last branch

difference (shifted to right by 3 bits) concatenated with the XOR

between 12 least significant bits of last branch difference (shifted to

right by 3 bits) and 12 bits of global branch history;

 Shifted-LBD8-GHLBD8: 8 least significant bits of last branch

difference (shifted to right by 3 bits) concatenated with the XOR

between 8 least significant bits of last branch difference (shifted to

right by 3 bits) and 8 bits of global branch history;

 LBD4-GH12: 4 least significant bits of last branch difference

concatenated with 12 bits of global branch history;

 Signed-LBD4-GHLBD12: sign bit of last branch difference (0 if

positive, 1 if negative) concatenated with 3 least significant bits of

last branch difference, and respectively, with the XOR between 12

least significant bits of last branch difference and 12 bits of global

branch history.

We have also analyzed a PAg scheme that uses the local (per-address) LBD

(last branch difference) by XORing it with the LHR (local history register).

The Per-address Branch History Table (PBHT) maintains for each branch its

own Local History (LH) and, respectively, its Last Branch Difference

(LBD). The predictor is presented in Figure 5.3. Table 4 presents the

prediction accuracies obtained with the modified PAg predictor on unbiased

branches.

84 A Systematic Approach to Predict Unbiased Branches

W
Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size
W

XOR

PChigh PClow

log2L1size
LHR k

W bits

Per-address Branch

History Table (PBHT)

LBD k

W bits

WW
Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size

Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size
W

XORXOR

PChigh PClow

log2L1size

PChigh PClow

log2L1size
LHR k

W bits

Per-address Branch

History Table (PBHT)

LBD k

W bits

W

Figure 5.3. The PAg predictor using the local LBD.

Bench
LH16

(PAg) LHLBD16

LBD4-

LHLBD12

LBD8-

LHLBD8

Shifted-

LHLBD16

Shifted-LBD4-

LHLBD12

Shifted-

LBD8-

LHLBD8

LBD4-

LH12

Signed-LBD4-

LHLBD12

bzip 74.83 69.86 74.61 74.68 70.07 74.54 74.35 74.80 74.67

gzip 78.37 75.77 79.30 79.62 77.53 78.36 78.48 79.30 79.31

mcf 72.18 70.93 70.55 68.15 73.79 71.91 68.34 69.21 68.76

parser 72.64 74.06 74.82 73.65 72.95 74.30 73.23 73.13 74.52

twolf 68.84 65.75 68.83 69.43 64.60 69.66 70.06 68.16 68.77

Mean 73.37 71.27 73.62 73.11 71.79 73.75 72.89 72.92 73.21

Table 5.3. Prediction accuracies of the modified PAg predictor on unbiased

branches.

The second level (GPHT) is indexed, depending on the used context, as

follows:

 LH16: the second level is indexed by 16 bits of local branch history

(PAg predictor);

 LHLBD16: 16 least significant bits of last branch difference XORed

with 16 bits of local branch history;

 LBD4-LHLBD12: 4 least significant bits of last branch difference

concatenated with the XOR between 12 least significant bits of last

branch difference and 12 bits of local branch history;

Using Last Branch Difference as Prediction Information 85

 LBD8-LHLBD8: 8 least significant bits of last branch difference

concatenated with the XOR between 8 least significant bits of last

branch difference and 8 bits of local branch history;

 Shifted-LHLBD16: 16 least significant bits of last branch difference

(shifted to right by 3 bits) XORed with 16 bits of local history;

 Shifted-LBD4-LHLBD12: 4 least significant bits of last branch

difference (shifted to right by 3 bits) concatenated with the XOR

between 12 least significant bits of last branch difference (shifted to

right by 3 bits) and 12 bits of local branch history;

 Shifted-LBD8-LHLBD8: 8 least significant bits of last branch

difference (shifted to right by 3 bits) concatenated with the XOR

between 8 least significant bits of last branch difference (shifted to

right by 3 bits) and 8 bits of local branch history;

 LBD4-LH12: 4 least significant bits of last branch difference

concatenated with 12 bits of local branch history;

 Signed-LBD4-LHLBD12: sign bit of last branch difference (0 if

positive, 1 if negative) concatenated with 3 least significant bits of

last branch difference, and respectively, with the XOR between 12

least significant bits of last branch difference and 12 bits of local

branch history.

Figure 5.4 presents the scheme of the perceptron-based branch

predictor that is using as additional prediction information the global last

branch difference (LBD). The lower part of the branch address (PC) selects

a perceptron in the table of perceptrons and, respectively a local history

register in the local branch history table. Thus, local and global branch

histories together with the last branch difference are used as inputs for the

selected perceptron in order to generate a prediction.

Table 5.4 presents the prediction accuracies obtained with the

piecewise linear branch predictor on the unbiased branches, using the

global LBD as additional prediction information. The global history length

is dynamically adjusted between 18 and 48 bits and, respectively, the local

history length between 1 and 16 bits, as in [29, 20, 21]. We obtained an

unsignificant gain when we used the last branch difference (LBD) entirely

(32 bits), even with an increased number of weights from 8590 upto 30713

(the higher weights number being justified by the long additional

information).

86 A Systematic Approach to Predict Unbiased Branches

PC

Selected Perceptron

Selected LHR

Local Branch

History Table

Prediction

LH

Table of

Perceptrons

GHR

GH

LBD

LBDPC

Selected Perceptron

Selected LHR

Local Branch

History Table

Prediction

LH

Table of

Perceptrons

GHRGHR

GH

LBDLBD

LBD

Figure 5.4. Perceptron-based branch predictor using the last known global branch

difference.

Bench
GH-LH-

8590w

GH-LH-LBD-

8590w

GH-LH-LBD-

12530w

GH-LH-LBD-

15720w

GH-LH-LBD-

20573w

GH-LH-LBD-

30713w

bzip 76.63% 78.53% 78.58% 78.61% 78.61% 78.64%

gzip 81.29% 81.51% 81.54% 81.54% 81.55% 81.57%

mcf 74.74% 74.79% 74.78% 74.80% 74.79% 74.80%

parser 77.11% 78.31% 78.58% 78.73% 78.84% 78.99%

twolf 76.73% 76.56% 76.77% 77.20% 77.37% 77.52%

Mean 77.30% 77.94% 78.05% 78.18% 78.23% 78.30%

Table 5.4. The prediction accuracies obtained with piecewise linear branch

predictor on unbiased branches, using the global LBD as additional prediction

information.

