
Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITECHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol.47 (61), 2002, ISSN 1224-600X

Understanding Value Prediction through Complex Simulations

Adrian FLOREA, Lucian N. VINTAN, Dorin SIMA

University “L. Blaga”, Department of Computer Science, Str. E. Cioran, No. 4, Sibiu-2400, ROMANIA,
Tel./Fax: ++40-269-212716, E-mail: aflorea@vectra.ulbsibiu.ro, vintan@jupiter.ulbsibiu.ro

Abstract - Through this paper we investigated the value
locality degree present in real-worlds program, and
extended the value locality concept to all general-purpose
registers (MIPS architecture). Also we exploited this
concept through a prediction mechanism of load
instruction values from two distinct perspectives:
producer-centric and memory-centric. To extract the
maximum degree of load value locality we performed
execution driven simulations on SPEC95 benchmarks
with unbounded table sizes. The encouraging obtained
results facilitate implementation of much simpler
prediction structures (at most 32/64 locations), reducing
the hardware cost and complexity.

Keywords: advanced computer architectures, value
locality, value prediction, pipeline, simulation,
benchmarking.

I. INTRODUCTION

Several studies have pointed out that the values produced
by the programs execution are often quite repetitive. There
are basically two approaches that have been proposed for
exploiting this value locality. First non-speculatively
consists in reusing the results of a prior execution of an
instruction [1], and second - speculatively - predicts the
value that will be produced by the current execution of an
instruction based on the previous values it has produced
[4]. Existing value reuse and prediction schemes operate at
the level of a single instruction or short sequence of
instructions so that the caches used to temporarily store
previous values are typically indexed using the instruction
addresses.

Value locality describes the likelihood of recurrence of
previously seen program values within computer storage
location [4]. Work has focused on exploiting this property
to accelerate the processing of instructions within a
superscalar processor, with the goal of exposing greater
instruction-level parallelism and improving instruction
throughput. Value locality makes it possible to exceed the
classical data-flow limit, which is defined as the program
performance obtained when machine instructions execute
as soon as their operands are available. The value locality
of particular static loads in a program can be significantly

affected by compiler optimizations: loop unrolling, tail
replication, etc., since these types of transformations tend
to create multiple instances of a load that may now
exclusively target memory locations with high or low value
locality [4]. The value locality concept is based on a
dynamically affinity between a resource name (register,
memory location, I/O ports) and the values stored within.
Value prediction has been proposed for the purpose of
reducing, average memory latency by predicting load, alu
or store instruction outcomes, improving throughput of all
register/memory - writing instructions.

An important parameter used in the designing process is
the history depth. A history depth of k means that the
retrieval process is made in the last k distinguishes values
encountered. The question that appears is ''How much
history should be used in the prediction process?" The
actual tradeoffs are varying between a small history with
lower value prediction accuracy and a lower hardware cost,
and a rich prediction history with higher prediction
accuracy but expensive from hardware cost viewpoint.

We investigated the value locality of loads from both
memory-centric (data-address based) and producer-centric
(instruction-address based) viewpoints. Program structure
load value locality (PSLVL) measures the locality of
values written by particular static load and message-
passing load value locality (MPLVL) [3] exhibit the
locality of values written to a particular address in data
memory. Most of prior work on value locality has focused
on program structure-based prediction, since there is very
little to be gained (in timing) by predicting load values
once their addresses are known [3].

The first implemented technique that effectively exploits
and captures the value locality existing in the real world
programs is Load Value Prediction [4]. This relatively new
technique has several characteristics that make it attractive
to a CPU designer: the availability of the lookup index in
the hardware structures very early (at the beginning of the
instruction fetch stage), little or no complexity added to
critical delay paths in microarchitecture and reducing the
memory bandwidth requirements. Starting by Lipasti's
Load Value Predictor Unit [4] we evaluated load value
prediction accuracy from two perspectives points of view:
memory centric and producer centric, varying structures
size and architecture. Also we investigated the correct

identification degree of load instruction by LVP unit, to
take the full advantage of each case: avoiding the cost of a
misprediction by identifying the unpredictable loads and
reducing the memory access cost if we can identify and
verify loads that are highly predictable.

