
An Automatic Design Space Exploration Framework
for Multicore Architecture Optimizations

Horia Calborean, Lucian Vinţan
Advanced Computer Architecture & Processing Systems Research Lab - http://acaps.ulbsibiu.ro/research.php

”Lucian Blaga” University of Sibiu,
Romania

{horia.calborean,lucian.vintan@ulbsibiu.ro}

Abstract—- During the last years, especially due to the com-
puting systems complexity growth, the need for tools which
perform automatic design space exploration becomes more and
more stringent. This paper presents a new initiated project
having as the main aim developing a software tool, called
FADSE (Framework for Automatic Design Space Exploration),
that comes to meet this need. It is intended to provide out-of-
the-box algorithms capable of solving single and multiobjective
optimization problems. It focuses on automatic design space
exploration for multicore and manycore systems. This tool
is intended to be flexible, to provide easy development and
portability.

Index Terms—Automatic design space exploration, software
framework, multicore and manycore architectures

I. INTRODUCTION

In the recent years the multicore architectures became more
popular as they improve the performance/power ratio over the
single core processor. The number of cores integrated in the
processor, not necessarily identical, has risen to tens, hundreds
or even thousands (GPUs). These new architectures bring new
research challenges [1]. Two of these challenges are discussed
in this article: simulation and design space exploration for
multicore architectures.

As the number of cores in the processor becomes higher,
more configurations have to be simulated and thus the sim-
ulation time increases. The cores are communicating through
complex interconnection networks having high bandwidth and
low latency [2]. Fault tolerance algorithms are implemented
in these networks increasing the simulator complexity. In
addition the architecture has to be optimized in parallel with
the target applications (hardware-software co-design). As the
number of possibilities that have to be considered increases
more processor configurations have to be evaluated. This leads
to an extremely huge search space. The current processor
design methodology will not scale and new methods are
needed.

Two problems can be identified: increased simulation time
and the vast search space.

Reducing simulation time can be done using different tech-
niques [3]: statistical simulation, sampling simulation, parallel
simulation.

Even if the simulation time is reduced, investigating all the
possible solutions is a NP-hard problem. Exhaustive detailed
simulation will not be possible anymore and smarter ways

of doing simulation have to be used. Heuristic algorithms
are needed to reduce the search space. Techniques borrowed
from machine learning and data mining could be used. These
methods are needed to search in the ever-increasing space
of application, compiler and architecture parameters. The
objective is to find the system parameters that lead to the
optimum cost/performance ratio for a given real life set of
applications.

The remainder of the article is structured as follows: in
Section II we present the related work. In Section III the
basic concepts of design space exploration are outlined. The
developed framework is described in Section IV. Section V
shows some preliminary results. Finally, Section VI briefly
presents some conclusions and further work.

II. RELATED WORK

Magellan [4] is a complex framework for accelerating
multi-core design space exploration and optimization. The
algorithms used are: steepest ascent hill climbing, genetic
algorithm and ant colony optimization. The framework is
bounded to the SMTSIM simulator [5] which is able to
run multiprogrammed workloads but not parallel programs.
Magellan can be used to find the processor with the highest
performance for a given area and power.

ArchExplorer [6] is another automatic design space ex-
ploration (ADSE) tool. Researchers can upload their own
hardware simulators for different architecture components in
order to assess their performance against other designs. The
uploaded simulator has to be made compatible with the
interface provided by the ArchExplorer developers. After the
simulator has been uploaded it automatically becomes part
of the design space exploration tool and it is simulated and
compared with other similar microarchitectures. The simulator
continuously runs on the ArchExplorer servers. Any user can
check out any time what is the best configuration found so far
for its simulated microarchitecture and also compare it with
other implementations.

Another project is cTuning (http://ctuning.org/) which fo-
cuses more on compilation problems. It is collecting opti-
mization cases from the community to learn how to correlate
program features, program and system behavior and good
optimizations between multiple programs, datasets, compilers,
operating systems and architectures.

M3Explorer [7] is part of a FP7 EC project which aims
to develop an automatic design space exploration tool able to
easily connect to any existing simulator. It allows optimiza-
tion of a parameterized system architecture. It is currently
integrated with the SESC simulator [8] and it can optimize
energy, delay and area or any other objective. M3Explorer
integrates several well known search algorithms like: simulated
annealing, genetic algorithms, particle swarm optimization,
etc. Also it provides an open XML interface for supporting
new platforms/architectures.

