
Programare Orientare pe Obiecte

 - 1 -

Laborator 5 – Polimorfismul

Tema 5.1

Analizaţi programul din fișierele Ex5_VS.h, Ex5_VS.cpp, Clase.h, Clase.cpp, Grafica.h,

Grafica.cpp din anexa 5.

Tema 5.2

Să se modifice numele clasei CERC în FIGURA în idea ca în această clasă să rămână mai târziu doar

elemente comune diferitelor figuri pe care la va gestiona programul.

Tema 5.3

Să se definească o noua clasă CERC (derivata din clasa FIGURA) în care vom muta elementele

specifice cercului. Nu va avea date specifice suplimentare (doar cele moştenite din FIGURA) dar va

avea metode proprii şi constructori / destructori proprii (identici ca prototip cu cei ai clasei FIGURA).

Obiectele definite în program vor fi de tipul CERC iar tabloul pc[] va rămâne însă de tipul FIGURA.

Indicaţii 5.3

 Metodele Muta şi Creste rămân în clasa FIGURA (fiind generale, vor fi la fel pentru orice

figură posibilă).

 Metodele Afiseaza şi Sterge vor fi vide în clasa FIGURA şi vor fi rescrise pentru clasa CERC

(aşa cum erau ele iniţial scrise în clasa figura) fiind o implementare specifică unui cerc de

fapt.

 La rulare nu se va vedea nimic pe ecran. Explicaţi (undeva avem de-a face cu o legare

statică).

 Constructorii clasei CERC doar pasează parametrii prin apel explicit spre constructorii clasei

FIGURA fără a face nimic suplimentar.

Tema 5.4

Să se definească metodele Afiseaza şi Sterge virtuale în clasa FIGURA.

Consideraţii teoretice 5.4

Să ne reamintim cum se calculează dimensiunea unei clase:

 Dimensiune clasa = Σ dimensiune variabile membru.

Considerăm implementarea metodei Muta din cadrul clasei FIGURA:

void FIGURA::Muta(int dx,int dy)

//******************************

{

 Sterge(); //stergere

 POZITIE::Muta(dx,dy); //mutare

 Afiseaza(); //afisare in noua pozitie

}

În cadrul acestei metode se apelează metoda Sterge din cadrul clasei FIGURA (legare statică),

urmează apelul metodei Muta din cadrul clasei POZITIE (apel explicit al unei metode din clasa de

bază, pentru a nu produce recursivitate) urmate de apelul metodei Afisează din cadrul clasei

Programare Orientare pe Obiecte

 - 2 -

FIGURA. În cazul tuturor celor trei apeluri compilatorul şi editorul de legături fac corespondenţa

între numele metodei şi adresa acesteia din segmentul de cod – legare statică. Odată fixată această

legătură (în momentul compilării – link-editării) aceasta este definitivă în tot timpul rulării

programului. La nivel instrucţiune de asamblare această legare corespunde apelului direct al unei

proceduri (de exemplu o instrucţiune CALL direct). Acesta reprezintă modul clasic de legare folosit

de toate limbajele structurate şi de limbajele obiectuale pentru metodele ne-virtuale (metodele

definite în program până la acest moment).

În acest moment faptul că metoda Muta apelează metoda Sterge şi Afiseaza din clasa FIGURA

(care oricum nu fac nimic) nu ne mulţumeşte. Dorim să apelăm metodele Sterge şi Afiseaza din

clasa CERC. Pentru aceasta de exemplu ar trebui să mutăm – în contextul actual - şi metoda Muta în

clasa CERC ceea ce nu ne convine. Am dori ca metoda Muta să reuşească să apeleze metode din alte

clase care vor fi dezvoltate ulterior. Astfel am dori ca clasa FIGURA (care conţine metoda Muta) să

devină „polimorfă” în funcţie de metodele din alte clase pe care va trebui să le apeleze.

Polimorfismul este al treilea principiu al programării orientate pe obiecte şi reprezintă proprietatea

unei aplicaţii de a se comporta diferit în funcţie de condiţiile din momentul rulării. O definire a

polimorfismului ar putea fi: „transmiterea de mesaje (în cazul nostru apelul de metode) către obiecte

necunoscute (în cazul nostru clase care vor fi ulterior definite) dar care recunosc mesajul (în cazul

nostru clasele respective au implementate metodele respective).

