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1. Introduction into Unbiased Branches 

Challenge 

Two trends – technological and architectural (conceptual) – are 

further increasing the importance of branch prediction. From technological 

point of view, modern high-end processors use an array of tables for branch 

direction and target prediction [43]. These tables are quite large in size 

(352K bits for the direction predictor in Alpha EV8) and they are accessed 

every cycle resulting in significant energy consumption – sometimes more 

than 10% of the total chip power [9]. 

From an architectural point of view, processors are getting wider and 

pipelines are getting deeper, allowing more aggressive clock rates in order 

to improve overall performance. A very high frequency will determine a 

very short clock cycle and the prediction cannot be delivered in a single 

clock cycle or maximum two cycles which is the prediction latency in the 

actual commercial processors (see Alpha 21264 branch predictor) [27]. Also 

a very wide superscalar processor can suffer from performance point of 

view in the misprediction case when the CPU context must be recovered 

and the correct paths have to be (re)issued. As an example, the performance 

of the Pentium 4 equivalent processor degrades by 0.45% per additional 

misprediction cycle, and therefore the overall performance is very sensitive 

to branch prediction. Taking into account that the average number of 

instructions executed per cycle (IPC) grows non-linearly with the prediction 

accuracy [64], it is very important to further increase the accuracy achieved 

by present-day branch predictors.  

  The quality of a prediction model is highly dependent on the quality 

of the available data. Especially the choice of the features to base the 

prediction on is important. The vast majority of branch prediction 

approaches rely on usage of a greater number of input features (such as 

branch address, global or local branch history, etc.) without taking into 

account the real cause (unbiased branches) that produce a lower accuracy 

and implicit lower performance. 

In this work we prove that a branch in a certain dynamic context is 

difficult predictable if it is unbiased and the outcomes are shuffled. In other 

words, a dynamic branch instruction is unpredictable with a given prediction 

information if it is unbiased in the considered dynamic context and the 
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behavior in that certain context cannot be modeled through Markov 

stochastic processes of any order. Based on laborious simulations we show 

that the percentages of difficult branches are quite significant (at average 

between 6% and 24%, depending on the different used prediction contexts 

and their lengths), giving a new research challenge and a useful niche for 

further research. Present-day branch predictors are using limited prediction 

information (local and global correlation and path information). We’ll show 

that for some branches this information is not always sufficiently relevant 

and, therefore, these branches cannot be accurately predicted using present-

day predictors. Consequently, we think it is important to find other relevant 

information that is determining branches’ behavior in order to use it for 

designing better predictors. In our opinion such relevant prediction 

information could consist in branch’s condition sign (positive, negative or 

zero). More precisely, a certain branch associated with its condition’s sign 

value (+, -, 0) will be perfectly biased. If its condition sign will be 

predictable, the branch’s behavior will be predictable too because the 

branch’s output is deterministically correlated with the condition’s sign. 

Thus, it appears rationale trying to predict current branch’s condition sign 

based on the local/global condition histories. We can also use the last branch 

condition as new prediction information in some state-of-the-art branch 

predictors in order to increase prediction accuracy. 

This booklet is organized as follows. Chapter 2 gives a brief 

overview of related work. Chapter 3 describes our methodology of finding 

difficult predictable branches. Chapter 4 describes the present-day branch 

predictors used in this work and continues with some proposed condition-

history-based branch prediction methods. Chapter 5 presents some modified 

present-day branch predictors that use the last known branch condition as 

prediction information. Chapter 6 presents an advanced simulator for 

unbiased branches’ prediction. Finally, Chapter 7 concludes the booklet and 

suggests directions for further work. 

 

 

 

 

 

 



2. Related Work 

Representative hardware and compiler-based branch prediction 

methods have been developed in recent years in order to increase 

instruction-level parallelism. Branch prediction is an important component 

of modern microarchitectures, despite of their deeper pipelines that 

increased misprediction latency. Therefore, improvements in terms of 

branch prediction accuracy are essential in order to avoid the penalties of 

mispredictions. In this section we presented only the works that are most 

closely related to the proposed approach. 

Chang et al., introduced in [7] a mechanism called branch 

classification in order to enhance branch prediction accuracy by classifying 

branches into groups of highly biased (mostly-one-direction branches) 

respectively unbiased branches, and used this information to reduce the 

conflict between branches with different classifications. In other words, they 

proposed a method that classifies branches according to their dynamic taken 

rate and assigns branches from each class to different predictors. The class 

of branches is determined by their overall dynamic taken rate collected 

during program profiling. With their branch classification model they 

showed that using a short history for the biased branches and a long history 

for the unbiased branches improves the performance of the global history 

Two-Level Adaptive Branch predictors. In contrast to our work, the authors 

are classifying branches irrespective of their attached context (local and 

global histories, etc.) involving thus an inefficient approach. Due to this 

rough classification the corresponding predictors are not optimally chosen, 

simply because it is impossible to find an optimal predictor for some 

classes. 

Mahlke et al., proposed in [33] a compiler technique that uses 

predicated execution support to eliminate branches from an instruction 

stream. Predicated execution refers to the conditional execution of an 

instruction based on the value of a boolean source operand – the predicate of 

the instruction. This architectural support allows the compiler to convert 

conditional branches into predicate defining instructions, and instructions 

along alternative paths of each branch into predicated instructions. 

Predicated instructions are fetched regardless of their predicate value. Thus, 

instructions whose predicate value is true are executed normally, while 

instructions whose predicate is false are nullified. Predicated execution 
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offers the opportunity to improve branch handling in superscalar processors. 

Eliminating frequently mispredicted branches may lead to a substantial 

reduction in branch prediction misses, and as a result, the performance 

penalties associated with the eliminated branches are removed. The authors 

use compiler support for predicated execution based on a structure called 

hyperblock. The goal of hyperblock formation is to group basic blocks 

eliminating unbiased branches and leaving highly biased branches. They 

selected the unbiased branches based on taken frequency distributions. Their 

experimental results show that leaving only highly biased branches with 

predicated execution support, the prediction accuracy is higher. 

Nair has first introduced dynamic branch prediction based on path 

correlation [36]. The basic observation behind both pattern-based and path-

based correlation is that some branches can be more accurately predicted if 

the path leading to these branches is known. Path-based correlation attempts 

to overcome the performance limitations of pattern-based correlation arising 

from pattern aliasing situations, where knowledge of the path leading to a 

branch results in higher predictability than knowledge of the pattern of 

branch outcomes along the path. Nair proposed a hardware scheme which 

records the path leading to a conditional branch in order to predict the 

outcome of the branch instruction more accurately. He adapted a pattern-

based correlation scheme, replacing the pattern history register with a g-bit 

path history register which encodes the target addresses of the immediately 

preceding p conditional branches. Ideally, all bits of the target address 

should be used to ensure that each sequence of p addresses has a unique 

representation in the register. Since such schemes are too expansive to be 

implemented in hardware, Nair used a simplified scheme which uses a 

subset of q bits from each of the target addresses. Limiting the number of 

bits from the branch address could result path aliasing – the inability of the 

predictor to distinguish two distinct paths leading to a branch. 

Unfortunately, this path correlation scheme does not show any significant 

improvement over pattern-based correlation [36]. Nair’s explanation for this 

is that for a fixed amount of hardware in the prediction tables, path-based 

correlation uses a smaller history than pattern-based correlation because the 

same number of bits represents fewer basic blocks in the path history 

register than branch outcomes in the pattern history register. Despite this, 

path based correlation is better than pattern-based correlation on some 

benchmarks – especially when history information is periodically destroyed 

due to context switches –, indicating that with a better hashing scheme the 

pattern correlation schemes could be outperformed. 

A quite similar approach is proposed by Vintan and Egan in [58] – 

their paper represents the genesis of this work. The authors illustrated, based 
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on examples, how a longer history could influence the behavior of a branch 

(changing it from unbiased to biased). They also showed that path 

information could also reduce the branch’s entropy. The main contribution 

of this paper is related to the prediction accuracy gain obtained by extending 

the correlation information available in the instruction fetch stage. Based on 

trace-driven simulation the authors proved for relatively short global branch 

history patterns, that a path-based predictor overcomes a pattern-based 

predictor at the same hardware budget. The main difference, comparing with 

Nair’s approach, is that here the authors are using both the path and 

respectively the history information in order to do better predictions. They 

show that a scheme based on this principle performs better than a classical 

GAp scheme, at the same level of complexity. Particularly useful 

information has been gleaned regarding the interaction between path length 

and the number of replacements required in the PHT. 

Dynamic branch prediction with neural methods, was first 

introduced by Vintan [57, 15], and further developed by Jiménez [26]. 

Despite the neural branch predictor’s ability to achieve very high prediction 

rates and to exploit deep correlations at linear costs, the associated 

complexity due to latency, large quantity of adder circuits, area and power 

are still obstacles to the industrial adoption of this technique. Anyway, the 

neural methods seem to be successfully for future microprocessors taking 

into account that they are already implemented in Intel’s IA-64 simulators. 

The path-based neural predictors [28] improve the instructions-per-cycle 

(IPC) rate of an aggressively clocked microarchitecture by 16% over the 

original perceptron predictor [26]. A branch may be linearly inseparable as a 

whole, but it may be piecewise linearly separable with respect to the distinct 

associated program paths. More precisely, the path-based neural predictor 

combines path history with pattern history, resulting superior learning skills 

to those of a neural predictor that relies only on pattern history. The 

prediction latency of path-based neural predictors is lower, because the 

computation of the output can begin in advance of the prediction, each step 

being processed as soon as a new element of the path is executed. Thus, the 

vector of weights used to generate prediction, is selected according to the 

path leading up to a branch – based on all branch addresses from that path – 

rather than according to the current branch address alone as the original 

perceptron does. This selection mechanism improves significantly the 

prediction accuracy, because, due to the path information used in the 

prediction process, the predictor is able to exploit the correlation between 

the output of the branch being predicted and the path leading up to that 

branch. To generate a prediction, the correlations of each component of the 

path are aggregated. This aggregation is a linear function of the correlations 
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for that path. Since many paths are leading to a branch, there are many 

different linear functions for that branch, and they form a piecewise-linear 

surface separating paths that lead to predicted taken branches from paths 

that lead to predicted not taken branches. The piecewise linear branch 

prediction [29], is a generalization of neural branch prediction [26], which 

uses a single linear function for a given branch, and respectively path-based 

neural branch prediction [28], which uses a single global piecewise-linear 

function to predict all branches. The piecewise linear branch predictors use a 

piecewise-linear function for a given branch, exploiting in this way different 

paths that lead to the same branch in order to predict otherwise linearly 

inseparable branches. The piecewise linear branch predictors exploit better 

the correlation between branch outcomes and paths, yielding an IPC 

improvement of 4% over the path-based neural predictor [29]. 

A conventional path-based neural predictor achieves high prediction 

accuracy, but its very deeply pipelined implementation makes it both a 

complex and power-intensive component, since for a history length of p it 

uses – to store the weights – p separately indexed SRAM arrays organized 

in a p-stage predictor pipeline. Each pipeline stage requires a separate row-

decoder for the corresponding SRAM array, inter-stage latches, control 

logic and checkpointing support, all of this adding power and complexity to 

the predictor. Loh and Jiménez proposed in [32] two techniques to address 

this problem. The first decouples the branch outcome history length from 

the path history length using shorter path history and a traditional long 

branch outcome history. In the original path-based neural predictor, the path 

history was always equal to the branch history length. The shorter path 

history allows the reduction of the pipeline length, resulting in decreased 

power consumption and implementation complexity. The second technique 

uses the bias-weights to filter out highly-biased branches (mostly always 

taken or mostly always not taken branches), and avoids consuming update 

power for these easy-to-predict branches. For these branches the prediction 

is determined only by the bias weight, and if it turns out to be correct, the 

predictor skips the update phase which saves the associated power. The 

proposed techniques improve the prediction accuracy with 1%, and more 

important, reduce power and complexity by decreasing the number of 

SRAM arrays, and reducing predictor update activity by 4-5%. Decreasing 

the pipeline depth to only 4-6 stages it is reduced the implementation 

complexity of the path-based neural predictor. 

Tarjan and Skadron introduced in [54] the hashed perceptron 

predictor, which merges the concepts behind the gshare [34] and path-based 

perceptron predictors [28]. The previous perceptron predictors assign one 

weight per local, global or path branch history bit. This means that the 
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amount of storage and the number of adders increases linearly with the 

number of history bits used to make a prediction. One of the key insights of 

Tarjan’s work is that one-to-one ratio between weights and number of 

history bits is not necessary. By assigning a weight not to a single branch 

but a sequence of branches (hashed indexing), a perceptron can work on 

multiple partial patterns making up the overall history. The hashed indexing 

consists in XORing a segment of the global branch history with a branch 

address from the path history. Decoupling the number of weights from the 

number of history bits used to generate a prediction allows the reduction of 

adders and tables almost arbitrarily. Using hashed indexing, linearly 

inseparable branches which are mapped to the same weight can be 

accurately predicted, because each table acts like a small gshare predictor 

[34]. The hashed perceptron predictor improves accuracy by up to 27.2% 

over a path-based neural predictor.  

Loh and Jiménez introduced in [31] a new branch predictor that 

takes the advantage of deep-history branch correlations. To maintain 

simplicity, they limited the predictor to use conventional tables of saturating 

counters. Thus, the proposed predictor achieves neural-class prediction rates 

and IPC performance using only simple PHT (pattern history table) 

structures. The disadvantage of PHTs is that their resource requirements 

increase exponentially with branch history length (a history length of p 

requires 2p entries in a conventional PHT), in contrast to neural predictors, 

whose size requirements increase only linearly with the history length. To 

deal with very long history lengths, they proposed a Divide-and-Conquer 

approach where the long global branch history register is partitioned into 

smaller segments, each of them providing a short branch history input to a 

small PHT. A final table-based predictor combines all of these per-segment 

predictions to generate the overall decision. Their predictor achieves higher 

performance (IPC) than the original global history perceptron predictor, 

outperforms the path-based neural predictors, and even achieves an IPC rate 

equal to the piecewise-linear neural branch predictor. Using only simple 

tables of saturating counters, it is avoided the need for large number of 

adders, and in this way, the predictor is feasible to be implemented in 

hardware. 

Desmet et al. [13] proposed a different approach for branch 

classification. They evaluated the predictive power of different branch 

prediction features using Gini-index metric, which is used as selection 

measure in the construction of decision trees. Actually, Gini-index is a 

metric of informational energy and in this case is used to identify the 

branches with high entropy. In contrast to our work Desmet used as input 

features both dynamic information (global and local branch history) and 
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static information (branch type, target direction, ending type of taken-

successor-basic-block). 

In [24] the authors identified some program constructs and data 

structures that create “hard to predict” branches. In order to accurately 

predict difficult branches the authors find additional correlation information 

beyond local and global branch history. In their approach the prediction 

table is addressed by a combination between structural information, value 

information and history of values that are tested in the condition of 

respective branch. Unlike our work, Heil et al. didn’t use the path history 

information in order to do better predictions. Using the proposed prediction 

method based on data values significantly improves prediction accuracy for 

some certain difficult branches but the overall improvements are quite 

modest. However there are some unsolved problems: they tested only 

particular cases of difficult branches, and also, they didn’t approach branch 

conditions with two input values. Their final conclusion suggests that 

researchers must focus on the strong correlation between instructions 

producing a value and, respectively, the branch condition that would be 

triggered by that certain value. 

In [8] the authors are focusing on some difficult predictable branches 

in a Simultaneous Subordinate Micro-Threading (SSMT) architecture. They 

defined a difficult path being a path that has a terminating branch which is 

poorly predicted when it executes from that path. A path represents a 

particular sequence of control-flow changes. It is shown that between 70% 

and 93.5% of branch mispredictions are covered by these difficult paths, 

involving thus a significant challenge in branch prediction paradigm. The 

proposed solution in dealing with these difficult predictable branches 

consists in dynamically construct micro-threads that can speculatively and 

accurately pre-compute branch outcomes, only along frequently 

mispredicted paths. Obviously, micro-thread predictions must arrive in time 

to be useful. Ideally, every micro-thread would complete before the fetch of 

the corresponding difficult branch. By observing the data-flow within the set 

of instructions guaranteed to execute each time the path is encountered, it 

can be extracted a subset of instructions that will pre-compute the branch. 

The proposed micro-architecture contains structures to dynamically identify 

difficult paths (Path Cache), construct micro-threads (Micro-Thread 

Builder) and communicate predictions to the main thread. The proposed 

technique involves realistic average speed-ups of up to 10% but the average 

potential speed-up through perfect prediction of these difficult branches is 

about 100%, suggesting the idea’s fertility. Unfortunately the authors didn’t 

investigate why these paths, respectively their associated final branches, are 

difficult predictable. In other words, a very important question is: why these 
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“difficult paths” frequently lead to miss-predictions? We could suspect that 

we already gave the answer in our paper because these “difficult branches” 

might be, at least partially, exactly the unbiased branches in the sense 

defined by us, and, therefore, difficult predictable. They could be more 

predictable even in a single threaded environment, by sufficiently growing 

history pattern length or extending prediction information, as we’ll show 

further in this work. Thus, our hypothesis is that SSMT environment 

represents a sufficient solution in order to solve these difficult branches, as 

the authors shown, but not a necessary one.  

In [10] the authors proposed a new approach, called ARVI 

(Available Register Value Information), in order to predict branches based 

on partial register values along the data dependence chain leading up to the 

branch. The authors show that for some branches the correlation between 

such register value information and the branch’s outcome can be stronger 

than either history or path information. Thus, the main idea behind the 

ARVI predictor is the following: if the essential values in the data 

dependence chain, that determine the branch’s condition, should be 

identified, and those values have occurred in the past, then the branch’s 

outcome should be known. If the values involved in the branch condition are 

the same as in a prior occurrence then the outcome of the branch will be the 

same, too. Thus, if the branch’s register values are available then a look up 

table can provide the last branch’s outcome occurred with the same values. 

Unfortunately, the branch’s register values are rarely available at the time of 

prediction. However, if values are available for registers along the 

dependence chain that leads up to the branch, then the predictor can use 

these values to index into a table and reuse the last behavior of the branch 

occurred in the same context. Therefore, instead of relying only on branch 

history or path, the ARVI predictor includes the data dependent registers as 

part of the prediction information. The ARVI predictor uses a Data 

Dependence Table (DDT) to extract the registers corresponding to 

instructions along the data dependence chain leading up to the branch. The 

branch’s PC and the identifiers of the data dependent registers are hashed 

together and used to index the prediction table. The values of the data 

dependent registers are hashed together and used as a tag to distinguish the 

occurrences of the same path having different values in the registers. Thus, 

the ARVI predictor uses both path and value-based information to classify 

branch instances. A two-level predictor using ARVI at the second level 

achieves a 12.6% overall IPC improvement over the state-of-the-art two 

level predictors, for the SPEC’95 integer benchmarks. The authors selected 

SPEC’95 integer benchmarks because their branch behavior was extensively 

studied permitting comparisons between different works. In our opinion, if 
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dynamic branches that are unbiased in their branch history or path contexts 

[61] are biased in their value history context, the benefit could be 

remarkable. An analysis in this sense should be effectuated. 

Z. Smith in his work [48] determined through simulation on the 

SPEC’95 benchmarks that the majority of branch mispredictions come from 

a relatively small number of static branches. Therefore, he identified “bad” 

branches based on the distribution of mispredictions – a function of the 

number of mispredictions per branch using the gshare predictor with 12 

history bits. An analysis of  branches having  a relatively high number of 

mispredictions  shows that they could be really  less predictable  but without 

importance due to their relatively low number of dynamic instances, and, on 

the other hand, some of them could be predictable  because the number of 

mispredictions is, however, far less then the number of branch’s dynamic 

instances. Consequently, there is no strong correlation between branch’s 

predictability or global prediction accuracy and the distribution of 

mispredictions. In order to increase the predictability of mostly mispredicted 

branches, Smith evaluated the possibility to predict branch outcomes based 

on a value history. The idea is to use a context-based predictor whose 

prediction table is indexed by a register value instead of the XOR between 

the PC and global history as in gshare. In their implementation, only the 

first (non-immediate) branch operand is used as prediction context, because, 

as he shows, the majority of branches have the second operand equal with 

zero. However, using both branch operands as prediction information could 

be better. Using a history of only 2 values together with the value of the 

outer loop counter (an iteration counter associated to the enclosing loop’s 

branch), Smith obtained a branch prediction accuracy of 93.4%. 

In [25] the authors observed that many important branches that are 

hard to predict based on branch history and path become easily predictable 

if data-value information is used. First, they analyzed a technique called 

speculative branch execution that uses a conventional data-value predictor 

to predict the input values of the branch instruction and, after that, executes 

the branch instruction using the predicted values. The main disadvantage of 

this method consists in the relatively high prediction latency, because the 

operand-value prediction is followed by the pre-calculation of the branch’s 

condition. Therefore, they proposed a Branch Difference Predictor (BDP) 

that maintains a history of differences between branch source register 

operands and uses it in the prediction process. Consequently, the value 

history information is used directly for branch prediction, reducing thus the 

latency. Since branch outcomes are determined by subtracting the two 

inputs, the branch source differences correlate very well with the branch 

outcomes. The branch difference history is maintained per static branch in a 
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Value History Table (VHT) and it is retrieved using the branch’s PC. By 

using branch differences, the number of patterns is very high, since a certain 

static branch instruction may produce many values. Thus, predicting all 

branches through this method leads either to excessive storage space 

requirements or to significant table interference. Therefore, in their 

prediction mechanism, only the difficult branches are predicted based on the 

branch source differences using the Rare Event Predictor (REP), while most 

branches are predicted using a conventional predictor (e.g. gshare). They 

considered that a branch is difficult if it is mispredicted by the conventional 

predictor. Therefore, REP’s updating introduces only branches mispredicted 

by the conventional predictor but correctly predicted by REP. When a 

branch instruction occurs, the VHT and the REP are accessed in parallel 

with the PC and global branch history. If the value difference history 

matches a REP tag, then the REP provides the prediction. If the REP does 

not contain that certain pattern, the conventional branch predictor generates 

the prediction. Their results show that the majority of prediction accuracy 

improvement is gained by using a single branch difference, while adding a 

second or third difference results in little additional improvement. The BDP 

reduces the misprediction rate by up to 33% compared to gshare and up to 

15% compared to Bi-Mode predictors, in the SPEC’95 integer benchmarks. 