Recently was proposed some new techniques for improving
the value prediction accuracy. These include computational
predictors and context-based predictors' [6]. Computational
predictors make a prediction by computing some function
(algorithms) of previous values (e.g. last value predictor
[4], stride predictor). Context based predictors learn the
values that follow a particular context - a finite ordered
sequences of values - and predict one of the values when
the same context repeats (e.g. prediction by partial
matching - a set of markovian predictors).

II. SIMULATION METHODOLOGY

Execution driven simulation was conducted using the
SimpleScalar tool set [8] (comprises associated compilers,
run-time environments, and simulators) for the integer
SPEC95 benchmarks (standardized benchmarks that reflect
the advances in microprocessor technologies, compilers
and application). Integer benchmarks were selected
because they tend to have less data parallelism and may
therefore benefit more from data prediction [6]. SPEC95
was developed by SPEC’s Open Systems Group (OSG),
which includes more than 30 computer vendors, systems
integrators, publishers and consultants from throughout the
world [9]. SPEC95 is the third major version of the SPEC
CPU benchmark suites, which in 1989 became the first
widely accepted standard for comparing compute-intensive
performance across various architectures. The new
application-based benchmarks can be used across several
versions of UNIX and Microsoft Windows NT.

TABLE 1. Benchmarks Description

SPEC ‘95 benchmarks
Benchmarks Input Characteristics Inst. Count

executed
Applu Applu.in Solves matrix system with pivoting. 5000000
Apsi Apsi.in Calculates statistics on temperature and pollutants in a grid. 5000000
Cc1 1stmt.i Compiles pre-processed source into optimized SPARC

assembly code.
5000000

Compress95 Bigtest.in Compresses large text files (about 16MB) using adaptive
Limpel-Ziv coding.

5000000

Go 9stone21.in Uses several techniques common in the field of artificial
intelligence to play the ancient Asian game of Go.

5000000

Hydro2d Hydro2d.in Hydrodynamical Navier Stokes equations are used to
compute galactic jets.

5000000

Ijpeg Vigo.ppm Performs jpeg image compression with various parameters. 5000000
Perl Scrabbl.pl Performs text and numeric manipulations (anagrams/prime

number factoring).
5000000

Su2cor Su2cor.in Masses of elementary particles are computed in the Quark-
Gluon theory.

5000000

Swim Swim.in Solves shallow water equations using finite difference
approximations. (The only single precision benchmark in
CFP95.)

5000000

Tomcatv Tomcatv.in Generation of a two-dimensional boundary-fitted coordinate
system around general geometric domains.

5000000

Li *.lsp Lisp interpreter. 5000000

III. OBTAINED RESULTS

We performed several experiments to evaluate the value
locality exhibited by MIPS CPU integer registers
(unstudied until now as far as we know) and different
instruction types. Also, we examined the value locality of
load instructions from both memory-centric and producer-

centric viewpoints. The value locality for each benchmark
is measured by counting the number of time each load/alu
instruction retrieves a value from memory/destination
register that matches a previously seen value for that
dynamic load/alu and dividing by the total number of
dynamic loads/alus in the benchmark.

Value Locality on Registers = f(history)

14.63

46.97

60.41

68.34

74.41

0
10
20
30
40
50
60
70
80
90

100

$at $v
0

$v
1 $a0 $a1 $a2 $a3 $t0 $t1 $s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp $fp $ra

Aver
age

Registers

L
oc

al
ity

 [%
] history_1

history_4
history_8
history_16
history_32

Figure 1. Value locality on MIPS's general purpose registers

The SimpleScalar architecture is derived from MIPS-IV
ISA (Instruction Set Architecture). The MIPS CPU
contains 32 general-purpose registers that are numbered 0-
31 [7]. Figure 1 exhibits the value locality degrees for some
favourable registers belonging to MIPS CPU.
< Register $0 always contains the hardwired value 0.
< Registers $at (1) is reserved for the assembler while $k0

(26) and $k1 (27) are dedicated to operating system and
should not be used by user programs or compilers.
Register $at is often used in address calculation (lui
instruction - load upper immediately) and rarely
generate more than one unique value (see the memory
map at MIPS processor [7]).