Pentru a implementa mecanismul de polimorfism limbajul pune la dispoziţie o posibilitate de a

înlocui legarea statică (stabilirea adresei metodei în momentul link-editării) prezentată mai sus, cu o

legare dinamică în care adresa metodei care se apelează se stabileşte în momentul în care se

apelează acea metodă. Pentru aceasta limbajul pune la dispoziţie aşa numitele metode virtuale care

permit legarea dinamică prin adăugarea unui nivel suplimentar de indirectare. O metodă virtuală se

defineşte prin prefixarea definirii metodei cu cuvântul cheie „virtual” astfel:

specific_clasa nume_clasa_derivata [:modificator_acces nume_clasa_baza]

 {

 virtual tip_intors nume_metoda([lista_parametri]);

 };

Consecinţa definirii unei metode virtuale este că dacă într-o clasă derivată oferim un înlocuitor

pentru această metodă compilatorul o va folosi pe aceasta într-un apel dintr-o metodă din clasa de

baza.

În momentul în care într-o clasă se defineşte cel puţin o metodă virtuală dimensiunea clasei creşte

cu dimensiunea unui pointer astfel:

Dimensiune clasa = Σ dimensiune variabile membru + dimensiune pointer

În acel pointer compilatorul va memora adresa unei tabele care conţine adresele tuturor metodelor

definite virtual în clasa respectiva (chiar şi cele moştenite). Această tabelă poartă numele de tabelă

VMT (Virtual Method Table). Fiecare clasă (nu obiect al clasei respective) va avea o tabelă VMT

proprie în care se trec prima dată metodele declarate virtual în clasa de bază în aceeaşi ordine pe

urmă sunt trecute metodele noi definite virtual în clasa derivată. Trebuie să atragem atenţia că

mecanismul de polimorfism nu poate exista fără moştenire.

În momentul în care se defineşte o metodă virtuală compilatorul o scrie în VMT scriind acolo

adresa unde se găseşte în memorie acea metodă. În timpul rulării programului când se apelează o

metodă virtuală adresa acelei metode se preia din tabela VMT prin adăugarea unui nivel

Programare Orientare pe Obiecte

 - 3 -

suplimentar de indirectare, astfel se preia adresa tabelei VMT din obiect (aceasta este memorată în

obiect) şi pe urmă de la acea adresă se preia adresa unde se găseşte în memorie metoda care se

doreşte apelată.

Să considerăm următorul exemplu:

#include <stdio.h>

class VIETUITOARE

{

 public:

 virtual char* nume() {return NULL;};

 virtual char* hranire() {return NULL;};

 void definitie() {printf("\n%s se hraneste cu %s",nume(),hranire());}

};

class VRABIA : public VIETUITOARE

{

 public:

 char* hranire() {return „insecte”;};

 char* nume() {return „VRABIA”;};

};

class CAL : public VIETUITOARE

{

 public:

 char* hranire() {return „iarba”;};

 char* nume() {return „CALUL”;};

};

void main()

{

 VIETUITOARE *vietuitoare1, *vietuitoare2;

 vietuitoare1 = new VRABIA();

 vietuitoare2 = new CAL();

 vietuitoare1->definitie();

 vietuitoare2->definitie();

}

În acest exemplu funcţiile hranire şi nume trebuiesc definită în clasa VIETUITOARE deoarece avem

nevoie de ele pentru a defini o vieţuitoare, chiar dacă nu ştim cum se hrăneşte o vieţuitoare şi nici la

ce vieţuitoare ne referim. Prin definirea acestora virtuale avem posibilitatea ca să le redefinim în

dezvoltările ulterioare urmând ca în momentul în care e nevoie să se decidă care variantă a acestor

metode să se apeleze. Programul va afişa:

VRABIA se hraneste cu insecte

CALUL se hraneste cu iarba

Indicaţii 5.4

 Aplicaţi ideile din exemplul anterior pentru FIGURA şi CERC.

 Este esențială existența caracterului virtual al celor 2 metode în clasa FIGURA. Atribuirea

caracterului virtual doar în clasa CERC nu este satisfăcătoare. Verificaţi acest lucru.

Tema 5.5

Să modifice unul din obiectele de tip CERC din program astfel încât să fie de tip FIGURA. Observaţi

ce se întâmplă la rulare.

Indicaţii 5.5

 Atenţie la numărul de cercuri de pe ecran

Programare Orientare pe Obiecte

 - 4 -

Tema 5.6

Să se modifice funcţiile Afiseaza şi Sterge din clasa FIGURA astfel încât să devină pure.

