
Programare Orientată pe Obiecte 

 - 1 - 

Laborator 2 - Încapsularea 

Tema 2.1 

Să se analizeze programul Ex2_VS.c 

Indicații 2.1 

 A nu se uita de fișierul Ex2_VS.h 

Tema 2.2 

Să se modifice funcţiile referitoare la cerc astfel încât parametrul CERC să fie transmis prin referinţă. 

Consideraţii teoretice 2.2 

La consideraţii teoretice 1.1 am prezentat faptul că funcţiile pot primi argumente în două feluri: apel 

prin valoare şi apel prin pointer. Acest lucru este valabil pentru compilatorul de C. Compilatorul 

C++ vine cu încă o metodă de transmitere a argumentelor: apelul prin referință. 

Primele două moduri de transmitere a argumentelor le-am introdus prin intermediul unui exemplu, 

o funcţie care interschimbă două valori. Vom exemplifica acest nou mod de transmitere a 

argumentelor prin intermediul aceluiaşi exemplu. 
 

#include <iostream.h> 

 

void schimb(int &x, int &y) 

{ 

 int r; 

 

 r = x; 

 x = y; 

 y = r; 

} 

 

void main() 

{ 

 int m=5,n=7; 

 

 cout<<m<<"  "<<n<<"  "; 

 schimb(m,n); 

 cout<<m<<"  "<<n; 

} 

În acest caz variabilele locale x, y vor referi variabilele m, n. De fapt variabila x va ocupa în 

memorie exact aceeaşi zonă cu variabila m, la fel se întâmplă cu variabilele y şi n. 

 

 

m(x) : 5 

n(y) : 7 

main 
Variabilele x și y referind aceleași 

locații de memorie ca m și n, în 

momentul în care se face schimbarea de 

valori între x și y automat această 

schimbare se reflectă și pentru m și n 

 



Programare Orientată pe Obiecte 

 - 2 - 

Indicaţii 2.2 

 Se va forţa utilizarea compilatorului de C++ (prin modificarea extensiei fișierului sursa în 

*.CPP) 

Tema 2.3 

Să se definească tipul CERC în context C++ (fără operatorul typedef) 

Consideraţii teoretice 2.3 

La consideraţiile teoretice 1.5 am prezentat modul de definire a unei structuri. Precizăm că acel mod 

de definire este specific compilatorului C (dar este totodată recunoscut şi de compilatorul C++). În 

C++, o dată ce a fost declarată o structură, se pot declara variabile de acel tip folosind doar numele 

structurii, fără să mai trebuiască să fie precedată de cuvântul cheie struct. Motivul acestei diferenţe 

între C şi C++ este acela că în C un nume generic de structură nu este un nume de tip complet, în 

timp ce în C++ este. 

În concluzie în C++ prin intermediul lui struct se vor defini noi tipuri de date. Forma generală va fi 

tot cea prezentată la punctul 1.5. 
 

struct nume_structura 

{ 

 tip1 nume_membru1; 

 tip2 nume_membru2; 

 ... 

} variabile_structura; 

Memoria ocupată de o structură este egală cu suma memoriei ocupate de fiecare membru al 

structurii: 
 

sizeof(struct)= Σ(sizeof(membrii)) 

Ne vom folosi în continuare de următorul exemplu: o structură RATIONAL, pentru reprezentarea 

numerelor raţionale (de forma m/n) şi doua funcţii: una de afişare şi una care face adunarea unui 

număr raţional cu un întreg. 
 

#include <iostream.h> 

 

struct RATIONAL 

 { 

  int numarator; 

  int numitor; 

 }; 

 

void Afisez(RATIONAL x) 

{ 

 cout<<x.numarator<<”/”<<x.numitor<<endl; 

}; 

 

void Adun_int(RATIONAL &x, int y) 

{ 

 x.numarator += y*x.numitor; 

 Afisez(x); 

} 

 

void main() 

{ 

 RATIONAL x; 



Programare Orientată pe Obiecte 

 - 3 - 

 x.numarator = 4; 

 x.numitor = 3; 

 Adun_int(x,2); 

} 

Indicaţii 2.3 

 Atenţie la sintaxa de definire (la numele tipului şi la “ ; ”). 

