Programare Orientatd pe Obiecte

Laborator 4 — Mostenirea
Tema4.1

Analiza‘;i programul din ﬁ§ierele Ex4 VS.h, Ex4 VS.cpp, Cerc.h, Cerc.cpp, Grafica.h,
Grafica.cpp dinanexa 4.

Tema 4.2

Sa se Imparta clasa cerC in doud clase astfel incat clasa cErc sa devind o clasd care mosteneste 0
alta clasa de baza. Clasa de baza trebuie facuta astfel incat sa reprezinte un concept util.

Consideratii teoretice 4.2

Unul din avantajele programarii orientate pe obiecte este faptul cad se pot reutiliza si completa noi
informatii la codul deja existent. Aceasta completare poate fi realizata chiar daca nu se detine codul
sursd al clasei de bazi (de exemplu imbunitatirea claselor din biblioteci). Tn contextul mostenirii
clasa care se mosteneste Se numeste clasa de bazad iar clasa care mosteneste Se numeste clasa
derivata. Obiectul de baza (cel care se mosteneste) este imbunatatit prin derivare cu membrii noi
pastrandu-se membrii si metodele deja avute.

Forma generald de definire a unei clase derivate este:

specific _clasa nume clasa derivata [:modificator acces nume clasa baza]
{
[[public:] lista membrii 1]
[[private:] lista membrii 2]
} [lista obiecte];

unde specific clasa poate fi struct Sau class (cu singura diferenta ca la struct membrii sunt
implicit publici iar la c1ass membrii sunt impliciti privati). modificator_acces reprezinta modul
de mostenire al membrilor din clasa de baza si poate fi (deocamdata) unul din cuvintele cheie
public SaU private. Sintaxa prezentatd este o generalizare a cazului de definire a unei clase fara a
ne baza pe mostenire (daca lipseste clasa de baza).

Din punct de vedere al dimensiunii obiectului rezultat prin mostenire aceasta este egald cu
dimensiunea obiectului mostenit la care se adaugd suma dimensiunii membrilor noi addugati n
clasa derivata.

Drepturile de acces ale membrilor din clasa derivata:

e In ceea ce priveste membrii noi definiti acestia vor avea drepturile de acces corespunzitoare
modului de definire a lor.

e In ceea ce membrii mosteniti din clasa de bazi acestora se vor stabili drepturile de acces in
functie de drepturile de acces avute in clasa de baza si in functie de tipul mostenirii folosite

astfel:
Drept acces avut in clasa baza Tip mostenire Drept acces rezultat in clasa derivata
public , public
1
private public inaccesibil !!!!
public . private
private private inaccesibil !!!!

Programare Orientatd pe Obiecte

Un membru definit public in clasa de baza va primi dreptul de acces in clasa derivata in functie de
modificatorul de acces folosit in cazul mostenirii. La un membru definit private in clasa de baza
nici o metodd noud din clasa derivatd nu va avea acces. Acel membru va exista in clasa derivata
(clasa derivata va aloca spatiu pentru memorarea acelui membru) dar nici o metoda nou definita din
clasa derivatd nu va avea acces direct la acel membru decét prin intermediul metodelor mostenite
din clasa de baza. Prin mostenire nu se modifica tipul de acces la membrii pentru clasa de baza ci
doar accesul la acestia ca si membrii ai clasei derivate.

Deci din clasa de baza se vor mosteni toti membrii, cu (deocamdatd) o exceptie: constructorii si
destructorii nu se mostenesc (ci se apeleaza).

In cazul in care in clasa derivata se defineste un nou membru cu acelasi nume si aceeasi tip/prototip
ca un membru deja existent in clasa de baza, acesta din urma nu dispare si va putea fi accesat prin
specificarea in fata a clasei din care face parte folosind :: (operatorul de rezolutie).

Indicatii 4.2
= Se vor imparti membrii clasei cerc in membrii mosteniti din clasa de baza si in membrii
adaugati de clasa derivata.

= In clasa de bazd membrii vor avea atributul public iar mostenirea va fi tot publica.
Tema 4.3

Sa se adauge in clasa de bazd (numitd pozITIE) UN constructor implicit si un constructor cu doi
parametrii. Acestia vor initializa variabilele membru = si y cu ceea ce era in constructorii clasei
cerc. Constructorii clasei derivate nu vor mai initializa membrii mosteniti x si y.

Consideratii teoretice 4.3

Tn cazul obiectelor construite prin derivare (mostenire) constructorii si destructorii obiectelor de
baza nu se mostenesc (adicd nu sunt constructori ai clasei derivate) ci se apeleaza din clasa de baza.