Consideraţii teoretice 5.6

Se pune uneori problema de a defini clase care au un caracter general, fără a ne referi la o

particularitate anume (de exemplu clasa VIETUITOARE). De aceea multe funcţii din acea clasă nu

ştim cum să le implementăm, acestea definindu-se doar pentru a putea fi apelate de alte metode din

clasa respectivă, dar evitându-se apelul lor în timpul rulării. În exemplul de mai sus, se evită apelul

metodelor hranire şi nume din clasa VIETUITOARE deoarece acestea ar genera o eroare în

momentul execuţiei - s-ar afişa mesajul (null) se hraneste cu (null) ceea ce nu ar semnifica

nimic.

Pentru a putea obliga compilatorul să ne atenţioneze ori de câte ori instanţiem un obiect de tipul

unei astfel de clase putem specifica în acele clase funcţiile care nu ştim cum să le implementăm ca

având corpul = 0, acestea devenind funcţii pure.

O metodă virtuală pură se declară astfel:

specific_clasa nume_clasa_derivata [:modificator_acces nume_clasa_baza]

 {

 virtual tip_intors nume_metoda([lista_parametri])=0;

 };

O metodă pura nu se implementează pentru acea clasă. Rolul ei este doar acela de a fi înlocuită într-

o clasă derivată. Alte metode ale clasei însă o pot folosi ca şi cum ar exista deja implementată.

În momentul în care într-o clasă se defineşte cel puţin o funcţie pură clasa respectivă devine clasă

abstractă iar compilatorul nu va mai permite instanţierea unei clase abstracte.

Rolul unei clase abstracte este de a fi moştenita într-o clasa derivata care să înlocuiască toate

metodele pure.

Indicaţii 5.6

 Atenţie la ce se întâmplă când instanţiem clase abstracte.

 În final renunţaţi la instanţierea de obiecte de clasa FIGURA. Atenţie, pointerii nu sunt

obiecte.

Tema 5.7

Să se definească o clasa PATRAT asemănător cu clasa CERC existentă, fără a introduce membrii

suplimentari. O parte din obiectele gestionate de program se vor defini ca şi pătrate. Latura

pătratului va fi egală cu dublul membrului r din clasa FIGURA iar membrii x şi y vor reprezenta

coordonatele centrului pătratului.

Consideraţii teoretice 5.7

Pentru desenarea unui pătrat avem la dispoziție, în biblioteca noastră grafică, următoarea funcție:

void rectangle(int x, int y, int r, int c)

Programare Orientare pe Obiecte

 - 5 -

Această funcție desenează un dreptunghi în poziția și cu culoarea aleasă. Parametrii x și y specifică

poziția centrului iar r raza cercului înscris (jumătatea laturii).

Indicaţii 5.7

 Se poate implementa clasa PATRAT prin copierea clasei CERC (şi a implementărilor aferente)

modificându-se numelui clasei şi conţinutul metodelor Afiseaza şi Sterge.

Tema 5.8

Să se execute pas cu pas partea de program responsabilă cu redesenarea tuturor figurilor.

Consideraţii teoretice 5.8

Una dintre cele mai importante aplicaţii ale polimorfismului o reprezintă tratarea uniformă a

masivelor eterogene în sensul că obiecte de tipuri diferite sunt tratate la fel. Aceasta este posibil

deoarece compilatorul permite ca într-un pointer de tipul unei clase bază să se poată reţine adresa

unui pointer o clasă derivată din clasa de bază. În acest context polimorfismul permite o tratare

uniformă a unor asemenea masive prin legarea dinamică pe care o presupune.

De exemplu pentru clasele prezentate mai sus programul principal ar putea fi de forma:

void main()

{

 VIETUITOARE *vietuitoare[2];

 vietuitoare[0] = new VRABIA();

 vietuitoare[1] = new CAL();

 for(int i = ; i < 2; i++)

 vietuitoare[0]->definitie();

}

În prezenţa polimorfismului se apelează metoda definitie corespunzătoare instanţei efective

(VRABIE sau CAL). În acest fel s-a reuşit o tratare uniformă a masivului (din punct de vedere al sursei

programului). La baza soluţiei stă legarea dinamică a metodelor virtuale (deci polimorfismul).

Tratarea uniformă se referă la apelul unor metode existente în clasa de bază (fie ele şi pure)

eventual înlocuite în clasele derivate.

Indicaţii 5.8

 Observaţi apelul metodei Afiseaza corespunzător tipului obiectului (care nu apare explicit

la apel).

Tema 5.9

Să se modifice aplicaţia astfel încât, la apăsarea tastei INSERT, obiectul inserat să fie în mod

consecutiv CERC sau PATRAT.

Consideraţii teoretice 5.9

Tipul obiectului se stabileşte în momentul în care acesta se instanţiază. Chiar dacă tipul pointerului

este al clasei de bază în momentul în care se instanţiază obiectul acesta poate fi de orice tip al

claselor derivate.