FADSE is intended to be an easily extensible framework for
design space exploration (DSE). Many of the existing tools are
bounded to a certain simulator or require the user to write the
simulator compatible with the tool. With FADSE we try to
make the framework compatible with as many simulators as
possible.

Another great advantage of FADSE is the portability pro-
vided by JAVA which will enable its use on most of the
existing platforms (Windows, Linux and Mac). FADSE can
be used as a platform to compare different design space
exploration algorithms, too.

III. DSE BASIC CONCEPTS

A. Multiobjective optimization problem

Multiobjective optimization is the process of simultaneously
optimizing two or more (usually) conflicting objectives. Not
only in computer architecture, but in many of the real world
problems where optimizations have to be carried out, usually
there is more than just one objective. Generally a trade-off
between the objectives is necessary. In most cases where multi-
optimizations have to be performed there is not a single solu-
tion that simultaneously minimizes/maximizes each objective.
Multiobjective optimization algorithms are assuring that each
objective has been optimized to the extent that if we try to
optimize it further, then the other objective(s) will suffer as
a result. These solutions are called Pareto solutions. Finding
such solutions is the goal when setting up and solving a
multiobjective optimization problem.

A general multiobjective problem can be mathematically
described as a vector function f where:

min/max ~y = ~f(~x) = [f1(~x), f2(~x), ..., fm(~x)]
subject to:
~x = x1, x2, ..., xn ∈ X
~y = y1, y2, ..., ym ∈ Y
where ~x is called the decision vector, X is the parameter

space, ~y is the objective vector and Y is the objective space
yk = fk(X) where k = 1, 2, 3, ...,m

B. Pareto optimality

Before describing the concept of Pareto optimality a few
definitions have to be introduced [9]:

Definition 1: given two vectors ~x, ~y ∈ Rn we say that
~x ≤ ~y if xi ≤ yi for any i = 1, ..., n and that ~x dominates ~y
(written as ~x ≺ ~y) if ~x ≤ ~y and ~x 6= ~y.

Definition 2: we say that a vector of decision variables
~x ∈ X ⊂ Rn is nondominated with respect to X , if it does

Objective 1

Objective 2

*

*

Pareto

front

*

*

*

*

*

a

b

f1(a)<f1(b)

f2(a)>f2(b)

c

Fig. 1. Pareto front. There is no order that can be established between points
a and b. Both a and b are better than c.

not exist another ~x′ ∈ X such that ~f(~x′) ≺ ~f(~x), where ~f is
the multiobjective function.

Definition 3: a vector of decision variables ~x∗ ∈ F ⊂ Rn

(F is the feasible region) is Pareto-optimal if it is nondomi-
natet with respect to F .

Definition 4: the Pareto Optimal Set P ∗ is defined by:

P ∗ = {~x ∈ F | ~x is Pareto− optimal}

Definition 5: the Pareto Front PF ∗ (see Figure 1) is
defined by:

PF ∗ = {~f(~x) ∈ Rn | ~x ∈ P ∗}

The concept of Pareto optimality is very often used in
multiobjective algorithms.

IV. THE DEVELOPED FRAMEWORK

A. Application structure

The framework is designed to be flexible so that new
algorithms, simulators and evaluation metrics can be added
easily.

FADSE boots by reading an XML configuration file (see
Fig. 2). This XML is a modified version of the XML format
used in M3Explorer [7]. Through this XML the user can
specify the simulator path (if it is a simulator on which we are
running the DSE algorithm; otherwise a synthetic problem can
be selected), the parameters and their possible values and the
objectives. Beside this, a set of rules (constrains) can be de-
fined. These rules are needed to avoid some impossible/trivial
configurations and also to reduce the search space (e.g. it is
not worth simulating a configuration where the level 1 cache
is larger than the level 2 cache).