< Registers $a0-$a3 (4-7) are used to pass the first four
arguments to routines (remaining arguments are passed
on the stack). Registers $v0 and $v1 (2, 3) are used to
return values from functions. Also, $v0 keeps the
system calls code for delivering a small set of operating
system-like services.

< Register $gp (28) is a global pointer that points to a
middle of a 64k block of memory in the static data
segment.

< Register $sp (29) is the stack pointer, which points to
the first free location on the stack - varies in a small
domain of values. Register $fp (30) is the frame pointer.
The jal (jump and link) instruction writes register $ra
(31), the return address from a procedure call. The
greater locality exhibited by latest register is due to
fewer procedure calls within a program.

The MIPS register-use convention provides callee- and
caller-saved registers because both types of registers are
advantageous in different circumstances.
< Callee saved registers $s0-$s7 (16-23) are better used to

hold long-lived values that should be preserved across
calls, such as variables from a user's program. These
registers are only saved during a procedure call if the
callee expects to use the register.

< On the other hand, caller-saved registers: $t0-$t9 (8-15,
24, 25) are better used to hold temporary quantities that
need not be preserved across a call, such as immediate
values in an address calculation. During a call, the
callee can also use these registers for short-lived
temporaries.

Figure 1 shows clearly that on several registers ($at, $sp,
$fp, $ra) the value locality degree is very high (over 90% !
in average). For averaging it was used arithmetic mean.
The results obtained are obvious because $at usually
contains the same base address (0x1000) for instructions
with indexed addressing mode, $sp and $fp are varying in a
small domain of values - depending on number of functions
formal parameters, and the higher value locality of $ra is
due to fewer procedure calls within testing programs.
These encouraging results involve the original idea of some
value predictors attached to these “special” registers, with a
reasonable hardware cost and complexity and, for sure,
with important performance benefits. We'll try to develop
in a further work this new idea.

ALU Value locality using instruction address (PC)

50.82

62.94

71.03

73.92

77.96

0
10
20
30
40
50
60
70
80
90

100

app
lu aps

i
cc1

com
pre

ss go

hyd
ro2

d
ijp

eg li
per

l

su2
cor sw

im
tom

cat
v

Aver
age

SPEC'95 benchmarks

V
al

ue
 L

oc
al

ity
 [%

]
History 1
History 4
History 8
History 16
History 32

Figure 2. ALU Value locality

With a history depth of 1 (thus we check for matches
against only the most recently retrieved value) the test
programs exhibit value locality in the 51% range (in
average) while extending the history depth to 32 can
improve that to at most 78% (at average, see Figure 2). A

history depth of eight could be an optimum. The simulation
results refer to all arithmetical or logical instructions
having integer operands (not floating point) excepting
MULT and DIV instructions.

Load Value locality using Load instruction address (PC)

53.42

67.66

71.14

73.88

75.57

0
10
20
30
40
50
60
70
80
90

100

app
lu aps

i
cc1

com
pre

ss go

hyd
ro2

d
ijp

eg li
per

l

su2
cor sw

im
tom

cat
v

Aver
age

SPEC'95 benchmarks

V
al

ue
 L

oc
al

ity
 [%

]

History 1
History 4
History 8
History 16
History 32

Figure 3. Load Value locality from producer-centric point of view

With a history depth of 1 the test programs exhibit value
locality in the 53% range (in average) while extending the
history depth to 32 can improve that to at most 75% (at
average, see Figure 3). This means that the vast majority of
static loads express very little dynamic value variations.