However, with the modified piecewise linear branch predictor we

obtained a prediction accuracy of 78.30% (see Table 5.4) opposite to those
obtained with the modified GAg, 69.87% (see Table 5.2), respectively the modified

PAg, 73.75% (see Table 5.3). This gain was probably obtained because both the

modified GAg and PAg predictors use a hashing between LBD and global
respectively local branch history, while the modified piecewise linear branch

predictor uses the branch history and LBD without hashing (by concatenating

them). Figure 5.5 presents a possible scheme of the perceptron-based branch

predictor that is using as prediction information local (per-address) last

branch difference (LBD).

Using Last Branch Difference as Prediction Information 87

PC

Table of

Perceptrons

Selected Perceptron

Selected LHR

Local Branch

History Table

GHR

Prediction

LH & LBD GHPC

Table of

Perceptrons

Selected Perceptron

Selected LHR

Local Branch

History Table

GHR

Prediction

LH & LBD GH

Figure 5.5. Perceptron-based branch predictor using the last known local branch

difference.

In Figure 5.5, the Local Branch History Table maintains for each

branch its Local History (LH) and, respectively, the Last Branch Difference

(LBD). The prediction accuracies obtained with this scheme are presented in

Table 5.5.

Bench
GH-LH-

8590w

GH-LH-LBD-

8590w

GH-LH-LBD-

12530w

GH-LH-LBD-

15720w

GH-LH-LBD-

20573w

GH-LH-LBD-

30713w

bzip 76.63% 76.64% 76.67% 76.71% 76.74% 76.77%

gzip 81.29% 81.20% 81.22% 81.23% 81.22% 81.23%

mcf 74.74% 75.00% 74.98% 75.02% 75.00% 75.02%

parser 77.11% 78.00% 78.24% 78.42% 78.56% 78.71%

twolf 76.73% 76.34% 76.53% 76.71% 76.97% 77.24%

Average 77.30% 77.44% 77.53% 77.62% 77.70% 77.79%

Table 5.5. Prediction accuracies of the piecewise linear branch predictor on

unbiased branches, using the local (per-address) LBD as additional prediction

information.

Unfortunately, we have not obtained any improvement with the local LBD

approach opposite to the global LBD approach, the accuracies being even

lower.

6. Designing an Advanced Simulator for

Unbiased Branches Prediction

In modern superscalar microarchitectures that speculatively execute

a great quantity of code, without performing branch prediction, it won’t be

possible to aggressively exploit program’s instruction level parallelism.

Both the architectural and technological complexity of current processors

emphasizes the negative impact on performance due to every branch

misprediction. Due to this importance, branch prediction becomes a core

topic in Computer Architecture curricula. The fast development of

computer science and information technology domains, and of

computer architecture especially, have determined that many software

tools used not far ago in research, to be enhanced with an interactive

graphical interface and to be taught in Introductory Computer

Organization respectively Computer Architecture courses. The lack of

simulators dedicated to branch prediction used in didactical purposes despite

of plenty used in research goals, represents the starting point of this paper.

The main aim of this section consists in identifying the difficult-to-predict

branches, quantifying them at benchmark-level and finding the relevant

information to reduce their numbers. Finally, we evaluate the impact of

these branches on three commonly used prediction context (local, global and

path) and their corresponding predictors ranging from classical two-level

predictors to present-day predictors (neural – Simple Perceptron and Fast

Path-based Perceptron). The developed ABPS (Advanced Branch

Prediction Simulator) simulator provides a wide variety of configuration

options. Beside statistics related to the number of difficult-to-predict

branches, the simulator generates graphical results illustrating the influence

of different simulation parameters (number of entries in prediction table,

history length, etc.) on prediction accuracy, resources usage degree, etc., for

every implemented predictor.

Both the architectural complexity of current processors (deep

pipeline structures – 20 at INTEL Pentium4 and wide width instruction

issue) and technological complexity (higher processing frequency – greater

than 3.3 GHz at same processor) emphasize the negative impact on

performance due to every branch misprediction [51]. Branch instructions

activate at control-flow level generating performance loss by unknowing in

Designing an Advanced Simulator for Unbiased Branches Prediction 89

the instruction fetch stage the branch direction and target. Thus, the modern

architectures should incorporate very efficacious prediction schemes.

6.1. Simulation Methodology

After more than two decades, the researcher from computer science

domain got the conclusion that simulators have become an integral part of

the computer architecture research and design process [65]. Their most

important advantages, comparing with real processors, are low

implementation cost, development time, flexibility and extensibility

allowing the architects to quickly evaluate the performance of a wide range

of architectures and to quantify the efficacy of every enhancement. Besides

its importance proved in computer architecture research field, in the latest

time, simulators have been extensively employed as a valuable pedagogical

tool as they enable students to visualize how microarchitecture components

work and interact [16]. For example, at last important Workshop on

Computer Architecture Education held in conjunction with the 33rd

International Symposium on Computer Architecture (ISCA06 – the best

conference in computer architecture domain in the world), two papers aim at

fundamental topics of computer architecture curricula: processor – cache

interface in a RISC architecture (MIPS) [38] and power and performance

analysis in superscalar out-of-order architecture [49].

In this section we present the implemented ABPS (Advanced Branch

Prediction Simulator), an interactive graphical trace-driven simulator for

teaching branch prediction [40]. Projects designed around ABPS simulator

are used in both undergraduate and graduate level courses at Computer

Architecture at “Lucian Blaga” University of Sibiu to teach students

concepts related to unbiased branch, state of the art branch predictors,

branch prediction constraints and limits of instruction level parallelism. Our

approach in teaching branch prediction represents a formative necessity

since computer architecture is mainly approached in a descriptive manner.

Through our approach students have the opportunities to be creative /

innovative in computer architecture or in other fundamental research /

didactical domains of computer science and information technology, even in

countries not very developed from economical point of view. Based on

highly parameterized developed simulation tools, students can understand

more in depth the theoretical concepts related to branch prediction

constraints, limits of instruction level parallelism. It could be observed the

different benchmarks’ influence on every proposed architectural innovation.

