Programare Orientatd pe Obiecte

Laborator 3 — Constructori si destructori
Tema 3.1

Analiza‘;i programul din ﬁsierele Ex3 VS.h, Ex3 VS.cpp, Cerc.h, Cerc.cpp, Grafica.h,
Grafica.cpp din anexa 3.

Tema 3.2

Sa se adauge un vector de pointeri catre clasa cerc de aceeasi dimensiune cu vectorul existent.
Dupa initializarea vectorului existent adresele cercurilor vor fi completate in vectorul de pointeri. In
continuare programul va accesa structura de date numai prin intermediul vectorului de pointeri.

Consideratii teoretice 3.2

c cl0] cl1] cl2] c[3] cl4] c[5]
A A A A A A
pc pc[0] pcll] pcl2] pcl3] pclé] pcl5]
Indicatii 3.2

= Initializarea tabloului de pointeri se poate face de exemplu pc [k]=sc[k] intr-o bucla
Tema 3.3

Sa se modifice metoda Atribuie astfel incit ultimi 2 parametrii sa aibd valorile implicite 100
respectiv “YELLOW?. Se va apela apoi succesiv cu 4, 3 si respectiv 2 parametrii $i se va observa
de fiecare data efectul la rulare.

Consideratii teoretice 3.3

Tn C++ ne sunt permise functii sau metode cu parametrii avand valori implicite (valorile implicite
pot fi doar constante). Parametrii impliciti se specifica la definirea (prototipul) functiei, iar daca
aceasta nu exista atunci se specificd declararea (implementarea) functiei. Functia (metoda) care are
declarati parametrii impliciti poate fi apelata fie cu toti parametrii fie omitand parametrii (care vor
lua valorile implicite). Declararea parametrilor impliciti se face de la dreapta spre stanga, in lista de
parametrii, fara a omite vreunul.

#include <iostream.h>
long Calcul (int x, int y = 5, int z = 2); prototipul functiei

void main ()

{

int m =3, n=7, o= 6;

cout<<Calcul (m, n, 0); //va afisa 16 (3 + 7 + 6)
cout<<Calcul (m, n); //va afisa 12 (3 + 7 + 2)
cout<<Calcul (m) ; //va afisa 10 (3 + 5 + 2)

}

long Calcul (int x, int y, int z)

Programare Orientatd pe Obiecte

{

return x + y + z;

}

In exemplul de mai sus am definit o functie cu trei parametrii dintre care doi (ultimii doi — vezi
regula enuntatd) au valori implicite. Functia poate fi apelata in acest caz cu trei parametrii, cu doi
parametrii (z ia valoarea implicitd 2), cu un parametru (y ia valoarea implicita 5, iar z ia valoarea
implicita 2).
Indicatii 3.3

= Atentie, parametrii impliciti se specifica o singura data, numai in interiorul clasei.

Tema 3.4

Sa se Inlocuiasca cele 6 cercuri memorate sub forma vectorului “c[6]” cu 6 cercuri memorate in
obiecte diferite astfel: 2 cercuri definite global (numite cg1, cg2), un tablou global de 2 cercuri
(numit tg21) si 2 cercuri definite local (numite c11, c12).

Consideratii teoretice 3.4

cgl cg2 tg tg[0] tg[l] cll cl2
A A
pc | pcl0] pcll] pcl2] pcl3] pc4] pc 5]
Indicatii 3.5
= 1Tn acest caz initializarea tabloului de pointeri pc(6] trebuie facuti explicit element cu
element.
Tema 3.5

Sa se modifice metoda Atribuie astfel incat sa devind constructor cu 4 parametrii dintre care ultimii
2 impliciti. Fiecare obiect individual definit va fi initializat explicit Tn momentul definirii.

Consideratii teoretice 3.5

Una dintre marile probleme ale programirii este aceea a initializarii variabilelor (obiectelor). Tn
cazul obiectelor daca avem o metoda pentru initializare, depinde de noi daca o apeldm sau nu.
Tocmai pentru a nu ne permite sa uitam apelul unei metode de initializare C++ introduce notiunea
de constructor.

Constructorul este 0 metoda a clasei care: are acelasi nume cu al clasei careia i apartine, nu are tip
returnat si la instantierea unui obiect se apeleazd automat. Dacd programatorul nu declara explicit
nici un constructor compilatorul va genera unul public, fard parametrii si care nu face nimic.

Pentru variabilele globale constructorul se apeleaza inainte de apelul lui main (), pentru variabilele
locale se apeleaza la intrarea In functia respectiva, iar in cazul variabilelor alocate dinamic se
apeleaza doar in momentul alocarii memoriei pentru obiect (new).

Programare Orientatd pe Obiecte
Rolul principal al constructorului este acela de a initializa obiectul pentru care a fost apelat, aceasta
insemnénd initializarea tuturor variabilelor membru cu valori determinate, aducand astfel obiectul
intr-o stare determinata.

Pentru apelarea constructorului cu parametrii la instantierea obiectului vor trebui furnizati
parametrii In urmatoarea forma:

nume clasa obiect(lista parametrii);

Indicatii 3.5
= In aceastd fazi programul nu va functiona deoarece nu exista constructor implicit care sa

poata fi apelat pentru elementele din tabloul tg(2]. Problema se va rezolva in tema
urmatoare.