Tema 2.4 

Să se mute funcţia Muta în interiorul structurii CERC. 

Consideraţii teoretice 2.4 

Într-o structură se pot defini nu numai câmpuri de date ci şi funcţii. Forma generală a definirii 

structurii va deveni: 
 

struct nume_structura 

{ 

 tip1 nume_membru1; 

 tip2 nume_membru2; 

 ... 

 tip_returnat1 nume_functie1(lista_parametrii1); 

 ... 

}; 

Declararea funcţiilor definite într-o structură se modifică astfel: 
 

tip_retunat1 nume_structura::nume_functie1(lista_parametrii) 

{ 

 corp functie; 

}; 

Apelarea funcţiilor definite într-o structură se va face astfel: 
 

nume_structura variabila; 

variabila.nume_functie1(parametrii); 

Funcţiile definite într-o structură mai poartă numele de metode. 

Dimensiunea memoriei ocupată de structură nu se modifică datorită adăugării de metode în 

structură: 
 

sizeof(struct) = Σ(sizeof(variabile membru)) 

Revenim la exemplul prezentat la punctul anterior. Dorim să introducem în structura RATIONAL 

funcţia Adun_int. Exemplul va deveni: 
 

#include <iostream.h> 

 

struct RATIONAL 

 { 

  int numarator; 

  int numitor; 

  void Adun_int(RATIONAL &x, int y); 

 }; 

 

void Afisez(RATIONAL x) 

{ 



Programare Orientată pe Obiecte 

 - 4 - 

 cout<<x.numarator<<”/”<<x.numitor<<endl; 

}; 

 

void RATIONAL::Adun_int(RATIONAL &x, int y) 

{ 

 x.numarator += y*x.numitor; 

 Afisez(x); 

} 

 

void main() 

{ 

 RATIONAL x; 

 x.numarator = 4; 

 x.numitor = 3; 

 x.Adun_int(x,2); 

} 

Indicaţii 2.4 

 Apelul metodei Muta trebuie făcut folosind operatorul “.” legat de un cerc. 

Tema 2.5 

Să se renunţe la parametrul de tip CERC din cadrul metodei Muta. 

Consideraţii teoretice 2.5 

În exemplul cu clasa RATIONAL apelul funcţiei Adun_int era sub forma: 
 

x.Adun_int(x,2); 

Se observă că variabila x apare de două ori: la început fiind variabila care apelează funcţia 

Adun_int şi apoi ca parametru al funcţiei Adun_int. Apărând în două locuri ne punem întrbarea 

dacă nu este posibilă renunţarea la x ca şi parametru? Pentru a putea face acest lucru vom fi nevoiţi 

să ne folosim de pointerul this. 

Atunci cand este apelată o funcţie membru, i se pasează automat ca argument implicit pointerul 

this, care este un pointer către variabila care a generat apelarea (variabila care a invocat funcţia).  

Exemplul nostru va fi modificat astfel: 
 

#include <iostream.h> 

 

struct RATIONAL 

 { 

  int numarator; 

  int numitor; 

  void Adun_int(int y); 

 }; 

 

void Afisez(RATIONAL x) 

{ 

 cout<<x.numarator<<”/”<<x.numitor<<endl; 

}; 

 

void RATIONAL::Adun_int(int y) 

{ 

 this->numarator += y*this->numitor; 

 Afisez(*this); 

} 



Programare Orientată pe Obiecte 

 - 5 - 

 

void main() 

{ 

 RATIONAL x; 

 x.numarator = 4; 

 x.numitor = 3; 

 x.Adun_int(2); 

} 

Indicaţii 2.5 

 Se va elimina parametrul de tip CERC şi se va înlocui cu cercul indicat de pointerul this. 

 Atenţie, this este pointer şi uneori avem nevoie de cerc nu de adresa sa. 

Tema 2.6 

Să se introducă în structura CERC şi celelalte funcţii care ţin de cerc în mod asemănător cu funcţia 

Muta.  

Indicaţii 2.6 

 Atenție la funcțiile InitializeGraphicMode, CloseGraphicMode, circle. 