90 A Systematic Approach to Predict Unbiased Branches

Unfortunately, this version of the simulator uses only an analytical

model to determine the impact of unbiased branch and branch

missprediction on global processing performance [62]. In his model, related

to a superscalar processor, Vintan ignores stalls like cache misses and bus

conflicts focalizing only about the penalty introduced by branch miss-

prediction. In their assignments, students are asked to explore architecture

configurations extending them for optimizing the power, performance, or

both within a given chip area budget (based on other simulation tools –

CACTI, WATTCH [45, 4]).The simulator code is open source and can be

found at [2].

The simulator allows trace-driven simulation on a collection of 17

programs (having 1 million of dynamic branch instructions each) from

different versions of SPEC benchmarks [50]. We use all of the SPEC

CPU2000 integer benchmarks, and all of the SPEC CPU95 integer

benchmarks that are not duplicated in SPEC CPU2000. The benchmarks are

compiled with the CompaQ GEM compiler with the optimization flags -fast

-O4 -arch ev6 [11]. All these benchmarks cover a lot of applications ranging

from compression (text/image) to word processing, from compilers and

architectures to games enhanced with artificial intelligence, etc.

From a pedagogical point of view, the proposed tool benefits the

learning process because it helps students to observe the influence of each

parameter on simulation model. The simulator provides a wider variety of

configuration options. Thus, it can be determined how the prediction

accuracy does vary with input parameters (number of entries in prediction

tables, history length, number of bits for weights representation, threshold

value used for perceptron training, etc). The ABPS simulator assures three

of the features specific to almost high-performance standard simulators: free

availability for use, extensibility and portability. Full inheritance and

polymorphism is used, allowing for ease of extension in the future adding

new functionalities.

6.2. The Functional Kernel of the Simulator

The realized simulator must remove the bottlenecks that limit the

processor performance and search for possible changes (architectural or

optimization techniques) for improving it. Providing a highly parameterized

model for every microarchitectural instance, the performance obtained by

simulation will represent a quick feedback mechanism related to proposed

changes. The simulator execution consists in the following sequential steps:

Designing an Advanced Simulator for Unbiased Branches Prediction 91

1) Configuring the microarchitecture with the input parameters

including the benchmarks.

2) Initialization phase (prediction tables, local/global history registers).

3) Starting the trace processing and computing the simulation metrics.

The mechanism that identifies unbiased branches was already

presented in Chapter 3. The Detector kernel of ABPS finds the unbiased

branches (those that have their polarization index – the percentage of “not

taken” or “taken” branch instances corresponding to a certain context –

lower than a polarization degree, set prior the simulation) and quantifies

their number. Repeating the unbiased branches detection methodology for a

length-ordered set of contexts it could be observed how the number of

unbiased branches decreases.

The prediction process supposes accessing the tables for every

instruction from traces and establishing the prediction function of associated

prediction automaton or perceptron. Every good prediction does increase the

automatons state or perceptron weights, while every misprediction does

decrease the same parameters. The automatons are implemented as

saturating counters and, in the neural predictors’ case, the threshold keeps

from overtraining, permitting the perceptron to adapt quickly at every

changing behavior.

6.3. The Software Design of the ABPS Simulator

The user diagram (Figure 6.1a) illustrates the general user interaction

process with ABPS. A generic user can mainly interact with ABPS in two

ways (not fully distinct):

 Default start – the user starts a simulation using the default input

parameters.

 Custom start (Choose simulation type) – the user chooses:

1.The simulation type – detection or prediction;

2.The benchmarks (Stanford and/or SPEC 2000);

3.The values for the simulation parameters.

Steps 1, 2, 3 can be executed in any order. Either of steps 1 and 3 is not

mandatory. If one of them is not executed, default values are used. Step 2

(choosing the benchmarks) is necessary the first time (initially no traces are

selected for simulation) for both user interaction types. After the three steps

92 A Systematic Approach to Predict Unbiased Branches

presented above, the user can start the simulation process. Both in the

Default start and in the Custom start cases, after the simulation process is

ready, simulation results are shown. At any time the simulation process can

be aborted from the GUI (Graphic User Interface).

Figure 6.1. UML Diagrams – User and Activity perspectives.

The activity diagram (Figure 6.1b) shows a general view for the simulation

process flowing in ABPS:

 Initialization – all simulation parameters are set (traces, simulation

type: detection / prediction, detector / predictor values);

Designing an Advanced Simulator for Unbiased Branches Prediction 93

 Starts simulation – the simulation begins after all the inputs had been

set. The simulation process consists basically in processing each trace

included (in a multithreaded manner);

 Read trace – each trace is processed, branch after branch. Each branch

instruction is fed to the selected detector / predictor. This is done until

all branch instructions (from the selected trace) are processed. During

this, results are accumulated.

 Processing results – after a trace had been processed, the obtained

results are processed in order to compute certain metrics;

 Display results – the results are displayed and the simulation process

stops.

Figure 6.2. Sequence Diagram.

The sequence diagram (Figure 6.2) presents in detail how ABPS performs

the process of detecting unbiased branches. The process starts in the GUI,

where the detection parameters are set. After this initialization, the user can

trigger the detection process, which will be managed by another thread (1:

94 A Systematic Approach to Predict Unbiased Branches

create, st:SimulatorThread). In this way, the GUI will not block itself,

leaving the user with the ability to perform other tasks from ABPS. The

simulation thread will create and start a detection thread (1.1: create,

dt:DetectorThread). The detection thread will manage all the detection

process (1.1.1: Create1, tr:TraceReader). When all the above initializations

were performed, the detection process actually starts (2: startSimulation(),

2.1: run()): the trace used for simulation is processed using the appropriate

detector (see: 2.1.1 – 2.1.6). Finally, the detection thread signals (by

returning the results) the simulation thread that the detection is done (2.2:

Destruct3). In the same manner, the simulation thread signals the GUI

thread (3:Destruct4), which will display the results.