A first important difference between Heil’s approach and ours is that we are 

focalizing on unbiased branches identified in our previous work [61] instead 

of Heil’s difficult branches. However, the main difference is that we 

correlate branch’s outcome with the sign of the condition’s difference while 

Heil et al. correlate it with the value of the condition’s difference. As we’ll 

further show, using signs instead values involves better prediction 

accuracies and less storage necessities. Furthermore, we use a sign-history 

of up to 256 condition differences in contrast to the value-history of up to 3 

condition differences exploited in [25]. Another important difference 

between the two approaches is the architectural one, since we predict 

branches using some state-of-the-art Markov and neural predictors. 

Thomas et al. [55] introduced new branch prediction information 

that consists in affector branches. They identify for each dynamic branch 

from a long global history, a set of branches called affectors, which control 

the computation that directly affect the source operands of the current 

dynamic branch. Since affectors have a direct effect on the outcome of a 

future branch, they have a high correlation with that branch. The affector 

information is represented as a bitmap having all bits corresponding to the 

affector branches set to 1 and, respectively, those of non-affectors set to 0. 

The affector information is maintained based on runtime dataflow 

information for each architectural register as entries in an Affector Register 
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File (ARF). When the processor encounters a conditional branch, all entries 

in the ARF are shifted left by one bit and the least significant bit is made 0. 

When a register-writing instruction occurs, the ARF entries corresponding 

to the source registers are ORed together and written into the ARF entry of 

the destination register with the least significant bit set to 1. Thus, the 

affector information for the destination register is generated as a union of 

the affector histories corresponding to the source registers, while the least 

significant bit, set to 1, marks the last branch from the global history as an 

affector. The affector branch information for a branch instruction is 

inherited from the affector information corresponding to its source registers. 

Therefore, when a prediction is to be made for a certain branch, the affector 

information of its source registers are ORed together in order to determine 

its affector branches. The authors also proposed different prediction 

schemes that use the affector branch information.  

In another work Thomas et al. [56] improved instruction centric 

value prediction by using a dynamic dataflow inherited speculative context 

(DDISC) for hard-to-predict instructions. The DDISC consists in a 

compression of the PCs and the predicted values of the predictable source 

producer instructions. The context is determined by assigning a signature to 

each node in the dataflow graph. The signature of a predictable instruction is 

its value predicted by a conventional predictor. The signature of 

unpredictable non-load instructions is inherited from the signatures of its 

operand producers. In the case of multiple operands, the signature of 

unpredictable non-load instructions is the XOR of the signatures of their 

operand producers. The signature of unpredictable load instructions is 

inherited from the signature of the preceding store instruction that wrote the 

value into the same memory location. The DDISC for a certain instruction is 

obtained by rotating its calculated signature by a value determined by the 

PC (e.g. the last five bits of the PC). Their simulation results show that 

introducing dataflow-based contexts the prediction accuracy improvement 

ranges from 35% to 99%. 

Constantinides et al. [12] presented a method of detecting 

instruction-isomorphism and its application to dynamic branch prediction. A 

dynamic instruction is considered isomorphic if its component graph is 

identical with the component graph of an earlier executed dynamic 

instruction. The component graph of a dynamic instruction can include 

information about the instruction, its dynamic data dependence graph and its 

input data. Two cases of instruction isomorphism can be distinguished: 

isomorphic-equality and pseudo-isomorphism. In the case of isomorphic 

equality the instructions are isomorphic and they have the same outputs, 

while in the pseudo-isomorphism case, the instructions are isomorphic but 
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their outputs are not equal. The isomorphism detection process is preceded 

by component-graph transformations that may convert non-isomorphism to 

isomorphic-equality by removing information from the component graph 

that does not affect the outcome of the instruction. The isomorphism 

detection mechanism contains four units: the Register-Signature File (RSF), 

the Component Graph Encoding/Transformation mechanism (CGET), the 

Memory Signature File (MSF) and the Isomorphism Detection Table (IDT). 

The RSF is accessed with the source register names to read the signatures – 

encoded component graphs. The CGET takes the instruction’s source 

signatures and creates a new signature, which represents the instruction’s 

encoded/transformed component-graph. If the instruction writes to a register 

the new signature is written into the RSF entry corresponding to the 

destination register. To determine if an instruction is isomorphic with a 

previously executed instruction, its signature – produced by CGET – is used 

to access the IDT. The IDT also returns the branch direction in the case of 

branch prediction. Isomorphism detection must wait for decoded instruction 

information and, thus, the isomorphic branch predictor has relatively high 

latency. Therefore, Constantinides et al. proposed a hybrid branch prediction 

mechanism composed by a fast conventional predictor and a slower 

isomorphic-based predictor. Consequently, the isomorphic prediction – 

available few cycles after the conventional prediction – is used to validate 

and possibly override the prediction provided by the fast base predictor. 

In [22] and [23] González et al. introduced a branch prediction 

through value prediction unit (BPVP) that pre-computes the outcomes of 

branches by predicting their input values. Since, the accuracy of value 

predictors is lower than that of the conventional branch predictors, 

speculative branch pre-computation must be applied selectively. Therefore, 

they proposed a hybrid branch prediction mechanism involving a correlating 

branch predictor (e.g. gshare) and a BPVP that uses a conventional value 

predictor. The value predictor is used together with an Input Information 

Table (IIT) and, respectively, an additional logic to detect the instructions 

that generate the branch’s inputs. Each architectural register has an entry in 

the IIT that stores the PC of the latest instruction having the corresponding 

register as destination and, respectively, the value computed speculatively 

by the latest compare instruction having the corresponding register as 

destination. The compare instructions are speculatively pre-executed 

according to their predicted inputs and the speculative results are stored in 

the IIT. The mechanism has different behaviors depending on the branch 

that is predicted. In the case of branches with inputs produced by arithmetic 

or load instructions, the IIT is accessed with the source register names to 

read the PCs of the latest instructions that had as destination the branch’s 



20 A Systematic Approach to Predict Unbiased Branches 

 

source registers (detection of the instructions that produces the branch 

inputs). The PCs are used to access the value predictor that predicts the 

inputs of the branch. The branch’s outcome is speculatively pre-computed 

based on the predicted inputs. In the case of branches with inputs produced 

by compare instructions, the IIT is accessed with the source register names 

to read the comparison’s speculative result. The outcome of the branch is 

speculatively pre-computed based on this speculative comparison result. 

The BPVP-gshare predictor achieves a speedup of 8% over the 2bit-gshare 

predictor. The instruction centric value prediction within the BPVP should 

be replaced with register centric value prediction [60], reducing the 

complexity, hardware costs and power consumption. Thus, branches should 

be pre-computed speculatively based on their input values predicted with an 

optimized register centric value predictor (2-level adaptive value predictor 

instead of PPM). 

In [41] call targets are correlated with the instructions that produce 

them rather than with the call’s global history or the previous branches’ 

targets. The proposed approach pre-computes virtual function call’s (v-call) 

targets. V-calls’ targets are hard predictable even through path-history based 

schemes that exploit the correlation between multiple v-calls to the same 

object reference. Object oriented programming increases the importance of 

v-calls. The proposed technique dynamically identifies the sequence of 

instructions that computes a v-call target. Based on this instruction sequence 

it is possible to pre-calculate the target before the actual v-call is 

encountered. This pre-calculation can be used to supply a prediction. The 

approach reduces v-call target miss-predictions with 24% over a path-based 

two level predictor. 

In [59] the authors proposed to pre-compute branches instead of 

predicting them. Pre-computing branches means to determine the outcome 

of a branch as soon as all branch operands are known. The instruction that 

produced the last operand also triggers the branch condition estimation and, 

after this operation, it correspondingly computes the branch outcome. 

Similarly to branch history prediction, branch information is cached into a 

“prediction table” (PT). Each PT entry has the following fields: TAG (the 

lower part of the PC), PC1 and PC2 (the PCs of the instructions that 

produced the branch operand values), OPC (the opcode of the branch), 

nOP1 and nOP2 (the register names of the branch operands), PRED (for the 

branch outcome) and a LRU field (Least Recently Used). The register file 

has two additional fields for each register: LP (the PC of the last producer) 

and RC (a reference counter which is incremented by each instruction that 

modifies a register linked by a branch instruction stored in the PT and, 

respectively, decremented when the corresponding branch instruction is 



Related Work 21 

evicted from the PT). The PC of any non-branch instruction that modifies at 

least one register is recorded into the supplementary LP (Last Producer) 

field of its destination register. The first issue of a particular branch in the 

program is predicted with a default value (not taken). After the branch’s 

execution, a PT entry is allocated and updated. Every time after a non-

branch instruction – having the corresponding RC field greater than 0 – is 

executed, the PC1 and PC2 fields from the PT are searched upon its PC. 

When a hit occurs, the branch stored in that PT entry is executed and the 

outcome is stored into the PRED bit. When the branch is issued, its outcome 

is found in the PT, as it was previously computed, and thus its behavior is 

perfectly known before execution. From the pure prediction accuracy point 

of view this method seems to be almost perfect. Unfortunately, the 

improvement in prediction accuracy brought by this scheme must be paid in 

terms of timing – because branches frequently follow too closely after the 

source producer instructions – and hardware costs. Based on the pre-

computing branch concept [59] Aamer et al. presented in [1] a study 

regarding the number of instructions occurred between the execution of the 

instruction that produced the last operand of a branch and the execution of 

that branch. Their simulations show that the average distance between the 

last source producer and branch is less than the ideal theoretical distance. If 

the operand producer instruction is too close to the corresponding branch 

then the branch would have to postpone processing for a few cycles, until 

the operand producer instruction is finished. For these branches a BTB can 

be used, improving thus the performance. Thus, the branch outcomes can be 

obtained far enough in advance so that some performance improvement can 

be still achieved. 

Aragón et al. presented in [3] a new approach to improve branch 

predictors: selective branch prediction reversal. The main idea is that many 

branch mispredictions can be avoided if they are selectively reversed. 

Therefore, they proposed a Branch Prediction Reversal Unit (BPRU) that 

reverses predictions of branches likely to be mispredicted, based on the path 

leading to the branch (including the PC of the input producers) and, 

respectively, the predicted values of the branch inputs. The BPRU uses the 

previously presented BPVP-gshare hybrid branch predictor [22] and a 

Reversal Table (RT). Each entry of the RT stores a reversal counter 

implemented as an up/down saturating counter, and a tag. When a branch is 

predicted, the RT is accessed by hashing together the PCs of its input 

producers, the predicted input values and the path leading to the branch. The 

most significant bit of the counter indicates if the predicted branch outcome 

must be reversed. When the correct branch outcome is available, the 

corresponding RT entry is updated by incrementing the reversal counter if 
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the preliminary branch outcome was correct and, respectively, decrementing 

the counter otherwise. The experimental results show average speedups of 

6% over the original BPVP-gshare and, respectively, of 14% over the 2bit-

gshare predictor. 

 In [18] the authors initially implemented a PPM-based branch 

predictor using as context the global branch history. They associated a 

signed saturating prediction counter ranging between [-4, 4] to each PC-

history pair. The counter was incremented if the branch outcome was taken 

and decremented otherwise. When both the branch address and history 

pattern were matched, the corresponding counter provided the prediction. In 

the case of multiple matches for a branch with different history lengths, the 

prediction counter afferent to the longest history was used. However, as they 

show, the longest history match may not be the best choice, and, therefore, 

they proposed another scheme called PPM with the confident longest match 

that uses the prediction counter as a confidence measure. This scheme 

generates a prediction only when the counter is a non-zero value. The 

authors observed that in the case of multiple matches with different history 

lengths, the counters may not agree with each other and different branches 

may favor different history lengths. Thus, the most important scheme 

introduced by Gao and Zhou in this paper, predicts branch outcomes by 

combining multiple partial matches through an adder tree. The Prediction by 

combining Multiple Partial Matches (PMPM) algorithm selects up to L 

confident longest matches and sums the corresponding counters to make a 

prediction. For the fully biased (always taken or always not taken) branches 

they use a bimodal predictor, the PMPM predictor being accessed only for 

not fully biased branches. The realistic PMPM predictor has seven global 

prediction tables indexed by the branch address, global history and path, 

and, respectively, a local prediction table indexed by the branch address and 

local history. When the PMPM is accessed for prediction, up to 4 counters 

from the global history tables are summed with the counter from the local 

prediction table, if there is a hit. If the sum is zero, the bimodal predictor is 

used. Otherwise the sign of the sum provides the prediction. The prediction 

counter from the bimodal prediction table is always updated. The prediction 

counter from the local prediction table is always updated in the case of hit, 

while the counters of the global prediction tables that have been included in 

the summation are updated only when the overall prediction is wrong or the 

absolute value of the sum is less than a certain threshold. Their results show 

that combining multiple partial matches provides higher prediction accuracy 

than a single partial match, decreasing the average misprediction rate to 

3.41%. A first important difference between the approach presented in [18] 

and our branch difference prediction by combining multiple partial matches 
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developed in paragraph 4.5.3 is that we are focalizing on the unbiased 

branches identified in our previous work [19, 61] instead of “not fully 

biased” branches. The authors defined a “fully biased” branch being a 

branch in a certain dynamic context having set its attached bias counter to a 

maximum value (the counter is incremented each time that branch has a 

biased behavior and decremented otherwise). Probably it would be better to 

say “highly biased” branch instead of “fully biased”, meaning that it was 

highly biased (maximum counter) during the “last” processing period 

(maximum counter at the current prediction moment). However, the main 

difference is that they used global branch history, while we used local 

branch difference history. Another important difference consists in how the 

multiple Markov predictions are combined: we used majority vote (more 

efficient for our approach) instead of the adder tree used by Gao and Zhou. 

 In [52] the authors proposed a hybrid branch prediction scheme that 

employs two PPM predictors, one predicts based on local branch history and 

the other predicts based on global branch history. For both the local and 

global PPM predictors, if the local and, respectively, global history were not 

matched, then shorter patterns are searched, and so on, until a match is 

found. When a pattern match occurs, the outcome of the branch that 

succeeded the pattern during its last occurrence is returned as prediction. 

The two independent predictions are combined through a perceptron. The 

output of the perceptron is computed as Y=W0 + W1PL + W2PG, where the 

inputs PL and PG corresponds to the predictions generated by the local and, 

respectively, global PPM predictor (-1 if not taken and +1 if taken). The 

final prediction is taken if the output Y is positive and not taken if Y is 

negative. The table of weights is indexed by the lower 20 bits of the 

branch’s PC. The perceptron is updated by incrementing the weights whose 

inputs match the branch outcome and decrementing those with mismatch. 

The Neuro-PPM branch predictor achieves an average misprediction rate of 

3%. 



3. Finding Difficult-to-Predict Branches 

Our first goal is to find the difficult predictable branches in the 

SPEC2000 benchmarks [50]. As we already pointed out, we consider that a 

branch in a certain context is difficult predictable if it is unbiased – meaning 

that the branch behavior (Taken/Not Taken) is not sufficiently polarized for 

that certain context (local branch history, global history, etc.) – and the 

taken and not taken outcomes are shuffled. The second goal is to improve 

prediction accuracy for branches with low polarization rate, introducing new 

feature sets that will increase their polarization rate and, therefore, their 

predictability.  

 

3.1. Methodology of Identifying Unbiased Branches 
 

A feature is the binary context on p bits of prediction information 

such as local history, global history or path. Each static branch finally has 

associated k dynamic contexts in which it can appear ( pk 2 ). A context 

instance is a dynamic branch executed in the respective context. We 

introduce the polarization index (P) of a certain branch context as follows: 
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where: 

 

  kSSSS ...,,, 21  = set of distinct contexts that appear during all 

branch instances; 

 k = number of distinct contexts, 
pk 2 , where p is the length of the 

binary context; 
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 10 , ,  NT = number of “not taken” branch 

instances corresponding to context Si,  T = number of “taken” branch 
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instances corresponding to context Si, ki ...,,2,1)(  , and 

obviously 110  ff ; 

 if kiSP i ...,,2,1)(,1)(  , then the context iS  is completely 

biased (100%), and thus, the afferent branch is highly predictable; 

 if kiSP i ...,,2,1)(,5.0)(  , then the context iS  is totally 

unbiased, and thus, the afferent branch is not predictable if the taken 

and not taken outcomes are shuffled.  

 

If the taken and respectively not taken outcomes are grouped 

separately, even in the case of  a low polarization index, the branch is 

predictable. The unbiased branches are not predictable only if the taken and 

not taken outcomes are shuffled, because in this case, the predictors cannot 

learn their behavior. For this study we introduce the distribution index for a 

certain branch context, defined as follows: 
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where: 

 

 nt = the number of branch outcome transitions, from taken to not 

taken and vice-versa, in context Si; 

 ),min(2 TNT  = maximum number of possible transitions; 

 k = number of distinct contexts, pk 2 , where p is the length of the 

binary context; 

 if kiSD i ...,,2,1)(,1)(  , then the behavior of the branch in 

context Si is “contradictory” (the most unfavorable case), and thus its 

learning is impossible; 

 if kiSD i ...,,2,1)(,0)(  , then the behavior of the branch in 

context Si is constant (the most favorable case), and it can be 

learned. 

 

As it can be observed in Figure 3.1, we want to systematically 

analyze different feature sets used by different present-day branch predictors 
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in order to find and, hopefully, to reduce the list of unbiased branch contexts 

(contexts with low polarization P).  
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Figure 3.1. Reducing the number of unbiased branches through feature set 

extension. 

We approached an iterative methodology: a certain Feature Set is 

evaluated only on the unbiased branches determined with the previous 

Feature Sets, because the rest were solved with the previously considered 

Feature Sets. Gradually this list is shortened by increasing the lengths of 

Feature Sets and reapplying the algorithm. Thus, the final list of unbiased 

branches contains only the branches that were unbiased for all their 

contexts. The contexts’ lengths were varied from 16 bits to 28 bits. For the 

final list of unbiased branches we will try to find new relevant feature sets in 

order to further improve their polarization index and, therefore, the 

prediction accuracy. 

This approach is more efficient than one which repeats each time the 

algorithm on all branches. Beside producing some unpleasant aspects 

related to simulation time (days / benchmark) and memory (gigabytes of 

memory needed), the second method would prove even not very accurate. 

This is because some of the branches that are not solved by a long context 

can be solved by a shorter one. Through our iterative approach we avoided 

the occurrence of false problems extending the context.  
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Figure 3.2. The goal of context extension. 

Figure 3.2 presents a suggestive example on how unbiased branch 

contexts can be solved through their extension. We considered that a branch 

context is unbiased if its polarization index (see relation (3.1)) is less than 

0.95. The branch contexts with polarization greater than 0.95 are predictable 

and will obtain relatively high prediction accuracies (around 95%). More 

details are presented in paragraph 3.2.4 on a real example from the Stanford 

Perm benchmark [17]. 

In our experiments we concentrated only on benchmarks with a 

percentage of unbiased branch context instances (obtained with relation 

(3.3)), greater than a certain threshold (T=1%) considering that the potential 

prediction accuracy improvement is not significant in the case of 

benchmarks with percentage of unbiased context instances less than 1%. If 

the percentage of unbiased branch contexts is 1%, if they would be solved, 

the prediction accuracy would increase with maximum 1%. This maximum 

can be reached when all discovered difficult predictable branches in this 

stage are solved by the predictor. 
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where NUBi is the total number of unbiased branch context instances on 

benchmark i, and NBi is the number of dynamic branches on benchmark i 

(therefore, the total number of branch context instances). 

 

3.2. Experimental Results 
 

All simulation results are reported on 1 billion dynamic instructions, 

skipping the first 300 million instructions. We note with LH(p)-GH(q)-
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GHPC(r) branches unbiased on local history (LH) of p bits, global history 

(GH) of q bits, and global history XOR-ed by branch address (GHPC) on r 

bits. In the same manner, for all feature set extensions simulated in this 

work, LH(p)-GH(q)-GHPC(r)→F(s) denotes that we measure the 

polarization rate using feature F on s bits (if the feature is the local history, 

global history or global history XOR-ed by branch address) and/or on s PCs 

(in the case of path), evaluating only the branches unbiased for local history 

of p bits, global history of q bits, and global history XOR-ed by branch 

address on r bits.  

3.2.1. Pattern-based Correlation 
 

We started our study evaluating the branch contexts from SPEC2000 

benchmarks [50] on local branch history of 16 bits: LH(0)-GH(0)-

GHPC(0)→LH(16). In Table 3.1, for each benchmark we presented the 

percentages of branch contexts with polarization indexes belonging to five 

different intervals. The column Dynamic Branches contains the number of 

all dynamic conditional branches for each benchmark. The column Static 

Br. contains the number of static branches for each benchmark. For each 

benchmark we generated using relation (3.1) a list of unbiased branch 

contexts, having polarization less than 0.95. We considered that the branch 

contexts with polarization greater than 0.95 are predictable and will obtain 

relatively high prediction accuracies (around 0.95), therefore, in these cases 

we considered that the potential improvement of the prediction accuracy is 

quite low.  
 

