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ABSTRACT

All present branch prediction techniques are limited in their accuracy. Our aim is to
demonstrate that an important limitation cause is given by the used prediction contexts
(global and local histories respectively path information). Using these dynamic
contexts, some branches are unbiased and randomly shuffled, therefore unpredictable.
The percentages of these branches represent a fundamental prediction limitation. For
outperforming this limitation it is necessary additional more relevant context
information, in order to further reduce the entropy of these branches.
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1 Introduction

The main aim of this paper is to analyze the present day branch prediction contexts from
the point of view of their limits in predicting unbiased braches. We vary the contexts
length and observed that some of dynamic contexts remained unpredictable despite of
their length (32 bits of local history concatenated with 32 bits of global history). In our
study we will ignore technology constraints (memory limits, predictors structures and
algorithms) being only interested if the context information used by the state-of-the art
predictors is or is not sufficient. The main idea is: in a perfect dynamic context all branch
instances should have the same outcome. If the outcome is not the same a first solution
might consists in extending the context information. Different context sizes and different
context information will be studied during this article.

2 Methodology

2.1 Defining the metrics and ranges of parameters

To have a metric of that distribution we define polarization index (P) of a certain
branch context as:
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where:
e S= {Sl, S,y Sk} = set of distinct contexts that appear during all branch instances;



e k=number of distinct contexts, k <2”, where p is the length of the binary context;
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corresponding to context Si, T =number of “taken” branch instances corresponding
to context S;, (V)i =1, 2, ..., k, and obviously f,+ f, =1;
o if P(S5)=1(V)i=1 2, ..k, then the context S; is completely biased (100%), and
thus, the afferent branch is highly predictable;
e if P(5,)=0.5 (V)i=1 2, ..., k, then the context S, is totally unbiased, and thus, the
afferent branch is not predictable if the taken and not taken outcomes are shuffled.
The context information we use will be the global history (GHR), local history
(LHR) and later the path information.
We will start with a GHR_Len =0 bits and we will increase it up to 32 bits. For LHR the
initial value will be 16 and will be increased up to 32.
A new metric is introduced in order to measure how much prediction accuracy
earned if all branches in unbiased branch context instances will be perfectly predicted. If
this metric (noted T) is below 1%, by perfectly solving all branches in unbiased contexts

will not provide a better prediction accuracy then T (under 1% in this case).
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NT = number of “not taken” branch instances

where NUB: is the total number of unbiased branch context instances on benchmark 7, and
NBi is the number of dynamic branches on benchmark i (therefore, the total number of
branch context instances).

In our statistics we considered six SPEC2000 benchmarks [2]. For each of them only
conditional branches were considered. The first 300,000,000 instructions were ignored.
Next 1,000,000,000 were passed trough the statistics reporter we created using
SimpleScalar framework [3].

2.2 The approach

The main idea is to start with a shorter context and make a list of unbiased randomly
shuffled branches. Gradually this list is shortened by increasing the context length and
reapplying the algorithm. Figure 1 presents this approach as was applied. We considered a
branch context as unbiased if its corresponding P<0.95. We start to analyze to polarization
using GHR_Len=0 and LHR_Len=16. We continue by counting how many dynamic
branches are found in unbiased contexts (sumlk) and we divide this number by the total
number of dynamic context instances founded in the current simulation session (NDyn).
For sumlk/Ndyn > T the algorithm is continued until remaining number of unbiased
branches becomes insignificant.

Summarizing the algorithm in pseudocode we have:
contextsConfigurations=16_0, 16_16, 20_20, 24 24, 28 28, 32_32
compute NDyn = count (all conditional branches)
branchesToConsider = all conditional branches
foreach ctxCfg in contextsConfigurations

setl = find contexts having polarization rate in [0.5-0.95)

set2 = find contexts having polarization rate in [0.95-1.0)



sumlK = branchCount( setl)

persist res = sumlK/NDin

// 1T res > 0.01 makes sense to continue

branchesToConsider = branches in (setl)
in set2 solved

// we consider branches

endforeach

We applied the algorithm for each benchmark in the test set.
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Figure 1. Finding difficult branches - Iterative approach

3 Experimental Results

In this section, we give the results of our analysis on the used SPEC 2000 benchmarks.

Algorithm
step

Step formalization

Unbiased
branches

A*

A* = Locall6

24.56%

B*

B* = Local16Global16(A*)

12.39%

C*

C* = Local20Global20(B*)

7.80%

D*

D* = Local24Global24(C*)

5.27%

E*

E* = Local28Global28(D*)

3.71%

F*

F* = Local32Global32(E*)

2.58%

Table 1. Centralized results created by averaging the data
As we can see from the above table, for a long history (32 bits GHR and 32 bits LHR) the
ultimative prediction accuracy is 97.42%. By using a different chain of steps and a more
sophisticated chaining method, smaller number of unbiased context will be obtained (e.g.
Instead of having B* = Local16Global16(A*) we can have B* = Local16Global4(A*) and C* =
Local16Global16(B*). Therefore the chain A* B* C* D* E* F* is definitely suboptimal.
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Figure 2. Evolution of averaged unbiased list size

Most of the present-day predictors cannot use very long contexts and also cannot use
dynamic reconfigurable contexts length to get the full advantages of the iterative approach
At this moment, our scientific hypothesis is that path information might further reduce the
unbiased branches number [1]. As a consequence, we start our analysis by adding the last
branch PC to the B* context. Without adding this path information the percentage of
biased branches is 87.60665. After adding path of size 1 the percentage of biased contexts
increased to 87.6277. The percentage of biased contexts is not significant higher that the
one without any path. By increasing path length to 3, the percentage increases to 87.66439.
Even increasing the path length to 20 will not help very much.

4 Conclusions

The results presented here lead us to the conclusion that the path is only useful in case of
short contexts. Long contexts seem to disperse and compress very well the path
information. For us, finding a new relevant context to aggressively reduce the number of
unbiased shuffled branches remains an open problem.
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