Tema 3.6

Sa se adauge si un constructor fard parametrii care sa initializeze membrii obiectului cu valorile
320, 240, 50, WHITE.

Consideratii teoretice 3.6

Supraincarcarea numelui functiilor reprezintd proprietatea compilatorului de a permite sa existe mai
multe functii cu acelasi nume dar diferind prin numarul sau prin tipul parametrilor. Deci pentru a
face distinctia ntre functiile cu acelasi nume compilatorul se foloseste doar de numarul si tipul
parametrilor, nu si de tipul returnat de functie.

Tn cazul in care avem definite mai multe functii cu acelasi nume, iar una sau unele dintre aceste
functii au si parametrii impliciti trebuie avut de grija ca atunci cand se apeleaza functia respectiva
compilatorul sa poatd decide pe care functie S-o foloseasca.

Vom prezenta in continuare exemplul cu clasa RATTONATL prezentat in lucrarea anterioara.
#include <iostream.h>

class RATIONAL

{

private:
int numarator;
int numitor;

public:
RATIONAL () {numarator = 1; numitor = 1};
RATIONAL (int x, int y = 1);
void Adun_int (int y);
void Initializez (int x, int vy);

}i

void Afisez (RATIONAL x)
{

cout<<x.numarator<<”/”<<x.numitor<<endl;

}i

RATIONAL: :RATIONAL (int x, int y)
{

numarator = X;

numitor = y;

}i

Programare Orientatd pe Obiecte

void RATIONAL: :Adun_int (int vy)
{

numarator += y*numitor;
Afisez (*this);
}

void main ()
{
RATIONAL a, b(3), c(7,4); //instantierea obiectelor cu apelarea constructorilor
//sub diverse forme
a.Adun_int(2);
}

Indicatii 3.6
= Atentie la numarul de cercuri afisate.
= Daca exista constructor definit nu se mai genereaza automat un constructor implicit.

Tema 3.7

Sa se includa in tabloul pc [si doua cercuri alocate dinamic initializate fiecare Tn parte cu cate unul
din cei doi constructori.

Consideratii teoretice 3.7

In C alocarea dinamica a memoriei se realizeazi cu ajutorul functiei malloc (), iar dealocarea cu
ajutorul functiei free (). In C++ existd un sistem propriu alternativ bazat pe operatorii: new i
delete.

Ca si malloc(), new alocd memorie din zona heap, dar spre deosebire de malloc (), el aloca
automat memorie suficientd pentru a pastra obiectele de tipul specificat (pentru malloc este
necesara specificarea marimii memoriei ce urmeaza a fi alocate, cu ajutorul 1ui sizeof). In acelasi
timp new returneazd automat un pointer de tipul specificat, pe cand pentru malloc trebuia si
folosim explicit un modelator de tip.

Operatorul de1ete trebuie folosit doar cu un pointer valid, alocat anterior prin utilizarea lui new.
Formele generale pentru new si delete sunt:

nume clasa *variabila; //declararea unui pointer de tip obiect
variabila = new nume clasa; //alocare de memorie cu new
delete variabila; //eliberare de memorie cu delete

In momentul alocarii memoriei, cu operatorul new, se apeleazi automat constructorul, in cazul de
mai sus cel fara parametrii. Pentru apelarea constructorului cu parametrii operatorul new trebuie
folosit astfel:

Variabila = new nume_clasa(lista parametrii);

Destructorul este metoda opusa constructorului si care se apeleaza la eliberarea memoriei prin
operatorul delete sau la iesirea din program. Destructorul are numele identic cu al clasei, dar
precedat de semnul ,,~”, la fel ca si constructorul nu returneaza nimic insa, spre deosebire de
constructor, acesta nu are parametrii. Destructorul este folosit mai ales pentru a elibera memoria
atunci cand ea a fost alocatd cu constructorul. Destructorul se apeleazd in ordine inversa
constructorului, mai intai pentru variabilele locale si apoi pentru cele globale, iar pentru variabilele
alocate dinamic se apeleaza in momentul eliberarii memoriei cu delete.

Programare Orientatd pe Obiecte

Indicatii 3.7
= Nu uitati eliberarea celor doud obiecte alocate dinamic.

Tema 3.8
Sa se execute programul pas cu pas pentru a urmari apelul celor 8 constructori.

Indicatii 3.8
= Constructorii obiectelor globale se apeleaza inainte de main iar, in lipsa break-point-urilor,
executia pas cu pas incepe direct din main.