SPEC 

2000  

Dynamic 

Branches 

Static 

Br. 
Polarization Rate (P) [%] Unbiased Context  

Instances (P<0.95) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0] 

mcf 118321124 370 10.06 10.50 8.17 8.52 62.74 6812313 5.76% 

parser 85382841 1777 6.67 5.90 3.68 4.56 79.19 17589658 20.60% 

bzip 42591123 211 15.86 16.50 8.58 6.94 52.12 11252986 26.42% 

gzip 71504537 136 15.08 15.63 11.03 9.50 48.76 27692102 38.73% 

twolf 70616018 239 14.49 12.72 6.92 5.34 60.54 31763071 44.98% 

gcc 90868660 17248 3.06 2.68 1.72 2.30 90.24 9809360 10.80% 

Mean 79880717 3330 10.87 10.65 6.68 6.19 65.59 17486582 24.55% 

Table 3.1. Polarization rates of branch contexts on local history of 16 bits. 

The column Unbiased Context Instances contains – for each benchmark – 

the number of unbiased context instances and respectively the percentage of 

unbiased context instances reported to all context instances (dynamic 
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branches). As it can be observed in Table 3.1, the relatively high 

percentages of unbiased branches (at average 24.55%) show high 

improvement potential from the predictability point of view. 

We continue our work analyzing a global branch history of 16 bits 

only on the local branch contexts that we already found unbiased for local 

branch history (see Table 3.1 – last column). In other words, we used a 

dynamic branch in our evaluations only if its 16 bit local context is one of 

the unbiased local contexts: LH(16)-GH(0)-GHPC(0)→GH(16). In Table 

3.2, for each benchmark we presented the percentages of branch contexts 

with polarization indexes belonging to five different intervals. The column 

Simulated Dynamic Branches contains the number of evaluated dynamic 

branches (LH(16)-GH(0)-GHPC(0)) and respectively their percentages  

reported to all dynamic branches. The column Simulated St. Br. represents 

the number of static branches evaluated within each benchmark. For each 

benchmark we generated using relation (3.1) a list of unbiased branch 

contexts on local and global history of 16 bits (LH(16)-GH(16)-GHPC(0)), 

having polarization less than 0.95. The last column contains the number of 

unbiased branch context instances and respectively their percentages 

reported to all dynamic branches. Analyzing comparatively Tables 3.1 and 

3.2, we observe that the global branch history reduced the average 

percentage of unbiased branch context instances from 24.55% to 17.48%. 
 

SPEC 

2000  

Simulated 

Dynamic 

Branches 

Simu-

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context  

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 6812313 5.76% 25 14.57 11.94 9.25 8.13 56.10 3887052 3.28% 

parser 17589658 20.60% 707 6.87 6.98 5.71 6.18 74.26 11064817 12.95% 

bzip 11252986 26.42% 83 19.34 16.62 14.36 13.80 35.88 9969701 23.40% 

gzip 27692102 38.73% 62 8.98 10.09 9.01 10.88 61.04 20659305 28.89% 

twolf 31763071 44.98% 132 8.46 7.43 6.39 9.89 67.83 22893014 32.41% 

gcc 9809360 10.80% 4923 4.02 4.13 3.14 3.56 85.15 3563776 3.92% 

Mean 17486582 24.55% 988 10.37 9.53 7.97 8.74 63.37 12006278 17.48% 

Table 3.2. Polarization rates of branch contexts on global history of 16 bits 

evaluating only the unbiased local branch contexts of 16 bits. 

The next feature set we analyzed is the XOR between a global 

branch history of 16 bits and the lower part of branch address (PC bits 

18÷3): LH(16)-GH(16)-GHPC(0)→GHPC(16). We used again only the 

branch contexts we found unbiased for the previous feature sets (local and 

global branch history of 16 bits). In other words, we used a dynamic branch 

in our evaluations only if its 16 bit local context is one of the unbiased local 
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contexts (Table 3.1), and its 16 bit global context is one of the unbiased 

global contexts (Table 3.2). In Table 3.3, for each benchmark we presented 

the percentages of branch contexts with polarization indexes belonging to 

five different intervals. For each benchmark we generated again using 

relation (3.1), a list of unbiased branch contexts with polarization less than 

0.95 (LH(16)-GH(16)-GHPC(16)).  
 

SPEC 

2000 

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context  

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 3887069 3.28% 19 30.78 25.21 19.54 17.17 7.30 3887050 3.28% 

parser 11065068 12.95% 504 23.84 24.27 19.87 21.56 10.46 11063791 12.95% 

bzip 9969757 23.40% 76 28.45 24.43 21.12 20.30 5.70 9969678 23.40% 

gzip 20659343 28.89% 51 20.34 22.85 20.43 24.66 11.72 20659290 28.89% 

twolf 22893103 32.41% 112 21.11 18.53 15.93 24.69 19.75 22892985 32.41% 

gcc 3565197 3.92% 2642 24.05 24.93 18.93 21.46 10.63 3561998 3.91% 

Mean 12006590 17.48% 567 24.76 23.37 19.30 21.64 10.92 12005798 17.47% 

Table 3.3. Polarization rates on the XOR between global history and branch 

address on 16 bits evaluating only the unbiased local and global branch contexts of 

16 bits. 

The last column contains for each benchmark the number of unbiased 

branch context instances and respectively their percentages reported to all 

dynamic branches. The high percentages of unbiased branch context 

instances in the case of bzip, gzip and twolf benchmarks represent a 

potential improvement of prediction accuracy. 

For the determined unbiased branch contexts we are analyzing now 

if the taken and respectively not taken outcomes are grouped separately. 

This is necessary, because if the branch outcomes are not shuffled they are 

predictable using corresponding two-level adaptive predictors, but if these 

outputs are shuffled the branches are not predictable. We used relation (3.2) 

in order to determine the distribution indexes for each unpredictable branch 

context per benchmark. We evaluated only the unbiased dynamic branches 

obtained using all their contexts of 16 bits (LH(16)-GH(16)-GHPC(16)). 

Table 3.4 shows for each benchmark the percentages of branch contexts 

with distribution indexes belonging to five different intervals in the case of 

local branch history. In the same way, Tables 3.5 and 3.6 present the 

distribution indexes in the case of global history and respectively the XOR 

between global history and branch address. 

 Tables 3.4, 3.5 and 3.6 show that in the case of unbiased branch 

contexts, the taken and respectively not taken outcomes are not grouped 

separately, more, they are highly shuffled.  
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SPEC 

2000 

Simulated Dynamic 

Branches 

Simu- 

lated 

St. Br. 

Distribution Rate (D) [%] 
[0, 

0.2) 

[0.2, 

0.4) 

[0.4, 

0.6) 

[0.6, 

0.8) 

[0.8, 

1.0] 

mcf 3887069 3.28% 19 9.21 11.02 46.30 13.32 20.15 

parser 11064250 12.95% 483 20.23 9.50 42.44 9.63 18.19 

bzip 9969752 23.40% 75 6.78 6.45 44.00 16.80 25.98 

gzip 20659339 28.89% 51 5.10 5.38 38.70 20.98 29.85 

twolf 22893094 32.41% 110 14.63 5.81 43.42 16.71 19.43 

gcc 3564489 3.91% 2553 39.07 9.11 33.32 6.00 12.50 

Mean 12006332 17.47% 548 15.83 7.87 41.36 13.90 21.01 

Table 3.4. Distribution rates on local history of 16 bits evaluating only the 

branches that were unbiased on all their 16 bit contexts (on local history, global 

history and respectively XOR of global history and branch address). 

SPEC 

2000 

Simulated Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Distribution Rate (D) [%] 
[0,  

0.2) 

[0.2,  

0.4) 

[0.4,  

0.6) 

[0.6,  

0.8) 

[0.8,  

1.0] 

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31 

parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50 

bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13 

gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91 

twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75 

gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15 

Mean 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79 

Table 3.5. Distribution rates on global history of 16 bits evaluating only the 

branches that have all their 16 bit contexts unbiased (on local history, global 

history and respectively XOR of global history and branch address). 

SPEC 

2000  

Simulated Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Distribution Rate (D) [%] 
[0,  

0.2) 

[0.2,  

0.4) 

[0.4,  

0.6) 

[0.6,  

0.8) 

[0.8,  

1.0] 

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31 

parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50 

bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13 

gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91 

twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75 

gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15 

Mean 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79 

Table 3.6. Distribution rates on the XOR between global history and branch 

address  on 16 bits evaluating only branches having all 16 bit contexts unbiased (on 

local and global history and the XOR of global history and branch address). 
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The percentage of unbiased branch contexts having highly shuffled 

outcomes (with distribution index greater than 0.4) is 76.3% in the case of 

local history of 16 bits (see Table 3.4),  89.37% in the case of global history 

of 16 bits (see Table 3.5), and 89.37% in the case of global history XOR-ed 

by branch address on 16 bits (see Table 3.6). We obtained the same 

distribution indexes for both the global history and respectively the XOR 

between global history and branch address (Tables 3.5 and 3.6). 

A distribution index of 1.0 means the highest possible alternation 

frequency (with taken or not taken periods of 1). A distribution index of 0.5 

means again a high alternation, since, supposing a constant frequency, the 

taken or not taken periods are only 2, lower than the predictors’ learning 

times. In the same manner, periods of 3 introduce a distribution of about 

0.25, and periods of 5 generate a distribution index of 0.15, therefore we 

considered that if the distribution index is lower than 0.2 the taken and not 

taken outcomes are not  shuffled, and the branch’s behavior can be learned. 

We continued our evaluations extending the lengths of feature sets 

from 16 bits to 20, 24 and respectively 28 bits, our hypothesis being that the 

longer feature sets will increase the polarization index and, therefore, the 

prediction accuracy. We started with a local branch history of 20 bits (Table 

3.7), evaluating again only the branch contexts we found unbiased for the 

previous feature sets of 16 bits: LH(16)-GH(16)-GHPC(16)→LH(20).  

 
SPEC 

2000  

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context  

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 3887050 3.28% 19 8.41 7.96 5.28 5.97 72.37 3147989 2.66% 

parser 11063878 12.95% 476 8.50 6.70 3.87 4.44 76.49 7838166 9.18% 

bzip 9969651 23.40% 75 8.93 4.69 2.10 2.17 82.11 6493881 15.24% 

gzip 20659242 28.89% 51 9.98 7.47 4.55 4.84 73.16 17753722 24.82% 

twolf 22892904 32.41% 110 12.79 10.91 5.17 3.93 67.20 17540719 24.83% 

gcc 3563213 3.91% 2546 7.79 6.31 3.68 4.56 77.66 2061136 2.26% 

Mean 12005990 17.47% 546 9.40 7.34 4.10 4.31 74.83 9139269 13.17% 

Table 3.7. Polarization rates on local history of 20 bits evaluating only the 

branches that have all their 16 bit contexts unbiased (on local history, global 

history and respectively XOR of global history and branch address). 

The column Polarization Rate from Table 3.7 presents the percentages of 

branch contexts with polarization indexes belonging to five different 

intervals. The last column of Table 3.7 shows for each benchmark the 

number of unbiased dynamic branches (LH(20)-GH(16)-GHPC(16)), and 

respectively their percentage reported to all dynamic branches. 
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Table 3.8 shows the results obtained using a global branch history of 

20 bits: LH(20)-GH(16)-GHPC(16)→GH(20). The last column of Table 3.8 

shows the number of unbiased dynamic branches (LH(20)-GH(20)-

GHPC(16)) and their percentage reported to all dynamic branches. 
 

SPEC 

2000 

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context 

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 3148005 2.66% 18 20.06 20.55 13.08 10.60 35.71 3057312 2.58% 

parser 7838384 9.18% 446 15.44 14.61 10.83 11.04 48.09 7166404 8.39% 

bzip 6493918 15.24% 74 15.86 17.02 12.45 12.43 42.24 6228047 14.62% 

gzip 17753750 24.82% 45 15.32 16.89 15.88 17.75 34.16 17215762 24.07% 

twolf 17540776 24.83% 103 13.96 12.79 11.63 17.61 44.00 16240443 22.99% 

gcc 2062167 2.26% 2299 14.59 13.77 9.35 9.93 52.37 1767385 1.94% 

Mean 9139500 13.17% 497 15.87 15.93 12.20 13.22 42.76 8612559 12.43% 

Table 3.8. Polarization rates on global history of 20 bits evaluating only the 

unbiased branches on local history of 20 bits, global history of 16 bits, and the 

XOR of global history and branch address on 16 bits. 

In the same manner, Table 3.9 shows the results obtained using a XOR of 

20 bits between global history and branch address: LH(20)-GH(20)-

GHPC(16)→GHPC(20). The last column of Table 3.9 shows for each 

benchmark the number and percentage of unbiased dynamic branches: 

LH(20)-GH(20)-GHPC(20). 
 

SPEC 

2000  

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context 

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 3057327 2.58% 18 30.53 31.28 19.91 16.14 2.13 3057309 2.58% 

parser 7166723 8.39% 429 27.62 26.16 19.37 19.76 7.08 7166215 8.39% 

bzip 6228107 14.62% 73 26.21 28.12 20.57 20.53 4.57 6228010 14.62% 

gzip 17215799 24.07% 45 20.78 22.96 21.58 24.13 10.55 17215749 24.07% 

twolf 16240535 22.99% 101 21.26 19.48 17.70 26.81 14.74 16240434 22.99% 

gcc 1769008 1.94% 2019 28.28 26.84 18.17 19.29 7.41 1766800 1.94% 

Mean 8612917 12.43% 447 25.78 25.80 19.55 21.11 7.74 8612420 12.43% 

Table 3.9. Polarization rates on the XOR of 20 bits between global history and 
branch address evaluating only the branches unbiased for local and global history 

of 20 bits respectively the XOR of global history and branch address on 16 bits. 

As it can be observed a considerable number of unbiased branches become 

biased if the feature sets are extended from 16 bits to 20 bits. Extending the 

feature set length from 16 bits to 20 bits, the percentage of unbiased 

dynamic branches decreased at average from 17.47% (see Table 3.3) to 
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12.43% (Table 3.9). Using the same simulation methodology, we extend the 

feature sets to 24 bits.  

 
SPEC 

2000 

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context 

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 3057318 2.58% 18 9.04 7.95 4.59 5.41 73.01 2632531 2.22% 

parser 7166415 8.39% 424 10.88 8.16 4.19 4.44 72.34 5083585 5.95% 

bzip 6228031 14.62% 73 8.41 4.71 2.46 2.84 81.59 4250654 9.98% 

gzip 17215734 24.07% 45 9.20 6.19 3.64 4.19 76.78 13753938 19.23% 

twolf 16240411 22.99% 101 10.14 5.40 2.21 1.95 80.31 12308193 17.42% 

gcc 1768113 1.94% 1980 11.73 9.02 5.11 6.14 68.00 1227407 1.35% 

Mean 8612670 12.43% 440 9.90 6.90 3.70 4.16 75.33 6542718 9.36% 

Table 3.10. Polarization rates on local history of 24 bits only for branches that 
were unbiased on all their 20 bit contexts (on local history, global history and 

respectively XOR of global history and branch address). 

Table 3.10 shows the results obtained using a local branch history of 24 bits: 

LH(20)-GH(20)-GHPC(20)→LH(24). The last column of Table 3.10 shows 

for each benchmark the number and percentage of unbiased dynamic 

branches: LH(24)-GH(20)-GHPC(20). 

Table 3.11 shows the results obtained using a global branch history 

of 24 bits: LH(24)-GH(20)-GHPC(20)→GH(24). The last column of Table 

3.11 shows the number of unbiased dynamic branches (LH(24)-GH(24)-

GHPC(20)) and their percentage reported to all dynamic branches. 

 
SPEC 

2000 

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context 

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 2632542 2.22% 18 15.20 13.79 7.13 5.90 57.98 2568911 2.17% 

parser 5083795 5.95% 414 18.82 16.61 10.90 10.41 43.25 4664394 5.46% 

bzip 4250689 9.98% 73 12.10 11.31 7.12 7.60 61.87 3799893 8.92% 

gzip 13753960 19.23% 44 18.43 18.17 15.37 16.36 31.67 13480788 18.85% 

twolf 5459637 17.42% 93 16.99 14.90 10.91 13.88 43.32 5144339 7.28% 

gcc 1228364 1.35% 1856 17.16 14.61 9.94 10.15 48.14 1097445 1.20% 

Mean 5401498 9.36% 416 16.45 14.89 10.22 10.71 47.70 5125962 7.31% 

Table 3.11. Polarization rates on global history of 24 bits evaluating only the 

branches unbiased for local history of 24 bits, global history of 20 bits and 

respectively XOR of global history and branch address on 20 bits. 

Table 3.12 presents the results obtained using the XOR between global 

branch history and branch address on 24 bits: LH(24)-GH(24)-
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GHPC(20)→GHPC(24). The last column of Table 3.12 shows for each 

benchmark the number and percentage of unbiased dynamic branches: 

LH(24)-GH(24)-GHPC(24). Extending the feature set length from 20 bits to 

24 bits, the percentage of unbiased dynamic branches decreased at average 

from 12.43% (see Table 3.9) to 7.31% (Table 3.12). 
 

SPEC 

2000 

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context 

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 2568928 2.17% 18 35.55 32.24 16.67 13.79 1.75 2568910 2.17% 

parser 4664693 5.46% 398 31.21 27.52 18.08 17.25 5.93 4664273 5.46% 

bzip 3799936 8.92% 72 30.43 28.45 17.91 19.13 4.07 3799859 8.92% 

gzip 13480825 18.85% 41 24.64 24.29 20.55 21.87 8.66 13480783 18.85% 

twolf 5144419 7.28% 89 27.03 23.73 17.38 22.10 9.76 5144327 7.28% 

gcc 1098795 1.20% 1668 30.73 26.27 17.87 18.39 6.75 1097009 1.20% 

Mean 5126266 7.31% 381 29.93 27.08 18.07 18.75 6.15 5125860 7.31% 

Table 3.12. Polarization rates on the XOR of 24 bits between global history and 
branch address evaluating only the branches unbiased for local history of 24 bits, 

global history of 24 bits and XOR of global history and branch address on 20 bits. 

We extended again the feature sets to 28 bits. Table 3.13 shows the 

results obtained using a local branch history of 28 bits: LH(24)-GH(24)-

GHPC(24)→LH(28). The last column of Table 3.13 shows for each 

benchmark the number of unbiased dynamic branches (LH(28)-GH(24)-

GHPC(24)) and their percentage reported to all dynamic branches.  
 

SPEC 

2000  

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context 

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 2568923 2.17% 18 10.62 8.64 4.69 5.35 70.69 2174101 1.83% 

parser 4664502 5.46% 395 11.17 7.09 3.72 4.07 73.95 3301587 3.86% 

bzip 3799904 8.92% 71 10.16 5.90 3.04 3.59 77.30 2728593 6.40% 

gzip 13480777 18.85% 41 9.76 6.14 3.50 4.14 76.46 10691142 14.95% 

twolf 5144325 7.28% 87 9.03 4.44 2.81 3.76 79.96 4208376 5.95% 

gcc 1098269 1.20% 1644 13.68 10.29 5.68 6.76 63.59 774654 0.85% 

Mean 5931686 8.54% 122 10.14 6.44 3.55 4.18 75.67 4620759 6.60% 

Table 3.13. Polarization rates on local history of 28 bits only for branches that 

were unbiased on all their 24 bit contexts (on local history, global history and 

respectively XOR of global history and branch address). 

As it can be observed, in the case of the gcc benchmark, extending the 

feature set length to 28 bits, the percentage of the unbiased context instances 
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is less than the threshold T of 1% (see relation (3.3)), and thus we eliminate 

it from our next evaluations. We consider that the conditional branches from 

the gcc benchmark are not difficult predictable using feature lengths of 28 

bits. As a consequence the results obtained with the gcc benchmark are not 

included in the average results from Table 3.13. 

SPEC 

2000  

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context 

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 2174117 1.83% 18 15.41 11.53 6.18 5.29 61.60 2149108 1.81% 

parser 3301768 3.86% 370 21.26 17.06 10.39 10.18 41.11 3041426 3.56% 

bzip 2728627 6.40% 69 11.81 8.86 5.07 5.55 68.72 2280197 5.35% 

gzip 10691161 14.95% 41 19.36 17.05 13.50 14.84 35.25 10405692 14.55% 

twolf 4208418 5.95% 85 16.53 14.43 10.21 13.55 45.29 4007088 5.67% 

Mean 4620818 6.60% 116 16.87 13.78 9.07 9.88 50.39 4376702 6.19% 

Table 3.14. Polarization rates on global history of 28 bits evaluating only the 
branches unbiased for local history of 28 bits, global history of 24 bits and 

respectively the XOR of global history and branch address on 24 bits. 

Table 3.14 presents the results obtained when we used a global branch 

history of 28 bits: LH(28)-GH(24)-GHPC(24)→GH(28). The column 

Unbiased Context Instances from Table 3.14 presents for each benchmark 

the number and percentage of unbiased dynamic branches: LH(28)-GH(28)-

GHPC(24). 

Finally, Table 3.15 shows the results obtained using the XOR of 

global branch history and branch address on 28 bits: LH(28)-GH(28)-

GHPC(24)→GHPC(28). The last column of Table 3.15 shows for each 

benchmark the number of unbiased dynamic branches (LH(28)-GH(28)-

GHPC(28)) and their percentage reported to all dynamic branches. 

 
SPEC 

2000 

Simulated 

Dynamic 

Branches 

Simu- 

lated  

St. Br. 

