
Programare Orientată pe Obiecte

 - 1 -

Laborator 3 – Constructori și destructori

Tema 3.1

Analizați programul din fișierele Ex3_VS.h, Ex3_VS.cpp, Cerc.h, Cerc.cpp, Grafica.h,

Grafica.cpp din anexa 3.

Tema 3.2

Să se adauge un vector de pointeri către clasa CERC de aceeași dimensiune cu vectorul existent.

După inițializarea vectorului existent adresele cercurilor vor fi completate în vectorul de pointeri. În

continuare programul va accesa structura de date numai prin intermediul vectorului de pointeri.

Considerații teoretice 3.2

c c[0] c[1] c[2] c[3] c[4] c[5]

pc pc[0] pc[1] pc[2] pc[3] pc[4] pc[5]

Indicații 3.2

 Inițializarea tabloului de pointeri se poate face de exemplu pc[k]=&c[k] într-o buclă

Tema 3.3

Să se modifice metoda Atribuie astfel încât ultimi 2 parametrii să aibă valorile implicite 100

respectiv “YELLOW”. Se va apela apoi succesiv cu 4, 3 şi respectiv 2 parametrii şi se va observa

de fiecare dată efectul la rulare.

Considerații teoretice 3.3

În C++ ne sunt permise funcții sau metode cu parametrii având valori implicite (valorile implicite

pot fi doar constante). Parametrii impliciți se specifică la definirea (prototipul) funcției, iar dacă

aceasta nu există atunci se specifică declararea (implementarea) funcției. Funcția (metoda) care are

declarați parametrii impliciți poate fi apelată fie cu toți parametrii fie omițând parametrii (care vor

lua valorile implicite). Declararea parametrilor impliciți se face de la dreapta spre stânga, în lista de

parametrii, fără a omite vreunul.

#include <iostream.h>

long Calcul(int x, int y = 5, int z = 2); prototipul functiei

void main()

{

 int m = 3, n = 7, o = 6;

 cout<<Calcul(m, n, o); //va afisa 16 (3 + 7 + 6)

 cout<<Calcul(m, n); //va afisa 12 (3 + 7 + 2)

 cout<<Calcul(m); //va afisa 10 (3 + 5 + 2)

}

long Calcul(int x, int y, int z)

Programare Orientată pe Obiecte

 - 2 -

{

 return x + y + z;

}

În exemplul de mai sus am definit o funcție cu trei parametrii dintre care doi (ultimii doi – vezi

regula enunțată) au valori implicite. Funcția poate fi apelată în acest caz cu trei parametrii, cu doi

parametrii (z ia valoarea implicită 2), cu un parametru (y ia valoarea implicită 5, iar z ia valoarea

implicită 2).

Indicații 3.3

 Atenție, parametrii impliciți se specifică o singura dată, numai în interiorul clasei.

Tema 3.4

Să se înlocuiască cele 6 cercuri memorate sub forma vectorului “c[6]” cu 6 cercuri memorate în

obiecte diferite astfel: 2 cercuri definite global (numite cg1, cg2), un tablou global de 2 cercuri

(numit tg[2]) și 2 cercuri definite local (numite cl1, cl2).

Considerații teoretice 3.4

cg1 cg2 tg[0] tg[1] cl1 cl2

pc pc[0] pc[1] pc[2] pc[3] pc[4] pc[5]

tg

Indicații 3.5

 În acest caz inițializarea tabloului de pointeri pc[6] trebuie făcută explicit element cu

element.

Tema 3.5

Să se modifice metoda Atribuie astfel încât să devină constructor cu 4 parametrii dintre care ultimii

2 impliciți. Fiecare obiect individual definit va fi inițializat explicit în momentul definirii.

Considerații teoretice 3.5

Una dintre marile probleme ale programării este aceea a inițializării variabilelor (obiectelor). În

cazul obiectelor dacă avem o metodă pentru inițializare, depinde de noi dacă o apelăm sau nu.

Tocmai pentru a nu ne permite să uităm apelul unei metode de inițializare C++ introduce noțiunea

de constructor.

Constructorul este o metodă a clasei care: are același nume cu al clasei căreia îi aparține, nu are tip

returnat și la instanţierea unui obiect se apelează automat. Dacă programatorul nu declară explicit

nici un constructor compilatorul va genera unul public, fără parametrii și care nu face nimic.

Pentru variabilele globale constructorul se apelează înainte de apelul lui main(), pentru variabilele

locale se apelează la intrarea în funcția respectivă, iar în cazul variabilelor alocate dinamic se

apelează doar in momentul alocării memoriei pentru obiect (new).

Programare Orientată pe Obiecte

 - 3 -

Rolul principal al constructorului este acela de a inițializa obiectul pentru care a fost apelat, aceasta

însemnând inițializarea tuturor variabilelor membru cu valori determinate, aducând astfel obiectul

într-o stare determinată.

Pentru apelarea constructorului cu parametrii la instanţierea obiectului vor trebui furnizați

parametrii în următoarea formă:

nume_clasa obiect(lista_parametrii);

Indicații 3.5

 În această fază programul nu va funcționa deoarece nu există constructor implicit care să

poată fi apelat pentru elementele din tabloul tg[2]. Problema se va rezolva în tema

următoare.