The data extracted from the XML file is passed to the
Algorithm Runner which configures the framework and starts
the design space exploration process. The jMetal library [10]
through its integrated algorithms generates individuals which
represent simulation configurations. The individuals are passed
to the Simulator Wrapper. The Simulator Wrapper converts the
data received form the jMetal library, checks if the individual
is valid (it obeys the rules specified in the XML file) and passes
the simulation configuration to the Simulator Connector.

jMetal

XML interface

Simulator Wrapper
Simulator
Connector

M5

M-SIM

GAP

Output
Reader

Algorithm Runner

Results Receiver

Fig. 2. FADSE current architecture

The Simulator Connector runs the simulator. A Simulator
Connector has to be implemented for each simulator since each
one has a different interface. After the simulation is done the
results are parsed by the Output Reader. The Output Reader
has to be implemented for each simulator. We do provide
some utility classes to ease the implementation: functions
to search for certain strings in files, functions to run native
applications and others. The Output Reader sends back the
results in a standardized format. The results are passed to the
jMetal library by the Results Receiver.

Up to this moment FADSE is able to run and
interpret the results of the following simulators
GAP [11], M5 (http://www.m5sim.org) and M-SIM
(http://www.cs.binghamton.edu/m̃sim/).

Most of the algorithms used for automatic design space
exploration are evolutionary algorithms. The currently imple-
mented algorithms are based on Pareto dominance but other
algorithms - that solve the multiobjective problem differently
- will be implemented: aggregation approaches (they combine
the multiple objectives into a single one and reduce the
problem to a single objective one), lexicographic ordering (the
objectives are ordered and the first objective is optimized then
the next one and so on) and sub-population approaches (the
population is divided into several sub populations and each
try to optimize one objective and at certain points exchange
information).

The implemented DSE algorithms can be influenced in
the framework by changing the crossover operator and/or the
operator that performs the mutation (if the algorithm uses
these operators). Also it can change the maximum number
of generations that the algorithm should run.

The framework is developed in JAVA which has the ad-
vantage of portability. Most of the automatic design space
tools implemented are developed for UNIX based system thus
reducing the number of simulators that can be used, since
simulators have to run on these systems. This inconvenience
is eliminated by us through the use of the JAVA platform.
Therefore simulators that were designed to run in Windows
(like the GAP [11] simulator) and UNIX based systems (M-
SIM, M5) can be integrated in the FADSE tool. The speed
loss caused by the Java Virtual Machine is not a significant
problem since most of the time is spent doing simulations.

B. The parameters
The supported parameters are a subset of the M3Explorer

[7] parameters. An example of a certain parameter’s format is

the following:

<parameter name="x" description=""
type="integer" min="0" max="10" step="2"/>

In the above example the framework will give values to this
parameter from 0 to 10 with a step of 2. The step attribute is
optional and its default value is 1.

Other types of parameters can be used: the exp2 type which
will produce a geometric series with the ratio equal with 2.
The string type allows the user to specify a list of string values
(e.g. types of cache coherence protocols).

C. The rules

There are three types of rules that can be specified in
the input XML. They are the same set of rules found in
M3Explorer [7]. We have implemented these rules as it is
shown below.

Relational rule:

<rule name="minimum cache size" >
<greater-equal>
<parameter name="l2CacheSize"/>
<constant value="2048"/>
</greater-equal>

</rule>

Where the relation can be <greater>, <greater-equal>,
<less>, <less-equal>, <equal>, <not-equal>. The parame-
ter is a parameter that was defined in the XML The second
argument of the rule can be a parameter or a constant value.

And rule:

<rule name="cache size check">
<and>
<greater-equal>
<parameter name="l2CacheSize"/>
<parameter name="l1CacheSize"/>

</greater-equal>
<greater-equal>
<parameter name="l2CacheSize"/>
<constant value="512"/>

</greater-equal>
</and>

</rule>

Any number of rules can be inserted in an and rule and any
type of rules (relational rules, if rules and also and rules).

If rule:

<rule name="cache assoc limitation">
<if>
<greater-equal>
<parameter name="="l2CacheAssoc"/>
<constant value="1"/>
</greater-equal>
<then>
<equal>
<parameter name="l1CacheAssoc"/>
<constant value="1"/>

</equal>
</then>

</if>
</rule>

Each individual is validated against these rules before sending
it to the simulator. During our experiments these rules covered
all the situations we have encountered. If new types of
constrains are met, new types of rules can be easily introduced
in the framework by extending the Rule interface.