Polarization Rate (P) [%] Unbiased Context 

Instances (P<0.95) [0.5,  

0.6) 

[0.6,  

0.7) 

[0.7,  

0.8) 

[0.8,  

0.9) 

[0.9,  

1.0] 

mcf 2149125 1.81% 18 39.26 29.37 15.73 13.46 2.17 2149107 1.81% 

parser 3041691 3.56% 357 34.21 27.48 16.71 16.39 5.22 3041301 3.56% 

bzip 2280240 5.35% 69 36.29 27.22 15.57 17.05 3.87 2280161 5.35% 

gzip 10405726 14.55% 41 27.56 24.28 19.22 21.13 7.81 10405684 14.55% 

twolf 4007152 5.67% 82 27.73 24.21 17.12 22.73 8.21 4007068 5.67% 

Mean 4376787 6.19% 113 33.01 26.51 16.87 18.15 5.45 4376664 6.19% 

Table 3.15. Polarization rates on the XOR of 28 bits between global history and 

branch address evaluating only the branches unbiased for local and global history 

of 28 bits respectively the XOR of global history and branch address on 24 bits. 
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Extending the feature set length from 24 bits to 28 bits, the percentage of 

unbiased dynamic branches decreased at average from 7.31% (see Table 

3.12) to 6.19% (see Table 3.15). Despite of the feature set extension, the 

number of unbiased dynamic branches remains still high (6.19%), and thus, 

it is obvious that using  longer feature sets is not sufficient. 

 The global history solves at average 2.56% of the unbiased dynamic 

branches not solved with local history (see Figure 3.3). The hashing 

between global history and branch address (XOR) behaves just like the 

global history, and it does not improve further the polarization rate. In 

Figure 3.3 can be also observed that increasing the branch history, the 

percentage of unbiased dynamic branches decreases, suggesting a 

correlation between branches situated at a large distance in the dynamic 

instruction stream. The results also show that the “ultimative predictibility 

limit” of history context-based prediction is approximatively 94%, 

considering unbiased branches as completely unpredictable. A conclusion 

based on our simulation methodology is that 94% of dynamic branches can 

be solved with prediction information of up to 28 bits (some of them are 

solved with 16 bits, others with 20, 24 or 28 bits). 
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Figure 3.3. Reduction of average percentages of unbiased context instances 

(P<0.95) by extending the lengths of feature sets. 

 In another work we have studied the polarization of branches but 

using a little different simulation methodology [37]. We evaluated local 

history concatenated with global history. The simulation methodology is 

presented in Figure 3.4.  
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Figure 3.4. Identifying unbiased branches by using the local history concatenated 

with the global history. 

The evaluation results presented in Table 3.16 show that these longer 

contexts, due to their better precision, have higher polarization index. 

Comparing our results, it is obvious that a certain feature set LH(p)-GH(p) 

from Table 3.16 is approximatively equivalent in terms of polarization rate 

with feature set GH(p+4) from Tables 3.8, 3.11 and 3.14. In other words, the 

same percentage of unbiased context instances is obtained for both LH(p)-

GH(p) and GH(p+4) feature sets, but the number of bits in the correlation 

information is different: (p+p) bits of local and global history, and 

respectively (p+4) bits of global history.  
 

 
Benchmark LH(0)-GH(0) 

->LH(16)-

GH(0) 

LH(16)-

GH(0) 

->LH(16)-

GH(16) 

LH(16)-

GH(16) 

->LH(20)-

GH(20) 

LH(20)-

GH(20) 

->LH(24)-

GH(24) 

LH(24)-

GH(24) 

->LH(28)-

GH(28) 

LH(28)-

GH(28) 

->LH(32)-

GH(32) 

bzip 26.42% 12.83% 7.53% 4.70% 3.08% 2.10% 

gzip 38.73% 24.58% 17.84% 12.67% 9.12% 6.16% 

mcf 5.76% 3.09% 2.44% 2.09% 1.78% 1.49% 

parser 20.61% 7.42% 4.77% 3.01% 1.98% 1.40% 

twolf 44.98% 23.94% 12.79% 8.28% 5.70% 3.90% 

gcc 10.85% 2.50% 1.41% 0.88% 0.58% 0.39% 

Average 24.56% 12.39% 7.80% 6.15% 4.33% 3.01% 

Table 3.16. The percentages of unbiased context instances, after each context 

length extension, obtained by using only the local history concatenated with the 

global history. 
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Taking into account that increasing the prediction accuracy with 1%, 

the IPC (instructions-per-cycle) is improved with more than 1% (it grows 

non-linearly) [64], there are great chances to obtain considerably better 

overall performances even if not all of the 6.19% difficult predictable 

branches will be solved. Therefore, we consider that this 6.19% represents a 

significant percentage of unbiased branch context instances, and in the same 

time a good improvement potential in terms of prediction accuracy and IPC. 

Focalising on these unbiased branches – in order to design some efficient 

path-based predictors for them [36, 58] – the overall prediction accuracy 

should increase with some percents, that would be quite remarkable. The 

simulation results also lead to the conclusion that as higher is the feature set 

length used in the prediction process, as higher is the branch polarization 

index and hopefully the prediction accuracy (Figure 3.3). A certain large 

context (e.g. 100 bits) – due to its better precision – has lower occurrence 

probability than a smaller one, and higher dispersion capabilities (the 

dispersion grows exponentially). Thus, very large contexts can significantly 

improve the branch polarization and the prediction accuracy too. However, 

they are not always feasable for hardware implementation. The question is: 

what feature set length is really feasable for hardware implementation, and 

more important, in this case, which is the solution regarding the unbiased 

branches? In our opinion, as we’ll further show, a feasable solution in this 

case could be given by path-predictors. 

 

 

3.2.2. Path-based Correlation 
 

 The path information could be a solution for relatively short history 

contexts (low correlations). Our hypothesis is that short contexts used 

together with path information should replace significantly longer contexts, 

providing the same prediction accuracy. A common criticism for most of the 

present two-level adaptive branch prediction schemes consists in the fact 

that they used insufficient global correlation information [58]. There are 

situations when a certain static branch, in the same global history context 

pattern, has different behaviors (taken/not taken), and therefore the branch 

in that context is unbiased. If each bit belonging to the global history will be 

associated during the prediction process with its corresponding PC, the 

context of the current branch becomes more precisely, and therefore its 

prediction accuracy could be better. Our next goal is to extend the 

correlation information with the path, according to the above idea [58]. 

Extending the correlation information in this way, suggests that at different 
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occurrences of a certain static branch with the same global history context, 

the path contexts can be different. 

 We started our evaluations regarding the path, studying the gain 

obtained by introducing paths of different lengths. The analyzed feature 

consists of a global branch history of 16 bits and the last p PCs. We applied 

this feature only to dynamic branches that we already found unbiased 

(P<0.95) for local and global history of 16 bits and respectively global 

history XOR-ed by branch address on 16 bits. 

 

Benchmark LH(16)-

GH(16)- 

GHPC(16) 

LH(16)-GH(16)- 

GHPC(16) 

->PATH(1) 

LH(16)-GH(16)- 

GHPC(16) 

->PATH(16) 

LH(16)-GH(16)- 

GHPC(16) 

->PATH(20) 

LH(16)-GH(16)- 

GHPC(16) 

->LH(20) 

bzip 23.40% 23.35% 22.16% 20.38% 15.24% 

gzip 28.89% 28.88% 28.17% 27.51% 24.82% 

mcf 3.28% 3.28% 3.28% 3.20% 2.66% 

parser 12.95% 12.89% 12.01% 10.95% 9.18% 

twolf 32.41% 32.41% 31.46% 27.10% 24.83% 

gcc 3.91% 3.91% 3.56% 3.02% 2.26% 

Average 17.47% 17.45% 16.77% 15.36% 13.17% 

Gain 0.02% 0.70% 2.11% 4.30% 

Table 3.17. The gain introduced by the path of different lengths (1, 16, 20 PCs) 

versus the gain introduced by extended local history (20 bits). 

Column LH(16)-GH(16)-GHPC(16) from Table 3.17, presents the 

percentage of unbiased contexts for each benchmark. Columns LH(16)-

GH(16)-GHPC(16)→PATH(1), LH(16)-GH(16)-GHPC(16)→PATH(16) 

and LH(16)-GH(16)-GHPC(16)→PATH(20) presents the percentages of 

unbiased context instances obtained using a global history of 16 bits and a 

path of 1, 16 and respectively 20 PCs. The last column presents the 

percentages of unbiased context instances extending the local history to 20 

bits (without path). For each feature is presented the gain opposite to the 

first column average. It can be observed that a path of 1 introduces a not 

significant gain of 0.2%. Even a path of 20 introduces a gain of only 2.11% 

related to the more significant gain of 4.30% introduced by an extended 

local branch history of 20 bits. The results show (Table 3.17) that the path is 

useful only in the case of short contexts. Thus, a branch history of 16 bits 

compresses and approximates well the path information. In other words, a 

branch history of 16 bits spreads well the different paths that lead to a 

certain dynamic branch. 

 We continue our work evaluating – on all branches (non-iterative 

simulation) – the number of unbiased context instances (P<0.95) using as 
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prediction information paths of different lengths (p PCs) together with 

global histories of the same lengths (p bits).  

 
Bench. p=1 p=4 p=8 p=12 p=16 p=20 p=24 

bzip 58.54% 39.00% 37.24% 35.08% 32.41% 31.29% 28.01% 

gzip 49.85% 45.93% 43.58% 35.67% 34.10% 33.31% 33.02% 

mcf 27.85% 21.30% 6.38% 5.89% 6.35% 5.58% 5.20% 

parser 57.75% 44.64% 36.37% 30.63% 27.25% 23.00% 20.03% 

twolf 67.49% 59.07% 51.28% 43.51% 37.12% 31.47% 28.47% 

gcc 34.17% 26.34% 17.65% 12.61% 9.51% 7.85% 6.64% 

Average 49.28% 39.38% 32.08% 27.23% 24.46% 22.08% 20.23% 

Table 3.18. The percentages of unbiased context instances using as context only 

the global history of p bits. 

Bench. p=1 p=4 p=8 p=12 p=16 p=20 p=24 

bzip 38.99% 36.93% 34.41% 32.16% 30.15% 27.52% 23.90% 

gzip 48.53% 44.81% 42.20% 34.45% 33.21% 32.73% 32.31% 

mcf 26.01% 20.98% 6.23% 5.85% 6.48% 5.57% 5.19% 

parser 48.42% 39.50% 32.13% 27.48% 24.66% 20.82% 18.65% 

twolf 62.65% 55.68% 49.47% 42.60% 35.81% 30.66% 27.88% 

gcc 28.51% 20.42% 13.84% 10.53% 8.44% 7.12% 6.14% 

Average 42.19% 36.39% 29.71% 25.51% 23.13% 20.74% 19.01% 

Table 3.19. The percentages of unbiased context instances using as feature the 

global history of p bits together with the path of p PCs. 

The results are presented in Table 3.19, and in Figure 3.5 they are compared 

with the results obtained using only global history (see Table 3.18). In the 

case of the ‘mcf’ benchmark we obtained higher percentage of unbiased 

context instances when we extended the correlation information (Table 

3.19) from 12 bits of global history and 12 PCs (p=12) to 16 bits of global 

history and 16 PCs (p=16). This growth is possible because a certain biased 

context (P≥0.95), through extension is splitted into more subcontexts, and 

some of these longer contexts can be unbiased (P<0.95), thus increasing the 

number of unbiased branches. Again, the results obtained with long global 

history patterns (contexts) are closer to those obtained with path patterns of 

the same lengths, meaning that long global history (p bits) approximates 

very well the longer path information (p PCs). 

 As it can be observed in Figure 3.5, an important gain is obtained 

through path in the case of short contexts (p<16). A branch history of more 

than 12 bits, compresses well the path information, and therefore, in these 

cases, the gain introduced by the path is not significant.  
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Figure 3.5. The gain introduced by the path for different context lengths – 

SPEC2000 benchmarks. 

Desmet shows in her PhD thesis [14] that complete path (all 

branches) is more efficient than simple path (only conditional branches) 

from the entropy point of view. This is in contradiction with our results 

presented in Table 3.20, where we compared these types of path from the 

unbiased branch percentage point of view. This contradiction can be 

justified (?) by observing the following differences between our 

measurements: 
 

 Desmet measured per branch entropy and presented the 

average entropy, while we measured per branch-context 

polarization and presented the average percentage of branch 

contexts having polarization less than 0.95; 

 Desmet’s path consists in the PCs corresponding to the target 

instructions (as Nair did), while our path  consists in the PCs 

of branches; 

 Desmet uses short histories (p=1, 2, 5 PCs), while our 

evaluations were generated on a considerable larger interval 

(p=1, 4, 8, …, 24 PCs). 
 

As we explain below, paradoxically, the simple path is more rich in 

information than complete path (for the same number of PCs), justifying our 

results presented in Table 3.20. Let’s consider the following sequence of 

instructions: 

 

... bne1 ... bne2 ... jr ... bne3 ... bne4 ... bne5=? 
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If we use a path history of 4 PCs (p=4), then: 

 simple path = bne1, bne2, bne3, bne4; 

 complete path = bne2, jr, bne3, bne4. 
 

The unconditional branch jr brings less information, because it is 

always taken, and therefore, between bne2 and bne3 through jr only one 

path is possible, while through conditional branches two paths are possible. 

Thus, the path consisting exclusively in conditional branches is better than 

complete path (see Table 3.20). 

 

Context p=1 p=4 p=8 p=12 p=16 p=20 p=24 

GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23 

GH (p bits) +  
FullTargetPath (p PCs) 46.74 37.23 30.72 26.50 23.89 21.58 19.88 

GH (p bits) +  

FullPath (p PCs) 43.21 37.03 30.49 26.41 23.86 21.56 19.86 

GH (p bits) +  

CondTargetPath (p PCs) 45.13 36.41 29.76 25.56 23.18 20.77 19.09 

GH (p bits) +  

CondPath (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01 

Table 3.20. Percentages of unbiased branches on the SPEC2000 benchmarks [%]. 

We also compared the path consisting in PCs of branches with the path 

consisting in PCs of target instructions. The path of branch PCs is slightly 

better, however the difference is unsignificant (see Table 3.20). 

Further, we present some results obtained applying the same 

methodology on Branch Prediction World Championship benchmarks – 

proposed by Intel [5, 6, 30]. We continue to evaluate – on all branches using 

the non-iterative simulation – paths of different lengths (p PCs) used 

together with global histories of the same lengths (p bits). The results are 

presented in Table 3.22, and in Figure 3.6 they are compared with the 

results obtained using only global history (see Table 3.21). 

As it can be observed from Tables 3.21, 3.22 and from Figure 3.6, the 

results produced (unbiased context instances ratio) by the Intel benchmarks 

have the same profile like that obtained on the SPEC2000 benchmarks. 

Actually, rich contexts (long patterns) reduce almost to zero the advantage 

introduced by using the path information. 
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Benchmark p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32 

dist-fp-1 25.70 21.11 18.45 16.38 14.61 12.64 10.62 9.74 9.46 

dist-fp-2 20.47 9.11 8.48 5.18 5.19 5.43 5.36 5.20 5.32 

dist-fp-3 3.04 1.82 0.95 0.18 0.00 0.00 0.00 0.00 0.00 

dist-fp-4 11.41 8.96 4.58 3.92 3.59 3.00 2.27 1.73 1.37 

dist-fp-5 68.91 30.11 16.81 6.09 5.19 5.19 4.46 3.72 3.72 

dist-int-1 47.98 40.00 28.97 24.93 20.52 16.39 14.01 10.80 9.38 

dist-int-2 55.98 48.24 39.61 32.81 27.46 22.97 19.54 17.19 15.11 

dist-int-3 66.26 55.74 47.23 38.35 31.21 26.20 22.74 20.10 17.56 

dist-int-4 45.31 42.29 29.53 21.11 16.50 13.77 11.18 9.92 8.89 

dist-int-5 2.50 1.48 1.10 0.91 0.78 0.72 0.67 0.67 0.66 

dist-mm-1 72.68 66.29 56.09 52.16 47.16 44.32 40.95 37.14 33.04 

dist-mm-2 39.43 37.51 33.48 30.65 28.65 26.75 24.79 22.56 20.20 

dist-mm-3 19.33 15.62 13.43 11.54 10.20 6.80 6.17 5.42 5.20 

dist-mm-4 8.41 6.11 6.86 5.91 5.01 4.24 3.13 3.08 2.98 

dist-mm-5 38.16 29.02 22.08 16.97 14.53 12.17 10.64 9.22 7.91 

dist-serv-1 16.63 11.60 7.92 6.01 5.21 4.03 3.17 2.75 2.57 

dist-serv-2 15.59 11.08 7.66 5.91 4.81 3.76 3.11 2.72 2.44 

dist-serv-3 29.87 25.68 20.52 16.84 14.06 12.37 9.02 8.26 7.47 

dist-serv-4 15.53 11.04 8.00 7.06 5.86 5.17 4.63 4.22 3.93 

dist-serv-5 15.94 11.27 7.95 7.21 6.17 5.38 5.08 4.55 4.15 

Average 30.96 24.20 18.99 15.51 13.33 11.56 10.08 8.95 8.07 

Table 3.21. The percentages of unbiased context instances using as context only 

the global history of p bits – Intel benchmarks [%]. 

 

Benchmark p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32 

dist-fp-1 25.72 20.97 17.44 15.56 13.11 11.54 10.03 9.16 8.93 

dist-fp-2 20.46 8.92 8.21 5.32 5.33 5.58 5.52 5.41 5.27 

dist-fp-3 2.77 1.73 0.86 0.00 0.00 0.00 0.00 0.00 0.00 

dist-fp-4 10.86 8.95 4.45 3.78 3.59 2.99 2.26 1.73 1.36 

dist-fp-5 65.40 28.47 15.91 5.56 5.19 4.46 3.72 3.72 3.72 

dist-int-1 44.02 32.67 26.51 23.05 18.05 15.16 12.40 10.28 8.63 

dist-int-2 52.98 42.77 34.33 28.62 24.01 20.79 18.07 16.03 14.25 

dist-int-3 64.24 55.42 46.82 38.04 31.10 26.15 22.56 20.00 17.51 

dist-int-4 43.98 38.08 26.22 20.29 15.74 12.88 10.87 9.78 8.84 

dist-int-5 2.27 1.22 0.93 0.82 0.75 0.71 0.66 0.66 0.65 

dist-mm-1 71.98 60.26 50.31 48.23 44.58 41.28 37.59 33.59 29.38 

dist-mm-2 36.70 35.11 31.19 29.01 27.52 26.09 24.00 21.65 19.18 

dist-mm-3 18.21 14.57 13.09 11.42 9.83 6.76 6.13 5.41 5.20 

dist-mm-4 8.33 5.86 6.86 5.90 5.00 4.21 3.12 3.08 2.98 

dist-mm-5 35.82 26.83 19.60 15.60 13.74 11.72 10.24 8.85 7.66 

dist-serv-1 14.71 9.12 6.57 5.08 4.32 3.37 2.98 2.52 2.19 

dist-serv-2 13.85 8.79 6.38 4.74 3.79 3.29 2.75 2.48 2.17 

dist-serv-3 27.88 20.43 15.28 14.02 12.50 11.45 8.36 7.61 6.94 

dist-serv-4 13.77 9.03 6.88 6.16 5.43 4.82 4.51 4.08 3.74 

dist-serv-5 14.16 9.42 6.77 6.47 5.74 5.16 4.93 4.38 3.91 

Average 29.41 21.93 17.23 14.38 12.46 10.92 9.53 8.52 7.63 

Table 3.22. The ratio of unbiased context instances using as features the global 

history of p bits together with the path of p PCs – Intel benchmarks. 
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Figure 3.6. The gain introduced by the path for different context lengths – Intel 

benchmarks. 

The main difference observed, analyzing the Figures 3.5 and 3.6, consists in 

the different values of these ratios (much bigger on SPEC benchmarks) – 

due to their different characteristics and functions [30]. However, it must 

mentioned that while SPEC benchmarks were simulated on 1 billion 

dynamic instructions the Intel benchmarks were entirely simulated, but the 

total number of dynamic instructions is lower (under 30 million). 

Summarizing the statistics reported on the SPEC2000 benchmarks, 

546 static branches generate 77,683,129 dynamic instances at average 

(142,120 instances / static branch). Focalizing now on those detected 

unbiased (with LH=28 bits, GH=28 bits, and GH XOR PC=28 bits), 113 

static branches generate 4,376,664 dynamic instances at average (38,731 

instances / static branch). Therefore the unbiased branches are generated by 

a few static branches having many dynamic instances. As a consequence, 

taking into account the enormous number of dynamic unbiased branches per 

a static branch, an adequate predictor has plenty of time to learn its 

behavior. The real problem is to find the right prediction information that 

changes such unbiased branches into biased ones. 

 

3.2.3. An Analytical Model 

 

High prediction accuracy is vital especially in the case of multiple 

instruction issue processors. Further, we assume the analytical model 
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proposed in [7, 62], a superscalar processor that ignores stalls like cache 

misses and bus conflicts focalizing only about the penalty introduced by 

branch missprediction. Considering Branch Penalty (BP) as the average 

number of wasted cycles due to a branch missprediction for each dynamic 

instruction, it can be written the relation: 

 

BP= C·(1-Ap)·b·IR [wasted clock / instruction]  (3.4) 

 

Where we denoted: 

 

C = number of penalty cycles wasted due to a branch missprediction; 

Ap = prediction accuracy; 

b = the ratio of branches (the number of branches reported to the total 

number of instructions); 

IR = the average number of instructions that are executed per cycle 

(the superscalar factor of architecture; >1). 

 

Following, we computed how many cycles take the execution of each 

instruction for a real superscalar processor that includes a branch predictor: 

 

CPIreal = CPIideal + BP  [clock cycle / instruction]  (3.5) 
 

Where: 

 

CPIideal = represents the average number of cycles per instruction 

considering a perfect branch prediction (Ap=100%  

BP=0). It is obvious that CPIideal < 1. 

 

CPIreal = represents the average number of cycles per instruction 

considering a real branch prediction (Ap<100%  BP>0  

CPIreal > CPIideal). 

