
Programare Orientată pe Obiecte

 - 1 -

Laborator 4 – Moștenirea

Tema 4.1

Analizați programul din fișierele Ex4_VS.h, Ex4_VS.cpp, Cerc.h, Cerc.cpp, Grafica.h,

Grafica.cpp din anexa 4.

Tema 4.2

Să se împartă clasa CERC în două clase astfel încât clasa CERC să devină o clasă care moștenește o

altă clasă de bază. Clasa de bază trebuie făcută astfel încât să reprezinte un concept util.

Considerații teoretice 4.2

Unul din avantajele programării orientate pe obiecte este faptul că se pot reutiliza și completa noi

informații la codul deja existent. Această completare poate fi realizată chiar dacă nu se deține codul

sursă al clasei de bază (de exemplu îmbunătățirea claselor din biblioteci). În contextul moștenirii

clasa care se moștenește se numește clasă de bază iar clasa care moștenește se numește clasă

derivată. Obiectul de bază (cel care se moștenește) este îmbunătățit prin derivare cu membrii noi

păstrându-se membrii și metodele deja avute.

Forma generală de definire a unei clase derivate este:

specific_clasa nume_clasa_derivata [:modificator_acces nume_clasa_baza]

 {

 [[public:] lista_membrii_1]

 [[private:] lista_membrii_2]

 }[lista_obiecte];

unde specific_clasa poate fi struct sau class (cu singura diferență că la struct membrii sunt

implicit publici iar la class membrii sunt impliciți privați). modificator_acces reprezintă modul

de moștenire al membrilor din clasa de bază și poate fi (deocamdată) unul din cuvintele cheie

public sau private. Sintaxa prezentată este o generalizare a cazului de definire a unei clase fără a

ne baza pe moștenire (dacă lipsește clasa de bază).

Din punct de vedere al dimensiunii obiectului rezultat prin moștenire aceasta este egală cu

dimensiunea obiectului moștenit la care se adaugă suma dimensiunii membrilor noi adăugați în

clasa derivată.

Drepturile de acces ale membrilor din clasa derivată:

• În ceea ce privește membrii noi definiți aceștia vor avea drepturile de acces corespunzătoare

modului de definire a lor.

• În ceea ce membrii moșteniți din clasa de bază acestora se vor stabili drepturile de acces în

funcție de drepturile de acces avute în clasa de bază și în funcție de tipul moștenirii folosite

astfel:

Drept acces avut în clasa bază Tip moștenire Drept acces rezultat în clasa derivată
public

public
public

private inaccesibil !!!!

public
private

private

private inaccesibil !!!!

Programare Orientată pe Obiecte

 - 2 -

Un membru definit public în clasa de bază va primi dreptul de acces în clasa derivată în funcție de

modificatorul de acces folosit în cazul moștenirii. La un membru definit private în clasa de bază

nici o metodă nouă din clasa derivată nu va avea acces. Acel membru va exista în clasa derivată

(clasa derivată va aloca spațiu pentru memorarea acelui membru) dar nici o metodă nou definită din

clasa derivată nu va avea acces direct la acel membru decât prin intermediul metodelor moștenite

din clasa de bază. Prin moștenire nu se modifică tipul de acces la membrii pentru clasa de bază ci

doar accesul la aceștia ca și membrii ai clasei derivate.

Deci din clasa de bază se vor moșteni toți membrii, cu (deocamdată) o excepție: constructorii și

destructorii nu se moștenesc (ci se apelează).

În cazul în care în clasa derivată se definește un nou membru cu același nume și aceeași tip/prototip

ca un membru deja existent în clasa de bază, acesta din urmă nu dispare și va putea fi accesat prin

specificarea în față a clasei din care face parte folosind :: (operatorul de rezoluție).

Indicații 4.2

 Se vor împărți membrii clasei CERC în membrii moșteniți din clasa de baza și în membrii

adăugați de clasa derivată.

 În clasa de bază membrii vor avea atributul public iar moștenirea va fi tot publică.

Tema 4.3

Să se adauge în clasa de bază (numită POZITIE) un constructor implicit și un constructor cu doi

parametrii. Aceștia vor inițializa variabilele membru x și y cu ceea ce era în constructorii clasei

CERC. Constructorii clasei derivate nu vor mai inițializa membrii moșteniți x și y.

Considerații teoretice 4.3

În cazul obiectelor construite prin derivare (moștenire) constructorii și destructorii obiectelor de

bază nu se moștenesc (adică nu sunt constructori ai clasei derivate) ci se apelează din clasa de bază.