D. Implemented algorithms

The SEMO algorithm [12] is one of the simplest genetic
algorithms for multiobjective optimization. It stores an archive
of all the nondominated individuals. This archive represents
the current population. From this population a parent is
randomly chosen and mutated by randomly changing a bit.
The new individual is accepted if it is not dominated by other
individuals and there is no other individual that has the same
values for the objectives. All the individuals that are dominated
by the new individual are removed from the archive. Then the
process is repeated.

The FEMO algorithm [12] is a development of SEMO.
The SEMO algorithm searches for a Pareto optimal solution

by mutating a randomly chosen solution from the currently
found ones. The problem is that some individuals are chosen
more than others to become parents. Because of the uniform
sampling technique used to choose the parents, some individ-
uals will get mutated more often just because they were added
to the population earlier in history. The neighborhood of these
individuals will get over explored. The FEMO algorithm tries
to avoid this situation by counting the number of offspring
each individual produces. It selects as a parent the individual
with the smallest number of offspring. If there are more than
one individual with the same number of offspring then the
parent is chosen randomly between these individuals.

In SEMO and FEMO if the offspring is not valid a new
offspring is produced until all the rules are passed. In the
algorithms implemented in jMetal infeasible solutions are
included in the offspring population. To reduce de number of
individuals the notion of constraint domination [13] is used.
The constraint domination works as follows: when individuals
are compared if both are feasible the domination relation is
used. If one is infeasible the feasible one is selected. If both
are infeasible the one that obeys the most rules is kept. If the
Simulator Wrapper receives an infeasible configuration it fills

the response with default objective values and the simulation
is not performed.

Through the jMetal integration more algorithms are avail-
able: SPEA2 [18], NSGA-II [13], etc.

The DSE algorithms implemented could be run in parallel
in separate threads thus reducing the simulation time when
multiple algorithms are compared.

E. Implemented test functions

LOTZ (Leading Ones Trailing Zeroes) [12] is a
generalization to two dimensions of the ”Leading Ones”
problem. The function LOTZ : {0, 1}n → N2 problem is
defined as:

LOTZ(x1, ..., xn) = (

n∑
i=1

i∏
j=1

xj ,

n∑
i=1

n∏
j=i

(1− xj))

The objective is to maximize the number of leading ones
and the number of trailing zeroes in a bit-string simultane-
ously. Since there is no point that maximizes both objectives
simultaneously the multi objective algorithm will need to find
all the nondominated points.

Other implemented test functions include the DTLZ func-
tion family introduced by Deb et al. [14]. DTLZ1 was used in
this article. The Pareto optimal solutions of DTLZ1 correspond
to the hyperplane that intersects the coordinate axes in the
objective space at the value 0.5.

F. Implemented metrics

1) Coverage of two sets: The Coverage of two sets metric
is used in [15] [16]. Let X ′, X ′′ ⊆ X be two sets of decision
vectors. The function C maps the ordered pair (X ′, X ′′) to
the interval [0, 1]:

C(X ′, X ′′) =
|{a′′ ∈ X ′′;∃a′ ∈ X ′ : a′ � a′′}|

|X ′′|

where|X ′′| is the cardinal of the set X ′′.
If all the points from X ′′ are dominated (or equal) by points

from X ′ then C(X ′, X ′′) = 1. If C(X ′, X ′′) = 0 then none
of the points in X ′′ are dominated by points from X ′. It
should be noted that both C(X ′, X ′′) and C(X ′′, X ′) should
be computed since they would give different values.

It is not required to know the Pareto front to compute this
metric.

2) The Error Ratio: The Error Ratio [17] measures the
individuals in the Pareto optimal set that are not members of
the Pareto front. Mathematically:

ER =

|PFknown|∑
i=1

ei

|PFknown|

where |PFknown| is the number of points in the Pareto
optimal set. ei = 0 when the ith individual from the Pareto
optimal set is an element of the Pareto front (or is not
dominated by any point from the Pareto front). ei = 1 if the

Fig. 3. SEMO algorithm ran on the LOTZ problem with 16 input parameters.
After 1500 generations it was not able to determine the entire Pareto front.

individual from the Pareto optimal set is not an element of
the Pareto front. If ER is 0 then the solutions from the Pareto
optimal set belong to the Pareto front. If ER is 1 then none of
the elements from the Pareto optimal set belong to the Pareto
front.

