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Abstract 

In modern superscalar microarchitectures that speculatively execute a great quantity of code, 
without performing branch prediction, it won’t be possible to aggressively exploit instruction 
level parallelism from programs. Both the architectural and technological complexity of 
current processors emphasizes the negative impact on performance due to every branch 
misprediction. Due to this importance, branch prediction becomes a core topic in Computer 
Architecture curricula. The fast development of computer science and information 
technology domains, and of computer architecture especially, have determined that 
many software tools used not long ago in research, to be enhanced with an interactive 
graphical interface and to be taught in Introductory Computer Organization respectively 
Computer Architecture courses. The lack of simulators dedicated to branch prediction used 
for didactical purposes despite of plenty used in research goals, represents the starting point of 
this paper. The main aim of this work consists in identifying the difficult-to-predict branches, 
to quantify them at benchmarks level and to find the relevant information in order to reduce 
their numbers. Finally, we evaluate the impact of these branches on three commonly used 
prediction contexts (local, global and path) and their corresponding predictors, ranging from 
classical two-level predictors to present-day predictors (neural – Simple Perceptron and Fast 
Path-based Perceptron). The developed ABPS simulator provides a wide variety of 
configuration options. Beside statistics related to the number of difficult-to-predict branches, 
the simulator generates graphical results illustrating the influence of different simulation 
parameters (number of entries in prediction table, history length, etc.) on prediction accuracy, 
resource usage, etc., for every implemented predictor. 
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1 Introduction 
Since the simulation community – usually very broad 
– is not necessarily familiar with the branch prediction 
problem, we present a short introduction into this 
domain. Computers made important progress and 
microprocessors (CPUs) are the main responsible for 
this. Thus, it is a stringent necessity to improve the 
current computer architecture performance both 
from a quantitative and qualitative viewpoint. The 
technological trends refer to increasing integration 
degree of transistors on chip, increasing the processors 
frequency, reducing the main memory access time, 
reducing the hardware implementation cost at same 
power consumption or same memory size, etc. The 
architectural tendencies, pursuit exploiting and 
increasing instruction level parallelism both through 
static and dynamic techniques, in order to overcome 
the control-flow and data-flow bottleneck. Both the 
architectural complexity of current processors (deep 
pipeline structures – 20 at INTEL Pentium4 and wide 
width instructions issue) and technological complexity 
(higher processing frequency – greater than 3.3 GHz at 
same processor) emphasizing the negative impact on 
performance due to every branch misprediction [11]. 
Branch instructions activate at control-flow level 
generating performance loss by unknowing in the 
instruction fetch stage the direction and the target of 
branch. Thus, the modern architectures should 
incorporate very efficacious prediction schemes. 

One of the first approaches in hardware branch 
prediction consists in Branch Target Buffer (BTB) 
structures [6]. BTB is a small, associative memory, 
integrated on chip that retains the addresses of 
recently executed branches, their targets and 
optionally other information (e.g. target opcode). Due 
to some intrinsic limitations, BTB's accuracies are 
limited on some benchmarks having unpropitious 
characteristics (e.g. correlated branches). Among first 
processors that implemented BTB structures are Intel 
Pentium [18], AMD K5 and Alpha 21064. 

In order to improve BTB's efficiency, Yeh and Patt 
(1992) generalized it through a new approach called 
Two Level Adaptive Branch Prediction. (TLABP) 
According to [16], the TLABP uses two distinct levels 
of branch history information to make predictions. 
The first level consists in the History Register (HR) 
that contains the last k branches encountered (taken / 
not taken) or the last k occurrences of the same branch 
instruction. The second level consists in the branch 
behavior of the last occurrences of the specific pattern 
of these branches. A Pattern History Table (PHT) that 
contains essentially the branch prediction automaton 
(usually 2 - bit saturating counters) implements it. HR 
shifts left with a binary position when updated 
according to the actual branch behavior (taken=1/ not 
taken=0). There is a corresponding entry in the PHT 
for each of the 2k HR's patterns. Intel Pentium Pro, 

Pentium II [18] and AMD K7 [3] are examples of 
processors that incorporate a two-level predictor. 

In order to obtain a greater prediction accuracy the 
nowadays processors use hybrid prediction structures, 
combining two (or more) tables, one correlated with 
local history of the predicted branch (PAg predictor) 
and other correlated with global history of the 
predicted branch (GAg predictor). The selection 
between two predictions is made using a confidence 
table that records the dynamic behavior of each 
predictor. The processor Alpha 21264 embeds a 
hybrid predictor having a local predictor with 1024 
entries (keeping a local history of 10 bits) and a global 
predictor with 4096 entries reaching to almost 95% of 
prediction accuracy [4]. 

