Programare Orientare pe Obiecte

Laborator 5 — Polimorfismul
Tema5.1

AnahzaﬁlnognnnuldhlﬁgkﬂGk:ExS_vs.h, Ex5 VS.cpp, Clase.h, Clase.cpp, Grafica.h,
Grafica.cpp dinanexa b.

Temab.2

Sa se modifice numele clasei cERC TN FIGURA in idea ca in aceasta clasd sa ramana mai tarziu doar
elemente comune diferitelor figuri pe care la va gestiona programul.

Tema 5.3

Sa se defineasca o noua clasa cerc (derivata din clasa r1Gura) in care vom muta elementele
specifice cercului. Nu va avea date specifice suplimentare (doar cele mostenite din FIGURA) dar va
avea metode proprii si constructori / destructori proprii (identici ca prototip cu cei ai clasei FIGURA).
Obiectele definite in program vor fi de tipul cerc iar tabloul pc[] va ramane insa de tipul FIGURA.

Indicatii 5.3
= Metodele muta si creste raman in clasa r1cura (fiind generale, vor fi la fel pentru orice
figura posibild).
= Metodele Afiseaza si sterge VOr fi vide in clasa FIGURA si vor fi rescrise pentru clasa CERC

(asa cum erau ele initial scrise in clasa figura) fiind o implementare specifica unui cerc de
fapt.

= La rulare nu se va vedea nimic pe ecran. Explicati (undeva avem de-a face cu o legare
staticd).

= Constructorii clasei cerc doar paseaza parametrii prin apel explicit spre constructorii clasei
FIGURA fara a face nimic suplimentar.

Tema 5.4
Sa se defineasca metodele Afiseaza §i Sterge Virtuale in clasa FIGURA.
Consideratii teoretice 5.4

Sa ne reamintim cum se calculeaza dimensiunea unei clase:

Dimensiune clasa = ¥ dimensiune variabile membru.

Consideram implementarea metodei Muta din cadrul clasei FIGURA:

void FIGURA::Muta (int dx,int dy)
//******************************

{

Sterge () ; //stergere
POZITIE: :Muta (dx,dy); //mutare
Afiseazal(); //afisare in noua pozitie

}

In cadrul acestei metode se apeleazid metoda sterge din cadrul clasei Frcura (legare statica),
urmeaza apelul metodei muta din cadrul clasei roz1TIE (apel explicit al unei metode din clasa de
bazd, pentru a nu produce recursivitate) urmate de apelul metodei Afiseaza din cadrul clasei

-1-

Programare Orientare pe Obiecte
FIGURA. In cazul tuturor celor trei apeluri compilatorul si editorul de legituri fac corespondenta
intre numele metodei si adresa acesteia din segmentul de cod — legare staticd. Odata fixata aceasta
legaturda (in momentul compilarii — link-editarii) aceasta este definitiva in tot timpul rularii
programului. La nivel instructiune de asamblare aceasta legare corespunde apelului direct al unei
proceduri (de exemplu o instructiune carL direct). Acesta reprezintd modul clasic de legare folosit
de toate limbajele structurate si de limbajele obiectuale pentru metodele ne-virtuale (metodele
definite in program pana la acest moment).

In acest moment faptul ci metoda Muta apeleazd metoda Sterge si Afiseaza din clasa FIGURA
(care oricum nu fac nimic) nu ne multumeste. Dorim sd apelam metodele sterge §i Afiseaza din
clasa cerc. Pentru aceasta de exemplu ar trebui sa mutam — in contextul actual - si metoda Muta Tn
clasa cerc ceea ce nu ne convine. Am dori ca metoda Muta sa reuseasca sa apeleze metode din alte
clase care vor fi dezvoltate ulterior. Astfel am dori ca clasa F1Gura (care contine metoda Muta) sa
devina ,,polimorfa” in functie de metodele din alte clase pe care va trebui sa le apeleze.

Polimorfismul este al treilea principiu al programarii orientate pe obiecte si reprezintd proprietatea
unei aplicatii de a se comporta diferit in functie de conditiile din momentul ruldrii. O definire a
polimorfismului ar putea fi: ,,transmiterea de mesaje (in cazul nostru apelul de metode) catre obiecte
necunoscute (In cazul nostru clase care vor fi ulterior definite) dar care recunosc mesajul (in cazul
nostru clasele respective au implementate metodele respective).

