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1. Introduction

When a ground fault occurs on an overhead transmission line in a power network with effectively grounded neutral, the fault current returns to the grounded neutral through the tower structures, ground return paths and ground wires. Ground fault current due to a fault at any tower, apart from traversing through it, will also get diverted in each portion to the ground wires and other towers [10].

As a consequence, the step and touch voltages near the faulted tower will be smaller then the values obtained in the absence of the ground wires.

2. Ground fault current distribution

Figure 1 below shows the connection of a ground wire connected to earth through transmission towers, each transmission tower having its own grounding electrode or grid, 
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. It is assumed that all the transmission towers have the same ground impedance and the distance between towers is long enough to avoid the influence between there grounding electrodes. The self impedance of the ground wire connected between two grounded towers, called the self impedance per span, it is 
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 represent the self impedance of the ground wire in 
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 is the mutual impedance between the ground wire and the faulted phase conductor, per span.

Ground current due to fault at any tower, apart from traversing through it, will also get diverted in portion to the ground wire and other towers. 

The current 
[image: image9.wmf]n

I

 flowing to ground through the nth tower, counted from the terminal tower where the fault is assumed to take place, is equal with the difference between the currents 
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The loop equation for the n-th mesh give the following relation:
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, the coupling factor between the overhead phase and ground wire;

· 
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, the fault current.
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Figure 1 Fault current distribution

Re-writing the equation (2) yields us:
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Similary:
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Substituting equations (3) and (4) in equation (1), for the current in the faulted tower, will be obtained the next equation, which is a second order difference equation:
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According to [4], the sollution of this equation is:
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 could be obtained by substituting the solution (6) in equation (5). For this purpose, n is substituting with (n+1), respectively with (n-1) in equation (6):
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The equation (5) became:
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Because 
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, it can be written:
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According with the solution (6) which contains the arbitrary parameters A and B, the current flowing to ground through the succesive towers, has an exponentiall variation. The arbitrary parameters A and B will be obtained later, from the boundary conditions.

A similar equation is obtained for the current in the ground conductor, by aplyaing equation (1) to the (n-1) tower:
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By substituting the equations (1) and (11) in equation (2), it will be obtained the next equation with a constant term:
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Similar with equation (5), the current in the ground conductor is given by the next solution:
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a, b –arbitrary parameters.

Because of the link between currents 
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, the arbitrary parameters A, B, a, b are not independent. By substituting the solutions (6) and (13) in equation (1), it will be obtained:
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Because these relations are the same for every value of n, it will be obtained the next expressions:
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The current in the ground wire will be then:
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The boundary condition at the terminal tower of figure 1, which means that the fault current is given by the sum between the current in the faulted tower and the current in the first span of the ground wire, is:
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This is the condition for 
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. If the line is sufficiently long so that, after some distance, the varying portion of the current exponentially decays to zero, 
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Substituting these expressions in (18), with 
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For B we get:
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The current in the faulted tower will get the expression:
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The current in the first span, counted from the faulted tower, will be:
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The previous analysis of the distribution of ground fault current, based on fault at the terminal tower, was done without its connection to a substation grounding grid (figure2). In this case, a portion of the total ground fault current will flow through the substation ground resistance. If this resistance is 
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Figure 2 Fault current distribution
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The current 
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 through the substation grounding grid, is given by the expression:
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In case the values of 
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In the expressions above, 
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, if  will have to considere the impedance of a small feeder between the grounding grid and ground wire.

Now, it will be found the nth tower, as counted from the terminal tower, where the current gets reduced to 1% then that traversing the terminal tower. From equation (19):
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For 
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, will get n=26.5, so it takes at least 26 towers from the fault to get a current reduced to 1% then that traversing the terminal tower.

Taking into account this consideration, it is possible to see if could be considered A=0 in the expressions of the currents in ground wire and towers. The number of the towers should be at least equal with the number given by expression (28).