Indicaţii 5.9

 Pentru decizia CERC / PATRAT se poate tine cont de variabila NrFiguri.

Programare Orientare pe Obiecte

 - 6 -

Tema 5.10

Să se definească o clasă care reprezintă o figura la alegere (maşină, faţă, casă, etc) şi să se

folosească câteva instanţe de acel tip.

Indicații 5.10

 Se va proceda asemănător cu introducerea clasei PATRAT în tema 5.7.

Programare Orientare pe Obiecte

 - 7 -

Anexa 5

Ex5_VS.h

#include <windows.h>

// codurile pentru diferite taste
#define ESC 27
#define TAB 9
#define LEFT 75 // cu 0xE0 in fata
#define RIGHT 77 // cu 0xE0 in fata
#define UP 72 // cu 0xE0 in fata
#define DOWN 80 // cu 0xE0 in fata
#define F1 59 // cu 0 in fata
#define F2 60 // cu 0 in fata
#define F3 61 // cu 0 in fata
#define F4 62 // cu 0 in fata

#define MAX_CERCURI 20

void AfiseazaCercuri();

Ex5_VS.cpp

#include <conio.h>
#include "Ex5_VS.h"
#include "Grafica.h"
#include "Cerc.h"

CERC* pc[MAX_CERCURI];
CERC cg1, cg2(100, 100, 25, BLUE, "blue");
int NrCercuri;

int main()
{
int CercCurent = 0, gata = 0, k;

CERC cl1(500, 300, 75, RED, "red"), cl2(200, 100, 30);

 InitializeGraphicMode();

 pc[0] = &cg1;
 pc[1] = &cg2;
 pc[2] = &cl1;
 pc[3] = &cl2;
 pc[4] = new CERC(400, 200, 100, YELLOW, "yellow");
 pc[5] = new CERC();
 NrCercuri = 6;

 AfiseazaCercuri();

 while (!gata)
 switch (_getch())
 {
 case ESC:
 gata = 1;
 break;
 case TAB:
 CercCurent++;

Programare Orientare pe Obiecte

 - 8 -

 CercCurent %= NrCercuri;
 break;
 case 0xE0: // pentru sageti se genereaza intai 0xE0
 switch (_getch()) // apoi un cod specific
 {
 case LEFT: pc[CercCurent]->Muta(-10, 0); break;
 case RIGHT: pc[CercCurent]->Muta(10, 0); break;
 case UP: pc[CercCurent]->Muta(0,-10); break;
 case DOWN: pc[CercCurent]->Muta(0, 10); break;
 }
 AfiseazaCercuri();
 break;
 case 0x00: // pentru F1, F2 se genereaza intai 0x00
 switch (_getch()) // apoi un cod specific
 {
 case F1: pc[CercCurent]->Creste(+10); break;
 case F2: pc[CercCurent]->Creste(-10); break;
 case F3:
 if (NrCercuri == MAX_CERCURI) break;// prea multe cercuri
 pc[NrCercuri] = new CERC; // cream un cerc
 CercCurent = NrCercuri; // cel nou devine curent
 NrCercuri++;
 break;
 case F4:
 if (NrCercuri == 6) break; // primele 6 nu se distrug
 NrCercuri--;
 delete pc[NrCercuri]; // stergem cercul
 if (CercCurent == NrCercuri) // daca cel curent era cel sters
 CercCurent = 0; // primul devine curent
 break;
 }
 AfiseazaCercuri();
 break;
 }

 CloseGraphicMode(); //inchiderea modului grafic
 return 0;
}

void AfiseazaCercuri()
{
 for (int k = 0; k < NrCercuri; k++) // afisare pe ecran
 pc[k]->Afiseaza(); // a tuturor cercurilor
}

Clase.h

class POZITIE
{
public:
 POZITIE();
 POZITIE(int x0, int y0);
 void Muta(int dx, int dy);
protected:
 int x;
 int y;
};

class CERC: public POZITIE
{
 int r;
 int c;

Programare Orientare pe Obiecte

 - 9 -

 char* Nume;
 void Sterge();
public:
 CERC(int x0, int y0, int r0=20, int c0=WHITE, const char* n0 = "IMPLICIT");
 CERC();
 ~CERC();
 void Afiseaza();
 void Muta(int dx, int dr);
 void Creste(int dr);
};

Clase.cpp

#include "Grafica.h"
#include "Clase.h"

POZITIE::POZITIE()
//****************
// constructor implicit
{
 x = 320;
 y = 240;
}