Pentru a implementa mecanismul de polimorfism limbajul pune la dispozitie o posibilitate de a
inlocui legarea staticd (stabilirea adresei metodei in momentul link-editarii) prezentata mai sus, cu o
legare dinamica in care adresa metodei care se apeleazd se stabileste in momentul in care se
apeleaza acea metoda. Pentru aceasta limbajul pune la dispozitie aga numitele metode virtuale care
permit legarea dinamicd prin addugarea unui nivel suplimentar de indirectare. O metoda virtuald se
defineste prin prefixarea definirii metodei cu cuvantul cheie ,,virtual” astfel:

specific _clasa nume clasa derivata [:modificator acces nume clasa baza]

Consecinta definirii unei metode virtuale este ca daca intr-o clasd derivatd oferim un inlocuitor
pentru aceasta metoda compilatorul o va folosi pe aceasta intr-un apel dintr-o metoda din clasa de
baza.

Tn momentul n care Intr-o clasi se defineste cel putin o metoda virtuald dimensiunea clasei creste
cu dimensiunea unui pointer astfel:

Dimensiune clasa = ¥ dimensiune variabile membru + dimensiune pointer

Tn acel pointer compilatorul va memora adresa unei tabele care contine adresele tuturor metodelor
definite virtual in clasa respectiva (chiar si cele mostenite). Aceasta tabeld poartd numele de tabela
VMT (Virtual Method Table). Fiecare clasa (nu obiect al clasei respective) va avea o tabela VMT
proprie in care se trec prima datd metodele declarate virtual in clasa de baza in aceeasi ordine pe
urma sunt trecute metodele noi definite virtual in clasa derivatd. Trebuie sa atragem atentia ca
mecanismul de polimorfism nu poate exista fara mostenire.

In momentul in care se defineste o metoda virtuala compilatorul o scrie in VMT scriind acolo
adresa unde se gdseste in memorie acea metoda. In timpul rularii programului cand se apeleazd o
metoda virtuala adresa acelei metode se preia din tabela VMT prin adaugarea unui nivel

-2.-

Programare Orientare pe Obiecte

suplimentar de indirectare, astfel se preia adresa tabelei VMT din obiect (aceasta este memorata in
obiect) si pe urma de la acea adresa se preia adresa unde se gaseste in memorie metoda care se
doreste apelata.

Sa consideram urmatorul exemplu:

#include <stdio.h>
class VIETUITOARE
{

public:
virtual char* nume () {return NULL;};
virtual char* hranire() {return NULL; };

void definitie() {printf("\n%s se hraneste cu %s",nume(),hranire());}
}i
class VRABIA : public VIETUITOARE
{
public:
char* hranire () {return ,insecte”;};
char* nume () {return , VRABIA”;};
}i
class CAL : public VIETUITOARE
{
public:
char* hranire () {return ,iarba”;};
char* nume () {return , CALUL”;};

}i

void main ()
{
VIETUITOARE *vietuitoarel, *vietuitoare?2;
vietuitoarel = new VRABIA();
vietuitoare2 = new CAL();
vietuitoarel->definitie();
vietuitoare2->definitie ()

}

’

In acest exemplu functiile hranire si nume trebuiesc definitd in clasa vIETUITOARE deoarece avem
nevoie de ele pentru a defini o vietuitoare, chiar daca nu stim cum se hraneste o vietuitoare si nici la
ce vietuitoare ne referim. Prin definirea acestora virtuale avem posibilitatea ca sa le redefinim in
dezvoltarile ulterioare urmand ca in momentul in care e nevoie sa se decida care variantd a acestor
metode sa se apeleze. Programul va afisa:

VRABIA se hraneste cu insecte
CALUL se hraneste cu ilarba

Indicatii 5.4
= Aplicati ideile din exemplul anterior pentru FIGURA §i CERC.

= Este esentiala existenta caracterului virtual al celor 2 metode in clasa rrcura. Atribuirea
caracterului virtual doar n clasa cErc nu este satisfacatoare. Verificati acest lucru.

Tema5.5

Sa modifice unul din obiectele de tip cErc din program astfel incét sa fie de tip rrcura. Observati
ce se intampla la rulare.

Indicatii 5.5
= Atentie la numarul de cercuri de pe ecran

-3-

Programare Orientare pe Obiecte

Tema 5.6
Sa se modifice functiile Afiseaza si Sterge din clasa FIGURA astfel incat sa devina pure.
Consideratii teoretice 5.6

Se pune uneori problema de a defini clase care au un caracter general, fard a ne referi la o
particularitate anume (de exemplu clasa vieTurToARE). De aceea multe functii din acea clasa nu
stim cum sa le implementam, acestea definindu-se doar pentru a putea fi apelate de alte metode din
clasa respectiva, dar evitandu-se apelul lor in timpul rulirii. In exemplul de mai sus, se eviti apelul
metodelor hranire si nume din clasa viETUITOARE deoarece acestea ar genera o eroare in
momentul executiei - S-ar afisa mesajul (null) se hraneste cu (null) Ceea ce nu ar semnifica
nimic.