The Error Ratio will not provide any useful information
if the algorithm does not reach the Pareto front even if the
solutions obtained are very close to the Pareto front. This
metric can not be used to compare the algorithms on real
problems (simulators) because the Pareto front is unknown in
this situation.

There are similar metrics that measure the percentage of
solutions that belong to the Pareto front (or are not dominated
by any of the points from the Pareto front). At the moment of
writing this article only LOTZ and DTLZ1 implementations
are compatible with the Error Ratio metric.

V. SIMULATION RESULTS

Since both SEMO and FEMO proved to be very sensitive
to the choosing of the first individual (which is done random)
all the simulations results presented below were run for 1000
times and average values are presented.

SEMO and FEMO algorithms were run on two test prob-
lems (LOTZ and DTLZ1). Since the Pareto front is known and
finite for the LOTZ problem both algorithms were run until
they both discovered all the Pareto optimal solutions. SEMO
discovers the entire Pareto front in an average (over 1000
runs) of 1453 generations. For FEMO the average number
of generations was only 756. In Figure 3 and 4 the chart
generated after a single run is presented. In this certain
simulation context SEMO is not able to discover the entire
Pareto front in 1500 generations (which was set as the stop
condition for the algorithm). Since the Pareto front of the
DLTZ1 problem is a hyper plane [14] the number of Pareto
optimal solutions is theoretically infinite so the above test was
not performed on the DLTZ1 problem.

Fig. 4. FEMO algorithm ran on the LOTZ problem with 16 input parameters.
After 957 (number of generation not depicted in the figure) generations has
found the entire Pareto front

300 500 1500 3000 6000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Coverage comparison

C(SEMO,FEMO)

C(FEMO,SEMO)

Generation count

P
er

ce
nt

ag
e

co
ve

re
d

Fig. 5. Coverage comparisons between SEMO and FEMO on the DTLZ1
problem.

The algorithms were run on the DTLZ1 problem for dif-
ferent number of generations (see Figure 5) and the mutual
coverages were measured. DTLZ1 was configured to run with
seven decision variables and three objectives. As it can be
seen in Figure 5 FEMO performs better and more individuals
produced by FEMO dominate individuals produced by SEMO
as the generation count increases.

Error ratio was not measured on these two algorithms
because for the LOTZ problem it will always be 0 if the
algorithm reaches the Pareto front since all the other solutions
will be dominated by this one solution. The error ratio will be
1 if the Pareto front has not been reached.

Both SEMO and FEMO do not perform well on the DTLZ1
problem since even after 12000 generations the Pareto front
has not been reached. This happens because the number
of individuals simulated was too small. SEMO and FEMO
generate only one individual in each generation. It is reported
in [14] that NSGA-II [13] reaches the Pareto front in 300
generations with a population of 100 so the number of
evaluated individuals is larger even with this more advanced
algorithm.

VI. CONCLUSIONS AND FURTHER WORK

The implemented algorithms are able to solve the LOTZ
problem with a fairly small amount of simulated individuals.
An exhaustive simulation would have needed 65536 (216)
evaluations for 16 decision variables. SEMO needed in average
1453 evaluations (around 2% of the whole effort) and FEMO
only 756 evaluations in average (around 1% of the effort).
These reductions represent great improvements and demon-
strate the power of these heuristic algorithms.

Both SEMO and FEMO have proven not to be able to reach
the Pareto front in a reasonable number of simulations on
more complex problems like the DTLZ problems family. More
advanced algorithms are needed. SEMO and FEMO provide a
good example on how to implement a multiobjective algorithm
in FADSE.

The next step will be to fully integrate the jMetal library
in FADSE so that we can use the implemented multiobjective
algorithms (like SPEA2 [18], NSGA-II [13]).

Another development of the framework will be to integrate a
network module. This will make it possible to run simulations
in parallel on different machines and collect the data to a
central server. After implementing the network module the
focus will be in parallelizing the simulations. Many search
algorithms provide a huge amount of intrinsic parallelism.
Being able to run the algorithm in a distributed manner will
greatly reduce the time needed for simulations. Most of the
algorithms found in the literature (like SPEA2 and NSGA-
II) have points of synchronization (fitness assignment). The
simulation can not continue until all the other simulations
finish. Improved algorithms are needed that can pass this
constrain and also provide good results.