From the user’s point of view it is very necessary a visual friendly

interface, based on menus, butons, dialog boxes, graphical images. The

simulator must be easy to use and the results must be efficiently interpreted

and processed (eventually transferred to some utility application such Excel,

PowerPoint, Internet). The machine model should be “fine-tuned” to remove

redundant or little hardware features and to investigate possible tradeoffs of

performance against the functionality provided.

To run the ABPS simulator, on the host computer the jre-1_5 (or

higher) or jdk-1_5 (or higher) must first installed. ABPS is written in JAVA,

thus is platform independent. For properly use of ABPS simulator it should

be accomplished some system requirements. Thus, it is recommended to

have a processor with at least 1 GHz frequency. Otherwise, due to JVM

(java virtual machine), the simulation time, especially on SPEC2000

benchmarks, risk to become prohibit. The RAM memory recommended is

256Mbytes. Since we can represent on the same chart up to 17 benchmarks

(even 6 bars on each), to have a good view it is required a 1024x768

minimum screen resolution.

The ABPS simulator is organized around a main window that

contains two panels. The left one is used to configure (initialize all

requested parameters) and control simulation. The right panel is based on

two tabs – one that show every simulations’ results in text format, and

another, that permits to generate graphical charts illustrating the influence of

different simulation parameters on metrics like unbiased branches

percentage, prediction accuracy, processing rate. The left panel is divided in

two parts: the upper part contains the available testing programs. The

Remove respectively Add buttons facilitate to remove the selected

benchmark or to add new ones. The user can opt to choose between Stanford

or SPEC benchmarks, single or multiple selections. Any simulation started

will operate exclusively on selected benchmarks. Also, there are two very

expressive buttons that allow selecting or deselecting all benchmarks. The

Designing an Advanced Simulator for Unbiased Branches Prediction 95

lower part of left panel contains two tabs Detector / Predictor, each having

its own configuring parameters. The inputs for Detector are: the global

history length – GH, the local history length – LH, a flag that show if path

information correlation is used (concatenated), and the polarization degree

of each context instance. The Predictor tab contains its own four tabs

specific to each implemented predictor (GAg, PAg, PAp and Perceptron).

The implemented two-level predictors request as inputs parameters: the

number of entries in prediction table, the history length (global / local).

Besides input parameters used by the two-level predictors, the neural

predictors (Simple Perceptron and Fast Path-based Perceptron) need some

additionals: threshold value used for learning algorithm, number of bits for

storing the weights. Each predictor can predict all branches or only unbiased

branches. If the second choice is made the simulator apply first the Detector

phase, hidden for user. After determining the unbiased branches percentage

the performance loss can be computed comparatively with an equivalent

multiple instruction issue processor having an ideal branch predictor.

Figure 6.3. ABPS simulator – unbiased branches detection.

If the user chooses from Configuration panel the Detector tab and in the

Results panel only simple execution (Simulate buton), among the simulation

results a list of unbiased branches, in their certain contexts, does occure.

This list could be saved (in text or csv format) for further analysis between

96 A Systematic Approach to Predict Unbiased Branches

different unbiased branches lists obtained when the contexts length is

extended. An important result is the unbiased branches percentage from the

tested benchmarks. The students can see how this percentage does vary

when the context length changes. Figure 6.3 shows the simulation results

when the Detector tab was selected.

Figure 6.4. ABPS simulator – variation of prediction accuracy with global history

length.

If the user selected from Configuration panel the Predictors /

Perceptron tab (Simple or Fast Path-based) and in the Results panel only

simple execution (not charts generating), the simulation results consist in

four important metrics. The prediction accuracy is the number of correct

predictions divided to total number of dynamic branches. We compute also

a confidence metric that represents the total cases when the prediction was

correct and the perceptron did not need to be trained (the magnitude of the

perceptron output was greater than the threshold), divided to total number of

correct predictions (therefore, considering a trivial threshold equal with 0).

While the first two have impact on processor’s performance, the next two

metrics have direct influence on transistors’ budget and integration area (the

number of perceptrons used in the prediction process and respectively the

saturation degree of the perceptrons). The saturation degree represents the

percentage of cases when the weights of perceptrons cannot be increased /

Designing an Advanced Simulator for Unbiased Branches Prediction 97

decreased because they are saturated. If the last two metrics are quite low, it

means that the perceptrons are underused. The prediction accuracy and the

usage degree of prediction table are also computed in the case of two-level

predictors.

The Charts tab offers the possibility to illustrate graphical simulation

results. From the two listboxes the user can select which metrics (from those

explained earlier) to be used and which input parameter to be varied on all

selected benchmarks. An interesting chart shows the Issue Rate (IR) relative

speedup obtained by growing the context length. We used the formula

[IR(L)–IR(16)]/IR(16), for computing IR relative speedup, where L is the

context’s length, L{20, 24, 28, 32}). The last group of columns represents

the average (or geometric / harmonic mean). The chart type may be Bar or

Line. The chart can be saved in png format just by clicking on SaveChart

button. Figure 6.4 illustrates how the prediction accuracy does vary with the

global history length when the Fast Path-based Perceptron predictor is used

on all Stanford benchmarks.

7. Conclusions and Further Work

Based on laborious simulations we showed that the percentages of

difficult branches are quite significant (at average between 6% and 24%,

depending on the different used contexts and their lengths). The simulations

also show that the path is relevant for better polarization rate and prediction

accuracy only in the case of short contexts. As Figures 3.5 and 3.6 suggest,

our conclusion is that despite some branches are path-correlated, long

history contexts (local and global) approximate well the path information. In

other words, sufficient long history contexts might be viewed as a good

“compression” of the most complete path information. In our further work,

we’ll try to reduce the path information extracting and using only the most

important bits. Thus, the path information could be built using only a part of

the branch address instead of all the 32 bits of the complete PC.