If the line can not be considered long enough, regarding to (28), then parameters A and B will be found from the boundary conditions.
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[image: image65.wmf]p

R

, respectively 
[image: image66.wmf]'

p

R

, the resistances of the terminal stations (figure 3). The stations are connected to the terminal towers, at the both sides, through an extra span 
[image: image67.wmf]'

d

cp

Z

, and the sum between 
[image: image68.wmf]'

d

cp

Z

 and grounding grid of the stations resistance was noted  with 
[image: image69.wmf]'

d

cp

p

p

Z

R

Z

+

=

, respectively  
[image: image70.wmf]'

'

'

d

cp

p

p

Z

R

Z

+

=

.
The boundary condition at the receiving end of the line is:
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At the sending end of the line we have:
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Substituting 
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 from (31) to (30), we’ll get:
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Substituting 
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 into (31) and (32), according to (6) and (17) and taking into account (15) and (16), we’ll get two linear equations with respect to a and b:
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Figure 3 Fault current distribution
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(33) gives:
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and taking into account (15) and (16) we’ll have:
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where 
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For the current in the faulted tower we’ll get the next expression (obtained for 
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3. Numerical results

In this section, based on the analytical model presented above, are presented numerical results.

For the circuit from figure 1, considering a fault at the terminal tower, the numerical results for the fault current distribution are presented in figure 4a). Fault current was considered to be 1000A, 
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. Those results were obtained by neglecting the mutual coupling between the phase conductor and the ground wire.

In [3] are presented numerical results, obtained with complex matricial methods. For the same values and neglecting the mutual coupling, the numerical results presented in figure 4b), are the same with those obtained with the method presented here.

Figure 5 presents the numerical results obtained in the case of mutual coupling. It was considered 
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, which correspond to a steel ground wire of with 70mm2, radius 0.473cm, placed at 24.4m above the earth’s surface. 

The distance between ground wire and phase conductor is 3.05m. It can be seen that in the absence of mutual coupling, the fault current will flow through the ground, through a smaller number of towers then in the mutual coupling presence [2], [8].

Figure 6 presents the numerical results taking into account that the line is not long enough to consider in the current expressions A=0.
Line impedances per one span was considered to be 
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, and the line has 20 towers. It was considered an ACSR ground wire of 160/95 mm2, and a diameter of d=18,13mm. The mutual coupling was considered to be 
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The disposition of the line conductors is presented in figure 7. The faulted phase was considered to be the the furthest one from the ground conductor, since the lowest coupling will produce the highest tower voltage. For the fault current was considered the value 
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b)

Figure 4) Computation results
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Figure 5 Computation results
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	Stâlpul nr. 19
	I19=32,8A
	Ust=328,5V
	i19=1856,8A

	Stâlpul nr. 20
	I20=31,9A
	Ust=319,3V
	i20=1823,9A


Figure 6 Computation results
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Figure 7 Disposition of line conductors

4. Conclusions

This paper describes an analytical procedure in order to determine the ground fault current distribution in case of a fault at the terminal tower, where the grounding grid of a substation is connected to the ground wire.

It was considered an overhead transmission line with one ground wire, connected to the ground at every tower of the line and the fault appear at the terminal tower. There were obtained the expressions of the currents flowing to ground through the towers and the currents in every span of the ground conductor. These currents are varying exponentially and in their expressions there are two arbitrary parameters. For the long lines case, one of these parameters could be zero. It was established the minimum number of towers that fulfil this request. For lines with a smaller number of towers, both the parameters will be determined. Based on the boundary conditions, there were obtained these parameters.

The mutual impedance between the ground conductor and the faulted phase conductor, reduces the total circuit impedance. In these conditions, the fault current will be higher if the mutual impedance is neglected. From the model presented above, it can be seen that, due to the mutual coupling, the fault current is reduced with 
[image: image104.wmf])

1

(

n

-

.

It also can be seen that in the absence of mutual coupling, the fault current will flow through the ground, through a smaller number of towers then in the mutual coupling presence.
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