Pentru a putea obliga compilatorul sa ne atentioneze ori de cate ori instantiem un obiect de tipul
unei astfel de clase putem specifica in acele clase functiile care nu stim cum sa le implementam ca
avand corpul = 0, acestea devenind functii pure.

O metoda virtuala pura se declara astfel:
specific _clasa nume clasa derivata [:modificator acces nume clasa baza]

O metoda pura nu se implementeaza pentru acea clasa. Rolul ei este doar acela de a fi inlocuita intr-
o clasd derivata. Alte metode ale clasei Insa o pot folosi ca si cum ar exista deja implementata.

Tn momentul n care intr-o clasa se defineste cel putin o functie pura clasa respectiva devine clasa
abstractd iar compilatorul nu va mai permite instantierea unei clase abstracte.

Rolul unei clase abstracte este de a fi mostenita intr-o clasa derivata care sa inlocuiasca toate
metodele pure.

Indicatii 5.6
= Atentie la ce se intampla cand instantiem clase abstracte.

= In final renuntati la instantierea de obiecte de clasa FIGURA. Atentie, pointerii nu sunt
obiecte.

Tema5.7

Sa se defineasca o clasa PATRAT asemanator cu clasa CERC existentd, fara a introduce membrii
suplimentari. O parte din obiectele gestionate de program se vor defini ca si patrate. Latura
patratului va fi egala cu dublul membrului r din clasa FIGura iar membrii x si y vor reprezenta
coordonatele centrului patratului.

Consideratii teoretice 5.7

Pentru desenarea unui patrat avem la dispozitie, Tn biblioteca noastra grafica, urmatoarea functie:

void rectangle (int x, int y, int r, int c¢)

Programare Orientare pe Obiecte
Aceasta functie deseneaza un dreptunghi in pozitia si cu culoarea aleasa. Parametrii x si y specifica
pozitia centrului iar r raza cercului inscris (jumatatea laturii).

Indicatii 5.7
= Se poate implementa clasa pATRAT prin copierea clasei cErc (si a implementarilor aferente)
modificandu-se numelui clasei si continutul metodelor Afiseaza $i Sterge.

Tema 5.8
Sa se execute pas cu pas partea de program responsabild cu redesenarea tuturor figurilor.
Consideratii teoretice 5.8

Una dintre cele mai importante aplicatii ale polimorfismului o reprezintd tratarea uniformd a
masivelor eterogene in sensul cd obiecte de tipuri diferite sunt tratate la fel. Aceasta este posibil
deoarece compilatorul permite ca intr-un pointer de tipul unei clase baza sa se poata retine adresa
unui pointer o clasi derivatd din clasa de bazi. In acest context polimorfismul permite o tratare
uniforma a unor asemenea masive prin legarea dinamica pe care o presupune.

De exemplu pentru clasele prezentate mai sus programul principal ar putea fi de forma:

void main ()

{
VIETUITOARE *vietuitoare([2];

vietuitoare[0] = new VRABIA();
vietuitoare[l] = new CAL();
for(int 1 = ; 1 < 2; 1i++)

vietuitoare[0]->definitie();

}

In prezenta polimorfismului se apeleazi metoda definitie corespunzitoare instantei efective
(vRABIE sau car). In acest fel s-a reusit o tratare uniforma a masivului (din punct de vedere al sursei
programului). La baza solutiei std legarea dinamica a metodelor virtuale (deci polimorfismul).

Tratarea uniformd se refera la apelul unor metode existente in clasa de bazd (fie ele si pure)
eventual inlocuite n clasele derivate.

Indicatii 5.8
= Observati apelul metodei Afiseaza corespunzator tipului obiectului (care nu apare explicit
la apel).

Tema 5.9

Sa se modifice aplicatia astfel incat, la apasarea tastei INsSERrT, obiectul inserat sa fie Tn mod
CONSecutiv CERC Sau PATRAT.

Consideratii teoretice 5.9

Tipul obiectului se stabileste in momentul in care acesta se instantiaza. Chiar daca tipul pointerului
este al clasei de bazd In momentul in care se instantiaza obiectul acesta poate fi de orice tip al
claselor derivate.