Therefore, it is obvious that for the unbiased branches identified in

[19, 61] the prediction information used by the present-day branch

predictors (local/global correlations and path information), is not always

sufficiently relevant and, therefore, these branches cannot be accurately

predicted. Using the perceptron predictor we measured on these unbiased

branches an average prediction accuracy of only 73.46% (and 92.58% on all

branches). We also evaluated the Frankenpredictor [30], the O-GEHL [44],

and the Piecewise Linear Branch Predictor [29] on unbiased branches, but

the prediction accuracy was still low despite these predictors are using path-

based information too. Using the Piecewise Linear Branch Predictor we

obtained a prediction accuracy of 77.30% on the unbiased branches (94.92%

on all branches) from the SPEC2000 benchmarks. Therefore, we introduced

new prediction information, named branch difference history, representing

the history of branch conditions’ signs. Our first goal was to exploit the

correlation existing between the history of conditions’ signs (negative, zero

or positive) encountered by a certain branch instruction and the next

condition’s sign corresponding to that branch. If the condition sign is

predictable, the branch’s behavior is predictable too because branch’s output

is deterministically correlated with the condition’s sign.

Thus, we implemented a local branch difference predictor using the

Prediction by Partial Matching (PPM) algorithm. We determined through

simulations that the optimal configuration of the predictor consists in a

Branch Difference History Table with 256 entries, a history length of 24

Conclusions and Further Work 99

values, and a pattern length of 3. We obtained with this scheme on the

unbiased branches an average branch difference prediction accuracy of

68.60% and a final branch prediction accuracy of 71.76% (90.55% on all

branches). However, when we used a threshold of 7, we obtained a final

branch prediction accuracy of 79.69% on unbiased branches (and 96.43% on

all branches). Our combined global and local approach associates to each

global difference history pattern its own BDHT. Evaluating this scheme on

unbiased branches, we obtained a final branch prediction accuracy of

71.54% (92.33% on all branches) without threshold, and, respectively,

81.25% (97.44% on all branches) with a threshold of 7. Finally, with the

branch difference prediction scheme that combines multiple partial matches,

we obtained a final branch prediction accuracy of 72.24% on the unbiased

branches (and 91.59% on all branches), without threshold.

Further we show that the last branch condition is more efficient than

the path information: it decreased the percentage of unbiased branches for

all evaluated context lengths. Therefore we used this new prediction

information in some state-of-the-art branch predictors. Unfortunately, the

improvement obtained using the LBD entirely (32 bits), in terms of

prediction accuracy, is not significant.

Finally, we presented our ABPS simulator. Repeating the detection

methodology for a length-ordered set of contexts it could be observed how

the number of unbiased branches decreased, in the tested benchmarks.

Another facility of ABPS consists in running a plenty of branch predictors,

from classical two-level up to neural state-of-the art, having the possibility

of varying the most important parameters and illustrating the graphical

results of the simulations. Also important, our simulator permits the

migration of some mature actual scientific problems to students’

understanding level.

 In conclusion the average prediction accuracy remains still low on

unbiased branches. During this work, we showed that difficult branches

were efficiently identified in [19, 61]. Furthermore, the accurate prediction

of these unbiased branches constitutes an open problem, since each percent

of unbiased branches decisively reduces prediction accuracy. As a

consequence, these unbiased branches might define a fundamental limit in

branch prediction research.

100 A Systematic Approach to Predict Unbiased Branches

Further Work

 We consider that the use of more prediction contexts (some HLL

code information) is required to further improve prediction accuracies. In

order to efficiently use such information we consider it will be necessary to

have a significant amount of compiler support. Another alternative could be

to pursue the concepts of micro-threading where small fragments of code

are executed concurrently and the branch problem is no longer a major

concern. Also, we want to explore the importance of unbiased branch

prediction problem in Chip Multi-Processor (CMP) architectures.

For further work we are concerned to the necessity of an efficient

hardware branch predictor from power consumption and performance

criterions, within a given chip area budget. Very high prediction accuracy is

necessary, because taking into account the multiple-instruction-issue

processors characteristics as pipeline depth or issue rates, even a prediction

miss rate of a few percent involves a substantial performance loss. Also, we

intend to extend the ABPS simulator with functional network

characteristics, allowing a distributed simulation process in a client-server

manner, useful due to the time consuming simulations.

 Another objective is to develop a complex architecture that

selectively anticipates the values produced by high-latency instructions. We

will focalize on multiply, division and loads that access with miss the L2

data cache. The DIV/MUL instructions (non-selective approach) will be

solved by an Instruction Reuse scheme, without prediction. The critical load

instructions (loads with miss in both cache levels – selective approach) will

be solved by a reuse scheme or, if they are not reusable, through prediction

(a simple prediction scheme will be used, e.g. last value predictor). We will

evaluate this complex architecture and compare it with a blocked

multithreading architecture.

References

[1] Aamer M., Lux K., Mistry R., Mulholland B., Efficiency of Pre-

Computed Branches, Technical Report, University of Pennsylvania,

USA, 2003.

[2] Advanced Branch Prediction Simulator,

http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/simulatoare.h

tm.

[3] Aragón J. L., González J., García J. M., González A., Selective Branch

Prediction Reversal by Correlating with Data Values and Control

Flow, Proceedings of the International Conference on Computer

Design: VLSI in Computers & Processors, 2001.

[4] Brooks D., Tiwari V., Martonosi M., Wattch: a framework for

architectural-level power analysis and optimizations. In Annual

International Symposium on Computer Architecture, pages 83–94,

2000.

[5] The First Championship Branch Prediction Competition (CBP-1),

http://www.jilp.org/cbp, 2004.

[6] The Second Championship Branch Prediction Competition (CBP-2),

http://www.jilp.org/cbp, 2006.

[7] Chang P.-Y., Hao E., Yeh T.-Y., Patt Y. N., Branch Classification: a

New Mechanism for Improving Branch Predictor Performance,

Proceedings of the 27th International Symposium on Microarchitecture,

San Jose, California, 1994.

[8] Chappell R., Tseng F., Yoaz A., Patt Y., Difficult-Path Branch

Prediction Using Subordinate Microthreads, The 29th Annual

International Symposia on Computer Architecture, Alaska, USA, May

2002.

http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/simulatoare.htm
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/simulatoare.htm
http://www.jilp.org/cbp
http://www.jilp.org/cbp

102 A Systematic Approach to Predict Unbiased Branches

[9] Chaver D., Pinuel L., Prieto M., Tirado F., Huang M., Branch

Prediction On Demand: an Energy-Efficient Solution, ISLPED’03

Conference, Seoul, Korea, August 2003.