 

Therefore, the real processing rate (the average number of instructions 

executed per cycle) results immediately from the following formula: 

 

IRreal  = 
BPCPI

1

CPI

1

idealreal 
  [instruction / clock cycle] (3.6) 
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The relation (3.6) proves the non-linear correlation between 

processing rate (IR) and prediction accuracy (Ap). With these metrics, we 

adapted the model to our results obtained in Chapter 3. Further, we use the 

following notations: 

 

x = the ratio of biased context instances; 

1 - x = the ratio of unbiased context instances. 

 

In our simulations presented in [19] we obtained using the gshare 

predictor [34] the global prediction accuracy Apglobal = 93.60% (prediction 

applied to all branches) and respectively the accuracy of unbiased branch 

prediction Apunbiased = 72.2% (only unbiased branches were predicted). 

Since Apglobal represents a weighted mean among predictions accuracies 

applied both to bias and unbiased branches, it can be determined the biased 

prediction accuracy Apbiased. 

 

Apglobal = X * Apbiased + (1-x) * Apunbiased    (3.7) 

 

For previous example, 0.936 = 0.8253*Abiased + 0.1747*0.722, resulting that 

Apbiased = 0.9813. 

Obviously, predicting the unbiased branches with a more powerful 

branch predictor having, to say, 95% prediction accuracy, determines a gain 

proportional with ratio of unbiased context instances: Accuracy_gain 

=(0.95-0.722)*(1-x). More than that, this accuracy gain involves a 

processing rate speed-up according to (3.4) and (3.6). This gain justifies the 

importance and the necessity of finding and solving the difficult predictable 

branches. However, finding predictor that obtains so high prediction 

accuracy is beyond the scope of this paper. 

Therefore, further we determined how much is influenced the branch 

penalty (BP) by the increasing of context length and what is the speed-up in 

these conditions. For this, we softly modified Chang’s model [7] by 

substituting Ap with our Apglobal, according to relation (3.7). Thus, the 

penalty introduced for missprediction of biased branches is the term (1-

Apbiased)*x, respectively for considered wrong prediction of all unbiased 

branches (Apunbiased=0) is the term (1-x). 

 

Model proposed by 

Chang 

Our modified model 

BP= C·(1-Ap)·b·IR BP=C·b·IR·[1– x·Apbiased]                         (3.8) 
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Figure 3.3 shows a decreasing of unbiased branches (1-x) by 

extending the context length that leads to a reduction of branch penalty (BP) 

according to (3.8), and implicitly to a greater IR according to (3.6). It can be 

written: 

 

Context (Features Set) Length  => x  => BP  => IR  =>  Relative 

Speed-up>0. 

 

Next, we computed the IR relative speed-up, varying the context length. 

Starting from the well known metric Speed-up 1
)16(

)(


IR

LIR
, where L is the 

feature’s length, L  {20, 24, and 28}, we obtained the relative speed-up:  

 

Relative Speed-up 0
)16(

)16()(





IR

IRLIR
   (3.9) 

 

Figure 3.7 illustrates the IR speed-up obtained extending the context. 

The baseline processor model has an IRideal of 4 [instruction / clock cycle] 

and incorporates a branch predictor with 98.13% prediction accuracy for 

biased branches. The considered number of penalty cycles wasted due to a 

branch missprediction in our model is 7. The ratio of simulated branches 

(the number of simulated branches reported to the total number of simulated 

instructions) is b=8% (see Table 3.1). 
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Figure 3.7. The IR relative speed-up obtained growing the context length. 
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Figure 3.7 illustrates not only the necessity of a greater number of prediction 

features to improve the processor performance, but also the necessity of new 

performing branch predictors that can consider a larger amount of 

information in making predictions (but whose size does not scale 

exponentially with the length of the input feature set). 

3.2.4. An Example Regarding Branch Prediction Contexts 

Influence 
 

In this section we analyze the contexts used by present day branch 

predictors (global and local histories respectively path information) from the 

point of view of their limits in predicting unbiased branches. The main idea 

is: in a perfect dynamic context all branch instances should have the same 

outcome. If the outcome is not the same a first solution might consists in 

extending the context information. After we varied the context length we 

observed that some dynamic contexts remained unpredictable despite of 

their length. 

Related to the first part of our investigation – identifying the 

difficult-to-predict branches and quantifying them on testing programs, we 

used the traces obtained based on the eight C Stanford integer benchmarks, 

designed by Professor John Hennessy (Stanford University), to be 

computationally intensive and representative of non-numeric code while at 

the same time being compact. All these benchmarks were compiled by the 

HSA gnu C compiler, which targets the HSA (Hatfield Superscalar 

Architecture) instruction set. A dedicated HSA simulator [53] that generates 

the corresponding traces simulated the resulted HSA object code. These 

helpful tools were developed at the University of Hertfordshire, Research 

Group of Computer Architecture, UK. The average instruction number is 

about 273.000 and the average percentage of branch instructions is about 

18%, with about 76% of them being taken. Derived from HSA traces, 

special traces were obtained, containing exclusively all the processed 

branches. Each branch belonging to these modified HSA traces is stored in 

the following format: branch's type, the address of the branch (PC – 

program counter) and its target address. Some of these benchmarks are well 

known as very difficult to be predicted. For example, as Mudge et al. proved 

very clearly [35], 75% accuracy could be an ultimate limit on "quick-sort" 

benchmark. 

Following our aims, we developed an original dedicated trace-driven 

simulator that uses the above-mentioned traces [40]. The most important 

input parameters for this simulator are the local/global history length (HRl 
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bits (l) / HRg bits (k)), number of entries in prediction table, the type of 

predictor, the simulated benchmark. As outputs, the simulator generates 

prediction accuracy, number of difficult-to-predict branches, and other 

useful statistics. Further, we present partially the C and assembly code of 

Stanford Perm benchmark that generates a suite of permutations. We detect 

unbiased branches and we focused on two of the most important branch 

instructions (having PC=35 and PC=58 after compiling process). 
 

Permute (int n){ 

  int k; 

  pctr = pctr+1; 

  if(n != 1) {  # the first branch instruction analyzed (PC=35) 

    Permute(n-1); 
    for( k = n-1; k >= 1; k--){  # the second branch instruction analyzed (PC=58) 

 Swap(&permarray[n], &permarray[k]); 

 Permute(n-1); 

 Swap(&permarray[n], &permarray[k]); 

    }; 

  } 

} 

 

 

_Permute: 

 SUB SP, SP, #128 

 ST 0(SP), RA 
 ST 8(SP), R17 

 ST 12(SP), R18 

 ST 16(SP), R19 

 ST 20(SP), R20 

 MOV R20, R5 

 LD R13, _pctr 

 ADD R13, R13, #1 

 ST _pctr, R13 

 EQ B1, R20, #1 

               BT B1, L8 (#0) # after compiling process this branch has the address 35 

(PC=35) 
 ADD R17, R20, #-1 

 MOV R5, R17 

 BSR RA, _Permute (#0)  

 MOV R18, R17 

 LES B1, R18, #0 

 BT B1, L8 (#0)  

 ASL R13, R20, #2 

 MOV R7, #_permarray 

 ADD R19, R13, R7 

 ASL R13, R18, #2 

 ADD R17, R13, R7 
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L12: 
 MOV R5, R19 

 MOV R6, R17 

 BSR RA, _Swap (#0)  

 ADD R5, R20, #-1 

 BSR RA, _Permute (#0)  

 MOV R5, R19 

 MOV R6, R17 

 BSR RA, _Swap (#0) 

 ADD R17, R17, #-4 

 ADD R18, R18, #-1 

 GTS B1, R18, #0 
              BT B1, L12 (#0) # after compiling process this branch has the address 58 

(PC=58) 

 

In the following simulations [17] the settled parameters are: Path = not 

selected, Unbiased polarization degree = 0.95, HRl and HRg being the local 

and global history. We define polarization index (bias) of a certain branch 

context as:  

)
NTT

NT
 ,

NTT

T
max( bias


     (3.9) 

where T and NT represent number of “taken” respective “not taken” branch 

instances corresponding to that certain context. 

 

1. Parameters: HRl = not selected, HRg on 3 bits, => Unbiased contexts: 25.0[%] 

From the unbiased branches list we selected just two branch instructions in two global 

contexts: 

PC: 35 HRg: 101 T: 2520 NT: 1100 Bias: 0.696 

PC: 58 HRg: 111 T: 1419 NT: 3620 Bias: 0.718 

2. Parameters: HRl = not selected, HRg on 4 bits, => Unbiased contexts: 17.813[%] 

PC: 35 HRg: 0101 T: 840 NT: 260 Bias: 0.763 

PC: 35 HRg: 1101 T: 1680 NT: 840 Bias: 0.667 

PC: 58 HRg: 0111 T: 1419 NT: 1100 Bias: 0.563 

PC: 58 HRg: 1111 T: 0 NT: 2520 Bias: 1.000 => The branch with the address PC: 58 

in context HRg: 1111 became fully biased. Practically it doesn’t appear in the unbiased 

branch list. 

3. Parameters: HRl on 1 bit, HRg on 4 bits, => Unbiased contexts: 17.813[%] 

PC: 35 HRg: 0101 HRl: 0 T: 840 NT: 260 Bias: 0.763 

PC: 35 HRg: 0101 HRl: 1 – this context doesn’t occur 

PC: 35 HRg: 1101 HRl: 0 T: 1680 NT: 840 Bias: 0.667 

PC: 35 HRg: 1101 HRl: 1 – this context doesn’t occur 

PC: 58 HRg: 0111 HRl: 0 T: 1419 NT: 1100 Bias: 0.563 

PC: 58 HRg: 0111 HRl: 1 – this context doesn’t occur 
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4. Parameters: HRl on 2 bits, HRg on 4 bits, => Unbiased contexts: 9.673[%] 

PC: 35 HRg: 0101 HRl: 00 T: 840 NT: 260 Bias: 0.763 

PC: 35 HRg: 0101 HRl: 10 – this context doesn’t occur 
PC: 35 HRg: 1101 HRl: 00 – this context doesn’t occur 

PC: 35 HRg: 1101 HRl: 10 T: 1680 NT: 840 Bias: 0.667 

PC: 58 HRg: 0111 HRl: 00 T: 1419 NT: 260 Bias: 0.845 

PC: 58 HRg: 0111 HRl: 10 T: 0 NT: 840 Bias: 1.000=> The branch with the address 

PC: 58 in context HRg: 0111 and HRl: 10 became fully biased. Practically it doesn’t 

appear in the unbiased branch list. 

… 
 

5. Parameters: HRl on 2 bits, HRg on 7 bits, => Unbiased contexts: 9.668[%] 

PC: 58 HRg: 1110111 HRl: 00 T: 1419 NT: 260 Bias: 0.845 

6. Parameters: HRl on 2 bits, HRg on 8 bits, => Unbiased contexts: 8.134[%] 

PC: 58 HRg: 01110111 HRl: 00 T: 579 NT: 260 Bias: 0.690 

PC: 58 HRg: 11110111 HRl: 00 T: 840 NT: 0 Bias: 1.000=> The branch with the 

address PC: 58 in context HRg: 11110111 and HRl: 00 became fully biased. 

Practically it doesn’t appear in the unbiased branch list. 

Conclusion: As it can be observed, increasing the context length, some branches in 

certain contexts became fully biased, but a great percentage still remains unbiased. 

 

Comparing the previous results it can be observed that as or richer  

the context became, as smaller the unbiased branches percentage became. 

From the 1st case to 2nd one, the unbiased branches percentages decrease 

with 7.187% and it can be observed how the two unbiased branches, in 

small contexts, are still unsolved. However, the branch with the address PC: 

58 became fully biased in context HRg: 1111 decreasing the number of 

unbiased branches with 2520. Practically it does not appear in the unbiased 

branch list. In the 3rd case (adding one bit of local history) the unbiased 

branches percentage remains unchanged. In the 4th local history is set on 2 

bits and much more contexts became biased (the unbiased branches 

percentage decreases with 8.14%). Although, there are some contexts that 

remain unbiased (see above: PC: 35 HRg: x101 HRl: x0 – where x could be 

0 or 1). 

Analyzing the code sequence it can be observed that to reach 

conditional branch 58, the previously 3 branches are every time Taken 

(return from permute function, call of swap function and return – not 

necessarily correlated with the branch 58). One reason for the larger 

percentage of unbiased branches refers to the fact that the branches within 

the global history length may not have correlation with the current branch, 

or the relevant history might be too far away. If the context would permit it 

could be seen a correlation between branches situated at a large distance in 

the dynamic instruction stream. Recurrence and function calls hide some 

branches that are really correlated with the analyzed one. Also, the local 
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correlation reduces the noise included in global history. Similar examples 

we found in tower benchmark that solves the Hanoi towers problem. 

The insufficiency of global correlation information is remarked also 

in the case of programs or data structures, which produce a variable number 

of history bits as the data changes (data correlation). This occurs in the link 

lists or trees cases where the address of an element is tested (usually 

comparison with 0) and then a recurrent call of the same function is 

generated to test the next element in the tree (left or right sub-tree). The 

same situation does occure in the hash table cases having link lists to solve 

the collisions. A possible solution could be to use data values or structural 

information to keep the predictor more synchronized with data. We tried 

such an approach in [21]. 



4. Predicting Unbiased Branches 

 This section presents some important present-day branch predictors 

and, respectively, some proposed condition-history-based branch predictors, 

all of them being used to evaluate, in terms of prediction accuracy, the 

unbiased branches identified in [19, 61]. 

4.1. The Perceptron-Based Branch Predictor 

 
Jiménez and Lin [26] proposed a two-level scheme that uses fast 

single-layer perceptrons instead of the commonly used two-bit saturating 

counters. The branch address is hashed to select the perceptron, which is 

used to generate a prediction based on global branch history. In [27] the 

authors developed a perceptron-based predictor that uses both local and 

global branch history in the prediction process. Figure 4.1 presents the 

architecture of the perceptron-based branch predictor. 
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Figure 4.1. The perceptron-based branch predictor. 
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The lower part of the branch address (PC) selects a perceptron in the table of 

perceptrons (weights’ matrix) and, respectively a local history register in the 

local branch history table. Both local and global branch history are used as 

inputs for the selected perceptron in order to generate a prediction. 

 

4.2. The Idealized Piecewise Linear Branch Predictor 

 
 The piecewise linear branch prediction [29], is a generalization of 

perceptron branch prediction [26] and path-based neural branch prediction 

[28]. The path-based neural predictor begins the branch’s output 

computation in advance of the prediction, each computation step being 

processed as soon as a new element of the path is executed. Thus, the vector 

of weights used to generate prediction, is selected according to the path 

leading up to a branch – based on all branch addresses belonging to that 

path – rather than according to the current branch address alone as the 

original perceptron does. This selection mechanism improves significantly 

the prediction accuracy, because, due to the path information used in the 

prediction process, the predictor is able to exploit the correlation between 

the output of the branch being predicted and the path leading up to that 

branch. On the other hand, the prediction latency is almost completely 

hidden because the output’s computation begins far in advance of the 

effective prediction. The most critical-timing operation is the sum of the 

bias weight and the current partial sum. To generate a prediction, the 

correlations of each component of the path are aggregated. This aggregation 

is a linear function of the correlations for that path. Since many paths are 

leading to a branch, there are many different linear functions for that branch, 

and they form a piecewise-linear surface separating paths that lead to 

predicted taken branches from paths that lead to predicted not taken 

branches. The piecewise linear branch prediction [29], is a generalization of 

perceptron branch prediction [26], which uses a single linear function for a 

given branch, and respectively path-based neural branch prediction [28], 

which uses a single global piecewise-linear function to predict all branches. 

The piecewise linear branch predictors use a piecewise-linear function for a 

given branch, exploiting in this way different paths that lead to the same 

branch in order to predict – otherwise linearly inseparable – branches. The 

predictor has the same architecture as the perceptron-based branch predictor 

(see Figure 4.1). The weight selection mechanism of the idealized piecewise 

linear branch predictor is presented in Figure 4.2, where GH is the global 

history, PC is the branch’s address and GA is the path – an array of the 
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addresses afferent to the last executed branches. Thus, the weight Wbpg 

corresponds to branch b ( Bb 1 ), its global history bit g ( Gg 1 ) and 

the pth PC ( Pp 1 ) from its path. 
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Figure 4.2. The weight selection mechanism of the idealized piecewise linear 

branch predictor. 

For the Idealized Piecewise Linear Branch Predictor we used dynamically 

adjusted history lengths [29]. The predictor counts the number of static 

branches whose bias magnitude, noted |W0|, exceeds 2. If this number 

exceeds 300, then the predictor switches to lower global and local history 

lengths, otherwise, it uses higher global and local history lengths. This 

heuristic is applied after 300,000 branches have passed. 

 Related to Jiménez’s research, we gave an original interpretation of 

his dynamically adjusting history length mechanism [29], through our 

previously introduced “unbiased branches” concept [19, 61]. Thus, his 

heuristics work as follows: if more than 300 “relatively biased” branches are 

encountered (branches having |W0|>2), then it switches to lower global/local 

history length. Otherwise (meaning that there were encountered many 

“perfectly unbiased” branches, having |W0|≤2) it switches to higher 

global/local history length. From our point of view, this is justified by the 

fact that increasing history length reduces the number of unbiased branches.  
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4.3. The Frankenpredictor 
 

 The Frankenpredictor [30] is a gskew-agree global history predictor 

combined with a path-based neural predictor. The prediction mechanism of 

the Frankenpredictor is presented in Figure 4.3. 
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Figure 4.3. The Frankenpredictor’s architecture. 

The gskew-agree predictor avoids interference by mapping potential 

conflicting branches to different entries from three different tables. Three 

different predictions are provided, the final prediction being made by taking 

majority vote. The agreement approach uses a default BTFNT (backward 

taken forward not taken) static prediction (bias) for each branch. The 

predictions (P1, P2 and P3) generated by the selected pattern history table 

entries are further compared with the bias. The neural predictor provides the 

ability of working with long branch histories and it also provides the 

hybridization by including the predictions of the gskew-agree predictor as 

additional bits in the perceptron’s input vector – the agreement bits (A1, A2 

and A3) provided by the three PHTs (Ai is 1 if Pi agrees with the bias and 0 

otherwise, 1≤i≤3) and the majority vote (AM). 

 

4.4. The O-GEHL Predictor 

 

 The Optimized GEometric History Length (O-GEHL) predictor [44] 

uses M distinct prediction tables indexed with hash functions of the branch 

address and the global branch history. Distinct history lengths of up to 200 
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bits and a path history of up to 16 bits, consisting of 1 address bit per 

branch, are used to index the prediction tables. Table T0 is indexed using the 

branch address. The history lengths used to index tables Ti, 1≤i<M, form a 

geometric series: 

 

)1()( 1 LiL i      (4.1) 

 

The prediction tables store predictions as signed counters. To compute a 

prediction, a single counter is read from each prediction table. The 

prediction is computed as the sign of the sum S of the M counters. The 

prediction is taken if S is positive and not-taken otherwise. The prediction 

mechanism of the O-GEHL predictor is presented in Figure 4.4. 

 

+ Prediction = Sign+ Prediction = Sign

 

Figure 4.4. The O-GEHL predictor. 

 

 

4.5. Value-History-Based Branch Prediction with 

Markov Models 

 
The context-based predictor predicts the next value based on a 

particular stored pattern (context) that is repetitively generated in the value 

sequence. Theoretically they can predict any stochastic repetitive sequences. 

A context predictor is of order k if its context information includes the last k 

values, and, therefore, the search is done using this pattern of k values 

length. In fact, in this case the prediction process is based on a simple 

Markov model [39].  
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Figure 4.5. A Markov chain with 3 states. 

A first order discrete Markov process may be described at any time as being 

in one of a set of N distinct states }...,,,{ 21 NSSSS  , as illustrated in 

Figure 4.5. A full probabilistic description of discrete Markov chain requires 

specification of the current state as well as all the predecessor states (the 

current state in a sequence depends on all the previous states). For the 

special case of a discrete, first order, Markov chain, this probabilistic 

description is truncated to just the current and predecessor state (the current 

state depends only on the previous state): 

 

][...],,[ 121 itjtktitjt SqSqPSqSqSqP     (4.2) 

 

where tq  is the state at time t. Thus, for a first order Markov chain with N 

states, the set of transition probabilities between states Si and Sj is }{ ijaA  , 

where ][ 1 itjtij SqSqPa   , Nji  ,1 , having the properties 

0ija  and 1
1




N

j

ija . 

 For a Markov chain of order R the probabilistic description is 

truncated to the current and R previous states (the current state depends on 

R previous states). The following example shows the necessity of using 

superior order Markov models. If the sequence of states is 

AAABCAAABCAAA, the Markov models of order 1 and respectively 2 

mispredict A, and only a Markov Model of order 3 predicts correctly the 

next state B. This example is also presented in Figure 4.6. 
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Figure 4.6. Markov predictors of different orders. 

The predictors that implement the “Prediction by Partial Matching” 

algorithm (PPM) [42] represent an important class of context-based 

predictors. Mudge et al. [35] demonstrates that all two-level adaptive 

predictors implement special cases of the PPM algorithm that is widely used 

in data compression. It seems that PPM provides the ultimate predictability 

limit of two-level predictors. The PPM-based predictor contains a set of 

simple Markov predictors as it can be seen in Figure 4.6. It is predicted the 

value that followed the context with the highest frequency. In the case of 

complete-PPM predictor, if a prediction cannot be generated with the 

Markov predictor of order k, then the pattern length is shortened and the 

Markov predictor of order k-1 tries to predict and so on. 