Connectors will be written to allow the optimization of more
simulators. The focus will be primarily on GEMS and NS3
(http://www.nsnam.org/). More metrics will be added to the
framework, too.

The framework will integrate a database system which will
store the simulation results. If the same configuration has to
be simulated again (even if different algorithms require it) the
results could be reused from the database.

The network module, the algorithm parallelization and the
database integration will allow us to perform automatic design
space exploration on real simulators.

After more algorithms will be implemented a comparison
between them will be performed on synthetic problems (like
DTLZ family of problems) and especially on existing proces-
sor simulators. This will help us find the best suited algorithm
for a certain problem.

VII. ACKNOWLEDGEMENTS

This work was partially supported by CNCSIS no. 485/2008
research grant offered by the Romanian National Council for
Academic Research. Also we would like to thank Prof. Dr.
Theo Ungerer and to his research group for their advices and
help during the first author’s PhD stage at Augsburg University
(2009/2010, 5 months period).

REFERENCES

[1] L. Vintan, “Directii de cercetare in domeniul sistemelor multicore /
main challenges in multicore architecture research,” Revista Romana
de Informatica si Automatica, vol. 19, no. 3, 2009.

[2] E. Salminen, A. Kulmala, and T. D. Hamalainen, “Survey of network-
on-chip proposals,” white paper, OCP-IP, 2008.

[3] J. J. Yi and D. J. Lilja, “Simulation of computer architectures: Simula-
tors, benchmarks, methodologies, and recommendations,” IEEE Trans-
actions on Computers, vol. 55, no. 3, pp. 268–280, 2006.

[4] S. Kang and R. Kumar, “Magellan: A framework for fast multi-core
design space exploration and optimization using search and machine
learning,” Design, Automation and Test in Europe, vol. 51, pp. 1432–
1437, 2008.

[5] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: maximizing on-chip parallelism,” in 25 years of the international
symposia on Computer architecture (selected papers). Barcelona,
Spain: ACM, 1998, pp. 533–544.

[6] V. Desmet, S. Girbal, O. Temam, and B. France, “Archexplorer. org:
Joint compiler/hardware exploration for fair comparison of architec-
tures,” in INTERACT workshop at HPCA, 2009.

[7] M. O. OF and M. P. SOC, “FP7-216693-MULTICUBE project.”
[Online]. Available: http://www.multicube.eu/

[8] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, SESC simulator,
2005. [Online]. Available: http://sesc.sourceforge.net

[9] M. Reyes-Sierra and C. A. Coello, “Multi-objective particle swarm
optimizers: A survey of the state-of-the-art,” International Journal of
Computational Intelligence Research, vol. 2, no. 3, pp. 287–308, 2006.

[10] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba, “jMetal:
a java framework for developing Multi-Objective optimization meta-
heuristics,” Departamento de Lenguajes y Ciencias de la Computacion,
University of Malaga, E.T.S.I. Informatica, Campus de Teatinos, Tech.
Rep. ITI-2006-10, Dec. 2006.

[11] S. Uhrig, B. Shehan, R. Jahr, and T. Ungerer, “A two-dimensional super-
scalar processor architecture,” in The First International Conference on
Future Computational Technologies and Applications, Athens, Greece,
2009.

[12] M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb, “Running
time analysis of multi-objective evolutionary algorithms on a simple
discrete optimization problem,” in Proceedings of the 7th International
Conference on Parallel Problem Solving from Nature. Springer-Verlag,
2002, pp. 44–53.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” Evolutionary Computation,
IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

[14] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in E-Commerce Technology, IEEE
International Conference on, vol. 1. Los Alamitos, CA, USA: IEEE
Computer Society, 2002, pp. 825–830.

[15] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength pareto approach,” IEEE trans-
actions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[16] G. Palermo, C. Silvano, and V. Zaccaria, “Discrete particle swarm
optimization for multi-objective design space exploration,” in Digital
System Design Architectures, Methods and Tools, 2008. DSD ’08. 11th
EUROMICRO Conference on, 2008, pp. 641–644.

[17] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont, Evolutionary
Algorithms for Solving Multi-Objective Problems, 1st ed. Springer, Jun.
2002.

[18] E. Zitzler, M. Laumanns, L. Thiele et al., “SPEA2: Improving the
strength Pareto evolutionary algorithm,” in EUROGEN, 2001, pp. 95–
100.

