

Abstract — Automatic document classification has become an important task because of the

continually increasing number of text documents with the users have to deal. The aim of this

paper is to develop a non-adaptive meta-classifier for text documents in order to increase the

classification accuracy. The developed meta-classifiers are based on combining some SVM

classifiers and a Naïve Bayes classifier. We proposed a new meta-classification method which

takes into consideration the corresponding positions and confidence degrees obtained for all the

classes. In this work we have tried to find, using Genetic Algorithms, the optimal weighting

factors for the values returned by each classifier separately. Consequently, there is a possibility

for the meta-classifier to decide that the winner is a class that is not necessarily one of the

winner classes returned by the individual classifiers. The experimental results have showed that

the classification accuracy can be improved through the proposed method.

Keywords— Text Classification and Performance Evaluation, SVM, Meta-classification, Genetic

Algorithms

1 INTRODUCTION

WHILE more and more textual information is available online, effective retrieval is difficult

without good indexing and summarization of document content. Document categorization is one

solution to this problem. The task of document categorization is to assign a user defined categorical

label to a given document. In recent years a growing number of categorization methods and

machine learning techniques have been developed and applied in different contexts.

Documents are typically represented as vectors in a features space. Each word in the vocabulary is

represented as a separate dimension. The number of a certain word’s occurrences in a document

represents the value of the corresponding component in the document’s vector.

In this paper we investigate a strategy for combining classifiers’ results in order to improve the

classification accuracy using genetic algorithms. We used classifiers based on Support Vector

Machine (SVM) techniques and based on Naïve Bayes theory. They are less vulnerable to degrade

with an increasing dimensionality of the feature space, and have been shown effective in many

classification tasks. The SVM classifier is actually based on learning with kernels and support

vectors.

We combine multiple classifiers hoping that the classification accuracy can be improved without a

significant increase in response time. Instead of building just one highly accurate specialized

classifier with much time and effort, we build and combine several simpler classifiers.

Using Genetic Algorithms for Weights Space Exploration in an

Eurovision-like weighted Meta-Classifier

Radu G. Creţulescu, Daniel I. Morariu, Macarie Breazu and Lucian N. Vinţan

Several combination schemes have been described in the literature [4] and [7]. A usual approach is

to build individual classifiers and later combine their judgments to make the final decision. Another

approach, which is not so commonly used because it suffers from the “curse of dimensionality” [6],

is to concatenate features from each classifier to make a longer feature vector and use it for the final

decision. Anyway, meta-classification is effective only if its component classifiers synergies can be

exploited.

In previous studies combination strategies were used ad hoc and are strategies like majority vote,

linear combination, winner-take-all [4], or Bagging and Adaboost [15]. Also, some rather complex

strategies have been suggested. For example in [6] and [9] meta-classification strategies using SVM

[14] are presented and are compared with probability based strategies.

Section 2 and 3 contains prerequisites for the main work developed in this research. In sections 4

we present the methodology used for developing our experiments. Section 5 presents the

experimental framework and section 6 presents the main results of our experiments. Finally the last

section debates and concludes on the most important results obtained and proposes some further

work.

2 CLASSIFIERS USED

2.1 Support Vector Machine

The Support Vector Machine (SVM) is a classification technique based on statistical learning

theory that was applied with great success in many challenging non-linear classification problems

and on large data sets ([12], [14]).

The SVM algorithm finds a hyperplane that optimally splits the training set. The optimal

hyperplane can be distinguished by the maximum margin of separation between all training points

and itself. Looking at a two-dimensional problem we actually want to find a line that “best”

separates points in the positive class from points in the negative class. The hyperplane is

characterized by a decision function like:

 bxxf )(,sgn)(Φw

 (1)

where w is the weight vector, orthogonal to the hyperplane, “b” is a scalar that represents the

margin of the hyperplane, “x” is the current sample tested, “Φ(x)” is a function that transposes the

input data into a higher dimensional feature space and , representing the dot product. Sgn is the

sign function. If w has unit length, then <w, Φ(x)> is the length of Φ(x) along the direction of w.

Generally w will be scaled by ||w||. In the training part the algorithm needs to find the normal vector

“w” that leads to the largest “b” of the hyperplane.

2.2 Naïve Bayes

The Bayes classifier use the Bayes Theorem which basically computes prior probabilities for a

given class based on the probability for a given term to belong to the specified class. Thus the

classifier computes the probability for a document to be into a given class.

Bayesian theory works as a framework for making decision under uncertainty - a probabilistic

approach to inference [5] - and it is particularly suited when the dimensionality of the inputs data is

high. Bayes theorized that the probability of future events could be calculated by determining their

earlier frequency.