La instantierea unui obiect prima data se apeleaza constructorul clasei derivate dupad care se
apeleaza constructorul clasei de baza urmand ca sa se execute prima datd codul constructorului
clasei de baza si pe urma cel al constructorului clasei derivate. Executia constructorilor se face de la
baza (interior, sambure) spre derivatd (exterior, coajd) chiar daca apelul constructorilor se face
Invers.

La distrugerea unui obiect prima datd se apeleazd si se executa destructorul clasei derivate si pe
urma se apeleaza si se executa destructorul clasei de baza.

Indicatii 4.3
= Atentie la pozitia cercurilor pe ecran. Explicati.

Tema 4.4
Sa se apeleze explicit constructorii corespunzatori din clasa de baza.
Consideratii teoretice 4.4

In contextul mostenirii constructorii clasei de bazd nu se mostenesc (ca si constructori ai clasei
derivate) , acestia urmand sa se apeleze de fiecare data de cate ori un obiect de tipul clasei derivate
este instantiat. Intotdeauna ordinea de executie a constructorilor este dinspre clasa de baza spre

-2.-

Programare Orientatd pe Obiecte

clasa derivata, prima datd executandu-se constructorul clasei de baza si pe urma cel al clasei
derivate.

La rularea aplicatiei de la Tema 4.3 s-a obtinut 0 imagine in care toate cercurile aveau acelasi
centru. Aceasta s-a datorat faptului ca toti constructorii din clasa derivata (CERC) apeleaza implicit
acelasi constructor din clasa de baza (care stabileste pozitia cercurilor pe ecran). In cazul in care nu
se specifica explicit care constructor din clasa de baza sa se apeleze, compilatorul va apela implicit
constructorul fara parametrii din clasa de baza (daca acesta existd) sau se va genera o eroare daca
acesta nu exista. Pentru a apela explicit constructorul unei clase de baza se poate folosi urmatoarea
sintaxa:

cls deriv::cls deriv([lista param formali]):cls baza([lista param actualil)

{

// corp al constructorului clasei derivate

}

unde cls deriv reprezinta numele clasei de derivate (constructorul din clasa derivatd) iar
cls baza reprezintd numele clasei de baza (constructorul din clasa de baza care se doreste apelat).
Specificarea explicita a constructorului din clasa de baza care se doreste apelat se face doar la
definirea (implementarea) constructorului respectiv din clasa derivata.

lista param formali reprezintd declararea de parametrii formali iar lista param actuali
reprezinta expresiile de apel.

Indicatii 4.4
= Apelul explicit al constructorului implicit al clasei de baza poate lipsi fara a schimba
functionarea programului. Verificati.

Tema 4.5

Sa se modifice atributul membrilor din clasa de baza pentru a nu pierde incapsularea (din punct de
vedere al ascunderii datelor).

Consideratii teoretice 4.5

Asa cum este descrisd mostenirea pand in acest moment apare o dilemd. Dacd vrem sd avem
mostenire si acces la membrii mosteniti ar trebui ca in clasa de baza acestia sa fie definiti public
pierzandu-se astfel facilitatile oferite de incapsulare. Daca vrem sa pastram incapsularea in clasa de
baza avem probleme la mostenire. Deci cu alte cuvinte membrii publici nu asigura incapsulare iar
membrii privati nu asigura acces prin mostenire. Pentru rezolvarea acestei dileme in limbaj a fost
introdus un nou tip de acces numit protected. Un membru definit protected poate fi accesat atat
de membrii clasei in care e definit cat si de membrii claselor care mostenesc clasa respectiva.
Membrii protected nu pot fi accesati din exteriorul clasei sau claselor care mostenesc clasa
respectiva. Deci un membru definit protected este vdzut ca un membru public in contextul
mostenirii §i ca Un membru private pentru exteriorul claselor.

Tabelul cu modificatorii de acces in contextul mostenirii care include si tipul protected atat ca si
tip de acces cét si ca tip de mostenire devine ca in tabelul urmator.

Astfel un membru definit protected poate oferi incapsulare si mostenire la oricat de multe nivele
iar in momentul in care se doreste ,,inchiderea” unei clase (nu se mai permit dezvoltari ulterioare) se

Programare Orientatd pe Obiecte
poate folosi la mostenire modificatorul de acces private astfel incat ulterior membrii mosteniti sa
devina inaccesibili.