[10] Chen L., Dropsho S., Albonesi D.H., Dynamic Data Dependence

Tracking and its Application to Branch Prediction, The 9th International

Symposium on High-Performance Computer Architecture, February

2003.

[11] Cohn R., Lowney P. G., Design and Analysis of Profile-Based

Optimization in Compaq’s Compilation Tools for Alpha, Journal of

Instruction-Level Parallelism nr 3, 2000.

[12] Constantinides K., Sazeides Y., A Hardware-Based Method for

Dynamically Detecting Instruction-Isomorphism and its Application to

Branch Prediction, The 2nd Value Prediction and Value-Based

Optimization Workshop, Boston, Massachusetts, October 2004.

[13] Desmet V., Eeckhout L., De Bosschere K., Evaluation of the Gini-index

for Studying Branch Prediction Features. Proceedings of the 6th

International Conference on Computing Anticipatory Systems

(CASYS), AIP Conference Proceedings, Vol. 718, 2004.

[14] Desmet V., On the Systematic Design of Cost-Effective Branch

Prediction, PhD Thesis, Ghent University, Belgium, 2006.

[15] Egan C., Steven G., Quick P., Anguera R., Vintan L., Two-Level

Branch Prediction using Neural Networks, Journal of Systems

Architecture, vol. 49, issues 12-15, Elsevier, December 2003.

[16] Florea A., The dynamic values prediction in the next generation

microprocessors, MatrixRom Publishing House, Bucharest, 2005.

[17] Florea A., Radu C., Calborean H., Crapciu A., Gellert A., Vintan L.,

Designing an Advanced Simulator for Unbiased Branches’ Prediction,

The 9th International Symposium on Automatic Control and Computer

Science, Iasi, November 2007.

[18] Gao H., Zhou H., PMPM: Prediction by Combining Multiple Partial

Matches, The 2nd Journal of Instruction-Level Parallelism

Championship Branch Prediction Competition (CBP-2), Orlando,

Florida, USA, December 2006.

References 103

[19] Gellert A., Prediction Methods Integrated into Advanced Architectures,

Technical Report, Computer Science Department, "Lucian Blaga"

University of Sibiu, January 2006.

[20] Gellert A., Integration of Some Advanced Prediction Methods into

Speculative Computing Systems, Technical Report, Computer Science

Department, "Lucian Blaga" University of Sibiu, March 2007.

[21] Gellert A., Florea A., Vintan M., Egan C., Vintan L., Unbiased

Branches: An Open Problem, Twelfth Asia-Pacific Computer Systems

Architecture Conference (ACSAC’07), Seoul, Korea, August 2007.

[22] González J., González A., Control-Flow Speculation through Value

Prediction for Superscalar Processors, International Conference on

Parallel Architecture and Compilation Techniques, 1999.

[23] González J., González A., Control-Flow Speculation through Value

Prediction, IEEE Transactions on Computers, Vol. 50, No. 12,

December 2001.

[24] Heil T., Smith Z., Smith J.E., Using Data Values to Predict Branches,

Proceedings of the 26th Annual International Symposium on Computer

Architecture, 1999.

[25] Heil T.H., Smith Z., Smith J.E., Improving Branch Predictors by

Correlating on Data Values, The 32nd International Symposium on

Microarchitecture, November 1999.

[26] Jiménez D., Lin C., Dynamic Branch Prediction with Perceptrons, In

Proceedings of the Seventh International Symposium on High

Performance Computer Architecture (HPCA-7), January 2001.

[27] Jiménez D., Lin C., Neural Methods for Dynamic Branch Prediction,

ACM Transactions on Computer Systems, Vol. 20, New York, USA,

November 2002.

[28] Jiménez D., Fast Path-Based Neural Branch Prediction, Proceedings of

the 36th Annual International Symposium on Microarchitecture,

December 2003.

[29] Jiménez D., Idealized Piecewise Linear Branch Prediction, Journal of

Instruction-Level Parallelism, April 2005.

104 A Systematic Approach to Predict Unbiased Branches

[30] Loh G. H., Deconstructing the Frankenpredictor for Implementable

Branch Predictors, Journal of Instruction-Level Parallelism, April

2005.

[31] Loh G. H., Jiménez D., A Simple Divide-and-Conquer Approach for

Neural-Class Branch Prediction, Proceedings of the 14th International

Conference on Parallel Architectures and Compilation Techniques

(PACT), St. Louis, MO, USA, September 2005.

[32] Loh G. H., Jiménez D., Reducing the Power and Complexity of Path-

Based Neural Branch Prediction, 5th Workshop on Complexity

Effective Design (WCED5), Madison, WI, USA, June 2005.

[33] Mahlke S. A., Hank R. E., Bringmann R. A., Gyllenhaal J. C.,

Gallagher D. M., Hwu W.-M. W., Characterizing the Impact of

Predicated Execution on Branch Prediction, Proceedings of the 27th

International Symposium on Microarchitecture, San Jose, California,

December 1994.

[34] McFarling S., Combining Branch Predictors, WRL Technical Note TN-

36, Digital Equipment Corporation, June 1993.

[35] Mudge T. N., Chen I. K., Coffey J. T., Limits to Branch Prediction,

Technical Report, Electrical Engineering and Computer Science

Department, University of Michigan, Ann Arbor, Michigan, USA,

January 1996.

[36] Nair R., Dynamic Path-Based Branch Correlation, IEEE Proceedings

of MICRO-28, 1995.

[37] Oancea M., Gellert A., Florea A., Vintan L., Analyzing Branch

Prediction Contexts Influence, Advanced Computer Architecture and

Compilation for Embedded Systems, (ACACES 2006), ISBN 90 382

0981 9, pages 5-8, L’Aquila, Italy, July 2006.

[38] Petit S., Tomás N., Sahuquillo J., Pont A., An Execution-Driven

Simulation Tool for Teaching Cache Memories in Introductory

Computer Organization Courses, Workshop on Computer Architecture

Education, Boston, 2006.

References 105

[39] Rabiner L. R., A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition, Proceedings of the IEEE, Vol 77,

No. 2, February 1989.