The most accurate single-component branch predictors 
in the literature are neural branch predictors [4, 5]. 
Their main advantages consist in the possibility of 
using longer correlation information at linear cost. The 
Perceptron predictor – the simplest neural branch 
predictor – keeps a table of weights vectors (small 
integers that are learned through the perceptron 
learning rule) [4]. As in global two-level adaptive 
branch prediction, a shift register records a global 
history of outcomes of conditional branches, recording 
true for taken, or false for not taken. To predict a 
branch outcome, a weights vector is selected by 
indexing the table with the branch address modulo the 
number of weights vectors. The dot product of the 
selected vector and the global history register is 
computed, where true in the history represents 1 and 
false represents -1. If the dot product is at least 0, then 
the branch is predicted taken, otherwise it is predicted 
not taken. Once the perceptron's output has been 
computed, the training algorithm starts: it increments 
the i-th correlation weight when the branch outcome 
agrees with the i-th bit from global branch history 
shift register and decrements the weight otherwise. 
Unfortunately, the high latency of the perceptron 
predictor and impossibility to predict the linearly 
inseparable branches makes it impractical yet for 
hardware implementation. In order to reduce the 
prediction latency, the Fast Path-based Perceptron [5] 
chooses its weights for generating a prediction 
according to the current branch’s path, rather than 
according to the branch’s PC and history register. The 
prediction latency is hidden, due to the speculative 
calculation of the perceptron’s output. Intel includes 
the perceptron predictor in one of its IA-64 simulators 
for researching future microarchitectures [4]. 

Vintan et al. proved that a branch in a certain dynamic 
context is difficult-to-predict if it is unbiased and the 
outcomes are shuffled [14]. In other words, a dynamic 
branch instruction is unpredictable with a given 
prediction information if it is unbiased in the 
considered dynamic context and the behavior in that 
certain context cannot be modeled through Markov 
stochastic processes of any order. Based on Vintan’s 
methodology, in this paper we identify unbiased 
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branches by repeating various and different length 
prediction contexts. We show how the frequency of 
unbiased branches decreases, when the length of 
context information extends. Also, we determine the 
impact of unbiased branches over prediction accuracy 
and processing performance. 

2 Simulation Methodology. Benchmarks 
After more than two decades, the researches from 
computer science domain got the conclusion that 
simulators have become an integral part of the 
computer architecture research and design process 
[17]. Their most important advantages, comparing 
with real processors, are low implementation cost, 
development time, flexibility and extensibility 
allowing the architects to quickly evaluate the 
performance of a wide range of architectures and to 
quantify the efficacy of every enhancement. Besides 
its importance proved in computer architecture 
research field, in the latest time, simulators have been 
extensively employed as a valuable pedagogical tool 
as they enable students to visualize how 
microarchitecture components work and interact with 
each other. For example, at last Workshop on 
Computer Architecture Education held in conjunction 
with the 33rd International Symposium on Computer 
Architecture (the best conference in computer 
architecture domain in the world), two papers aim at 
fundamental topics of computer architecture curricula: 
processor – cache interface in a RISC architecture 
(MIPS) [8] and power and performance analysis in 
superscalar out-of-order architecture [10]. 

In this work we implement the ABPS (Advanced 
Branch Prediction Simulator), an interactive graphical 
trace-driven simulator for teaching branch prediction. 
The ABPS simulator is currently used in 
undergraduate and graduate courses / laboratories in 
(Advanced) Computer Architecture at “Lucian Blaga” 
University of Sibiu. The simulator code is open source 
and can be found at 
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/si
mulatoare.htm (or http://sourceforge.net/projects/abps). 

Related to the first part of our investigation – 
identifying the difficult-to-predict branches and 
quantifying them on testing programs, we used the 
traces obtained based on the eight C Stanford integer 
benchmarks, designed by Professor John Hennessy 
(Stanford University), to be computationally intensive 
and representative of non - numeric code while at the 
same time being compact. All these benchmarks were 
compiled by the HSA gnu C compiler, which targets 
the HSA (Hatfield Superscalar Architecture) 
instruction set. A dedicated HSA simulator [13] that 
generates the corresponding traces simulated the 
resulted HSA object code. The average instruction 
number is about 273.000 and the average percentage 
of total instructions that are branches is about 18%, 
with about 76% of them being taken. Some of these 
benchmarks are well known as very difficult to be 

predicted. For example, as Mudge et al. proved very 
clearly [7], 75% accuracy could be an ultimate limit 
on the "quick-sort" benchmark. Following our aims, 
we developed an original dedicated trace-driven 
simulator that uses the above-mentioned traces. 