Although the value locality degree from memory-centric
viewpoint is better than that obtained using load instruction

address (69% vs. 53% with history depth of 1 and 86% vs.
75% with history depth of 32 - see Figures 3 and 4), the
producer-centric manner is rather preferable. This is due to
the very little benefit gained by predicting load values once
their addresses are known (Unfortunately these addresses
are computed only during ID or ALU pipeline stages,
involving thus additional delay compared to the producer-
centric approach).

Load Value locality using Load Data Address

69.12

81.41

83.43

84.63

85.75

0
10
20
30
40
50
60
70
80
90

100

app
lu aps

i
cc1

com
pre

ss go

hyd
ro2

d
ijp

eg li
per

l

su2
cor sw

im
tom

cat
v

Aver
age

SPEC'95 benchmarks

V
al

ue
 L

oc
al

ity
 [%

]
History 1
History 4
History 8
History 16
History 32

Figure 4. Load Value locality from memory-centric point of view

Figure 5 presents some value prediction accuracies,
simulating the well-known predictor developed in [4, 5].
For a prediction table of 1024 entries the average accuracy
is about 60%, that’s quite optimistic taking into account

that the predictor is very simple. Our experiments point out
that using more sophisticated predictors will involve better
performances.

Value Prediction from memory centric point of view
LVPT - associative

25.09

37.42

42.69

52.64

55.97

0
10
20
30
40
50
60
70
80
90

100

ap
plu

hy
dro

2d ap
si

co
mpre

ss ijpe
g

sw
im

tom
ca

tv
su

2c
or pe

rl cc1

Ave
rag

e

SPEC'95 benchmarks

V
al

ue
 P

re
di

ct
io

n
[%

]

64 entries
128 entries
256 entries
512 entries
1024 entries

Figure 5. Load Value Prediction using data memory address function of Load Value Predictor Table size

To maximise gains when using prediction for
speculative execution, it is imperative to have high
prediction accuracy and infrequent misspeculation. So, we
want to determine how much confidence could be offered
to prediction automata Load Classification Table by Load
Value Predictor. For this purpose, we use a 2-bit saturating
counter, having four states (don’t predict, don’t predict,
predict, predict) with high confidence to classify the load
instructions based on their dynamic behaviour [4]. Table 2
exhibit “how many times the load value predictor guess the
correct value dividing to the number of times when the
automata decided that the value is predictable” and “how
many times the LVP misspredict the value dividing to the

number of times when the LCT decided that the value is
unpredictable”.

The gap between a real and a perfect classification
(100%) of predictable load instructions could be caused by
an inefficient replacement mechanism in load value
predictor table. Another replacement policy based on
histeresys does not change its prediction to a new value
until this value doesn’t occur a specific number of times in
succession. As it can be observed from table 2, the two
unpredictable states are not quite semantically covered
because the miss-classification rate varied between 13.7%
and 24.7%. This means that it could be an important
challenge finding other more flexible automata in order to
solve this gap.

Table 2. LCT Hit Rates. Percentages show fractions of unpredictable and predictable loads identified as such by the LCT. LVPT -
associative and producer centric load value locality

64 128 256 512 1024SPEC'95
Benchmarks Pred Unpr Pred Unpr Pred Unpr Pred Unpr Pred Unpr
Applu 87.56 83.52 87.56 83.53 87.57 83.31 87.68 83.55 87.68 83.55