 Se vor repeta temele 2.4 si 2.5 pentru fiecare din metodele respective. 

Tema 2.7 

Să se renunţe la scrierea lui this acolo unde este posibil.  

Consideraţii teoretice 2.7 

La membrii unei structuri se poate obține acces direct din cadrul unei funcţii membru, fără nici un 

specificator de obiect sau structură. 

this->x este echivalent cu x, unde x este un membru al structurii (atât câmp de date cât şi metodă). 
 

#include <iostream.h> 

 

struct RATIONAL 

 { 

  int numarator; 

  int numitor; 

  void Adun_int(int y); 

 }; 

 

void Afisez(RATIONAL x) 

{ 

 cout<<x.numarator<<”/”<<x.numitor<<endl; 

}; 

 

void RATIONAL::Adun_int(int y) 

{ 

 numarator += y*numitor; 

 Afisez(*this); 

} 

 

void main() 

{ 

 RATIONAL x; 

 x.numarator = 4; 

 x.numitor = 3; 



Programare Orientată pe Obiecte 

 - 6 - 

 x.Adun_int(2); 

} 

Indicatii 2.7 

 Deşi se poate renunţa la this nu uitaţi că de fapt compilatorul îl foloseşte. 

Tema 2.8 

Să se găsească un membru (variabilă membru sau metodă) al structurii CERC care poate fi făcut 

privat și programul să funcționeze fără alte modificări.  

Consideraţii teoretice 2.8 

Într-o structură membrii pot fi de două tipuri: publici sau privaţi. Membrii publici sunt membrii care 

pot fi accesaţi atât de către metodele definite în structură cât şi de funcţiile din afara structurii. 

Membrii privaţi sunt membrii care pot fi accesaţi doar de către metodele definite în structură. Forma 

generală pentru definirea structurii va deveni: 
 

struct nume_structura 

{ 

 public: 

    lista_membrii_publici; 

 private: 

    lista_membrii_privati; 

 public: 

    lista_membrii_publici; 

 ... 

}; 

Implicit membrii unei structuri sunt publici. 

Indicaţii 2.8 

 Membrul respectiv nu trebuie să fie folosit din exteriorul structurii. 

Tema 2.9 

Să se introducă o nouă metodă care să permită definirea tuturor datelor din structura CERC private.  

Consideraţii teoretice 2.9 

Pentru a declara variabilele din structură private este necesară o funcţie publică care să facă 

inițializarea variabilelor respective. Devenind private variabilele nu vor mai putea fi modificate 

decât cu ajutorul metodelor definite în structură. 

Exemplul cu structura RATIONAL ar putea fi rescris astfel: 
 

#include <iostream.h> 

 

struct RATIONAL 

 { 

  private: 

    int numarator; 

    int numitor; 

  public: 

    void Adun_int(int y); 

    void Initializez(int x, int y); 

 }; 



Programare Orientată pe Obiecte 

 - 7 - 

 

void Afisez(RATIONAL x) 

{ 

 cout<<x.numarator<<”/”<<x.numitor<<endl; 

}; 

 

void RATIONAL::Initializez(int x, int y) 

{ 

 numarator = x; 

 numitor = y; 

}; 

 

void RATIONAL::Adun_int(int y) 

{ 

 numarator += y*numitor; 

 Afisez(*this); 

} 

 

void main() 

{ 

 RATIONAL x; 

 x.Initializez(4,3); 

 x.Adun_int(2); 

} 

Indicaţii 2.9 

 Se va folosi o metodă publică (cu patru parametrii) care va inițializa toate variabilele 

respective. 

Tema 2.10 

Să se transforme structura CERC în clasa CERC. 

Consideraţii teoretice 2.10 

În C++ o structură este echivalentă cu o clasă, singura diferenţă fiind aceea că într-o structură 

membrii sunt implicit publici iar într-o clasă membrii sunt implicit privaţi. Forma generală a 

definirii unei clase este: 
 

class nume_clasa 

{ 

 public: 

    lista_membrii_publici; 

 private: 

    lista_membrii_privati; 

 public: 

    lista_membrii_publici; 

 ... 