Tema 3.6

Să se adauge si un constructor fără parametrii care să inițializeze membrii obiectului cu valorile

320, 240, 50, WHITE.

Considerații teoretice 3.6

Supraîncărcarea numelui funcțiilor reprezintă proprietatea compilatorului de a permite să existe mai

multe funcții cu același nume dar diferind prin numărul sau prin tipul parametrilor. Deci pentru a

face distincția între funcțiile cu același nume compilatorul se folosește doar de numărul și tipul

parametrilor, nu și de tipul returnat de funcție.

În cazul în care avem definite mai multe funcții cu același nume, iar una sau unele dintre aceste

funcții au și parametrii impliciți trebuie avut de grijă ca atunci când se apelează funcția respectivă

compilatorul să poată decide pe care funcție s-o folosească.

Vom prezenta în continuare exemplul cu clasa RATIONAL prezentat în lucrarea anterioară.

#include <iostream.h>

class RATIONAL

 {

 private:

 int numarator;

 int numitor;

 public:

 RATIONAL(){numarator = 1; numitor = 1};

 RATIONAL(int x, int y = 1);

 void Adun_int(int y);

 void Initializez(int x, int y);

 };

void Afisez(RATIONAL x)

{

 cout<<x.numarator<<”/”<<x.numitor<<endl;

};

RATIONAL::RATIONAL(int x, int y)

{

 numarator = x;

 numitor = y;

};

Programare Orientată pe Obiecte

 - 4 -

void RATIONAL::Adun_int(int y)

{

 numarator += y*numitor;

 Afisez(*this);

}

void main()

{

 RATIONAL a, b(3), c(7,4); //instantierea obiectelor cu apelarea constructorilor

 //sub diverse forme

 a.Adun_int(2);

}

Indicaţii 3.6

 Atenție la numărul de cercuri afișate.

 Dacă există constructor definit nu se mai generează automat un constructor implicit.

Tema 3.7

Să se includă în tabloul pc[] și două cercuri alocate dinamic inițializate fiecare în parte cu cate unul

din cei doi constructori.

Considerații teoretice 3.7

În C alocarea dinamică a memoriei se realizează cu ajutorul funcției malloc(), iar dealocarea cu

ajutorul funcției free(). În C++ există un sistem propriu alternativ bazat pe operatorii: new și

delete.

Ca și malloc(), new alocă memorie din zona heap, dar spre deosebire de malloc(), el alocă

automat memorie suficientă pentru a păstra obiectele de tipul specificat (pentru malloc este

necesară specificarea mărimii memoriei ce urmează a fi alocate, cu ajutorul lui sizeof). În acelaşi

timp new returnează automat un pointer de tipul specificat, pe când pentru malloc trebuia să

folosim explicit un modelator de tip.

Operatorul delete trebuie folosit doar cu un pointer valid, alocat anterior prin utilizarea lui new.

Formele generale pentru new şi delete sunt:

nume_clasa *variabila; //declararea unui pointer de tip obiect

variabila = new nume_clasa; //alocare de memorie cu new

delete variabila; //eliberare de memorie cu delete

În momentul alocării memoriei, cu operatorul new, se apelează automat constructorul, în cazul de

mai sus cel fără parametrii. Pentru apelarea constructorului cu parametrii operatorul new trebuie

folosit astfel:

Variabila = new nume_clasa(lista_parametrii);

Destructorul este metoda opusă constructorului şi care se apelează la eliberarea memoriei prin

operatorul delete sau la ieşirea din program. Destructorul are numele identic cu al clasei, dar

precedat de semnul „~”, la fel ca si constructorul nu returnează nimic însă, spre deosebire de

constructor, acesta nu are parametrii. Destructorul este folosit mai ales pentru a elibera memoria

atunci când ea a fost alocată cu constructorul. Destructorul se apelează în ordine inversă

constructorului, mai întâi pentru variabilele locale și apoi pentru cele globale, iar pentru variabilele

alocate dinamic se apelează in momentul eliberării memoriei cu delete.

Programare Orientată pe Obiecte

 - 5 -

Indicaţii 3.7

 Nu uitați eliberarea celor două obiecte alocate dinamic.

Tema 3.8

Să se execute programul pas cu pas pentru a urmări apelul celor 8 constructori.

Indicații 3.8

 Constructorii obiectelor globale se apelează înainte de main iar, în lipsa break-point-urilor,

execuția pas cu pas începe direct din main.