The Naive Bayes classifier is based on the simplified assumption that the attribute values are

conditionally independent given target value. In other words the assumption is that, given the target

value of the instance, the probability of observing the conjunction y1, y2......yn is just the product of

the probabilities for the individual attributes:

 


 
n

j

ijimiimimap XyPXPYXPc
1

11)()(maxarg)(maxarg , (2)

For extending the SVM and the Naïve Bayes classifiers from two-class classification to multi-class

classification typically one of two methods are used: “One versus the rest”, where each topic is

separated from the remaining topics, and “One versus the one”, where a separate classifier is trained

for each class pair [14]. We selected the first method for two reasons. First, preliminary experiments

show that this method gives better performance, which might be explained by the fact that the

Reuter’s database contains strongly overlapped classes and assigns almost all samples in more than

one class. Second, overall training time is much shorter for the first method.

3 GENETIC ALGORITHMS

Genetic algorithms encode a potential solution to a specific problem on a simple chromosome-like

data structure and apply genetic operators to these structures in order to preserve critical

information [16]. In our weights selection problem the chromosome is considered to be of the

following form:

  kwwwc ,...,, 21 (3)

where kiwi ,1,  represent the weight for each class position returned by every classifier used

into the meta-classifier. The training set has the form njandmiyxij ,1,1,, 


, where y

represents the correct output for the input sample ijx


, n represents the number of classes and m

represents the number of classifiers used into the meta-classifier. For the genetic algorithm the

training dataset consist of all outputs from all classifiers used into the meta-classifier. For

simplifying the computing of the fitness function we choose a representation of the chromosome

that uses the outputs of all classifiers from the meta-classifier. With this approach we take into

consideration the position of each class in the classifier’s output. The chromosome keeps only, for

each class position, the weights that are used to compute the accuracy of meta-classifier. Thus, the

potential solution of the problem encodes the weights that can be used to compute the final decision

into meta-classifier [11].

For each chromosome we can compute the fitness function as the final classification accuracy of the

meta-classifier using the testing file. The classification accuracy is computed as the number of final

correct classified classes by the meta-classifier.

For each test we start with a generation of 100 chromosomes, each of them having values randomly

generated between -1 and 1. In the next step we generate the next population using genetic

operators as: selection, crossover or mutation [16]. The evolutionary process stops after a

predefined number of 1000 generations. The evolutionary process stops after a predefined number

of generations are taken or when in the last 20 generations no changes occur.

At the end of the algorithm, we obtain for each class position the “best” weight that can be used for

computing the winner class. The general scheme of the genetic algorithm is presented in pseudo

code in the Algorithm 1:

4 META-CLASSIFIER MODELS

In our previous work [2], [8] and [10] it is presented a meta-classifier, based on 8 SVM classifiers

and one Bayes classifier, that were used to improve the classification accuracy for text documents.

In those works 3 meta-classifier models are used: majority vote, selection based on the Euclidian

distance and selection based on the cosine angle. The first model was a non-adaptive model that had

the advantage of speed, but obtained not so good results. The last two were adaptive models that

used a training part before they can be used in the classification. The training part is much time

consuming and, unfortunately, this time increases when the meta-classifier learn more examples.

In this paper we propose a new non-adaptive meta-classifier model based on some pre-optimized

weights that will increase the classification accuracy. In [11] we have presented a solution for this

problem that uses static (pre-determined) values for the weights. Now we propose to use a genetic

algorithm for pre-computing the optimal weights. Obviously, this adaptive optimization process

will be done before the meta-classification process will start. The obtained weights’ values will

correspondingly weight all the results returned by every classifier for each document, as it is shown

further.

All meta-classifiers presented in this article contain eight SVM type classifiers and one naïve Bayes

classifier.

Begin

 For each topic from a topics_set

 begin

 generate a population

 while not terminated condition

 For each chromosome from population

 compute the fitness functions

 make next population:

 select parents

 recombine pairs of parents

 apply mutation to offspring

 End while.

 Store the chromosome that obtain the best fitness

 End for.

 Take all stored chromosomes

End.

Algorithm 1: Pseudo code for GA algorithm

4.1 Non-adaptive Meta-classifier based on Majority Vote (M-MV)

This meta-classifier model, also presented in [8], is a non-adaptive model that obtains the same

results for the same input every time. The idea is to use all selected classifiers to classify the current

document. Each classifier will propose a class for the given document, and the meta-classifier will

increment the corresponding class-counter. The winner class proposed by the meta-classifier is the

class with the highest count. If we obtain two or more classes with identical maximal counts then

we classify the current document in all the proposed classes. This method uses only the winner class

from the classification returned by each classifier separately. The classes found on the subsequent

positions are not taken into consideration.