}; 

O variabilă definită de tipul unei clase este un obiect, iar în loc de definire vom spune că instanţiem 

un obiect de tipul clasei. 
 

#include <iostream.h> 

 

class RATIONAL 

 { 

  private: 

    int numarator; 

    int numitor; 



Programare Orientată pe Obiecte 

 - 8 - 

  public: 

    void Adun_int(int y); 

    void Initializez(int x, int y); 

 }; 
 

void Afisez(RATIONAL x) 

{ 

 cout<<x.numarator<<”/”<<x.numitor<<endl; 

}; 
 

void RATIONAL::Initializez(int x, int y) 

{ 

 numarator = x; 

 numitor = y; 

}; 
 

void RATIONAL::Adun_int(int y) 

{ 

 numarator += y*numitor; 

 Afisez(*this); 

} 
 

void main() 

{ 

 RATIONAL x;           //instantierea obiectului x 

 x.Initializez(4,3); 

 x.Adun_int(2); 

} 

Indicaţii 2.10 

 Atenţie la tipul implicit al membrilor. 

Tema 2.11 

Să se separe codul sursă aferent clasei CERC în fișiere separate (cerc.cpp şi cerc.h) care să fie parte a 

proiectului.  

Consideraţii teoretice 2.11 

Prin directiva #include compilatorul ştie că trebuie să citească nu numai fişierul sursă (care conţine 

directiva) ci şi fişierul care este specificat în directivă. Prin această directivă se introduc pentru 

citire şi compilare fişiere antet pentru sistemul de fişiere al funcţiilor de bibliotecă. 

Utilizatorii pot avea sursele scrise în mai multe fişiere, care vor trebui organizate în proiecte pentru 

ca compilatorul să știe de unde poate citi funcţiile. Proiectele sunt colecţii de fişiere sursă (.cpp). 

Principala condiţie într-un proiecte este aceea că în fişierele sursă nu are voie să existe decât o 

singură funcţie main. 

Compilarea unui proiect se face prin compilarea fiecărui fişier component al proiectului. 

Indicaţii 2.11 

 În proiect se includ doar fişierele cpp. 

 Fiecare fişier cpp este compilat separat, link-editarea este comună. 



Programare Orientată pe Obiecte 

 - 9 - 

Anexa 2 
 

 

Ex2_VS.c 

 

 

#include <windows.h> 
#include "Ex2_VS.h"  
 
int culori[10] = {  RED, WHITE, BLUE, YELLOW, GREEN,  
                    BROWN, CYAN, MAGENTA, LIGHTRED, LIGHTGREEN }; 
 
CERC c[10]; // 10 cercuri 
 
int main() 
{ 
int CercCurent = 0, gata = 0, k; 
 
    InitializeGraphicMode(); 
     
    // initializarea cercurilor 
    for (k = 0; k < 10; k++) 
    { 
        c[k].x = 50 * k + 100; 
        c[k].y = 200; 
        c[k].r = 10 * k + 25; 
        c[k].c = culori[k]; 
        Afiseaza(&c[k]);        // si afisarea lor 
    } 
 
    while (!gata) 
        switch (_getch())      
        { 
        case ESC:              
            gata = 1;          
            break; 
        case TAB:              
            CercCurent++;      
            CercCurent %= 10;   
            break; 
        case 0xE0:            // pentru sageti se genereaza intai 0xE0 
            switch (_getch()) //   apoi un cod specific 
            { 
            case LEFT:  Muta(&c[CercCurent],-10,  0); break; 
            case RIGHT: Muta(&c[CercCurent], 10,  0); break; 
            case UP:    Muta(&c[CercCurent],  0,-10); break; 
            case DOWN:  Muta(&c[CercCurent],  0, 10); break; 
            } 
            break; 
        case 0x00:            // pentru F1, F2 se genereaza intai 0x00 
            switch (_getch()) //   apoi un cod specific 
            { 
            case F1: Creste(&c[CercCurent],+10); break; 
            case F2: Creste(&c[CercCurent],-10); break; 
            } 
            break; 
         } 
 
    CloseGraphicMode();  //inchiderea modului grafic 
    return 0; 
} 
 
void Afiseaza(CERC* ce) 