For the second part, in which we investigate the 
present-day branch prediction schemes we extend the 
space of exploration, performing trace-driven 
simulation on a collection of 17 programs (having 1 
million dynamic branch instructions each) from 
different versions of SPEC benchmarks [12]. We 
simulate all of the SPEC CPU2000 integer 
benchmarks, and all of the SPEC CPU95 integer 
benchmarks that are not duplicated in SPEC 
CPU2000. The benchmarks are compiled with the 
CompaQ GEM compiler with the optimization flags -
fast -O4 -arch ev6 [2]. All these benchmarks cover a 
lot of applications ranging from compression to word 
processing, from compilers and architectures to games 
enhanced with artificial intelligence, etc. We choose to 
simulate different version of benchmarks (Stanford 
and SPEC) in order to discover how these different 
testing programs influence the neural branch 
predictors’ micro-architectural features. 

From a pedagogical point of view, the proposed tool 
benefits the learning process because it helps students 
to observe the influence of each parameter on the 
simulation model. The simulator provides a wider 
variety of configuration options. Thus, it can be 
determined how prediction accuracy varies with input 
parameters (number of entries in prediction tables, 
history length, number of bits for weights 
representation, etc). The ABPS simulator assures three 
of the features specific to almost high-performance 
standard simulators: free availability for use, 
extensibility and portability. Full inheritance and 
polymorphism is used, allowing for ease of extension 
in the future, adding new functionalities. 

High prediction accuracy is vital especially in the case 
of multiple instruction issue processors. It is important 
for students to understand how to investigate 
architectures that are optimized in terms of cost, 
performance (prediction accuracy, execution rate), and 
power consumption. Projects designed around ABPS 
simulator are used to teach students concepts related 
to the unbiased branch, state of the art branch 
predictors, branch prediction constraints and limits of 
instruction level parallelism. This version of simulator 
uses only an analytical model to determine the impact 
of unbiased branch and branch misprediction on 
global processing performance [15]. In his model, 
related to a superscalar processor, Vintan ignores 
stalls like cache misses and bus conflicts focalizing 
only about the penalty introduced by branch 
misprediction. In their assignments, students are asked 
to explore architecture configurations extending them 
for optimizing the power, performance, or both within 
a given chip area budget (based on other simulation 
tools – CACTI, WATTCH [9, 1]). 
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3 The Functional Kernel of the 
Simulator 
The realized simulator must remove the bottlenecks 
that limit the processor performance and search for 
possible changes (architectural or optimization 
techniques) for improving it. Providing a highly 
parameterized model for every microarchitectural 
instance, the performance obtained by simulation will 
represent a quick feedback mechanism related to 
proposed changes. The simulator execution consists in 
the following sequential steps:  
1) Configuring the microarchitecture with the input 
parameters including the benchmarks; 
2) Initialization phase (prediction tables, local/global 
history registers, etc.); 
3) Starting the trace processing and computing the 
simulation metrics. 

3.1 Identifying unbiased branches 

The majority of branches demonstrate a bias to either 
the taken or the not-taken path which means branches 
are highly polarized towards a specific prediction 
context (a local prediction context, a global prediction 
context or a path-based prediction context) and such 
polarized branches are relatively easy-to-predict. 
However, a minority of branches (6% to 24%, 
depending on the used history length [14]) shows a 
low degree of polarization since they tend to shuffle 
between taken and not-taken and are therefore 
unbiased and difficult-to-predict. The Detector kernel 
of ABPS finds the unbiased branches (those that have 
their polarization index – the percentage of “not 
taken” or “taken” branch instances corresponding to a 
certain context – lower than a polarization degree, set 
prior the simulation) and quantifies their number. 
Repeating the unbiased branches detection 
methodology for a length-ordered set of contexts it 
could be observed how the number of unbiased 
branches decreases. 

3.2 Branch prediction simulators 

The prediction process supposes accessing the tables 
for every instruction from traces and establishing the 
prediction function of associated prediction automaton 
or perceptron computed output. After branch’s 
resolution, it starts the updating algorithm (every good 
prediction increases the automatons state or 
perceptron weights, otherwise decreases the same 
parameters). The automatons are implemented as 
saturating counters and, in the neural predictors’ case, 
the threshold keeps from overtraining, permitting the 
perceptron to adapt quickly at every changing 
behavior. 