4.2 Non-adaptive Meta-classifier based on sum (M-SUM)

Each classifier has as input a document that is represented as a vector having 1306 features and

produces an output vector with 16 values. The output values represent the confidence degrees, given

by the classifier. These values represent the “belonging degree” of the current document to each one

of the 16 classes (see Fig. 4.1). More precisely, each element from the output vector represents the

classifier's decision function value for each class separately. So far, in [8], as it was already

described in paragraph 4.1, the highest value from the output vectors has been chosen and the class

corresponding to that value was considered to be the winner class. The methods proposed in the

following paragraph, take into account both the value obtained for each class separately and the

corresponding rating position. Since there are 9 classifiers in the meta-classifier for each document

there will be 9 corresponding vectors, each of them having 16 values (so-called confidence

degrees).

The values of the decision functions for the SVM type classifiers are in the range (-,) but usually

close to the value 0, and the values of the Naive Bayes classifier are in the range (-, 0).

Considering these differences, and for making a correct sum of those values, we have transposed

the values of all vectors into the interval [1, ). The formula used for transposing the values is:

 16,1,1)min('  iforVVV ii


 (4)

This transposing formula doesn’t change the differences between the elements values from a vector

even if it contains positive and negative values or only positive ones. Thus, for each vector the

differences between its values remain unchanged. In order to calculate the sum of these vectors in

the next step we have normalized the vectors bringing their values in the (0, 1] interval. This

Fig. 4.1 Creating entry data for meta-classifiers

normalization ensures that the value from the first position, of the descended arranged vector, is

always 1. We avoid also that the value from the last position to be 0.

)max(

'
V

V
V i

i
 (5)

In the current meta-classifier, that only makes the un-weighted sums, (called here M-SUM), we

have calculated the sum of corresponding scalars from these 9 vectors. Thus we have obtained, for

the current document, a single vector with 16 values. The meta-classifier will decide the winning

class as the class with the highest obtained value. If there are two ore more classes with identical

maximal values, the meta-classifier will propose all those classes.

  
9

, 1,16
1

max
i

i
c i

k

Class V k




  (6)

This approach gives the possibility that, even if a class that was never selected as a winner by the

classifiers but always obtained a value very close to the winner class, such a class should have the

chance that, after summing, to be selected by the meta-classifier as the winner class. The idea

started from the fact that in many articles like [3], [2] and [10] we observed the tendency to use

methods for choosing the second or the third class as the winner class mostly when it was obvious

that the meta-classifier would not provide the correct winner class.

4.3 Non-adaptive Meta-classifier based on weighted sum (M-GSUM)

In this section we will introduce a new non-adaptive meta-classifier based on the weighted sum (we

will call it as M-WSUM).

In this meta-classifier the values for the classes will be multiplied with a value, called weight. In

[11] are presented some meta-classifiers using different weight values and their obtained results.

Since choosing the optimum weight values for each class position is a difficult task, in this article

we propose a method based on a genetic algorithm for computing the weights.

Starting from the test dataset [11] we have created a proper test file which is used for the genetic

algorithm. In this new file, for each document entry we have saved all outputs from all classifiers

separately. Thus for a document we obtained as output 9 vectors (because we have 9 classifiers),

each vector having a number of 16 scalars (because we have 16 classes). In the genetic algorithm

used one chromosome represents the weights value for each class separately, depending by the class

position. The first value from the vector represents the weight of the first position class from the

classifier; the second value from the vector represents the weight of the class from the next position,

and so on.

  
jwwwc ,...,, 21 , with 16,1j (7)

where wj represents the value of weight for the j class position. We have fulfilled the following

inequalities: w1>w2>…w16. For computing the fitness function the following steps are taken:

1. For each document from the testing set the algorithm obtains the output vector

corresponding to each classifier;

2. Each output vector is weighted with the corresponding chromosome value;

3. The winner class is obtained by summing all results for each class and selecting the highest

score (formula 8);

)(maxarg16,1,
16,1

9

1

j
ji

ijjj ClassWinClassandjforcwClass


 (8)

where wj represents the value of the chromosome for the j
th

 class position (called weight), cij

represents the value computed by the i
th

 classifier for the j
th

 class position (called confidence

degree) and Classj represents the value computed for the class from the j
th

 position.

4. The winner class (WinClass) will be compared with the real class proposed by Reuters and

if the classes are identically we consider that the document was correctly classified;

5. After processing all documents the fitness value is the accuracy obtained on the whole

testing set.