Programare Orientatd pe Obiecte

Anexa 3

Ex3 VS.h

#include <windows.h>

// codurile pentru diferite taste
#tdefine ESC 27

#tdefine TAB 9

#define LEFT 175 // cu OxE® in fata
#define RIGHT 77 // cu OxE® in fata
#define UP 72 // cu OxE® in fata
#define DOWN 80 // cu OxE® in fata
#define F1 59 // cu 0 in fata
#define F2 60 // cu 0 in fata
#define F3 61 // cu 0 in fata
#define Fu 62 // cu 0 in fata
#tdefine NR_CERCURI 6

Ex3 VS.cpp

#include <conio.h>
#include "Ex3_VS.h"
#include "Grafica.h"
#include "Cerc.h"

int culori[6] = {RED, WHITE, BLUE, YELLOW, GREEN, BROWN};

CERC C[NR_CERCURI];
int main()
{

int CercCurent = 0, gata = 0, k;

InitializeGraphicMode();

for (k = 0; k < 6; k++) // initializari

{

c[k].Atribuie(50%k+100, 200, 10%k+25, culorilkl);

c[k].Afiseaza();
}

while (!gata)
switch (_getch())

{
case ESC:
gata = 1;
break;
case TAB:
CercCurent++;
CercCurent %= NR_CERCURI;
break;
case OxEO: // pentru sageti se genereaza intai OxEO

switch (_getch()) // apoi un cod specific

0); break;
0); break;

{

case LEFT: c[CercCurent].Muta(-10,

case RIGHT: c[CercCurent].Muta(10,

case UP: c[CercCurent].Muta(0,-10); break;

-6-

Programare Orientatd pe Obiecte

case DOWN: c[CercCurent].Muta(0, 10); break;
}
break;
case 0x00: // pentru F1, F2 se genereaza intai 0x00
switch (_getch()) // apoi un cod specific
{

case F1l: c[CercCurent].Creste(+10); break;
case F2: c[CercCurent].Creste(-10); break;
}

break;

}

CloseGraphicMode(); //inchiderea modului grafic
return 0;

Cerc.h

class CERC

{

int x;
int y;
int r;
int c;
void Sterge();

public:

void Atribuie(int x0, int y0, int r0, int c0);
void Afiseaza();

void Muta(int dx, int dr);

void Creste(int dr);

Cerc.cpp

#include "Grafica.h"
#include "Cerc.h"

void CERC::Afiseaza()
[/ xxFxrrkrhRhrkhrhrhkkk

// desenare a cercului

{
}

circle(x, y, r, c);

void CERC::Sterge()

AT T T T2
// stergere a cercului

{
}

circle(x, y, r, BLACK);

void CERC::Muta(int dx, int dy)

//*****************************
// functie care modifica pozitia unui cerc

{

Sterge(); // stergere cerc

X += dx; // modificare pozitie x
y += dy; // modificare pozitie y

Programare Orientatd pe Obiecte

Afiseaza(); // desenare in noua pozitie

}

void CERC::Creste(int dr)
[[xxFkkkkhkkhkhkhkhkhkkkkk

// functie care modifica raza unui cerc

{
Sterge(); // stergere cerc
r += dr; // modificare raza
Afiseaza(); // desenare in noua pozitie
}
void CERC::Atribuie(int x0, int y0, int r0, int c0)
{
X = x0;
y = vo;
r = ro;
c = co,
}

#include <windows.h>

Grafica.h

// valorile pentru culori "clasice"

#define BLACK
#tdefine BLUE
#define GREEN
#tdefine CYAN
#tdefine RED
#define MAGENTA
#define BROWN
#tdefine LIGHTGRAY
#idefine DARKGRAY
#tdefine LIGHTBLUE
#tdefine LIGHTGREEN
#define LIGHTCYAN
#tdefine LIGHTRED

(int)RGB(0, 0, ©0)
(int)RGB(O, 0,255)
(int)RGB(0,255, ©0)
(int)RGB(@,255,255)
(int)RGB(255, 0, 0)
(int)RGB(255, ©0,255)
(int)RGB(128, 0, ©0)
(int)RGB(255,255,204)
(int)RGB(0,128, ©0)
(int)RGB(0, 0,128)
(int)RGB(153,204, 0)
(int)RGB(204,255,255)
(int)RGB(255,128,128)

#define LIGHTMAGENTA (int)RGB(128, 0,128)

#define YELLOW
#define WHITE

// prototipuri de functii considerate "de biblioteca"

(int)RGB(255,255, ©0)
(int)RGB(255,255,255)

void InitializeGraphicMode();
void CloseGraphicMode();

void circle(int, int,

#include <windows.h>

int, int);

Grafica.cpp

//**

// cod considerat "de biblioteca", luat ca atare

//**

// pentru utilizare modul grafic

HWND console_handle;
HDC device_context;

Programare Orientatd pe Obiecte

void InitializeGraphicMode()
//***************************

// functie care face trecerea din modul text in modul grafic

{
console_handle = GetConsoleWindow();
device_context = GetDC(console_handle);
Sleep(100);

}

void CloseGraphicMode()
YA T T T T T T

// functie care inchide modul grafic

{
}

ReleaseDC(console_handle, device_context);

void circle(int x, int y, int r, int c)
//*************************************
// functie care deseneaza un cerc (x,y,raza,culoare)

{
HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
SelectObject(device_context, pen);
SelectObject(device_context, GetStockObject(NULL_BRUSH));
Ellipse(device_context, x - r, vy - r, x + r, v + r);
DeleteObject(pen);

}