Programare Orientată pe Obiecte

 - 6 -

Anexa 3

Ex3_VS.h

#include <windows.h>

// codurile pentru diferite taste
#define ESC 27
#define TAB 9
#define LEFT 75 // cu 0xE0 in fata
#define RIGHT 77 // cu 0xE0 in fata
#define UP 72 // cu 0xE0 in fata
#define DOWN 80 // cu 0xE0 in fata
#define F1 59 // cu 0 in fata
#define F2 60 // cu 0 in fata
#define F3 61 // cu 0 in fata
#define F4 62 // cu 0 in fata

#define NR_CERCURI 6

Ex3_VS.cpp

#include <conio.h>
#include "Ex3_VS.h"
#include "Grafica.h"
#include "Cerc.h"

int culori[6] = {RED, WHITE, BLUE, YELLOW, GREEN, BROWN};

CERC c[NR_CERCURI];

int main()
{
int CercCurent = 0, gata = 0, k;

 InitializeGraphicMode();

 for (k = 0; k < 6; k++) // initializari
 {
 c[k].Atribuie(50*k+100, 200, 10*k+25, culori[k]);
 c[k].Afiseaza();
 }

 while (!gata)
 switch (_getch())
 {
 case ESC:
 gata = 1;
 break;
 case TAB:
 CercCurent++;
 CercCurent %= NR_CERCURI;
 break;
 case 0xE0: // pentru sageti se genereaza intai 0xE0
 switch (_getch()) // apoi un cod specific
 {
 case LEFT: c[CercCurent].Muta(-10, 0); break;
 case RIGHT: c[CercCurent].Muta(10, 0); break;
 case UP: c[CercCurent].Muta(0,-10); break;

Programare Orientată pe Obiecte

 - 7 -

 case DOWN: c[CercCurent].Muta(0, 10); break;
 }
 break;
 case 0x00: // pentru F1, F2 se genereaza intai 0x00
 switch (_getch()) // apoi un cod specific
 {
 case F1: c[CercCurent].Creste(+10); break;
 case F2: c[CercCurent].Creste(-10); break;
 }
 break;
 }

 CloseGraphicMode(); //inchiderea modului grafic
 return 0;
}

Cerc.h

class CERC
{
 int x;
 int y;
 int r;
 int c;
 void Sterge();
public:
 void Atribuie(int x0, int y0, int r0, int c0);
 void Afiseaza();
 void Muta(int dx, int dr);
 void Creste(int dr);
};

Cerc.cpp

#include "Grafica.h"
#include "Cerc.h"

void CERC::Afiseaza()
//*******************
// desenare a cercului
{
 circle(x, y, r, c);
}

void CERC::Sterge()
//*****************
// stergere a cercului
{
 circle(x, y, r, BLACK);
}

void CERC::Muta(int dx, int dy)
//*****************************
// functie care modifica pozitia unui cerc
{
 Sterge(); // stergere cerc

 x += dx; // modificare pozitie x
 y += dy; // modificare pozitie y

Programare Orientată pe Obiecte

 - 8 -

 Afiseaza(); // desenare in noua pozitie
}

void CERC::Creste(int dr)
//***********************
// functie care modifica raza unui cerc
{
 Sterge(); // stergere cerc

 r += dr; // modificare raza

 Afiseaza(); // desenare in noua pozitie
}

void CERC::Atribuie(int x0, int y0, int r0, int c0)
{
 x = x0;
 y = y0;
 r = r0;
 c = c0;
}

Grafica.h

#include <windows.h>

// valorile pentru culori "clasice"
#define BLACK (int)RGB(0, 0, 0)
#define BLUE (int)RGB(0, 0,255)
#define GREEN (int)RGB(0,255, 0)
#define CYAN (int)RGB(0,255,255)
#define RED (int)RGB(255, 0, 0)
#define MAGENTA (int)RGB(255, 0,255)
#define BROWN (int)RGB(128, 0, 0)
#define LIGHTGRAY (int)RGB(255,255,204)
#define DARKGRAY (int)RGB(0,128, 0)
#define LIGHTBLUE (int)RGB(0, 0,128)
#define LIGHTGREEN (int)RGB(153,204, 0)
#define LIGHTCYAN (int)RGB(204,255,255)
#define LIGHTRED (int)RGB(255,128,128)
#define LIGHTMAGENTA (int)RGB(128, 0,128)
#define YELLOW (int)RGB(255,255, 0)
#define WHITE (int)RGB(255,255,255)

// prototipuri de functii considerate "de biblioteca"
void InitializeGraphicMode();
void CloseGraphicMode();
void circle(int, int, int, int);

Grafica.cpp

#include <windows.h>

//**
// cod considerat "de biblioteca", luat ca atare
//**

// pentru utilizare modul grafic
HWND console_handle;
HDC device_context;

Programare Orientată pe Obiecte

 - 9 -

void InitializeGraphicMode()
//***************************
// functie care face trecerea din modul text in modul grafic
{
 console_handle = GetConsoleWindow();
 device_context = GetDC(console_handle);
 Sleep(100);
}

void CloseGraphicMode()
//*********************
// functie care inchide modul grafic
{
 ReleaseDC(console_handle, device_context);
}

void circle(int x, int y, int r, int c)
//*************************************
// functie care deseneaza un cerc (x,y,raza,culoare)
{
 HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
 SelectObject(device_context, pen);
 SelectObject(device_context, GetStockObject(NULL_BRUSH));
 Ellipse(device_context, x - r, y - r, x + r, y + r);
 DeleteObject(pen);
}