Apsi 96.28 85.05 94.97 78.94 94.32 77.17 93.66 84.36 93.71 89.33

cc1 94.13 73.83 93.93 74.78 93.52 77.71 93.64 84.18 94.35 89.34

Compress 89.07 93.17 89.07 93.17 89.07 93.16 89.07 93.15 89.07 93.15

Fpppp 99.41 78.23 99.17 76.29 98.3 67.12 96.01 87.06 94.96 71.1

Hydro 98.86 69.06 96.41 70.68 95.88 67.26 95.32 69.01 94.91 74.74

Ijpeg 86.87 98.65 87.15 99.5 87.15 99.5 87.15 99.5 87.15 99.5

Perl 83.16 79.62 87.50 77.03 92.11 84.23 95.22 89.34 95.17 89.44

su2cor 97.49 99.6 97.34 99.59 97.3 99.57 97.2 99.56 97.19 99.57

Swim 95.78 42.02 98.55 76.62 98.55 76.41 97.28 75.56 97.28 75.56

Tomcatv 95.48 63.88 95.51 61.88 95.49 40.31 97.78 88.35 97.8 91.24

wave5 99.3 91.45 99.3 91.26 99.3 91.03 99.29 90.91 99.29 90.98

HM 93.3 75.7 93.6 80.4 93.8 75.3 93.9 86.1 93.8 86.3

IV. CONCLUSIONS AND FURTHER WORK

The main conclusion is that there are significant
(optimistic) amounts of value locality, both from memory-
centric (message passing) and producer-centric (program
structure) points of view. The simulation results show that
all of the instructions within a single application have a
relatively small overall result space. That is, while the
potential range of values that could be produced is
enormous, the actual range of values tends to be much
more constrained. Increasing the history depth determines
the improvement of value locality. The results are very
useful because they express if and in which condition the
value prediction is feasible (e.g. the history depth could be
a useful indicator in developing the attached predictor). An
original evaluation is presented in figure 1, where it is
evidenced the value locality concept associated with
MIPS's general-purpose registers. The results obtained on
some special registers ($at, $sp, $ra) of MIPS architecture
are quite remarkable (≈90% value locality degree) leading
to conclusion that value prediction might be successful
applied at least on these registers. Also we demonstrated
that an important challenge is to find some efficient
confidence mechanisms.

Encouraged by these first results, we'll try to examine the
value locality of all register writing instructions. We intend
to exploit store value locality evaluating the potential
reduction in multiprocessor data and address traffic. For
improving the value prediction accuracy we'll try to
develop some new hybrid prediction schemes (composed
by a two-level adaptive value predictor and a stride
predictor).

REFERENCES

[1] Sodani A., Sohi G. - “Dynamic Instruction Reuse”, Proceedings of the
24th International Symposium on Computer Architecture, pp. 194-
205, June 1997.

[2] Wang K., Franklin M. - “Highly Accurate Data Value Prediction
using Hybrid Predictors”, Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, December 1997.

[3] Lepak K., Lipasti M. - “On the Value Locality of Store Instructions”,
Proceedings of the 27th Annual International Symposium on
Computer Architecture, Vancouver, June 2000.

[4] Lipasti M., Wilkerson C.B., Shen J.P. - “Value Locality and Load
Value Prediction”, Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VII), pp. 138-147, October 1996.

[5] Lipasti M., Shen J.P. - “Exceeding the Dataflow Limit via Value
Prediction”, Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, December 1996.

[6] Sazeides Y., Smith J.E. - “The Predictability of Data Values”,
Proceedings of Micro-30, December 1-3, 1997 in Research Triangle
Park, North Carolina.

[7] Larus J. - "SPIM S20: A MIPS R2000 Simulator", Morgan Kaufmann
Publishers, 1993.

[8] Burger D., Austin T.M., Bennet S. - "Evaluating future
microprocessors: The SimpleScalar tool set" - Tech. Rep. CS-TR-96-
1308, University of Wisconsin - Madison, July 1996.

[9] http://www.spec.org

[10] Deswet V., Goeman B., Bosschere K. – Independent hashing as
confidence mechanism for value predictors in microprocessors,
Int’l Conf. EuroPar, Augsburg, Germany, 2002

[11] Sazeides Y.T. – An Analysis of Value Predictibality and its
Application to a Superscalar Processor, PhD Thesis, University of
Wisconsin-Madison, SUA, 1999

[12] Vintan L. - Arhitecturi de procesoare cu paralelism la nivelul
instructiunilor, Editura Academiei Române, Bucuresti, (264 pg.),
ISBN 973-27-0734-8, 2000

[13] Vintan L. - Predictia valorilor instructiunilor, NET-Report nr. 115,
pg.11-17, ISSN 1582-4497, aprilie 2002.