 

4.5.1. Local Branch Difference Predictor 

 
Figure 4.7 presents the speculative branch execution mechanism 

using a local PPM branch-difference predictor. The Branch Difference 

History Table (BDHT) maintains for each static branch the values or the 

signs of the inputs’ differences (two approaches) corresponding to the 

branch’s last h dynamic instances (B1, B2, ..., Bh). It would be possible to 

keep the differences corresponding to the previous h branches, therefore a 

global correlation approach instead of a local approach. Obviously, hybrid 

global-local approaches should be possible and useful too. Regarding the 

approach that uses only the signs of the input differences, a value of 1 in the 

history indicates that the corresponding branch difference was positive, a -1 
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indicates a negative difference, while a 0 indicates equality between the 

branch inputs. The BDHT entry is selected by the branch address (PC of 

B0). The branch differences from the selected BDHT entry represent the 

PPM’s input. Thus, the sign of the input difference (-1, 1, or 0) 

corresponding to the current branch (B0) is predicted, using the complete-

PPM algorithm of order k, where k<h (see Figure 4.6). The branch B0 is 

executed speculatively using the predicted inputs’ difference only if the 

considered pattern of length k is repeated in the string of last h differences 

with a frequency greater or equal than a certain threshold. 
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Figure 4.7. Speculative branch execution using local complete-PPM branch-

difference predictors. 

 

4.5.2. Combined Global and Local Branch Difference 

Predictor 

 

Figure 4.8 presents the hybrid speculative branch execution 

mechanism using a combined global and local PPM-based branch-difference 

predictor. The Global History Register (GHR) contains the global history: 

the global branch difference history or the global branch outcome history 

(two different approaches). For each global history pattern, a distinct BDHT 

is maintained. Thus, the BDHT is selected by the GHR. A certain BDHT 
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contains for each static branch the inputs’ differences corresponding to the 

branch’s last h dynamic instances (B1, B2, ..., Bh). The selected BDHT is 

indexed by the branch address (PC of B0). The branch differences from the 

selected BDHT entry represent the input for the PPM. Thus, the sign of the 

input difference (-1, 1, or 0) corresponding to the current branch (B0) is 

predicted, using the complete-PPM algorithm of order k, where k<h (see 

Figure 4.6). The branch B0 is executed speculatively using the predicted 

inputs’ difference only if the considered pattern of length k is repeated in the 

string of last h differences with a frequency greater or equal than a certain 

threshold. 
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Figure 4.8. Speculative branch execution using global-local complete-PPM 

branch-difference predictors. 

 

4.5.3. Branch Difference Prediction by Combining Multiple 

Partial Matches 

 
Figure 4.9 presents the speculative branch execution mechanism 

using the Branch-Difference Predicion by Combining Multiple Partial 

Matches algorithm. The Branch Difference History Table (BDHT) 
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maintains for each static branch the signs of the inputs’ differences (a value 

of 1 in the history indicates that the corresponding branch difference was 

positive, a -1 indicates a negative difference, and a 0 indicates equality 

between the branch’s inputs) corresponding to the branch’s last h dynamic 

instances (B1, B2, ..., Bh). A BDHT entry is selected by the branch’s address 

(PC of B0), as in the previous approaches. The branch differences from the 

selected BDHT entry represent the input for Markov predictors of different 

orders. Thus, the sign of the input difference (-1, 1, or 0) corresponding to 

the current branch (B0) is predicted using multiple Markov predictors of 

orders ranging between [1, n], n<h (see Figure 4.9). The final branch 

difference prediction is generated  through the majority vote. 
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Figure 4.9. Speculative branch execution by combining multiple Markov branch-

difference predictions. 

Another possibility is to provide the final branch difference prediction 

through confidence-based voting. In this case, each BDHT entry maintains n 

saturated confidence counters associated to the n Markov predictors. The 

confidence counters ranging in our application between [-4, 4] are updated 

only if the corresponding Markov predictors provided a prediction (the 

pattern of length k, 1 kn, was found at least once in the history of h 

values), by incrementing them in the case of a correct prediction and 

decrementing them otherwise. The confidence-based voting takes the 

majority, considering each Markov prediction as many times as the 

corresponding counter’s value shows (only if this value is greater than zero). 
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We implemented and evaluated both these voting methods. Finally, the 

branch B0 is executed speculatively using the predicted inputs’ difference. 

 

4.6. Experimental Results 

 
The perceptron and our branch difference predictors were 

implemented by extending the sim-bpred simulator from SimpleSim-3.0 

[46]. We also implemented the unbiased branch selection mechanism and, 

thus, the predictors can be evaluated on unbiased branches too. We evaluate 

programs from the SPECcpu2000 benchmark suite, especially those that 

indicated a high percentage of unbiased branches [19, 61]. The 

Championship Branch Prediction (CBP-1) simulators afferent to the 

Frankenpredictor [30] and respectively the Piecewise Linear Branch 

Predictor [29] were extended to work with the same unbiased branch 

selection mechanism. In order to exploit these predictors we used the CBP-1 

branch prediction framework which includes twenty traces (5 integer 

programs, 5 floating point, 5 multimedia applications and 5 server 

benchmarks) and a driver that reads the traces and calls the branch predictor 

[5]. The traces are approximately 30 million instructions long and include 

both user and system codes. The two predictors were implemented within 

the constraints of a storage budget of (64K + 256) bits. 

All simulation results are reported on 1 billion dynamic instructions 

skipping the first 300 million instructions from the SPEC2000 benchmarks 

[50] and, respectively, on all instructions from the INTEL benchmarks [5]. 

We note with LH(p)-GH(q) prediction information consisting in local 

history (LH) of p bits, and global history (GH) of q bits. We also note with 

PPM(tdim, hlen, plen, thres, htype) a complete-PPM branch-difference 

predictor using a Branch Difference History Table (BDHT) of tdim entries, 

a history length of hlen differences, a search pattern length of plen 

(specifying the current state), a threshold of thres, and considering a history 

of branch difference values or branch difference signs (htype=value/sign). 

 

4.6.1. Evaluating Neural-Based Branch Predictors 

 

In the first stage of this work, we’ll measure with present-day branch 

predictors the prediction accuracy on all branches and, respectively, only on 

the final list of unbiased branches identified in [61], using different local 

and global history lengths. Table 4.1 shows comparatively the results 
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obtained on the SPEC2000 benchmarks using a simple perceptron-based 

predictor integrated into Simplesim-3.0 [46]. 

 
 LH(28)-GH(0) LH(0)-GH(28) LH(28)-GH(28) LH(14)-GH(14) LH(28)-GH(40) 

Bench All Unb. All Unb. All Unb. All Unb. All Unb. 

bzip 87.3 70.1 90.7 74.8 90.6 74.8 90.5 74.8 90.6 74.7 

gzip 85.7 77.9 91.5 79.1 91.9 79.3 91.6 79.3 92.1 79.9 

mcf 87.3 51.0 98.5 69.4 98.7 72.5 98.3 67.5 98.8 73.7 

parser 85.2 60.7 93.5 69.0 93.9 69.7 93.3 68.4 94.0 70.6 

twolf 79.9 60.2 86.2 66.2 87.0 68.2 85.6 66.0 87.2 68.2 

Mean 85.1 64.0 92.1 71.7 92.4 72.9 91.9 71.2 92.5 73.4 

Table 4.1. The prediction accuracies obtained with the perceptron predictor using 

different prediction information on all branches and, respectively, only on unbiased 
branches from the SPEC2000 benchmarks. We used a table of perceptrons with 

256 entries. 
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Figure 4.10. The average prediction accuracies obtained with the perceptron 

predictor using different prediction information on all branches and, respectively, 
only on unbiased branches from the SPEC2000 benchmarks. We used a table of 

perceptrons with 256 entries. 

Table 4.1 intends to find an optimal LH(p)-GH(q) configuration within an 

enormous space of possible solutions. We did not use a well-known 

heuristic search method (e.g. genetic algorithms), preferring an empirical 

one based on our experience in the branch prediction field. As Table 4.1 and 

Figure 4.10 show, when we used the best configuration of the perceptron 

predictor (a local history of 28 bits and a global history of 40 bits – 



66 A Systematic Approach to Predict Unbiased Branches 

 

determined based on laborious simulations), we obtained a prediction 

accuracy of 92.58% on all branches and, respectively, of only 73.46% on the 

unbiased branches. 

Figures 4.11 and 4.12 show comparatively on the SPEC2000 

benchmarks the prediction accuracies obtained with different present-day 

branch predictors on all branches and, respectively, only on the final list of 

unbiased branches identified in [19, 37] using the XOR between the global 

history of 32 bits and the path of 32 PCs.  
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Figure 4.11. The average prediction accuracies obtained with the Frankenpredictor 

on the SPEC2000 benchmarks. 
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Figure 4.12. The average prediction accuracies obtained with the piecewise linear 

branch predictor on the SPEC2000 benchmarks. 
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We measured the prediction accuracies with the Frankenpredictor [30], and 

the Idealized Piecewise Linear Branch Predictor [29], both described in the 

previous sections. We used the original Idealized Piecewise Linear Branch 

Predictor where the global history length is dynamically adjusted between 

18 and 48 bits and, respectively, the local history length between 1 and 16 

bits. For the Frankenpredictor we used a global history of 59 bits. Even if 

the Idealized Piecewise Linear Branch Predictor doesn’t solve satisfactory 

the unbiased branches problem, it predicts them with an average accuracy of 

77.3% that is better than all the other simulated branch prediction schemes. 

 
  Frankenpredictor Piecewise 

Benchmark All Unb. All Unb. 

dist-fp-1 98.5 71.9 98.4% 78.2 

dist-fp-2 99.1 95.4 99.0% 97.5 

dist-fp-3 99.6 96.0 99.6% 99.1 

dist-fp-4 99.9 90.3 99.8% 95.2 

dist-fp-5 99.9 84.7 99.8% 96.8 

dist-int-1 97.6 79.9 98.3% 87.9 

dist-int-2 93.4 81.5 94.0% 85.7 

dist-int-3 91.3 71.7 93.2% 79.2 

dist-int-4 98.9 91.4 98.6% 92.1 

dist-int-5 99.7 74.1 99.7% 88.0 

dist-mm-1 92.8 83.8 93.0% 85.7 

dist-mm-2 90.6 84.6 91.0% 89.3 

dist-mm-3 99.1 67.9 99.4% 87.0 

dist-mm-4 98.6 98.7 98.6% 98.9 

dist-mm-5 95.2 85.4 95.2% 88.8 

dist-serv-1 97.8 83.5 97.5% 89.4 

dist-serv-2 97.7 83.7 97.6% 89.2 

dist-serv-3 95.6 84.8 95.1% 88.9 

dist-serv-4 96.3 77.5 96.4% 83.2 

dist-serv-5 96.7 75.2 96.7% 82.2 

Average 96.9 83.1 97.0% 89.1 

Table 4.2. The prediction accuracies obtained with the piecewise linear branch 

predictor and the Frankenpredictor on the Intel benchmarks. 

Table 4.2 and Figures 4.13 and 4.14 show comparatively on the CBP-1 Intel 

benchmarks [5] the prediction accuracies obtained on all branches and, 

respectively, only on the final list of unbiased branches identified in [19, 37] 

using the XOR between the global history of 32 bits and the path of 32 PCs. 

We measured the prediction accuracies on the Intel benchmarks with the 

Idealized Piecewise Linear Branch Predictor [29] and the Frankenpredictor 

[30]. We used for both predictors the same configurations as on the 
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SPEC2000 benchmarks. Even if the Idealized Piecewise Linear Branch 

Predictor doesn’t solve satisfactory the unbiased branches problem, it 

predicts them with an average accuracy of 89.1% that is better than all the 

other simulated branch prediction schemes. However, we are reserved 

regarding the CBP-1 Intel benchmarks due to their shortness. Furthermore, 

the Second Championship Branch Prediction Competition (CBP-2) [6] have 

used all the twelve CPUintSPEC2000 benchmarks and eight 

JavaSPECjvm98 benchmarks. 
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Figure 4.13. The average prediction accuracies obtained with the Frankenpredictor 

on the Intel benchmarks. 
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Figure 4.14. The average prediction accuracies obtained with the piecewise linear 

branch predictor on the Intel benchmarks. 
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We empirically found out that the behavior of difficult branches – as 

we defined them – cannot be sufficiently learned neither by neural 

predictors. Figures 4.11, 4.12, 4.13 and 4.14 confirm us again, that the 

unbiased branches, identified in our previous work [61, 19], are hard-to-

predict with present-day branch predictors. 

 

4.6.2. Evaluating the O-GEHL Predictor 
 

We have also evaluated the Optimized GEometric History Length 

(O-GEHL) predictor [44], described in section 4.4 (see Figure 4.4). We used 

an 8-table O-GEHL predictor. The experimental results obtained on the 

SPEC2000 benchmarks are presented in Figure 4.15. 
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Figure 4.15. The average prediction accuracies obtained with the O-GEHL 

predictor on the SPEC2000 benchmarks. 

As it can be observed, the neural branch predictors provided higher 

prediction accuracy then the O-GEHL predictor (see comparatively Figures 

4.11, 4.12 and 4.15). 

 

4.6.3. Evaluating Local Branch Difference Predictors 

 

We’ll continue this work by evaluating the prediction accuracy of 

the complete-PPM branch-difference predictor (see Figure 4.7) on all 
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branches and, respectively, only on the final list of unbiased branches 

(identified in [61]). We started our simulations by evaluating different local 

history lengths. Table 4.3 shows comparatively the results obtained on the 

SPEC2000 benchmarks, using a history of branch difference values and, 

respectively, a history of branch difference signs (-1 if negative, 1 if 

positive, or 0), considering an unlimited BDHT, a pattern length of 3, and a 

threshold of 1. 

 
 History of Branch 

Difference Values  

History of Branch 

Difference Signs 

History All Unb. All Unb. 

LH(8) 85.78% 64.76% 86.56% 65.33% 

LH(16) 86.84% 66.35% 88.34% 68.26% 

LH(24) 86.79% 66.52% 88.66% 68.61% 

LH(32) 86.83% 66.87% 88.88% 68.78% 

LH(40) 86.81% 66.91% 89.03% 68.98% 

LH(48) 86.77% 67.04% 89.11% 69.12% 

LH(56) 86.78% 67.33% 89.19% 69.23% 

LH(64) 86.76% 67.43% 89.26% 69.37% 

LH(128) 86.56% 67.52% 89.45% 69.70% 

LH(256) 86.39% 67.94% 89.58% 69.75% 

Table 4.3. The average prediction accuracies on all branches and, respectively, 

only on unbiased branches from the SPEC2000 benchmarks, using branch-

difference predictors with different local history lengths. 
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Figure 4.16. The average prediction accuracies on the SPEC2000 benchmarks, 

using a PPM(tdim=unlimited, hlen=varied, plen=3, thres=1, htype=value and 

sign) branch difference predictor with different local history lengths. 
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Figure 4.16 shows the difference’s value prediction accuracies 

obtained on the SPEC2000 benchmarks, using an unlimited BDHT 

containing the values respectively the signs of the last branch differences, a 

pattern length of 3, and a threshold of 1. As simulations show (Figure 4.16), 

branch differences can be better predicted when only difference signs are 

used as history instead of difference values. Consequently, the sign of the 

current branch difference is better correlated with the signs of its previous 

differences than with the values of those differences. 

The experimental results also show that the performance is relatively 

saturated starting with a local history length of 24 bits. Why is better to use 

only the signs of differences as history information instead of the values of 

differences? The number of distinct symbols that can occur in a value 

history is huge reported to only three symbols that can appear in a sign 

history. Thus, the frequency of symbols in a value history is very low. In the 

following example only a Markov predictor of order 1 can be used for the 

value history, and it generates a misprediction, while in the case of the sign 

history, even a Markov predictor of order 5 can be used, which generates the 

correct prediction: 

 

      Value history: -126, -34,  7, -42, -28, 75, -829, -7982, 102, -542, -42, ?     

      Sign history: -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, ?  

 

Obviously, through a sign history much deeper correlations can be 

exploited than with a value history.  
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Figure 4.17. The average usage rates of Markov predictors using 

PPM(tdim=unlimited, hlen=24, plen=3, thres=1, htype=sign and value) branch 

difference predictors on all branches. 
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Figure 4.17 compares the sign history with the value history in terms of 

usage rate afferent to Markov predictors of different orders. We used the 

optimal history length 24 and a pattern length of 3, and therefore, we 

evaluated the usage rates corresponding to Markov predictors of orders 0, 1, 

2 and 3. As Figure 4.17 shows, more often are used superior order Markov 

predictors by using a sign history, and thus, deeper correlations can be 

exploited. Therefore, we continued by evaluating different pattern lengths 

using an unlimited BDHT, a sign history of 24 branch difference signs, and 

a threshold of 1. As Figure 4.18 shows, the best PPM’s pattern length is 3, 

considering the optimal local history of 24 branch difference signs.  
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Figure 4.18. The average prediction accuracies on all branches and, respectively, 

only on unbiased branches from the SPEC2000 benchmarks, using a 

PPM(tdim=unlimited, hlen=24, plen=varied, thres=1, htype=sign) branch 

difference predictor with different pattern lengths. 
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Figure 4.19. The average prediction accuracies on SPEC2000 benchmarks using a 

PPM(tdim=unlimited, hlen=varied, plen=varied, thres=1, htype=sign) branch 

difference predictor exploring different local history lengths and pattern lengths. 
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Figure 4.19 explores the space of local history lengths and pattern lengths 

using a threshold of 1 and confirms that an acceptable choice (taking into 

account a good accuracy/complexity trade-off report) is to use a history of 

24 branch difference signs with a pattern length of 3. 
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Figure 4.20. The average confidence on all branches and, respectively, only on 

unbiased branches from the SPEC2000 benchmarks, using a PPM(tdim=unlimited, 
hlen=24, plen=3, thres=varied, htype=sign) branch difference predictor with 

different threshold values. 

Threshold Lost predictions [%] 

T=1 0.00 

T=2 7.59 

T=3 13.37 

T=4 17.31 

T=5 20.50 

T=6 23.40 

T=7 25.13 

T=8 26.98 

Table 4.4. Average percentages of predictions lost with different thresholds. 

We also studied the influence of the threshold’s value over the prediction 

accuracy, using an unlimited BDHT, a local history of 24 branch difference 

signs, and a pattern length of 3. The threshold’s value means how many 

times the current search pattern must be found in the history string in order 

to generate a prediction, implementing thus a confidence degree (otherwise, 

no prediction is generated). Strictly considering the confidence metric, the 

experimental results presented in Figure 4.20 show that the optimal 

threshold value is 7. However, in this case, the total number of predictions 

decreases at average with 25.13% (see Table 4.4). Considering T=1, the 
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global prediction accuracy on unbiased branches A(T=1) is 68.61%. In 

contrast, considering T=7, the global accuracy A(T=7) is 74.87%x78.33% = 

58.64% and, respectively, for T=2, A(T=2) is 92.41%x71.16% = 65.75%. 

Therefore, from the global accuracy point of view T=1 is optimal. The last 

parameter we varied is the dimension of the BDHT. 
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Figure 4.21. The average prediction accuracies on the SPEC2000 benchmarks 

using a PPM(tdim=varied, hlen=24, plen=3, thres=1 and 7, htype=sign) branch 

difference predictor considering different BDHT dimensions. 

Figure 4.21 shows that a BDHT with 256 entries provides the same results 

as an unlimited BDHT does. Consequently, we determined that the optimal 

branch difference predictor configuration is PPM(tdim=256, hlen=24, 

plen=3, thres=1 or 7, htype=sign). The signs of branch differences can be 

predicted considering this optimal configuration with an accuracy of 

68.60% on the unbiased branches and 88.66% on all branches and, 

respectively, a confidence of 78.33% on the unbiased branches and 96.05% 

on all branches. 

The next step consists in speculatively executing branches based on 

their predicted input differences. The final confidence branch prediction 

accuracies – evaluating all branches and, respectively, only unbiased 

branches –, obtained using the speculative branch differences generated with 

the optimal branch difference predictor, are presented in Tables 4.5 (without 

threshold) and 27 (with threshold). 

The average prediction accuracy obtained without threshold on the 

unbiased branches is only 71.76% (see Table 4.5). Using a threshold of 7, it 

grows to 79.69% (see Table 4.6). 
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 Branch Prediction Accuracy [%] 

Benchmark All Unb. 

bzip 89.92 74.50 

gzip 88.95 79.06 

mcf 97.10 66.25 

parser 91.47 66.01 

twolf 85.29 73.00 

Average 90.55 71.76 

Table 4.5. The final branch prediction accuracies on all branches and, respectively, 

only on unbiased branches, obtained by using the speculative branch differences 

generated with the optimal branch-difference predictor without threshold. 

 Branch Prediction Accuracy [%] 

Benchmark All Unb. 

bzip 96.88 79.94 

gzip 95.99 86.28 

mcf 99.19 75.14 

parser 96.71 73.26 

twolf 93.40 83.83 

Average 96.43 79.69 

Table 4.6. The final branch prediction accuracies on all branches and, respectively, 
only on unbiased branches, obtained by using the speculative branch differences 

generated with the optimal branch-difference predictor using a threshold of 7. 

The average prediction accuracy measured only on unbiased branches and, 

respectively, on all branches is lower for the complete-PPM predictor 

comparing with the perceptron predictor. Consequently, unbiased branches 

remain hard-to-predict even with the sign of the condition’s difference in the 

local approach, due to the quasi-random values afferent to the branch 

condition. Therefore, a hybrid global-local approach is necessary. 