Indicatii 5.9
= Pentru decizia cerc / PATRAT Se poate tine cont de variabila nrriguri.

-5-

Programare Orientare pe Obiecte

Tema 5.10

Sa se defineasca o clasa care reprezintd o figura la alegere (masina, fata, casa, etc) si sa se
foloseasca cateva instante de acel tip.

Indicatii 5.10

= Se va proceda asemanator cu introducerea clasei PATRAT Tn tema 5.7.

Programare Orientare pe Obiecte

#include <windows.h>

// codurile pentru diferite taste

#tdefine ESC 27
#tdefine TAB 9

#define LEFT 175 // cu OxEO0
#define RIGHT 77 // cu OxEO0
#define UP 72 // cu OxEO0
#define DOWN 80 // cu OxEO0

#define F1 59 // cu 0
#define F2 60 // cuo©
#define F3 61 // cu 0
#define F4 62 // cu 0

#define MAX_CERCURI 20

void AfiseazaCercuri();

#include <conio.h>
#include "Ex5_VS.h"
#include "Grafica.h"
#include "Cerc.h"

CERC* pc[MAX_CERCURI];

in
in
in
in

Anexab

Ex5 VS.h

in fata
in fata
in fata
in fata

fata
fata
fata
fata

Ex5 VS.cpp

CERC cgl, cg2(100, 100, 25, BLUE, "blue");

int NrCercuri;

int main()
{

int CercCurent = 0, gata =

CERC c11(500, 300, 75, RED, "red"), cl12(200, 100, 30);

0,

InitializeGraphicMode();

pcl0] = &cgl;
pcl[1l] = &cg2;
pcl2] = &cl1;
pc[3] = &cl12;
pcld] =

pc[5] = new CERCQ);
NrCercuri = 6;

AfiseazaCercuri();

while (!gata)
switch (_getch())
{

case ESC:
gata = 1;
break;

case TAB:
CercCurent++;

K;

new CERC(4OO, 200, 100, YELLOW, "yellow");

Programare Orientare pe Obiecte

CercCurent %= NrCercuri;

break;
case OxEO: // pentru sageti se genereaza intai OxEOQ
switch (_getch()) // apoi un cod specific
{
case LEFT: pc[CercCurent]->Muta(-10, 0); break;
case RIGHT: pc[CercCurent]->Muta(10, 0); break;
case UP: pc[CercCurent]->Muta(0,-10); break;
case DOWN: pc[CercCurent]->Muta(©, 10); break;
}
AfiseazaCercuri();
break;
case 0x00: // pentru F1, F2 se genereaza intai 0x00

switch (_getch())
{

//

apoi un cod specific

case F1l: pc[CercCurent]->Creste(+10); break;
case F2: pc[CercCurent]->Creste(-10); break;

case F3:
if (NrCercuri
pc[NrCercuri]

CercCurent = NrCercuri;

NrCercuri++;
break;

case FU4:
if (NrCercuri
NrCercuri--;

delete pc[NrCercuri];
if (CercCurent == NrCercuri) // daca cel curent era cel sters
CercCurent = 0;

== MAX_CERCURI) break;// prea multe cercuri

// cream un cerc
// cel nou devine curent

new CERC;

== 6) break; // primele 6 nu se distrug
// stergem cercul

// primul devine curent

//inchiderea modului grafic

for (int k = 0; k < NrCercuri; k++) // afisare pe ecran

break;
}
AfiseazaCercuri();
break;

}
CloseGraphicMode();
return 0;

}
void AfiseazaCercuri()
{
pc[kl->Afiseaza();
}

class POZITIE

{

public:
POZITIEQ);

// a tuturor cercurilor

Clase.h

POZITIE(int x0, int y0);

void Muta(int dx, int dy);
protected:
int x;
int y;
}

class CERC: public POZITIE
{

int r;

int c;

Programare Orientare pe Obiecte

char* Nume;
void Sterge();
public:

CERC(int x@, int y0, int r0=20, int cO=WHITE, const char* n@ = "IMPLICIT");

CERCQ);

~CERCQ);

void Afiseaza();

void Muta(int dx, int dr);
void Creste(int dr);

b

#include "Grafica.h"
#include "Clase.h"

POZITIE::POZITIE(Q)

[[Rxkrkkkkrkkhkhkk
// constructor implicit

{

X
y

320;
240,

}

POZITIE::POZITIE(int x0, int y@)