La instanţierea unui obiect prima dată se apelează constructorul clasei derivate după care se

apelează constructorul clasei de bază urmând ca să se execute prima dată codul constructorului

clasei de bază și pe urmă cel al constructorului clasei derivate. Execuția constructorilor se face de la

bază (interior, sâmbure) spre derivată (exterior, coajă) chiar dacă apelul constructorilor se face

invers.

La distrugerea unui obiect prima dată se apelează și se execută destructorul clasei derivate și pe

urmă se apelează și se execută destructorul clasei de bază.

Indicații 4.3

 Atenție la poziția cercurilor pe ecran. Explicați.

Tema 4.4

Să se apeleze explicit constructorii corespunzători din clasa de bază.

Considerații teoretice 4.4

In contextul moștenirii constructorii clasei de bază nu se moștenesc (ca și constructori ai clasei

derivate) , aceștia urmând să se apeleze de fiecare dată de câte ori un obiect de tipul clasei derivate

este instanțiat. Întotdeauna ordinea de execuție a constructorilor este dinspre clasa de bază spre

Programare Orientată pe Obiecte

 - 3 -

clasa derivată, prima dată executându-se constructorul clasei de bază și pe urmă cel al clasei

derivate.

La rularea aplicației de la Tema 4.3 s-a obținut o imagine în care toate cercurile aveau același

centru. Aceasta s-a datorat faptului că toți constructorii din clasa derivată (CERC) apelează implicit

același constructor din clasa de bază (care stabilește poziția cercurilor pe ecran). În cazul în care nu

se specifică explicit care constructor din clasa de bază să se apeleze, compilatorul va apela implicit

constructorul fără parametrii din clasa de bază (dacă acesta există) sau se va genera o eroare dacă

acesta nu există. Pentru a apela explicit constructorul unei clase de bază se poate folosi următoarea

sintaxă:

cls_deriv::cls_deriv([lista_param_formali]):cls_baza([lista_param_actuali])

 {

 // corp al constructorului clasei derivate

 ...

 }

unde cls_deriv reprezintă numele clasei de derivate (constructorul din clasa derivată) iar

cls_baza reprezintă numele clasei de bază (constructorul din clasa de bază care se dorește apelat).

Specificarea explicită a constructorului din clasa de bază care se dorește apelat se face doar la

definirea (implementarea) constructorului respectiv din clasa derivată.

lista_param_formali reprezintă declararea de parametrii formali iar lista_param_actuali

reprezintă expresiile de apel.

Indicații 4.4

 Apelul explicit al constructorului implicit al clasei de baza poate lipsi fără a schimba

funcționarea programului. Verificați.

Tema 4.5

Să se modifice atributul membrilor din clasa de baza pentru a nu pierde încapsularea (din punct de

vedere al ascunderii datelor).

Considerații teoretice 4.5

Așa cum este descrisă moștenirea până în acest moment apare o dilemă. Dacă vrem să avem

moștenire și acces la membrii moșteniți ar trebui ca în clasa de bază aceștia să fie definiți public

pierzându-se astfel facilitățile oferite de încapsulare. Dacă vrem să păstrăm încapsularea în clasa de

bază avem probleme la moștenire. Deci cu alte cuvinte membrii publici nu asigură încapsulare iar

membrii privați nu asigură acces prin moștenire. Pentru rezolvarea acestei dileme în limbaj a fost

introdus un nou tip de acces numit protected. Un membru definit protected poate fi accesat atât

de membrii clasei în care e definit cât și de membrii claselor care moștenesc clasa respectivă.

Membrii protected nu pot fi accesați din exteriorul clasei sau claselor care moștenesc clasa

respectivă. Deci un membru definit protected este văzut ca un membru public în contextul

moștenirii și ca un membru private pentru exteriorul claselor.

Tabelul cu modificatorii de acces în contextul moștenirii care include și tipul protected atât ca și

tip de acces cât și ca tip de moștenire devine ca în tabelul următor.

Astfel un membru definit protected poate oferi încapsulare și moștenire la oricât de multe nivele

iar în momentul în care se dorește „închiderea” unei clase (nu se mai permit dezvoltări ulterioare) se

Programare Orientată pe Obiecte

 - 4 -

poate folosi la moștenire modificatorul de acces private astfel încât ulterior membrii moșteniți să

devină inaccesibili.

Drept acces avut în clasa de bază Tip moștenire Drept acces rezultat în clasa derivată
public

public

public

private inaccesibil !!!!

protected protected

public

protected

protected

private inaccesibil!!!

protected protected

public

private

private

private inaccesibil !!!!

protected private

Sintaxa de declarare a unei clase derivate devine (cu protected):

specific_clasa nume_clasa_derivata [:modificator_acces nume_clasa_baza]

 {

 [[public:] lista_membrii_1]

 [[protected:] lista_membrii_2]

 [[private:] lista_membrii_3]

 }[lista_obiecte];

Indicații 4.5

 Atenție la atributul membrilor r și c din clasa CERC pentru a permite moștenirea ulterioara a

acestei clase.