 

4.6.4. Evaluating Combined Global and Local Branch 

Difference Predictors 

 

 In the combined global and local approach, each global history 

pattern points to its own BDHT (see Figure 4.8). The selected BDHT is 

indexed by the PC, as in the local approach. First, we evaluated the 

predictor by maintaining in the GHR (see Figure 4.8) the global branch 
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difference history: the signs of the inputs’ differences corresponding to the 

previous h branches. Figure 4.22 shows comparatively the results obtained 

with and without threshold on all branches and, respectively, only on the 

unbiased branches from the SPEC 2000 benchmarks.  
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Figure 4.22. The average confidence on the SPEC2000 benchmarks using a 

PPM(tdim=256, hlen=24, plen=3, thres=1 and 7, htype=sign) branch difference 

predictor considering different global branch difference history lengths. 

We also evaluated the predictor by maintaining in the GHR the 

global branch outcome history (Taken / Not Taken). Our simulation results 

show that the confidence is slightly better on unbiased branches if we use 

the global difference-sign history. Considering a global history length of 4 

(GH=4), we obtained a confidence of 68.81% with the global difference-

sign history, opposite to 67.84% obtained with global branch outcome 

history. The difference-sign history can be more efficient because, due to its 

additional information, it can efficiently exploit shorter contexts, too. The 

following example presents the situation for bgez: 

 

 
Difference history: 138, 52, 47, 0, -591, 5783, 4, 702, 0, -35, 721, 5, 14, 0, ? 

Sign history:  +, +, +, 0, -, +, +, +, 0, -, +, +, +, 0, ? 

Output history: T, T, T, T, NT, T, T, T, T, NT, T, T, T, T, ? 

 

 

If after “0” statistically follows “-“ (and, in the case of bgez, “0” is 

associated together with “+” to Taken) a first order Markov can correctly 

predict in the case of sign history, while, in the case of outcome history, the 

Markov predictor must be of order 4 or higher for correct prediction. 
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The signs of branch differences can be predicted, considering a 

PPM(tdim=256, hlen=24, plen=3, thres=1, htype=sign) having a global 

branch difference history of 4, with an accuracy of 68.81% on the unbiased 

branches and, respectively 90.47% on all branches (see Figure 4.22). The 

next step consists in executing branches based on their predicted input 

differences. The final branch prediction accuracies – evaluating all branches 

and, respectively, only unbiased branches –, obtained by using the 

speculative branch differences generated with this global-local branch 

difference predictor, are presented in Table 4.7. The results show that even 

the global-local PPM cannot improve the branch prediction accuracy 

obtained with the perceptron predictor. 

 
 Branch Prediction Accuracy [%] 

Benchmark All Unb. 

bzip 92.32 75.69 

gzip 90.59 78.33 

mcf 98.22 64.24 

parser 93.90 69.14 

twolf 86.62 70.28 

Average 92.33 71.54 

Table 4.7. The final branch prediction accuracies on all branches respectively only 

on unbiased branches, obtained using the speculative branch differences generated 

with the optimal global-local branch-difference predictor without threshold. 

 Branch Prediction Accuracy [%] 

Benchmark All Unb. 

bzip 97.62 84.44 

gzip 96.70 86.36 

mcf 99.53 74.46 

parser 98.07 78.56 

twolf 95.26 82.41 

Average 97.44 81.25 

Table 4.8. The final branch prediction accuracies obtained by using the optimal 

global-local branch-difference predictor with a threshold of 7 (confidence). 

The final branch prediction accuracies – evaluating all branches and, 

respectively, only unbiased branches –, obtained by using the speculative 

branch differences generated using this global-local branch difference 

predictor with a threshold of 7, are presented in Table 4.8. As it can be 

observed, the global-local approach improves significantly the average 

prediction accuracy on all branches to 97.44%, if a threshold of 7 is used. 
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However, the average prediction accuracy remains still low on unbiased 

branches: 81.25%. 

 

 

4.6.5. Branch Difference Prediction by Combining Multiple 

Partial Matches 

 

 Branch differences are predicted by five Markov predictors of orders 

ranging between [1, 5]. The final prediction is provided through majority 

voting, as we already presented in paragraph 4.5.3. We started our 

evaluations using a BDHT of 256 entries, local branch difference history of 

24 values. Figure 4.23 presents the results obtained on the SPEC2000 

benchmarks considering simple voting respectively confidence-based 

voting. 

 It can be observed that through confidence-based voting the branch 

differences can be predicted with a slightly higher accuracy than through 

simple voting. 
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Figure 4.23. Branch difference prediction accuracies by combining multiple partial 

matches through simple voting and confidence-based voting. 

Table 4.9 presents the final branch prediction accuracies – evaluating all 

branches and, respectively, only unbiased branches – obtained using the 

speculative branch differences generated by combining multiple partial 

matches through confidence-based voting. 
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 Branch Prediction Accuracy [%] 

Benchmark All Unb. 

bzip 91.52 75.54 

gzip 90.28 79.50 

mcf 97.32 66.75 

parser 92.27 67.13 

twolf 86.55 72.30 

Average 91.59 72.24 

Table 4.9. The final branch prediction accuracies on all branches and, respectively, 

only on unbiased branches, obtained using the speculative branch differences 

generated by combining multiple partial matches through confidence-based voting. 

Figure 4.24 shows again, that the unbiased branches identified in [19, 37, 

61] cannot be accurately predicted even with condition-history-based 

Markov predictors. The highest average prediction accuracy on the unbiased 

branches, of 77.30%, was provided by the piecewise linear branch predictor. 
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Figure 4.24. The final branch prediction accuracies obtained without threshold 

using the perceptron-based predictors, the O-GEHL predictor, the local complete-
PPM, the global-local complete-PPM and respectively prediction by combining 

multiple partial matches through confidence-based voting, only on unbiased 

branches. 

We also studied the influence of the threshold’s value over the 

prediction accuracy by combining multiple partial matches through 

confidence-based voting, using a BDHT with 256 entries, and a local history 

of 24 branch difference signs. In this case, the confidence-based voting 

takes the majority, considering only Markov predictions found in the history 

string after the considered pattern at least T (threshold) times. 
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Figure 4.25. Branch difference prediction accuracies by combining multiple partial 

matches through confidence-based voting with different thresholds. 

 
Threshold Lost predictions [%] 

T=1 2,25 

T=2 5,20 

T=3 6,62 

T=4 8,06 

T=5 9,40 

T=6 10,78 

T=7 13,02 

T=8 2,25 

Table 4.10. Average percentages of predictions lost by using different thresholds. 

The experimental results presented in Figure 4.25 and Table 4.10 show that 

the optimal threshold value is 2. Thus, the final branch prediction accuracy 

by combining multiple partial matches through confidence-based voting 

with a threshold of 2 is 73.05% on unbiased branches. 



5. Using Last Branch Difference as 

Prediction Information 

Further, we evaluated the percentage of unbiased context instances 

using the last known branch condition difference together with global 

histories of p bits (1≤p≤24). A branch condition difference consists in the 

difference of the operand values implied in the branch condition. More than 

two branch condition differences are not necessary [48, 25]. Table 5.1 and 

Figure 5.1 compares the percentages of unbiased branches using the global 

history (GH), the global history concatenated with the path (GH + PATH), 

respectively the global history concatenated with the last branch difference 

(GH + LBD). 

 
Context p=1 p=4 p=8 p=12 p=16 p=20 p=24 

GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23 

GH (p bits) + PATH (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01 

GH (p bits) + LBD 36.99 32.25 26.94 22.39 19.91 17.85 16.24 

Table 5.1. The gain introduced by the path respectively last branch difference 

(LBD) for different context lengths – SPEC2000 benchmarks [%]. 
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Figure 5.1. The gain introduced by the path respectively last branch difference 

(LBD) for different context lengths – SPEC2000 benchmarks. 
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The results, presented in Figure 5.1, show that the last branch 

condition is more efficient than the path information: it decreased the 

percentage of unbiased branches for all evaluated context lengths (1≤p≤24). 

Therefore we can use this new prediction information in some state-of-the-

art branch predictors in order to increase prediction accuracy [20, 21].  
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Figure 5.2. The GAg predictor using the last branch difference (LBD). 

We first analyzed a GAg  scheme that uses the last branch difference (LBD) 

by XORing it with the GHR (as the Gshare XORed the PC with the GHR). 

The predictor is presented in Figure 5.2. Table 5.2 presents the prediction 

accuracies obtained with the modified GAg predictor on unbiased branches.  

 

Bench 
GHPC16 

(gshare) GHLBD16 

LBD4-

GHLBD12 

LBD8-

GHLBD8 

Shifted-

GHLBD16 

Shifted-

LBD4-

GHLBD12 

Shifted-

LBD8-

GHLBD8 

LBD4-

GH12 

Signed-

LBD4-

GHLBD12 

bzip 67.40 66.16 69.66 70.26 66.55 69.45 70.01 70.12 69.64 

gzip 71.89 68.86 73.62 75.54 69.25 73.55 74.46 74.30 73.47 

mcf 82.44 81.30 78.63 72.27 82.13 77.24 70.97 78.40 78.71 

parser 64.96 63.23 66.39 68.93 62.72 65.75 66.40 67.62 66.05 

twolf 57.78 56.15 58.12 60.20 56.29 57.54 59.52 58.93 58.14 

Mean 68.89 67.14 69.28 69.44 67.39 68.71 68.27 69.87 69.20 

Table 5.2. Prediction accuracies of the modified GAg predictor on unbiased 

branches. 

The following contexts have been used with the modified GAg predictor 

(Table 5.2): 
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 GHPC16: the 16 least significant bits of the branch PC (shifted to 

right by 3 bits) XORed with 16 bits of global history (gshare 

predictor); 

 GHLBD16: 16 least significant bits of last branch difference XORed 

with 16 bits of global branch history; 

 LBD4-GHLBD12: 4 least significant bits of last branch difference 

concatenated with the XOR between 12 least significant bits of last 

branch difference and 12 bits of global branch history; 

 LBD8-GHLBD8: 8 least significant bits of last branch difference 

concatenated with the XOR between 8 least significant bits of last 

branch difference and 8 bits of global branch history; 

 Shifted-GHLBD16: the 16 least significant bits of last branch 

difference (shifted to right by 3 bits) XORed with 16 bits of global 

history; 

 Shifted-LBD4-GHLBD12: 4 least significant bits of last branch 

difference (shifted to right by 3 bits) concatenated with the XOR 

between 12 least significant bits of last branch difference (shifted to 

right by 3 bits) and 12 bits of global branch history; 

 Shifted-LBD8-GHLBD8: 8 least significant bits of last branch 

difference (shifted to right by 3 bits) concatenated with the XOR 

between 8 least significant bits of last branch difference (shifted to 

right by 3 bits) and 8 bits of global branch history; 

 LBD4-GH12: 4 least significant bits of last branch difference 

concatenated with 12 bits of global branch history; 

 Signed-LBD4-GHLBD12: sign bit of last branch difference (0 if 

positive, 1 if negative) concatenated with 3 least significant bits of 

last branch difference, and respectively, with the XOR between 12 

least significant bits of last branch difference and 12 bits of global 

branch history. 

 

We have also analyzed a PAg  scheme that uses the local (per-address) LBD 

(last branch difference) by XORing it with the LHR (local history register). 

The Per-address Branch History Table (PBHT) maintains for each branch its 

own Local History (LH) and, respectively, its Last Branch Difference 

(LBD). The predictor is presented in Figure 5.3. Table 4 presents the 

prediction accuracies obtained with the modified PAg predictor on unbiased 

branches.  
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Figure 5.3. The PAg predictor using the local LBD. 

 

Bench 
LH16 

(PAg) LHLBD16 

LBD4-

LHLBD12 

LBD8-

LHLBD8 

Shifted-

LHLBD16 

Shifted-LBD4-

LHLBD12 

Shifted-

LBD8-

LHLBD8 

LBD4-

LH12 

Signed-LBD4-

LHLBD12 

bzip 74.83 69.86 74.61 74.68 70.07 74.54 74.35 74.80 74.67 

gzip 78.37 75.77 79.30 79.62 77.53 78.36 78.48 79.30 79.31 

mcf 72.18 70.93 70.55 68.15 73.79 71.91 68.34 69.21 68.76 

parser 72.64 74.06 74.82 73.65 72.95 74.30 73.23 73.13 74.52 

twolf 68.84 65.75 68.83 69.43 64.60 69.66 70.06 68.16 68.77 

Mean 73.37 71.27 73.62 73.11 71.79 73.75 72.89 72.92 73.21 

Table 5.3. Prediction accuracies of the modified PAg predictor on unbiased 

branches. 

The second level (GPHT) is indexed, depending on the used context, as 

follows: 

 

 LH16: the second level is indexed by 16 bits of local branch history 

(PAg predictor); 

 LHLBD16: 16 least significant bits of last branch difference XORed 

with 16 bits of local branch history; 

 LBD4-LHLBD12: 4 least significant bits of last branch difference 

concatenated with the XOR between 12 least significant bits of last 

branch difference and 12 bits of local branch history; 



Using Last Branch Difference as Prediction Information 85 

 LBD8-LHLBD8: 8 least significant bits of last branch difference 

concatenated with the XOR between 8 least significant bits of last 

branch difference and 8 bits of local branch history; 

 Shifted-LHLBD16: 16 least significant bits of last branch difference 

(shifted to right by 3 bits) XORed with 16 bits of local history; 

 Shifted-LBD4-LHLBD12: 4 least significant bits of last branch 

difference (shifted to right by 3 bits) concatenated with the XOR 

between 12 least significant bits of last branch difference (shifted to 

right by 3 bits) and 12 bits of local branch history; 

 Shifted-LBD8-LHLBD8: 8 least significant bits of last branch 

difference (shifted to right by 3 bits) concatenated with the XOR 

between 8 least significant bits of last branch difference (shifted to 

right by 3 bits) and 8 bits of local branch history; 

 LBD4-LH12: 4 least significant bits of last branch difference 

concatenated with 12 bits of local branch history; 

 Signed-LBD4-LHLBD12: sign bit of last branch difference (0 if 

positive, 1 if negative) concatenated with 3 least significant bits of 

last branch difference, and respectively, with the XOR between 12 

least significant bits of last branch difference and 12 bits of local 

branch history. 

 

 

Figure 5.4 presents the scheme of the perceptron-based branch 

predictor that is using as additional prediction information the global last 

branch difference (LBD). The lower part of the branch address (PC) selects 

a perceptron in the table of perceptrons and, respectively a local history 

register in the local branch history table. Thus, local and global branch 

histories together with the last branch difference are used as inputs for the 

selected perceptron in order to generate a prediction. 

Table 5.4 presents the prediction accuracies obtained with the 

piecewise linear branch predictor on the unbiased branches, using the 

global LBD as additional prediction information. The global history length 

is dynamically adjusted between 18 and 48 bits and, respectively, the local 

history length between 1 and 16 bits, as in [29, 20, 21]. We obtained an 

unsignificant gain when we used the last branch difference (LBD) entirely 

(32 bits), even with an increased number of weights from 8590 upto 30713 

(the higher weights number being justified by the long additional 

information). 
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Figure 5.4. Perceptron-based branch predictor using the last known global branch 

difference. 

Bench 
GH-LH- 

8590w 

GH-LH-LBD-

8590w 

GH-LH-LBD-

12530w 

GH-LH-LBD-

15720w 

GH-LH-LBD-

20573w 

GH-LH-LBD-

30713w 

bzip 76.63% 78.53% 78.58% 78.61% 78.61% 78.64% 

gzip 81.29% 81.51% 81.54% 81.54% 81.55% 81.57% 

mcf 74.74% 74.79% 74.78% 74.80% 74.79% 74.80% 

parser 77.11% 78.31% 78.58% 78.73% 78.84% 78.99% 

twolf 76.73% 76.56% 76.77% 77.20% 77.37% 77.52% 

Mean 77.30% 77.94% 78.05% 78.18% 78.23% 78.30% 

Table 5.4. The prediction accuracies obtained with piecewise linear branch 

predictor on unbiased branches, using the global LBD as additional prediction 

information. 

However, with the modified piecewise linear branch predictor we 

obtained a prediction accuracy of 78.30% (see Table 5.4) opposite to those 
obtained with the modified GAg, 69.87% (see Table 5.2), respectively the modified 

PAg, 73.75% (see Table 5.3). This gain was probably obtained because both the 

modified GAg and PAg predictors use a hashing between LBD and global 
respectively local branch history, while the modified piecewise linear branch 

predictor uses the branch history and LBD without hashing (by concatenating 

them). Figure 5.5 presents a possible scheme of the perceptron-based branch 

predictor that is using as prediction information local (per-address) last 

branch difference (LBD). 
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Figure 5.5. Perceptron-based branch predictor using the last known local branch 

difference. 

In Figure 5.5, the Local Branch History Table maintains for each 

branch its Local History (LH) and, respectively, the Last Branch Difference 

(LBD). The prediction accuracies obtained with this scheme are presented in 

Table 5.5. 

 

Bench 
GH-LH- 

8590w 

GH-LH-LBD-

8590w 

GH-LH-LBD-

12530w 

GH-LH-LBD-

15720w 

GH-LH-LBD-

20573w 

GH-LH-LBD-

30713w 

bzip 76.63% 76.64% 76.67% 76.71% 76.74% 76.77% 

gzip 81.29% 81.20% 81.22% 81.23% 81.22% 81.23% 

mcf 74.74% 75.00% 74.98% 75.02% 75.00% 75.02% 

parser 77.11% 78.00% 78.24% 78.42% 78.56% 78.71% 

twolf 76.73% 76.34% 76.53% 76.71% 76.97% 77.24% 

Average 77.30% 77.44% 77.53% 77.62% 77.70% 77.79% 

Table 5.5. Prediction accuracies of the piecewise linear branch predictor on 

unbiased branches, using the local (per-address) LBD as additional prediction 

information. 

Unfortunately, we have not obtained any improvement with the local LBD 

approach opposite to the global LBD approach, the accuracies being even 

lower. 



6. Designing an Advanced Simulator for 

Unbiased Branches Prediction 

In modern superscalar microarchitectures that speculatively execute 

a great quantity of code, without performing branch prediction, it won’t be 

possible to aggressively exploit program’s instruction level parallelism. 

Both the architectural and technological complexity of current processors 

emphasizes the negative impact on performance due to every branch 

misprediction. Due to this importance, branch prediction becomes a core 

topic in Computer Architecture curricula. The fast development of 

computer science and information technology domains, and of 

computer architecture especially, have determined that many software  

tools used not far ago in research, to be enhanced with an interactive 

graphical interface and to be taught in Introductory Computer 

Organization respectively Computer Architecture courses. The lack of 

simulators dedicated to branch prediction used in didactical purposes despite 

of plenty used in research goals, represents the starting point of this paper. 

The main aim of this section consists in identifying the difficult-to-predict 

branches, quantifying them at benchmark-level and finding the relevant 

information to reduce their numbers. Finally, we evaluate the impact of 

these branches on three commonly used prediction context (local, global and 

path) and their corresponding predictors ranging from classical two-level 

predictors to present-day predictors (neural – Simple Perceptron and Fast 

Path-based Perceptron). The developed ABPS (Advanced Branch 

Prediction Simulator) simulator provides a wide variety of configuration 

options. Beside statistics related to the number of difficult-to-predict 

branches, the simulator generates graphical results illustrating the influence 

of different simulation parameters (number of entries in prediction table, 

history length, etc.) on prediction accuracy, resources usage degree, etc., for 

every implemented predictor. 

Both the architectural complexity of current processors (deep 

pipeline structures – 20 at INTEL Pentium4 and wide width instruction 

issue) and technological complexity (higher processing frequency – greater 

than 3.3 GHz at same processor) emphasize the negative impact on 

performance due to every branch misprediction [51]. Branch instructions 

activate at control-flow level generating performance loss by unknowing in 
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the instruction fetch stage the branch direction and target. Thus, the modern 

architectures should incorporate very efficacious prediction schemes. 
 

6.1. Simulation Methodology 
 

After more than two decades, the researcher from computer science 

domain got the conclusion that simulators have become an integral part of 

the computer architecture research and design process [65]. Their most 

important advantages, comparing with real processors, are low 

implementation cost, development time, flexibility and extensibility 

allowing the architects to quickly evaluate the performance of a wide range 

of architectures and to quantify the efficacy of every enhancement. Besides 

its importance proved in computer architecture research field, in the latest 

time, simulators have been extensively employed as a valuable pedagogical 

tool as they enable students to visualize how microarchitecture components 

work and interact [16]. For example, at last important Workshop on 

Computer Architecture Education held in conjunction with the 33rd 

International Symposium on Computer Architecture (ISCA06 – the best 

conference in computer architecture domain in the world), two papers aim at 

fundamental topics of computer architecture curricula: processor – cache 

interface in a RISC architecture (MIPS) [38] and power and performance 

analysis in superscalar out-of-order architecture [49]. 

In this section we present the implemented ABPS (Advanced Branch 

Prediction Simulator), an interactive graphical trace-driven simulator for 

teaching branch prediction [40]. Projects designed around ABPS simulator 

are used in both undergraduate and graduate level courses at Computer 

Architecture at “Lucian Blaga” University of Sibiu to teach students 

concepts related to unbiased branch, state of the art branch predictors, 

branch prediction constraints and limits of instruction level parallelism. Our 

approach in teaching branch prediction represents a formative necessity 

since computer architecture is mainly approached in a descriptive manner. 

Through our approach students have the opportunities to be creative / 

innovative in computer architecture or in other fundamental research / 

didactical domains of computer science and information technology, even in 

countries not very developed from economical point of view. Based on 

highly parameterized developed simulation tools, students can understand 

more in depth the theoretical concepts related to branch prediction 

constraints, limits of instruction level parallelism. It could be observed the 

different benchmarks’ influence on every proposed architectural innovation.  
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Unfortunately, this version of the simulator uses only an analytical 

model to determine the impact of unbiased branch and branch 

missprediction on global processing performance [62]. In his model, related 

to a superscalar processor, Vintan ignores stalls like cache misses and bus 

conflicts focalizing only about the penalty introduced by branch miss-

prediction. In their assignments, students are asked to explore architecture 

configurations extending them for optimizing the power, performance, or 

both within a given chip area budget (based on other simulation tools – 

CACTI, WATTCH [45, 4]).The simulator code is open source and can be 

found at [2]. 