//******************************
// constructor cu parametrii

{

X
y

x0;
yo;

}

void POZITIE::Muta(int dx, int dy)
//********************************

{

X += dx;

y += dy;
}
CERC: :CERC(Q)
VAT T I
// constructor implicit
{

r = 50;

c = WHITE;

Nume = new char[5];

strcpy(Nume, "CERC");
}

Clase.cpp

CERC: :CERC(int x0, int yO, int r0, int c®, const char* n0):POZITIE(xO,y0)

//**

// constructor cu parametrii
{
r = ro;
c = co;
Nume = new char[strlen(n0)+1];
strcpy (Nume, n0);
}

CERC: : ~CERC()

{
Sterge();
delete[] Nume;

Programare Orientare pe Obiecte

}

void CERC::Afiseaza()
[[xxFxkkkrhkhkhkhrkkkk

// metoda de desenare a cercului

{

circle(x, y, r, c);

writeText(Nume, x, y, c);

}

void CERC::Sterge()

AT T s
// metoda de stergere a cercului

{

circle(x, y, r, BLACK);
writeText(Nume, x, y, BLACK);

}

void CERC::Muta(int dx, int dy)

//*****************************
// metoda care modifica pozitia unui cerc

{

Sterge();

POZITIE: :Muta(dx, dy);

// stergere cerc

Afiseaza(); // desenare in noua pozitie

}

void CERC::Creste(int dr)
YA T T T

// metoda care modifica raza unui cerc

{

Sterge();

r += dr;

// stergere cerc

// modificare raza

Afiseaza(); // desenare in noua pozitie

#include <windows.h>

Grafica.h

// valorile pentru culori "clasice"

#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine

BLACK

BLUE

GREEN

CYAN

RED
MAGENTA
BROWN
LIGHTGRAY
DARKGRAY
LIGHTBLUE
LIGHTGREEN
LIGHTCYAN
LIGHTRED
LIGHTMAGENTA
YELLOW
WHITE

(int)RGB(0, 0, ©0)
(int)RGB(0, 0,255)
(int)RGB(0,255, ©0)
(int)RGB(0,255,255)

(int)RGB(255, 0, 0)
(int)RGB(255, ©0,255)
(int)RGB(128, 0, ©O)
(int)RGB(255,255,204)
(int)RGB(0,128, 0)
(int)RGB(0, 0,128)
(int)RGB(153,204, 0)
(int)RGB(204,255,255)
(int)RGB(255,128,128)
(int)RGB(128, 0,128)
(int)RGB(255,255, 0)
(int)RGB(255,255,255)

-10 -

Programare Orientare pe Obiecte

// prototipuri de functii considerate "de biblioteca"
void InitializeGraphicMode();

void CloseGraphicMode();

void circle(int x, int vy, int r, int color);

void rectangle(int x, int vy, int r, int color);

void writeText(char* text, int x, int vy, int color);

Grafica.cpp

#include <windows.h>
#include "Grafica.h"

//**

// cod considerat "de biblioteca", luat ca atare
//**

// pentru utilizare modul grafic
HWND console_handle;
HDC device_context;

void InitializeGraphicMode()
//***************************

// functie care face trecerea din modul text in modul grafic

{
console_handle = GetConsoleWindow();
device_context = GetDC(console_handle);
Sleep(100);

}

void CloseGraphicMode()

[[*xFkrkkhkrkhhkhrkhrhrkx
// functie care inchide modul grafic

{
}

ReleaseDC(console_handle, device_context);

void circle(int x, int y, int r, int c)
//*************************************
// functie care deseneaza un cerc (x,y,raza,culoare)

{
HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
SelectObject(device_context, pen);
SelectObject(device_context, GetStockObject(NULL_BRUSH));
Ellipse(device_context, x - r, vy - r, x + r, v + r);
DeleteObject(pen);

}

void rectangle(int x, int vy, int r, int c)
//**

// functie care deseneaza un patrat

{
HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
SelectObject(device_context, pen);
SelectObject(device_context, GetStockObject(NULL_BRUSH));
Rectangle(device_context, x - r, v — r, x + 1, y + r);
DeleteObject(pen);

}

void writeText(char* text, int x, int vy, int c)
//***

// functie care afiseaza un text (text,x,y,culoare)

{

-11 -

Programare Orientare pe Obiecte

SetBkColor(device_context, BLACK);
SetTextColor(device_context, c);
SetTextAlign(device_context, TA_CENTER);
TextOut(device_context, x, vy, text, strlen(text));

-12-