POZITIE::POZITIE(int x0, int y0)
//******************************
// constructor cu parametrii
{
 x = x0;
 y = y0;
}

void POZITIE::Muta(int dx, int dy)
//********************************
{
 x += dx;
 y += dy;
}

CERC::CERC()
//**********
// constructor implicit
{
 r = 50;
 c = WHITE;
 Nume = new char[5];
 strcpy(Nume, "CERC");
}

CERC::CERC(int x0, int y0, int r0, int c0, const char* n0):POZITIE(x0,y0)
//**
// constructor cu parametrii
{
 r = r0;
 c = c0;
 Nume = new char[strlen(n0)+1];
 strcpy (Nume, n0);
}

CERC::~CERC()
{
 Sterge();
 delete[] Nume;

Programare Orientare pe Obiecte

 - 10 -

}

void CERC::Afiseaza()
//*******************
// metoda de desenare a cercului
{
 circle(x, y, r, c);
 writeText(Nume, x, y, c);
}

void CERC::Sterge()
//*****************
// metoda de stergere a cercului
{
 circle(x, y, r, BLACK);
 writeText(Nume, x, y, BLACK);
}

void CERC::Muta(int dx, int dy)
//*****************************
// metoda care modifica pozitia unui cerc
{
 Sterge(); // stergere cerc

 POZITIE::Muta(dx, dy);

 Afiseaza(); // desenare in noua pozitie
}

void CERC::Creste(int dr)
//***********************
// metoda care modifica raza unui cerc
{
 Sterge(); // stergere cerc

 r += dr; // modificare raza

 Afiseaza(); // desenare in noua pozitie
}

Grafica.h

#include <windows.h>

// valorile pentru culori "clasice"
#define BLACK (int)RGB(0, 0, 0)
#define BLUE (int)RGB(0, 0,255)
#define GREEN (int)RGB(0,255, 0)
#define CYAN (int)RGB(0,255,255)
#define RED (int)RGB(255, 0, 0)
#define MAGENTA (int)RGB(255, 0,255)
#define BROWN (int)RGB(128, 0, 0)
#define LIGHTGRAY (int)RGB(255,255,204)
#define DARKGRAY (int)RGB(0,128, 0)
#define LIGHTBLUE (int)RGB(0, 0,128)
#define LIGHTGREEN (int)RGB(153,204, 0)
#define LIGHTCYAN (int)RGB(204,255,255)
#define LIGHTRED (int)RGB(255,128,128)
#define LIGHTMAGENTA (int)RGB(128, 0,128)
#define YELLOW (int)RGB(255,255, 0)
#define WHITE (int)RGB(255,255,255)

Programare Orientare pe Obiecte

 - 11 -

// prototipuri de functii considerate "de biblioteca"
void InitializeGraphicMode();
void CloseGraphicMode();
void circle(int x, int y, int r, int color);
void rectangle(int x, int y, int r, int color);
void writeText(char* text, int x, int y, int color);

Grafica.cpp

#include <windows.h>
#include "Grafica.h"

//**
// cod considerat "de biblioteca", luat ca atare
//**

// pentru utilizare modul grafic
HWND console_handle;
HDC device_context;

void InitializeGraphicMode()
//***************************
// functie care face trecerea din modul text in modul grafic
{
 console_handle = GetConsoleWindow();
 device_context = GetDC(console_handle);
 Sleep(100);
}

void CloseGraphicMode()
//*********************
// functie care inchide modul grafic
{
 ReleaseDC(console_handle, device_context);
}

void circle(int x, int y, int r, int c)
//*************************************
// functie care deseneaza un cerc (x,y,raza,culoare)
{
 HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
 SelectObject(device_context, pen);
 SelectObject(device_context, GetStockObject(NULL_BRUSH));
 Ellipse(device_context, x - r, y - r, x + r, y + r);
 DeleteObject(pen);
}

void rectangle(int x, int y, int r, int c)
//**
// functie care deseneaza un patrat
{
 HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
 SelectObject(device_context, pen);
 SelectObject(device_context, GetStockObject(NULL_BRUSH));
 Rectangle(device_context, x - r, y - r, x + r, y + r);
 DeleteObject(pen);
}

void writeText(char* text, int x, int y, int c)
//***
// functie care afiseaza un text (text,x,y,culoare)
{

Programare Orientare pe Obiecte

 - 12 -

 SetBkColor(device_context, BLACK);
 SetTextColor(device_context, c);
 SetTextAlign(device_context, TA_CENTER);
 TextOut(device_context, x, y, text, strlen(text));
}