The best chromosome is that with the highest fitness. For building a population we have used 100

chromosomes and the algorithm was applied for 1000 generations.

As selection operator for choosing the chromosome from the current population to be used for the

next population we have used two methods: Roulette method and Gaussian method. For the

Gaussian method we have used the following formula:

2

2

2

))((

2

1

)(

mcfitness

ecGauss




 (9)

where c is the current chromosome, fitness(c) is the result obtained for the corresponding

chromosome c, m represents the average and in our case is equal to 1 and σ is the standard deviation

(here we have used a value equal with 0.5).

For creating the new population we have used all 3 genetic operators thus: 30% for new population

is created using the selection operator (selecting the best chromosome - elitism), the rest o the

population is created by using the mutation operator in 40% and crossover operator in 30%. After

applying this operators the condition w1>w2>…w16 is respected. Thus, for crossover operator we

search after a cut point (i) for which the condition parentond

i

parentfirst

i ww _sec

1

  is valid. For mutation

operator, after selecting randomly the mutation point (i) the new value is selected randomly in the

interval  11,  iii www .

5 EXPERIMENTAL FRAMEWORKS

The Dataset

Our experiments were performed on the Reuters-2000 collection [13], which has 984 Mb of

newspapers articles in a compressed format. The collection includes a total of 806,791 documents,

with news stories published by Reuters Press covering the period from 20.07.1996 through

19.07.1997. The articles have 9822391 paragraphs and contain 11522874 sentences and 310033

distinct root words. Documents are pre-classified according to 3 categories: by the Region (366

regions) the article refers to, by Industry Codes (870 industry codes) and by Topics proposed by

Reuters (126 topics, 23 of them contain no articles). Due to the huge dimensionality of the database

we will present here results obtained using a subset of data. From all documents we selected the

documents for which the industry code value is equal to “System software”. We obtained 7083 files

that are represented using 19038 features and 68 topics. We have represented a document as a

vector of words, after applying a stop-word filter (from a standard set of 510 stop-words) and

extracting the word stem [1]. From these 68 topics we have eliminated those topics that are poorly

or excessively represented. Thus we eliminated those topics that contain less than 1% documents

from all 7083 documents in the entire set. We have also eliminated topics that contain more than

99% samples from the entire set, as being excessively represented. After doing so we have obtained

24 different topics and 7053 documents, that were split randomly in a training set (4702 samples)

and a testing set (2351 samples). In the feature extraction phase we take into consideration both the

article and the title of the article. In the feature selection phase we have selected only 1306 features

for each vector.

6 EXPERIMENTAL RESULTS

In [11] were presented first time the results obtained using static (pre-determined) weights values.

The best classification accuracy obtained was 87.20% (i.e. 301 incorrectly classified documents

0.78

0.8

0.82

0.84

0.86

0.88

0.9

1 100 200 300 400 500 600 700 800 900 1000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

Generation

Genetic Algorithm - Gaussean selection

Gauss 1

Gauss 2

Gauss 3

Gauss 4

Avearge

Fig.6.1 Classification accuracy - Gaussian method for selecting the best chromosomes for new generation

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

1

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

C
la

ss
if

ic
at

io
n

 A
cu

ra
cc

y

Generation

Genetic Algorithm - Roulette selection

Roulette 1

Roulette 2

Roulette 3

Roulette 4

Average

Fig. 6.2 Classification accuracy with Roulette method for selecting the best chromosome for new generation

from a number of 2351 documents). These results were obtained with a model of meta-classifier

called “M-05W” that has weighting values that linearly decrease from 12 with a step of 0.5.

In the meta-classifier with genetic algorithm, for each chromosome we compute the fitness function

using the training dataset. After selecting the best chromosome in this manner, we compute the

fitness function obtained only by this chromosome using the testing dataset and in the figures only

the values computed on the testing dataset are presented. Therefore, sometimes, the evolution of the

best chromosome in the presented figures is not always ascending.

Because we start with a randomly generated population, and the obtained results depend of the

starting points, we make four successively runs for the same method. Here we present the output for

each method and also the average value.

In figure 6.1 we present the classification accuracy obtained on the testing dataset, when using the

genetic algorithm with Gaussian method for selecting the chromosomes. The average accuracy

obtained is 88.37%. Thus we obtained an average growth of 1.17% for the classification accuracy

comparing with the case of the static values of weights presented in [11].

In case of using genetic algorithm with the Roulette method for selecting the chromosomes in the

new population we have obtained an average classification accuracy of 88.36%, with only 1.16%

greater the in M-SUM method. The results are presented in figure 6.2.

The best accuracy obtained by us in all four performed tests was obtained using Gaussian method

for chromosome selection where the maximum accuracy value was 88.55%.