Tema 4.6

Să se modifice aplicația astfel încât la suprapunerea cercurilor afișarea acestora să rămână curată.

Considerații teoretice 4.6

Există două posibilități pentru a putea menține imaginea celorlalte cercuri intactă:

• prima posibilitate prevede salvarea parțială a ecranului în momentul în care se face desenarea

iar în cazul mutării se restaurează partea salvată. Această posibilitate necesită multă memorie

în funcție de rezoluție și adâncimea de culoare folosită.

• a doua posibilitate o reprezintă redesenarea completă a părții afectate de mutare. Astfel, în

momentul în care într-o zonă de ecran are loc o modificare a imaginii se va reface doar acea

zonă de ecran, urmând ca restul imaginii să rămână nemodificată. Această soluție este folosită

și de către interfața grafică din Windows care cere explicit aplicației să redeseneze partea

afectată a interfeței.

Indicații 4.6

 Pentru simplitate redesenați de câte ori e cazul toate cercurile.

Tema 4.7

Să se execute pas cu pas apelul constructorilor pentru a observa apelul și execuția acestora.

Tema 4.8

Să se introducă în aplicație facilitățile de inserare, respectiv ștergere, de noi cercuri la apăsarea

Programare Orientată pe Obiecte

 - 5 -

tastelor „F3” și „F4”. Inserarea se va face întotdeauna în vector după ultimul cerc existent (fără a

depăși o dimensiune maximă impusă, de exemplu 20) iar ștergerea va elimina ultimul cerc din

vector (fără însă a șterge și cele 6 cercuri inițiale).

Indicaţii 4.8

 Redenumiți NR_CERCURI in MAX_CERCURI și introduceți o variabila NrCercuri.

 Atenție la codul aferent tastei TAB

 Nu uitați să ștergeți cercul de pe ecran (cu metoda Sterge) înainte de a îl distruge (cu

delete).

Tema 4.9

Să se atașeze fiecărui cerc și un nume (șir de caractere). Acesta va fi dat ca parametru în constructor

și va fi afișat în tot timpul funcționării în centrul cercului. Se va lua în considerare scenariul cel mai

defavorabil în ceea ce privește durata de viață a șirului primit ca și parametru în constructor.

Considerații teoretice 4.9

Pentru afișarea unui text se va folosi funcția:

void writeText(char* text, int x, int y, int c)

din modulul Grafica.cpp/Grafica.h, care se va lua ca atare și apela.

Parametrii reprezintă:

text șirul de text care va fi afișat

x, y poziția pe ecran a textului

c culoarea folosita la afișare

Indicații 4.9

 Atenție la alocarea memoriei pentru șirul de caractere în constructor și eliberarea memoriei

în destructor.

Programare Orientată pe Obiecte

 - 6 -

Anexa 4

Ex4_VS.h

#include <windows.h>

// codurile pentru diferite taste
#define ESC 27
#define TAB 9
#define LEFT 75 // cu 0xE0 in fata
#define RIGHT 77 // cu 0xE0 in fata
#define UP 72 // cu 0xE0 in fata
#define DOWN 80 // cu 0xE0 in fata
#define F1 59 // cu 0 in fata
#define F2 60 // cu 0 in fata
#define F3 61 // cu 0 in fata
#define F4 62 // cu 0 in fata

#define NR_CERCURI 6

Ex4_VS.cpp

#include <conio.h>
#include "Ex4_VS.h"
#include "Grafica.h"
#include "Cerc.h"

CERC* pc[NR_CERCURI];
CERC cg1, cg2(100, 100, 25, BLUE);

int main()
{
int CercCurent = 0, gata = 0, k;

CERC cl1(500, 300, 75, RED), cl2(200, 100, 30);

 InitializeGraphicMode();

 pc[0] = &cg1;
 pc[1] = &cg2;
 pc[2] = &cl1;
 pc[3] = &cl2;
 pc[4] = new CERC(400, 200, 100, YELLOW);
 pc[5] = new CERC();

 for (k = 0; k < NR_CERCURI; k++) // afisare pe ecran a tuturor cercurilor
 pc[k]->Afiseaza();

 while (!gata)
 switch (_getch())
 {
 case ESC:
 gata = 1;
 break;
 case TAB:
 CercCurent++;
 CercCurent %= NR_CERCURI;
 break;
 case 0xE0: // pentru sageti se genereaza intai 0xE0