Programare Orientată pe Obiecte 

 - 10 - 

//********************* 
// desenare a cercului 
{ 
    circle(ce->x, ce->y, ce->r, ce->c); 
} 
 
void Sterge(CERC* ce) 
//******************* 
// stergere a cercului 
{ 
    circle(ce->x, ce->y, ce->r, BLACK); 
} 
 
void Muta(CERC *ce, int dx, int dy) 
//********************************* 
// functie care modifica pozitia unui cerc  
{ 
    Sterge(ce);     // stergere cerc  
     
    ce->x += dx;    // modificare pozitie x             
    ce->y += dy;    // modificare pozitie y 
       
    Afiseaza(ce);   // desenare in noua pozitie  
} 
 
void Creste(CERC* ce, int dr) 
//*************************** 
// functie care modifica raza unui cerc  
{ 
    Sterge(ce);     // stergere cerc  
 
    ce->r += dr;    // modificare raza             
 
    Afiseaza(ce);   // desenare in noua pozitie  
} 
 
//********************************************************** 
// cod considerat "de biblioteca", luat ca atare 
//********************************************************** 
 
// pentru utilizare modul grafic 
HWND console_handle; 
HDC device_context; 
 
void InitializeGraphicMode() 
//*************************** 
// functie care face trecerea din modul text in modul grafic 
{ 
    console_handle = GetConsoleWindow(); 
    device_context = GetDC(console_handle); 
    Sleep(100); 
} 
 
void CloseGraphicMode() 
//********************* 
// functie care inchide modul grafic 
{ 
    ReleaseDC(console_handle, device_context); 
} 
 
void circle(int x, int y, int r, int c) 
//************************************* 
// functie care deseneaza un cerc (x,y,raza,culoare) 
{ 



Programare Orientată pe Obiecte 

 - 11 - 

    HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c); 
    SelectObject(device_context, pen); 
    SelectObject(device_context, GetStockObject(NULL_BRUSH)); 
    Ellipse(device_context, x - r, y - r, x + r, y + r); 
    DeleteObject(pen); 
} 
 

 

Ex2_VS.h 

 

 

// codurile pentru diferite taste 
#define ESC   27 
#define TAB    9 
#define LEFT  75    // cu 0xE0 in fata 
#define RIGHT 77    // cu 0xE0 in fata 
#define UP    72    // cu 0xE0 in fata 
#define DOWN  80    // cu 0xE0 in fata 
#define F1    59    // cu 0 in fata 
#define F2    60    // cu 0 in fata 
#define F3    61    // cu 0 in fata 
#define F4    62    // cu 0 in fata 
 
// valorile pentru culori "clasice" 
#define BLACK        (int)RGB(  0,  0,  0) 
#define BLUE         (int)RGB(  0,  0,255) 
#define GREEN        (int)RGB(  0,255,  0) 
#define CYAN         (int)RGB(  0,255,255) 
#define RED          (int)RGB(255,  0,  0) 
#define MAGENTA      (int)RGB(255,  0,255) 
#define BROWN        (int)RGB(128,  0,  0) 
#define LIGHTGRAY    (int)RGB(255,255,204) 
#define DARKGRAY     (int)RGB(  0,128,  0) 
#define LIGHTBLUE    (int)RGB(  0,  0,128) 
#define LIGHTGREEN   (int)RGB(153,204,  0) 
#define LIGHTCYAN    (int)RGB(204,255,255) 
#define LIGHTRED     (int)RGB(255,128,128) 
#define LIGHTMAGENTA (int)RGB(128,  0,128) 
#define YELLOW       (int)RGB(255,255,  0) 
#define WHITE        (int)RGB(255,255,255) 
 
typedef struct 
{ 
 int x; 
 int y; 
 int r; 
 int c; 
} CERC; 
 
// prototip functii proprii 
void Muta(CERC *ce, int dx, int dy); 
void Creste(CERC* ce, int dr); 
void Afiseaza(CERC* ce); 
void Sterge(CERC* ce); 
 
// prototipuri de functii considerate "de biblioteca" 
void InitializeGraphicMode(); 
void CloseGraphicMode(); 
void circle(int, int, int, int); 