Drept acces avut in clasa de baza Tip mostenire Drept acces rezultat in clasa derivata

public public

private public inaccesibil !!!!
protected protected

public protected

private protected inaccesibil!!!
protected protected

public private

private private inaccesibil !!!!
protected private

Sintaxa de declarare a unei clase derivate devine (cu protected):

specific _clasa nume clasa derivata [:modificator acces nume clasa baza]
{
[[public:] lista membrii 1]
[[protected:] lista membrii 2]
[[private:] lista membrii 3]
}[lista obiecte];

Indicatii 4.5
= Atentie la atributul membrilor r si c din clasa cerc pentru a permite mostenirea ulterioara a
acestei clase.
Tema 4.6

Sa se modifice aplicatia astfel incat la suprapunerea cercurilor afisarea acestora sa ramana curata.

Consideratii teoretice 4.6

e prima posibilitate prevede salvarea partiala a ecranului in momentul in care se face desenarea
iar in cazul mutdrii se restaureaza partea salvatd. Aceasta posibilitate necesita multa memorie
n functie de rezolutie si adancimea de culoare folosita.

e a doua posibilitate o reprezintd redesenarea completd a partii afectate de mutare. Astfel, in
momentul n care ntr-o zona de ecran are loc o modificare a imaginii se va reface doar acea
zona de ecran, urmand ca restul imaginii sa rdmana nemodificata. Aceasta solutie este folositad
si de cdtre interfata graficd din Windows care cere explicit aplicatiei sa redeseneze partea
afectata a interfetei.

Indicatii 4.6
= Pentru simplitate redesenati de cate ori e cazul toate cercurile.

Tema 4.7
Sa se execute pas cu pas apelul constructorilor pentru a observa apelul si executia acestora.
Tema 4.8

Sa se introduca in aplicatie facilitatile de inserare, respectiv stergere, de noi cercuri la apasarea

-4 -

Programare Orientatd pe Obiecte
tastelor ,,F3~ si ,,F4”. Inserarea se va face intotdeauna in vector dupa ultimul cerc existent (fara a
depasi o dimensiune maxima impusa, de exemplu 20) iar stergerea va elimina ultimul cerc din
vector (fara insa a sterge si cele 6 cercuri initiale).

Indicatii 4.8
= Redenumiti NR_CERCURI in MAX CERCURI si introduceti 0 variabila Nrcercuri.
= Atentie la codul aferent tastei Tar

= Nu uitati sa stergeti cercul de pe ecran (cu metoda sterge) Tnainte de a il distruge (cu
delete)

Tema 4.9

Sa se ataseze fiecarui cerc si un nume (sir de caractere). Acesta va fi dat ca parametru in constructor
si va fi afisat in tot timpul functionarii in centrul cercului. Se va lua in considerare scenariul cel mai
defavorabil in ceea ce priveste durata de viata a sirului primit ca si parametru in constructor.

Consideratii teoretice 4.9

Pentru afisarea unui text se va folosi functia:

void writeText (char* text, int x, int y, int c)
din modulul Grafica.cpp/Grafica.h, care se va lua ca atare si apela.

Parametrii reprezinta:
text sirul de text care va fi afisat
x, y pozitia pe ecran a textului
c culoarea folosita la afisare
Indicatii 4.9

= Atentie la alocarea memoriei pentru sirul de caractere n constructor si eliberarea memoriei
n destructor.

Programare Orientatd pe Obiecte

#include <windows.h>

// codurile pentru diferite taste

#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine

#tdefine

#include
#include
#include
#include

ESC 27
TAB 9
LEFT 75
RIGHT 77
up 72
DOWN 80
F1 59
F2 60
F3 61
Fu 62

NR_CERCURI

<conio.h>

"Ex4_VS.h"

//
//
//
//
//
//
//
//

6

"Grafica.h"

"Cerc.h"

CERC* pc[NR_CERCURI];
CERC cgl, cg2(100, 100, 25, BLUE);

int main

{

int CercCurent = 0, gata

O

Anexa 4

Ex4 VS.h

cu OxEO in fata
cu OxEO in fata
cu OxEO in fata
cu OxEO® in fata

cu
cu
cu
cu

0

0
0
0

in fata
in fata
in fata
in fata

0, k;

Ex4 VS.cpp

CERC cl1(500, 300, 75, RED), cl12(200, 100, 30);

InitializeGraphicMode();

pcl0] = &cgl;

pcl[1l] = &cg2;

pcl2] = &cl1;

pc[3] = &cl2;

pcld] =

pc[5] = new CERC(Q);

new CERC(4OO, 200, 100, YELLOW);

for (k = 0; k < NR_CERCURI; k++) // afisare pe ecran a tuturor cercurilor
pc[kl->Afiseaza();

while (!gata)

switch (_getch())
{

case ESC:
gata =
break;

case TAB:

CercCurent++;

1;

CercCurent %= NR_CERCURI;

break;
case OxEO:

// pentru sageti se genereaza intai OxEO

-6-

Programare Orientatd pe Obiecte

switch (_getch()) // apoi un cod specific

{

case LEFT: pc[CercCurent]->Muta(-10, 0); break;
case RIGHT: pc[CercCurent]->Muta(10, 0); break;

case UP: pc[CercCurent]->Muta(0,-10); break;
case DOWN: pc[CercCurent]->Muta(©, 10); break;
}
break;
case 0x00: // pentru F1, F2 se genereaza intai 0x00
switch (_getch()) // apoi un cod specific
{

case F1l: pc[CercCurent]->Creste(+10); break;
case F2: pc[CercCurent]->Creste(-10); break;
}

break;

}

CloseGraphicMode(); //inchiderea modului grafic
return 0;

Cerc.h

class CERC
{
int x;
int y;
int r;
int c;
void Sterge();
public:
CERC(int x0, int y0O, int r0=20, int cO=WHITE);
CERCQ);
void Afiseaza();
void Muta(int dx, int dr);
void Creste(int dr);

Cerc.cpp

#include "Grafica.h"
#include "Cerc.h"

CERC: :CERC(Q)

VAT T T I
// constructor implicit
{
x = 320;
y = 240;
r = 50;
c = WHITE;
}

CERC::CERC(int x0, int y0O, int r0, int c0)
//**
// constructor cu parametrii

{
X = x0;
y = vo;
r = ro;

Programare Orientatd pe Obiecte

c = cO;

}

void CERC::Afiseaza()
[[xxFxkkkrhkhkhkhrhkkk

// metoda de desenare a cercului

{
}

circle(x, y, r, c);

void CERC::Sterge()
AT T s

// metoda de stergere a cercului

{
}

circle(x, y, r, BLACK);

void CERC::Muta(int dx, int dy)

//*****************************
// metoda care modifica pozitia unui cerc

{
Sterge(); // stergere cerc
X += dx; // modificare pozitie x
y += dy; // modificare pozitie y
Afiseaza(); // desenare in noua pozitie
}

void CERC::Creste(int dr)
YA T T T

// metoda care modifica raza unui cerc

{
Sterge(); // stergere cerc
r += dr; // modificare raza
Afiseaza(); // desenare in noua pozitie
}

Grafica.h

#include <windows.h>

// valorile pentru culori "clasice"

#define BLACK (int)RGB(0, 0, 0)
#define BLUE (int)RGB(0, 0,255)
#define GREEN (int)RGB(0,255, 0)
#define CYAN (int)RGB(0,255,255)
#define RED (int)RGB(255, 0, 0)
#define MAGENTA (int)RGB(255, 0,255)
#define BROWN (int)RGB(128, 0, 0)
#define LIGHTGRAY (int)RGB(255,255,204)
#define DARKGRAY (int)RGB(0,128, 0)

#define LIGHTBLUE (int)RGB(0, ©0,128)
#define LIGHTGREEN (int)RGB(153,204, 0)
#define LIGHTCYAN (int)RGB(204,255,255)

#define LIGHTRED (int)RGB(255,128,128)
#define LIGHTMAGENTA (int)RGB(128, ©0,128)
#define YELLOW (int)RGB(255,255, 0)
#define WHITE (int)RGB(255,255,255)

Programare Orientatd pe Obiecte

// prototipuri de functii considerate "de biblioteca"
void InitializeGraphicMode();

void CloseGraphicMode();

void circle(int x, int y, int r, int c);

void writeText(char* text, int x, int vy, int c);

Grafica.cpp

#include <windows.h>
#include "Grafica.h"

//**

// cod considerat "de biblioteca", luat ca atare
//**

// pentru utilizare modul grafic
HWND console_handle;
HDC device_context;

void InitializeGraphicMode()
//***************************

// functie care face trecerea din modul text in modul grafic

{
console_handle = GetConsoleWindow();
device_context = GetDC(console_handle);
Sleep(100);

}

void CloseGraphicMode()

[[xxFxrkkhkrhkhkhrkhrhrkk
// functie care inchide modul grafic

{
}

ReleaseDC(console_handle, device_context);

void circle(int x, int y, int r, int c)
//*************************************
// functie care deseneaza un cerc (x,y,raza,culoare)

{
HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
SelectObject(device_context, pen);
SelectObject(device_context, GetStockObject(NULL_BRUSH));
Ellipse(device_context, x - r, vy - r, x + r, v + r);
DeleteObject(pen);

}

void writeText(char* text, int x, int vy, int c)
//***

// functie care afiseaza un text (text,x,y,culoare)

{
SetBkColor(device_context, BLACK);
SetTextColor(device_context, c);
SetTextAlign(device_context, TA_CENTER);
TextOut(device_context, x, vy, text, strlen(text));
}