[40] Radu C., Calborean H., Crapciu A., Gellert A., Florea A., An

Interactive Graphical Trace-Driven Simulator for Teaching Branch

Prediction in Computer Architecture, The 6th EUROSIM Congress on

Modelling and Simulation, Ljubljana, Slovenia, September 2007.

[41] Roth A., Moshovos A., Sohi G., Improving Virtual Function Call

Target Prediction via Dependence-Based Pre-Computation,

Proceedings of International Conference on Supercomputing, 1999.

[42] Sazeides Y., Smith J. E., The Predictability of Data Values,

Proceedings of the 30th Annual International Symposium on

Microarchitecture, December 1997.

[43] Seznec A., Felix S., Krishnan V., Sazeides Y., Design Tradeoffs for the

Alpha EV8 Conditional Branch Predictor, Proceedings of the 29th

International Symposium on Computer Architecture, Anchorage, AK,

USA, May 2002.

[44] Seznec A., Genesis of the O-GEHL branch predictor, Journal of

Instruction-Level Parallelism, April 2005.

[45] Shivakumar P., Jouppi N. P., CACTI 3.0: An Integrated Cache Timing,

Power, and Area Model, WRL Technical Report 2001/2.

[46] Simplescalar, The SimpleSim Tool Set,

ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar.

[47] Singer J., Brown G., Return Value Prediction Meets Information

Theory, The 4th Workshop on Quantitative Aspects of Programming

Languages, Vienna, Austria, April 2006.

[48] Smith Z., Using Data Values to Aid Branch-Prediction, MSc Thesis,

Wisconsin-Madison, USA, December 1998.

[49] Smullen C.W., Taha T.M., PSATSim: An Interactive Graphical

Superscalar Architecture Simulator for Power and Performance

Analysis, Workshop on Computer Architecture Education, Boston,

2006.

ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar-3.0

106 A Systematic Approach to Predict Unbiased Branches

[50] SPEC2000, The SPEC benchmark programs, http://www.spec.org.

[51] Sprangle E., Carmean D., Increasing processor performance by

implementing deeper pipelines, 29th International Symposium on

Computer Architecture, Anchorage, Alaska, May 25 - 29, 2002.

[52] Srinivasan R., Frachtenberg E., Lubeck O., Pakin S., Cook J., Neuro-

PPM Branch Prediction, The 2nd Journal of Instruction-Level

Parallelism Championship Branch Prediction Competition (CBP-2),

Orlando, Florida, USA, December 2006.

[53] Steven G.B., Christian B., Collins R., Potter R.D., Steven F.L., A

Superscalar Architecture to Exploit Instruction Level Parallelism,

Microprocessors and Microsystems, 1997.

[54] Tarjan D., Skadron K., Merging Path and GshareIndexing in

Perceptron Branch Prediction, ACM Transactions on Architecture and

Code Optimization, Vol. 2, No. 3, September 2005.

[55] Thomas R., Franklin M., Wilkerson C., Stark J., Improving Branch

Prediction by Dynamic Dataflow-based Identification of Correlated

Branches from a Large Global History, Proceedings of the 30th

International Symposium on Computer Architecture, June 2003.

[56] Thomas R., Franklin M., Using Dataflow Based Context for Accurate

Value Prediction, Proceedings of the International Conference on

Parallel Architectures and Compilation Techniques, 2001.

[57] Vintan L., Iridon M., Towards a High Performance Neural Branch

Predictor, International Joint Conference on Neural Networks,

Washington DC, USA, July 1999.

[58] Vintan L., Egan C., Extending Correlation in Branch Prediction

Schemes, International Euromicro’99 Conference, Italy, September

1999.

[59] Vintan L., Sbera M., Mihu I.Z., Florea A., An Alternative to Branch

Prediction: Pre-Computed Branches, ACM SIGARCH Computer

Architecture News, Vol.31, Issue 3, ACM Press, NY, USA, June 2003.

http://www.spec.org/

References 107

[60] Vintan L., Florea A., Gellert A, Focalising Dynamic Value Prediction

to CPU’s Context, IEE Proceedings. Computers & Digital Techniques,

Vol. 152, No. 4, Stevenage, UK, July 2005.

[61] Vintan L., Gellert A., Florea A., Oancea M., Egan C., Understanding

Prediction Limits through Unbiased Branches, Eleventh Asia-Pacific

Computer Systems Architecture Conference (ACSAC’06), Shanghai,

China, September 2006.

[62] Vintan L., Prediction Techniques in Advanced Computing Architectures

(in English), MatrixRom Publishing House, Bucharest, 2007.

[63] Wang K., Franklin M., Highly Accurate Data Value Prediction using

Hybrid Predictors, Proceedings of the 30th Annual ACM/IEEE

International Symposium on Microarchitecture, December 1997.

[64] Yeh T.-Y., Patt Y. N., Alternative Implementations of Two-Level

Adaptive Branch Prediction, Proceedings of the 19th Annual

International Symposium on Computer Architecture, Gold Coast,

Australia, May 1992.

[65] Yi J.J., Lilja D.J., Simulation of Computer Architectures: Simulators,

Benchmarks, Methodologies and Recommendations, IEEE Transactions

on Computers, Vol. 55, No. 3, March 2006, pp. 268-280.

Glossary

Benchmark: is a program used for evaluations. In this work we used the

SPEC2000 benchmark suite and the CBP-1 traces.

Biased branch: mostly always taken or mostly always not taken branch

(mostly-one-direction branch). The behavior (taken/not taken) of a

biased branch is polarized.

Biased branch context: the branch behavior (taken/not taken) is polarized

for that certain context (local branch history, global history, etc.).

Blocked multithreading: a multithreading architecture which switches

threads at high latency instructions (e.g. critical loads).

Branch difference: represents the value or the sign of the difference

between the branch’s inputs. Regarding the sign of the inputs’

difference, a value of 1 indicates that the corresponding branch

difference is positive, a value of -1 indicates a negative difference, while

a 0 indicates equality between the branch’s inputs.

Branch difference predictor: the branch outcomes are predicted based on

branch difference histories.

Branch polarization: measured through the polarization index (P).

Branch prediction: is the prediction of the direction (taken/not taken)

and/or the target address (next PC) of a branch instruction.

Complete-PPM predictor: see Prediction by Partial Matching (PPM).