7 CONCLUSIONS AND FURTHER WORK

In this article we presented a non-adaptive meta-classifier used for classifying text documents. This

meta-classifier uses the outputs of eight independent SVM classifiers and a Naive Bayes classifier.

The output of each classifier is a vector of values, where each position represents the confidence

given by the classifier that the current document belongs to the corresponding class. The meta-

classifier developed in this article uses a genetic algorithm for calculating the best values that could

be used to weight the outputs of each classifier so that the final classification accuracy to be

improved.

Since we started for the genetic algorithm with random initial weights we conducted four separate

runs. As the average results compared with results obtained when classifiers outputs were weighted

with pre-defined values [11] we have obtained an improvement of 1.17%. As classification

accuracy, the best value obtained is 88.55% in case of using Gaussian method for selection of

chromosomes for the new population.

In the further, an interesting natural extension of our work may be an adaptive and intelligent meta-

classifier that uses a neural network for choosing the classifier that will be used in classifying the

current document.

8 ACKNOWLEDGMENT

This work was partially supported by CNCSIS-UEFISCSU, project number PN II-RU code

PD_670/2010.

9 REFERENCES

[1] S. Chakrabarti, Mining the Web- Discovering Knowledge from hypertext data,, Morgan Kaufmann Press, 2003.

[2] R. Cretulescu, Support Vector Machine versus Bayes Naïve, 2nd PhD Report, “Lucian Blaga” University of Sibiu, 2008,

http://webspace.ulbsibiu.ro/radu.kretzulescu/html/phdreport2.pdf

[3] Q. Chen, D. Zheng, T. Zhao, S. Li, A Fusion of Multiple Classifiers Approach Based on Reliability Function for Text Categorization, 5th

International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, 2008.

[4] N. Dimitrova, L. Agnihotri and G. Wei, Video Classification Based on HMM Using Text and Face, Proceedings of the European Conference on

Signal Processing, Finland, 2000.

[5] D. Lewis, Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval. In Proceedings of the 10th European Conference on

Machine Learning, 1998

[6] W.-H. Lin, A. Hauptmann, News Video Classification Using SVM-based Multimodal Classifier and Combination Strategies, In Proceedings of

the Tenth ACM international Conference on Multimedia, 2002

[7] W.-H. Lin, R. Jin, A. Hauptmann, A Meta-classification of Multimedia Classifiers, International Workshop on Knowledge Discovery in

Multimedia and Complex Data, Taiwan, 2002.

[8] D. Morariu, L. Vintan, V. Tresp, Meta-Classification using SVM Classifiers for Text Documents, The 3rd International Conference on Neural

Computing and Patter Recognition, Barcelona, October 2006.

[9] D. Morariu, Text Mining Methods based on Support Vector Machine, MatrixRom, Bucharest, 2008.

[10] D. Morariu, R. Cretulescu, L. Vintan, Improving a SVM Meta-Classifier for Text Documents by using Naïve Bayes, International Journal of

Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844, 2010.

[11] R. Cretulescu D. Morariu, L. Vintan, Eurovision-like weighted Non-Adaptive Meta-classifier for Text Documents, The 8th RoEduNet

International Conference, Galati, Romania, 2009.

[12] C. Nello, J. Swawe-Taylor, An introduction to Support Vector Machines, Cambridge University Press, 2000.

[13] Reuters Corpus: http://about.reuters.com/researchandstandards/ corpus/. Released in November 2000.

[14] B. Schoelkopf, A. Smola, Learning with Kernels. Support Vector Machines, MIT Press, London, 2002.

[15] G. Siyang, L. Quingrui, M. Lin, Meta-classifier in Text Classification, http://www. comp.nus.edu.sg/~zhouyong/papers/cs5228project.

[16] A. Ghosh, L.C. Jain, Evolutionary Computation in Data Mining, Springer Verlag Berlin Heidelberg, 2005

http://webspace.ulbsibiu.ro/radu.kretzulescu/html/
http://about.reuters.com/researchandstandards/corpus/
http://www/

	1 Introduction
	2 Classifiers used
	2.1 Support Vector Machine
	2.2 Naïve Bayes

	3 Genetic Algorithms
	4 Meta-classifier models
	4.1 Non-adaptive Meta-classifier based on Majority Vote (M-MV)
	4.2 Non-adaptive Meta-classifier based on sum (M-SUM)
	4.3 Non-adaptive Meta-classifier based on weighted sum (M-GSUM)

	5 Experimental Frameworks
	6 Experimental Results
	7 Conclusions and Further Work
	8 Acknowledgment
	9 References