4 The User Interface 
To run the ABPS simulator, the host computer must 
have installed the jre-1_5 (or higher) or jdk-1_5 (or 
higher), for future development. ABPS is written in 
JAVA, thus it is platform independent. For properly 

use of ABPS simulator it should be accomplished 
some system requirements. Thus, it is recommended 
to have a processor with at least 1 GHz frequency. 
Otherwise, due to JVM (Java Virtual Machine), the 
simulation time, especially on SPEC2000 
benchmarks, risks to become prohibit. The RAM 
memory recommended is 256Mbytes. Since we can 
represent on the same chart up to 17 benchmarks, to 
have a good view, it is required a 1024x768 minimum 
screen resolution. 
The ABPS simulator is organized around a main 
window that contains two panels. The left one is used 
to configure (initialize all requested parameters) and 
control the simulation. The right panel is based on 
two tabs – one that shows every simulations’ results 
in text format, and another, that permits to generate 
graphical charts, illustrating the influence of different 
simulation parameters on metrics like unbiased 
branches percentage, prediction accuracy, processing 
rate. The left panel is divided in two parts: the upper 
part contains the available benchmarks. The lower part 
of left panel contains two tabs Detector / Predictor, 
each having its own configuring parameters. The 
inputs for Detector are: the global history length – 
GH, the local history length – LH, a flag that shows if 
path information correlation is used, and the 
polarization degree of each context instance. Figure 1 
shows the simulation results when Detector tab was 
selected. The Predictor tab contains each predictor 
implemented (GAg, PAg, PAp and Perceptron). Each 
predictor can predict all branches or only unbiased 
branches. If the second choice is made, the simulator 
applies first the Detector phase, hidden for user. After 
determining the unbiased branches percentage it can 
be computed the performance loss comparative with 
an equivalent multiple instruction issue processor 
having an ideal branch predictor. 
If the user selected from Configuration panel the 
Predictors / Perceptron tab (Simple or Fast Path-
based) and in the Results panel only simple execution 
(not charts generating), the simulation results consist 
in four important metrics. The prediction accuracy is 
the number of correct predictions divided to total 
number of dynamic branches. We compute also a 
confidence metric that represents the total cases when 
the prediction was correct and the perceptron didn’t 
need to be trained (the magnitude of perceptron output 
was greater than threshold) divided to total number of 
correct predictions. While the first two have impact on 
processor’s performance, the next two metrics have 
direct influence on transistors’ budget and integration 
area (the number of perceptrons used in prediction 
process and respectively the saturation degree of 
perceptrons). The saturation degree represents the 
percentage of cases when the weights of perceptrons 
can’t be increased / decreased because they are 
saturated. If the last two metrics are quite low means 
that the perceptrons are underused. The prediction 
accuracy and the usage degree of prediction table are 
computed also in the case of two-level predictors. The 
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Charts tab offers the possibility to illustrate graphical 
simulation results. From the two list boxes, the user 
can select which metrics are to be measured and which 
input parameter varies on all selected benchmarks. An 
interesting chart shows the Issue Rate (IR) relative 
speedup obtained by growing the context length. We 
used the formula [IR(L)–IR(16)] / IR(16), for 

computing IR relative speedup, where L is the 
context’s length, L∈{20, 24, 28, 32}). The last group 
of columns represents the average. The chart can be 
saved in png format. Figure 2 illustrates how 
prediction accuracy varies with global history length 
when fast path-based perceptron predictor is used, on 
5 critical SPEC2000 benchmarks. 

 

 
Figure 1. ABPS simulator – unbiased branches detection 

 
Figure 2. ABPS simulator – variation of prediction accuracy with global history length 
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6 Conclusions and Further Work 
The classical approach in teaching branch prediction is 
based largely on oral communication of professors 
that spent a lot of time in computer architecture 
research or, using paper and pencil to follow the 
sequences of accesses in predictions tables, computing 
different rules (e.g. perceptron) for prediction and 
updating. Our approach represents a formative 
necessity since computer architectures are mainly 
approached in a descriptive manner. Through our 
approach, students have the opportunities to be 
creative / innovative in computer architecture or in 
other fundamental research / didactical domains of 
computer science even in countries not very developed 
from economical point of view. Based on highly 
parameterized developed simulation tools, students 
can understand more in depth the theoretical concepts 
related to branch prediction constraints, limits of 
instruction level parallelism. It could be observed the 
different benchmarks’ influence on every proposed 
architectural innovation. With ABPS simulator we 
identify unbiased branches. Repeating the detection 
methodology for a length-ordered set of contexts it 
could be observed how the number of unbiased 
branches decreases, from tested benchmarks. Another 
facility consists on running a plenty of branch 
predictors, from classical two-level up to neural state-
of-the art, varying the most important parameters and 
illustrating simulations’ results. Also important, ABPS 
permits the migration of some mature actual scientific 
problems to students’ understanding level. 

For further work we are concerned to the necessity of 
an efficient hardware branch predictor from power 
consumption and performance criterions, within a 
given chip area budget. Very high prediction accuracy 
is necessary, because taking into account the multiple-
instruction-issue processors characteristics as pipeline 
depth or issue rates, even a prediction miss rate of a 
few percent involves a substantial performance loss. 
Also, we intend to extend the ABPS simulator with 
functional network characteristics, allowing a 
distributed simulation process in a client-server 
manner, useful due to the time consuming simulations. 
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