Confidence automaton: saturated counter that indicates the confidence of a

certain prediction. The prediction is generated only if the confidence

automaton is in a predictable state.

Context: the context of length p represents the last p elements from the

correlation information used in order to make a prediction. In the case of

person movement prediction the correlation information is the room

history, and a context of length p consists in the last p visited rooms. In

the case of branch prediction the correlation information is the branch

history (e.g. local or global branch history), and a context of length p

consists in the last p bits from the branch history.

Context instance: is a dynamic branch executed in the respective context.

Critical load: a load instruction with miss in both cache levels.

Distribution (index): the distribution index of a certain branch context is

computed as follows.

Glossary 109















0,

),min(2

0,0

)(
t

t

t

i
n

TNT

n

n

SD , where

 nt = the number of branch outcome transitions, from taken to not

taken and vice-versa, in context Si;

),min(2 TNT = maximum number of possible transitions;

 k = number of distinct contexts, pk 2 , where p is the length of the

binary context;

 if kiSD i ...,,2,1)(,1)( , then the behavior of the branch in

context Si is “contradictory” (the most unfavorable case), and thus its

learning is impossible;

 if kiSD i ...,,2,1)(,0)( , then the behavior of the branch in

context Si is constant (the most favorable case), and it can be

learned.

Dynamic branch: is an instance of a static branch during program

execution.

Dynamic branch prediction: the branches are predicted with hardware

techniques.

Dynamic learning: is the run-time prediction process when the outputs of

the predictor are used to adjust the prediction structures and respectively

to generate predictions.

Feature (set): is the binary context on p bits of prediction information such

as local history, global history or path. Each static branch finally has

associated k dynamic contexts in which it can appear (pk 2).

Gain: is the factor which gives the improvement of the quality.

Last branch difference (LBD): a branch condition difference consists in

the difference of the operand values implied in the last branch condition.

The global LBD is the last known branch condition difference. The local

LBD is the last per-address branch condition difference.

Markov chain: in the case of a first order Markov chain the probabilistic

description is truncated to just the current and predecessor state.

][...],,[121 itjtktitjt SqSqPSqSqSqP   , where tq is

the state at time t. Thus, for a first order Markov chain with N states, the

set of transition probabilities between states Si and Sj is }{ ijaA  , where

][1 itjtij SqSqPa   , Nji  ,1 , having the properties 0ija

110 A Systematic Approach to Predict Unbiased Branches

and 1
1




N

j

ija . For a Markov chain of order R the probabilistic

description is truncated to the current and R previous states.

Markov predictor: the prediction is generated based on the state transition

probabilities of a Markov chain.

Polarization (index): the polarization index (P) of a certain branch context

is computed as follows.










5.0,

5.0,
),max()(

01

00

10
ff

ff
ffSP i

 , where

  kSSSS ...,,, 21 = set of distinct contexts that appear during all

branch instances;

 k = number of distinct contexts, pk 2 , where p is the length of the

binary context;


NTT

NT
f

NTT

T
f





 10 , , NT = number of “not taken” branch

instances corresponding to context Si, T = number of “taken” branch

instances corresponding to context Si, ki ...,,2,1)( , and

obviously 110  ff ;

 if kiSP i ...,,2,1)(,1)( , then the context iS is completely

biased (100%), and thus, the afferent branch is highly predictable;

 if kiSP i ...,,2,1)(,5.0)( , then the context iS is totally

unbiased, and thus, the afferent branch is not predictable if the taken

and not taken outcomes are shuffled.

Prediction accuracy: the percentage or ratio of correct predictions reported

to the total number of predictions.

Prediction by Partial Matching (PPM): is a context-based prediction

algorithm. The PPM predictor contains a set of simple Markov

predictors. It is predicted the value that followed the context with the

highest frequency. In the case of complete-PPM predictor, if a prediction

cannot be generated with the Markov predictor of order k, then the

pattern length is shortened and the Markov predictor of order k-1 tries to

predict and so on.

Speculative execution: instruction execution based on predicted values or

predicted branch outcomes.

Static branch: a certain branch instruction from a program.

Glossary 111

Static branch prediction: the branches are predicted statically by the

compiler. Static branch predictors are used in processors where the

expectation is that branch behavior is highly predictable at compile-time.

Static learning: means that before effective run-time prediction process, the

predictor is trained based on some patterns. In the static learning process

the outputs of the predictor are used only to adjust the prediction

structures.

Unbiased branch: a branch whose behavior (taken/not taken) is not

sufficiently polarized.

Unbiased branch context: the branch behavior (taken/not taken) is not

sufficiently polarized for that certain context (local branch history,

global history, etc.).

	1. Introduction into Unbiased Branches Challenge
	2. Related Work
	3. Finding Difficult-to-Predict Branches
	3.1. Methodology of Identifying Unbiased Branches
	3.2. Experimental Results
	3.2.1. Pattern-based Correlation
	3.2.2. Path-based Correlation
	3.2.3. An Analytical Model
	3.2.4. An Example Regarding Branch Prediction Contexts Influence

	4. Predicting Unbiased Branches
	4.1. The Perceptron-Based Branch Predictor
	4.2. The Idealized Piecewise Linear Branch Predictor
	4.3. The Frankenpredictor
	4.4. The O-GEHL Predictor
	4.5. Value-History-Based Branch Prediction with Markov Models
	4.5.1. Local Branch Difference Predictor
	4.5.2. Combined Global and Local Branch Difference Predictor
	4.5.3. Branch Difference Prediction by Combining Multiple Partial Matches

	4.6. Experimental Results
	4.6.1. Evaluating Neural-Based Branch Predictors
	4.6.2. Evaluating the O-GEHL Predictor
	4.6.3. Evaluating Local Branch Difference Predictors
	4.6.4. Evaluating Combined Global and Local Branch Difference Predictors
	4.6.5. Branch Difference Prediction by Combining Multiple Partial Matches

	5. Using Last Branch Difference as Prediction Information
	6. Designing an Advanced Simulator for Unbiased Branches Prediction
	6.1. Simulation Methodology
	6.2. The Functional Kernel of the Simulator
	6.3. The Software Design of the ABPS Simulator

	7. Conclusions and Further Work
	References
	Glossary