The simulator allows trace-driven simulation on a collection of 17 

programs (having 1 million of dynamic branch instructions each) from 

different versions of SPEC benchmarks [50]. We use all of the SPEC 

CPU2000 integer benchmarks, and all of the SPEC CPU95 integer 

benchmarks that are not duplicated in SPEC CPU2000. The benchmarks are 

compiled with the CompaQ GEM compiler with the optimization flags -fast 

-O4 -arch ev6 [11]. All these benchmarks cover a lot of applications ranging 

from compression (text/image) to word processing, from compilers and 

architectures to games enhanced with artificial intelligence, etc.  

From a pedagogical point of view, the proposed tool benefits the 

learning process because it helps students to observe the influence of each 

parameter on simulation model. The simulator provides a wider variety of 

configuration options. Thus, it can be determined how the prediction 

accuracy does vary with input parameters (number of entries in prediction 

tables, history length, number of bits for weights representation, threshold 

value used for perceptron training, etc). The ABPS simulator assures three 

of the features specific to almost high-performance standard simulators: free 

availability for use, extensibility and portability. Full inheritance and 

polymorphism is used, allowing for ease of extension in the future adding 

new functionalities. 

 

6.2. The Functional Kernel of the Simulator 
 

The realized simulator must remove the bottlenecks that limit the 

processor performance and search for possible changes (architectural or 

optimization techniques) for improving it. Providing a highly parameterized 

model for every microarchitectural instance, the performance obtained by 

simulation will represent a quick feedback mechanism related to proposed 

changes. The simulator execution consists in the following sequential steps:  
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1) Configuring the microarchitecture with the input parameters 

including the benchmarks. 

2) Initialization phase (prediction tables, local/global history registers). 

3) Starting the trace processing and computing the simulation metrics. 

 

The mechanism that identifies unbiased branches was already 

presented in Chapter 3. The Detector kernel of ABPS finds the unbiased 

branches (those that have their polarization index – the percentage of “not 

taken” or “taken” branch instances corresponding to a certain context – 

lower than a polarization degree, set prior the simulation) and quantifies 

their number. Repeating the unbiased branches detection methodology for a 

length-ordered set of contexts it could be observed how the number of 

unbiased branches decreases. 

The prediction process supposes accessing the tables for every 

instruction from traces and establishing the prediction function of associated 

prediction automaton or perceptron. Every good prediction does increase the 

automatons state or perceptron weights, while every misprediction does 

decrease the same parameters. The automatons are implemented as 

saturating counters and, in the neural predictors’ case, the threshold keeps 

from overtraining, permitting the perceptron to adapt quickly at every 

changing behavior. 
 

6.3. The Software Design of the ABPS Simulator 
 

The user diagram (Figure 6.1a) illustrates the general user interaction 

process with ABPS. A generic user can mainly interact with ABPS in two 

ways (not fully distinct): 

 Default start – the user starts a simulation using the default input 

parameters. 

 Custom start (Choose simulation type) – the user chooses: 

 

1.The simulation type – detection or prediction; 

2.The benchmarks (Stanford and/or SPEC 2000); 

3.The values for the simulation parameters. 

 

Steps 1, 2, 3 can be executed in any order. Either of steps 1 and 3 is not 

mandatory. If one of them is not executed, default values are used. Step 2 

(choosing the benchmarks) is necessary the first time (initially no traces are 

selected for simulation) for both user interaction types. After the three steps 
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presented above, the user can start the simulation process. Both in the 

Default start and in the Custom start cases, after the simulation process is 

ready, simulation results are shown. At any time the simulation process can 

be aborted from the GUI (Graphic User Interface).  

 

 

Figure 6.1. UML Diagrams – User and Activity perspectives. 

The activity diagram (Figure 6.1b) shows a general view for the simulation 

process flowing in ABPS: 

 Initialization – all simulation parameters are set (traces, simulation 

type: detection / prediction, detector / predictor values); 
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 Starts simulation – the simulation begins after all the inputs had been 

set. The simulation process consists basically in processing each trace 

included (in a multithreaded manner); 

 Read trace – each trace is processed, branch after branch. Each branch 

instruction is fed to the selected detector / predictor. This is done until 

all branch instructions (from the selected trace) are processed. During 

this, results are accumulated. 

 Processing results – after a trace had been processed, the obtained 

results are processed in order to compute certain metrics; 

 Display results – the results are displayed and the simulation process 

stops. 

 

 

Figure 6.2. Sequence Diagram. 

The sequence diagram (Figure 6.2) presents in detail how ABPS performs 

the process of detecting unbiased branches. The process starts in the GUI, 

where the detection parameters are set. After this initialization, the user can 

trigger the detection process, which will be managed by another thread (1: 
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create, st:SimulatorThread). In this way, the GUI will not block itself, 

leaving the user with the ability to perform other tasks from ABPS. The 

simulation thread will create and start a detection thread (1.1: create, 

dt:DetectorThread). The detection thread will manage all the detection 

process (1.1.1: Create1, tr:TraceReader). When all the above initializations 

were performed, the detection process actually starts (2: startSimulation(), 

2.1: run()): the trace used for simulation is processed using the appropriate 

detector (see: 2.1.1 – 2.1.6). Finally, the detection thread signals (by 

returning the results) the simulation thread that the detection is done (2.2: 

Destruct3). In the same manner, the simulation thread signals the GUI 

thread (3:Destruct4), which will display the results. 

From the user’s point of view it is very necessary a visual friendly 

interface, based on menus, butons, dialog boxes, graphical images. The 

simulator must be easy to use and the results must be efficiently interpreted 

and processed (eventually transferred to some utility application such Excel, 

PowerPoint, Internet). The machine model should be “fine-tuned” to remove 

redundant or little hardware features and to investigate possible tradeoffs of 

performance against the functionality provided. 

To run the ABPS simulator, on the host computer the jre-1_5 (or 

higher) or jdk-1_5 (or higher) must first installed. ABPS is written in JAVA, 

thus is platform independent. For properly use of ABPS simulator it should 

be accomplished some system requirements. Thus, it is recommended to 

have a processor with at least 1 GHz frequency. Otherwise, due to JVM 

(java virtual machine), the simulation time, especially on SPEC2000 

benchmarks, risk to become prohibit. The RAM memory recommended is 

256Mbytes. Since we can represent on the same chart up to 17 benchmarks 

(even 6 bars on each), to have a good view it is required a 1024x768 

minimum screen resolution. 

The ABPS simulator is organized around a main window that 

contains two panels. The left one is used to configure (initialize all 

requested parameters) and control simulation. The right panel is based on 

two tabs – one that show every simulations’ results in text format, and 

another, that permits to generate graphical charts illustrating the influence of 

different simulation parameters on metrics like unbiased branches 

percentage, prediction accuracy, processing rate. The left panel is divided in 

two parts: the upper part contains the available testing programs. The 

Remove respectively Add buttons facilitate to remove the selected 

benchmark or to add new ones. The user can opt to choose between Stanford 

or SPEC benchmarks, single or multiple selections. Any simulation started 

will operate exclusively on selected benchmarks. Also, there are two very 

expressive buttons that allow selecting or deselecting all benchmarks. The 
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lower part of left panel contains two tabs Detector / Predictor, each having 

its own configuring parameters. The inputs for Detector are: the global 

history length – GH, the local history length – LH, a flag that show if path 

information correlation is used (concatenated), and the polarization degree 

of each context instance. The Predictor tab contains its own four tabs 

specific to each implemented predictor (GAg, PAg, PAp and Perceptron). 

The implemented two-level predictors request as inputs parameters: the 

number of entries in prediction table, the history length (global / local). 

Besides input parameters used by the two-level predictors, the neural 

predictors (Simple Perceptron and Fast Path-based Perceptron) need some 

additionals: threshold value used for learning algorithm, number of bits for 

storing the weights. Each predictor can predict all branches or only unbiased 

branches. If the second choice is made the simulator apply first the Detector 

phase, hidden for user. After determining the unbiased branches percentage 

the performance loss can be computed comparatively with an equivalent 

multiple instruction issue processor having an ideal branch predictor. 
 

 

Figure 6.3. ABPS simulator – unbiased branches detection. 

If the user chooses from Configuration panel the Detector tab and in the 

Results panel only simple execution (Simulate buton), among the simulation 

results a list of unbiased branches, in their certain contexts, does occure. 

This list could be saved (in text or csv format) for further analysis between 
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different unbiased branches lists obtained when the contexts length is 

extended. An important result is the unbiased branches percentage from the 

tested benchmarks. The students can see how this percentage does vary 

when the context length changes. Figure 6.3 shows the simulation results 

when the Detector tab was selected. 
 

 

Figure 6.4. ABPS simulator – variation of prediction accuracy with global history 

length. 

If the user selected from Configuration panel the Predictors / 

Perceptron tab (Simple or Fast Path-based) and in the Results panel only 

simple execution (not charts generating), the simulation results consist in 

four important metrics. The prediction accuracy is the number of correct 

predictions divided to total number of dynamic branches. We compute also 

a confidence metric that represents the total cases when the prediction was 

correct and the perceptron did not need to be trained (the magnitude of the 

perceptron output was greater than the threshold), divided to total number of 

correct predictions (therefore, considering a trivial threshold equal with 0). 

While the first two have impact on processor’s performance, the next two 

metrics have direct influence on transistors’ budget and integration area (the 

number of perceptrons used in the prediction process and respectively the 

saturation degree of the perceptrons). The saturation degree represents the 

percentage of cases when the weights of perceptrons cannot be increased / 
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decreased because they are saturated. If the last two metrics are quite low, it 

means that the perceptrons are underused. The prediction accuracy and the 

usage degree of prediction table are also computed in the case of two-level 

predictors. 

The Charts tab offers the possibility to illustrate graphical simulation 

results. From the two listboxes the user can select which metrics (from those 

explained earlier) to be used and which input parameter to be varied on all 

selected benchmarks. An interesting chart shows the Issue Rate (IR) relative 

speedup obtained by growing the context length. We used the formula 

[IR(L)–IR(16)]/IR(16), for computing IR relative speedup, where L is the 

context’s length, L{20, 24, 28, 32}). The last group of columns represents 

the average (or geometric / harmonic mean). The chart type may be Bar or 

Line. The chart can be saved in png format just by clicking on SaveChart 

button. Figure 6.4 illustrates how the prediction accuracy does vary with the 

global history length when the Fast Path-based Perceptron predictor is used 

on all Stanford benchmarks. 



7. Conclusions and Further Work 

Based on laborious simulations we showed that the percentages of 

difficult branches are quite significant (at average between 6% and 24%, 

depending on the different used contexts and their lengths). The simulations 

also show that the path is relevant for better polarization rate and prediction 

accuracy only in the case of short contexts. As Figures 3.5 and 3.6 suggest, 

our conclusion is that despite some branches are path-correlated, long 

history contexts (local and global) approximate well the path information. In 

other words, sufficient long history contexts might be viewed as a good 

“compression” of the most complete path information. In our further work, 

we’ll try to reduce the path information extracting and using only the most 

important bits. Thus, the path information could be built using only a part of 

the branch address instead of all the 32 bits of the complete PC. 

Therefore, it is obvious that for the unbiased branches identified in 

[19, 61] the prediction information used by the present-day branch 

predictors (local/global correlations and path information), is not always 

sufficiently relevant and, therefore, these branches cannot be accurately 

predicted. Using the perceptron predictor we measured on these unbiased 

branches an average prediction accuracy of only 73.46% (and 92.58% on all 

branches). We also evaluated the Frankenpredictor [30], the O-GEHL [44], 

and the Piecewise Linear Branch Predictor [29] on unbiased branches, but 

the prediction accuracy was still low despite these predictors are using path-

based information too. Using the Piecewise Linear Branch Predictor we 

obtained a prediction accuracy of 77.30% on the unbiased branches (94.92% 

on all branches) from the SPEC2000 benchmarks. Therefore, we introduced 

new prediction information, named branch difference history, representing 

the history of branch conditions’ signs. Our first goal was to exploit the 

correlation existing between the history of conditions’ signs (negative, zero 

or positive) encountered by a certain branch instruction and the next 

condition’s sign corresponding to that branch. If the condition sign is 

predictable, the branch’s behavior is predictable too because branch’s output 

is deterministically correlated with the condition’s sign.  

Thus, we implemented a local branch difference predictor using the 

Prediction by Partial Matching (PPM) algorithm. We determined through 

simulations that the optimal configuration of the predictor consists in a 

Branch Difference History Table with 256 entries, a history length of 24 
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values, and a pattern length of 3. We obtained with this scheme on the 

unbiased branches an average branch difference prediction accuracy of 

68.60% and a final branch prediction accuracy of 71.76% (90.55% on all 

branches). However, when we used a threshold of 7, we obtained a final 

branch prediction accuracy of 79.69% on unbiased branches (and 96.43% on 

all branches). Our combined global and local approach associates to each 

global difference history pattern its own BDHT. Evaluating this scheme on 

unbiased branches, we obtained a final branch prediction accuracy of 

71.54% (92.33% on all branches) without threshold, and, respectively, 

81.25% (97.44% on all branches) with a threshold of 7. Finally, with the 

branch difference prediction scheme that combines multiple partial matches, 

we obtained a final branch prediction accuracy of 72.24% on the unbiased 

branches (and 91.59% on all branches), without threshold. 

Further we show that the last branch condition is more efficient than 

the path information: it decreased the percentage of unbiased branches for 

all evaluated context lengths. Therefore we used this new prediction 

information in some state-of-the-art branch predictors. Unfortunately, the 

improvement obtained using the LBD entirely (32 bits), in terms of 

prediction accuracy, is not significant. 

Finally, we presented our ABPS simulator. Repeating the detection 

methodology for a length-ordered set of contexts it could be observed how 

the number of unbiased branches decreased, in the tested benchmarks. 

Another facility of ABPS consists in running a plenty of branch predictors, 

from classical two-level up to neural state-of-the art, having the possibility 

of varying the most important parameters and illustrating the graphical 

results of the simulations. Also important, our simulator permits the 

migration of some mature actual scientific problems to students’ 

understanding level. 

 In conclusion the average prediction accuracy remains still low on 

unbiased branches. During this work, we showed that difficult branches 

were efficiently identified in [19, 61]. Furthermore, the accurate prediction 

of these unbiased branches constitutes an open problem, since each percent 

of unbiased branches decisively reduces prediction accuracy. As a 

consequence, these unbiased branches might define a fundamental limit in 

branch prediction research. 
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Further Work 

 
 We consider that the use of more prediction contexts (some HLL 

code information) is required to further improve prediction accuracies. In 

order to efficiently use such information we consider it will be necessary to 

have a significant amount of compiler support. Another alternative could be 

to pursue the concepts of micro-threading where small fragments of code 

are executed concurrently and the branch problem is no longer a major 

concern. Also, we want to explore the importance of unbiased branch 

prediction problem in Chip Multi-Processor (CMP) architectures. 

For further work we are concerned to the necessity of an efficient 

hardware branch predictor from power consumption and performance 

criterions, within a given chip area budget. Very high prediction accuracy is 

necessary, because taking into account the multiple-instruction-issue 

processors characteristics as pipeline depth or issue rates, even a prediction 

miss rate of a few percent involves a substantial performance loss. Also, we 

intend to extend the ABPS simulator with functional network 

characteristics, allowing a distributed simulation process in a client-server 

manner, useful due to the time consuming simulations. 

 Another objective is to develop a complex architecture that 

selectively anticipates the values produced by high-latency instructions. We 

will focalize on multiply, division and loads that access with miss the L2 

data cache. The DIV/MUL instructions (non-selective approach) will be 

solved by an Instruction Reuse scheme, without prediction. The critical load 

instructions (loads with miss in both cache levels – selective approach) will 

be solved by a reuse scheme or, if they are not reusable, through prediction 

(a simple prediction scheme will be used, e.g. last value predictor). We will 

evaluate this complex architecture and compare it with a blocked 

multithreading architecture. 
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Glossary 

Benchmark: is a program used for evaluations. In this work we used the 

SPEC2000 benchmark suite and the CBP-1 traces. 

Biased branch: mostly always taken or mostly always not taken branch 

(mostly-one-direction branch). The behavior (taken/not taken) of a 

biased branch is polarized. 

Biased branch context: the branch behavior (taken/not taken) is polarized 

for that certain context (local branch history, global history, etc.). 

Blocked multithreading: a multithreading architecture which switches 

threads at high latency instructions (e.g. critical loads). 

Branch difference: represents the value or the sign of the difference 

between the branch’s inputs. Regarding the sign of the inputs’ 

difference, a value of 1 indicates that the corresponding branch 

difference is positive, a value of -1 indicates a negative difference, while 

a 0 indicates equality between the branch’s inputs. 

Branch difference predictor: the branch outcomes are predicted based on 

branch difference histories. 

Branch polarization: measured through the polarization index (P). 

Branch prediction: is the prediction of the direction (taken/not taken) 

and/or the target address (next PC) of a branch instruction. 

Complete-PPM predictor: see Prediction by Partial Matching (PPM). 

Confidence automaton: saturated counter that indicates the confidence of a 

certain prediction. The prediction is generated only if the confidence 

automaton is in a predictable state. 

Context: the context of length p represents the last p elements from the 

correlation information used in order to make a prediction. In the case of 

person movement prediction the correlation information is the room 

history, and a context of length p consists in the last p visited rooms. In 

the case of branch prediction the correlation information is the branch 

history (e.g. local or global branch history), and a context of length p 

consists in the last p bits from the branch history. 

Context instance: is a dynamic branch executed in the respective context. 

Critical load: a load instruction with miss in both cache levels. 

Distribution (index): the distribution index of a certain branch context is 

computed as follows. 
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 nt = the number of branch outcome transitions, from taken to not 

taken and vice-versa, in context Si; 

 ),min(2 TNT  = maximum number of possible transitions; 

 k = number of distinct contexts, pk 2 , where p is the length of the 

binary context; 

 if kiSD i ...,,2,1)(,1)(  , then the behavior of the branch in 

context Si is “contradictory” (the most unfavorable case), and thus its 

learning is impossible; 

 if kiSD i ...,,2,1)(,0)(  , then the behavior of the branch in 

context Si is constant (the most favorable case), and it can be 

learned. 

Dynamic branch: is an instance of a static branch during program 

execution. 

Dynamic branch prediction: the branches are predicted with hardware 

techniques. 

Dynamic learning: is the run-time prediction process when the outputs of 

the predictor are used to adjust the prediction structures and respectively 

to generate predictions. 

Feature (set): is the binary context on p bits of prediction information such 

as local history, global history or path. Each static branch finally has 

associated k dynamic contexts in which it can appear ( pk 2 ).  

Gain: is the factor which gives the improvement of the quality. 

Last branch difference (LBD): a branch condition difference consists in 

the difference of the operand values implied in the last branch condition. 

The global LBD is the last known branch condition difference. The local 

LBD is the last per-address branch condition difference. 

Markov chain: in the case of a first order Markov chain the probabilistic 

description is truncated to just the current and predecessor state. 

][...],,[ 121 itjtktitjt SqSqPSqSqSqP   , where tq  is 

the state at time t. Thus, for a first order Markov chain with N states, the 

set of transition probabilities between states Si and Sj is }{ ijaA  , where 

][ 1 itjtij SqSqPa   , Nji  ,1 , having the properties 0ija  
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and 1
1




N

j

ija . For a Markov chain of order R the probabilistic 

description is truncated to the current and R previous states. 

Markov predictor: the prediction is generated based on the state transition 

probabilities of a Markov chain. 

Polarization (index): the polarization index (P) of a certain branch context 

is computed as follows. 


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





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5.0,
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01

00

10
ff

ff
ffSP i

 , where 

  kSSSS ...,,, 21  = set of distinct contexts that appear during all 

branch instances; 

 k = number of distinct contexts, pk 2 , where p is the length of the 

binary context; 

 
NTT

NT
f

NTT

T
f





 10 , ,  NT = number of “not taken” branch 

instances corresponding to context Si,  T = number of “taken” branch 

instances corresponding to context Si, ki ...,,2,1)(  , and 

obviously 110  ff ; 

 if kiSP i ...,,2,1)(,1)(  , then the context iS  is completely 

biased (100%), and thus, the afferent branch is highly predictable; 

 if kiSP i ...,,2,1)(,5.0)(  , then the context iS  is totally 

unbiased, and thus, the afferent branch is not predictable if the taken 

and not taken outcomes are shuffled. 

Prediction accuracy: the percentage or ratio of correct predictions reported 

to the total number of predictions. 

Prediction by Partial Matching (PPM): is a context-based prediction 

algorithm. The PPM predictor contains a set of simple Markov 

predictors. It is predicted the value that followed the context with the 

highest frequency. In the case of complete-PPM predictor, if a prediction 

cannot be generated with the Markov predictor of order k, then the 

pattern length is shortened and the Markov predictor of order k-1 tries to 

predict and so on. 

Speculative execution: instruction execution based on predicted values or 

predicted branch outcomes. 

Static branch: a certain branch instruction from a program. 
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Static branch prediction: the branches are predicted statically by the 

compiler. Static branch predictors are used in processors where the 

expectation is that branch behavior is highly predictable at compile-time. 

Static learning: means that before effective run-time prediction process, the 

predictor is trained based on some patterns. In the static learning process 

the outputs of the predictor are used only to adjust the prediction 

structures. 

Unbiased branch: a branch whose behavior (taken/not taken) is not 

sufficiently polarized. 

Unbiased branch context: the branch behavior (taken/not taken) is not 

sufficiently polarized for that certain context (local branch history, 

global history, etc.). 
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