Programare Orientată pe Obiecte

 - 7 -

 switch (_getch()) // apoi un cod specific
 {
 case LEFT: pc[CercCurent]->Muta(-10, 0); break;
 case RIGHT: pc[CercCurent]->Muta(10, 0); break;
 case UP: pc[CercCurent]->Muta(0,-10); break;
 case DOWN: pc[CercCurent]->Muta(0, 10); break;
 }
 break;
 case 0x00: // pentru F1, F2 se genereaza intai 0x00
 switch (_getch()) // apoi un cod specific
 {
 case F1: pc[CercCurent]->Creste(+10); break;
 case F2: pc[CercCurent]->Creste(-10); break;
 }
 break;
 }

 CloseGraphicMode(); //inchiderea modului grafic
 return 0;
}

Cerc.h

class CERC
{
 int x;
 int y;
 int r;
 int c;
 void Sterge();
public:
 CERC(int x0, int y0, int r0=20, int c0=WHITE);
 CERC();
 void Afiseaza();
 void Muta(int dx, int dr);
 void Creste(int dr);
};

Cerc.cpp

#include "Grafica.h"
#include "Cerc.h"

CERC::CERC()
//**********
// constructor implicit
{
 x = 320;
 y = 240;
 r = 50;
 c = WHITE;
}

CERC::CERC(int x0, int y0, int r0, int c0)
//**
// constructor cu parametrii
{
 x = x0;
 y = y0;
 r = r0;

Programare Orientată pe Obiecte

 - 8 -

 c = c0;
}

void CERC::Afiseaza()
//*******************
// metoda de desenare a cercului
{
 circle(x, y, r, c);
}

void CERC::Sterge()
//*****************
// metoda de stergere a cercului
{
 circle(x, y, r, BLACK);
}

void CERC::Muta(int dx, int dy)
//*****************************
// metoda care modifica pozitia unui cerc
{
 Sterge(); // stergere cerc

 x += dx; // modificare pozitie x
 y += dy; // modificare pozitie y

 Afiseaza(); // desenare in noua pozitie
}

void CERC::Creste(int dr)
//***********************
// metoda care modifica raza unui cerc
{
 Sterge(); // stergere cerc

 r += dr; // modificare raza

 Afiseaza(); // desenare in noua pozitie
}

Grafica.h

#include <windows.h>

// valorile pentru culori "clasice"
#define BLACK (int)RGB(0, 0, 0)
#define BLUE (int)RGB(0, 0,255)
#define GREEN (int)RGB(0,255, 0)
#define CYAN (int)RGB(0,255,255)
#define RED (int)RGB(255, 0, 0)
#define MAGENTA (int)RGB(255, 0,255)
#define BROWN (int)RGB(128, 0, 0)
#define LIGHTGRAY (int)RGB(255,255,204)
#define DARKGRAY (int)RGB(0,128, 0)
#define LIGHTBLUE (int)RGB(0, 0,128)
#define LIGHTGREEN (int)RGB(153,204, 0)
#define LIGHTCYAN (int)RGB(204,255,255)
#define LIGHTRED (int)RGB(255,128,128)
#define LIGHTMAGENTA (int)RGB(128, 0,128)
#define YELLOW (int)RGB(255,255, 0)
#define WHITE (int)RGB(255,255,255)

Programare Orientată pe Obiecte

 - 9 -

// prototipuri de functii considerate "de biblioteca"
void InitializeGraphicMode();
void CloseGraphicMode();
void circle(int x, int y, int r, int c);
void writeText(char* text, int x, int y, int c);

Grafica.cpp

#include <windows.h>
#include "Grafica.h"

//**
// cod considerat "de biblioteca", luat ca atare
//**

// pentru utilizare modul grafic
HWND console_handle;
HDC device_context;

void InitializeGraphicMode()
//***************************
// functie care face trecerea din modul text in modul grafic
{
 console_handle = GetConsoleWindow();
 device_context = GetDC(console_handle);
 Sleep(100);
}

void CloseGraphicMode()
//*********************
// functie care inchide modul grafic
{
 ReleaseDC(console_handle, device_context);
}

void circle(int x, int y, int r, int c)
//*************************************
// functie care deseneaza un cerc (x,y,raza,culoare)
{
 HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
 SelectObject(device_context, pen);
 SelectObject(device_context, GetStockObject(NULL_BRUSH));
 Ellipse(device_context, x - r, y - r, x + r, y + r);
 DeleteObject(pen);
}

void writeText(char* text, int x, int y, int c)
//***
// functie care afiseaza un text (text,x,y,culoare)
{
 SetBkColor(device_context, BLACK);
 SetTextColor(device_context, c);
 SetTextAlign(device_context, TA_CENTER);
 TextOut(device_context, x, y, text, strlen(text));
}

