Programare Orientata pe Obiecte

Laborator 2 - Tncapsularea
Tema 2.1
Sa se analizeze programul Ex2 vs.c

Indicatii 2.1
= A nu se uita de fisierul Ex2 vs.n

Tema 2.2
Sa se modifice functiile referitoare la cerc astfel incat parametrul cerc sa fie transmis prin referinta.
Consideratii teoretice 2.2

La consideratii teoretice 1.1 am prezentat faptul ca functiile pot primi argumente in doua feluri: apel
prin valoare si apel prin pointer. Acest lucru este valabil pentru compilatorul de C. Compilatorul
C++ vine cu Inca o metoda de transmitere a argumentelor: apelul prin referinta.

Primele doud moduri de transmitere a argumentelor le-am introdus prin intermediul unui exemplu,
o functie care interschimba doud valori. Vom exemplifica acest nou mod de transmitere a
argumentelor prin intermediul aceluiasi exemplu.

#include <iostream.h>

void schimb (int &x, int &y)

{

int r;
r = X;
X = y;
y = 7

}

void main ()

{

int m=5,n=7;

cout<<m<<" "<<n<<" ";
schimb (m,n) ;
cout<<m<<" "<<n;

}

In acest caz variabilele locale x, y vor referi variabilele m, n. De fapt variabila x va ocupa in
memorie exact aceeasi zond cu variabila m, la fel se intampla cu variabilele y si n.

main - : . .
Variabilele x si y referind aceleasi
locatii de memorie ca m sin, In
momentul in care se face schimbarea de
m(x) : 5 valori intre x si y automat aceasti
schimbare se reflectd si pentru m sin
» n(y):7




Programare Orientata pe Obiecte

Indicatii 2.2

= Se va forta utilizarea compilatorului de C++ (prin modificarea extensiei fisierului sursa in
*.CPP)

Tema 2.3
Sa se defineasca tipul cERC 1n context C++ (fara operatorul typedef)
Consideratii teoretice 2.3

La consideratiile teoretice 1.5 am prezentat modul de definire a unei structuri. Precizdm cé acel mod
de definire este specific compilatorului C (dar este totodata recunoscut si de compilatorul C++). Tn
C++, o data ce a fost declarata o structurd, se pot declara variabile de acel tip folosind doar numele
structurii, fara sa mai trebuiasca sa fie precedata de cuvantul cheie struct. Motivul acestei diferente
intre C si C++ este acela cd In C un nume generic de structurd nu este un nume de tip complet, in
timp ce in C++ este.

Tn concluzie Tn C++ prin intermediul lui struct se vor defini noi tipuri de date. Forma generala va fi
tot cea prezentata la punctul 1.5.

struct nume_ structura

{
tipl nume membrul;
tip2 nume membru?l;

} variabile structura;

Memoria ocupatad de o structurd este egald cu suma memoriei ocupate de fiecare membru al
structurii:

sizeof (struct)= % (sizeof (membrii))

Ne vom folosi in continuare de urmatorul exemplu: o structurd RATIONAL, pentru reprezentarea
numerelor rationale (de forma m/n) si doua functii: una de afisare si una care face adunarea unui
numar rational cu un intreg.

#include <iostream.h>

struct RATIONAL
{

int numarator;
int numitor;

}s

void Afisez (RATIONAL x)
{

cout<<x.numarator<<”/”<<x.numitor<<endl;

}s

void Adun_int (RATIONAL &x, int y)
{

X.numarator += y*x.numitor;
Afisez (x);

}

void main ()

{
RATIONAL x;




Programare Orientata pe Obiecte

X.numarator 4;

X.numitor = 3;
Adun_int (x,2);
}

Indicatii 2.3
= Atentie la sintaxa de definire (la numele tipului si la ““; ).

Tema 2.4
Sa se mute functia Muta Tn interiorul structurii cerc.
Consideratii teoretice 2.4

Intr-0 structurd se pot defini nu numai cAmpuri de date ci si functii. Forma generald a definirii
structurii va deveni:

struct nume structura

{
tipl nume membrul;
tip2 nume membru?l;

tip returnatl nume functiel (lista parametriil);

}i

Declararea functiilor definite intr-0 Structura se modifica astfel:

tip retunatl nume structura::nume functiel (lista parametrii)

{

corp functie;

}i
Apelarea functiilor definite intr-0 Structura se va face astfel:

nume_ structura variabila;
variabila.nume functiel (parametrii);

Functiile definite intr-o structurd mai poarta numele de metode.

Dimensiunea memoriei ocupatd de structura nu se modifica datoritd adaugarii de metode in
structura:

sizeof (struct) = ¥ (sizeof (variabile membru))

Revenim la exemplul prezentat la punctul anterior. Dorim sa introducem 1n structura RATIONAL
functia adun_int. Exemplul va deveni:

#include <iostream.h>

struct RATIONAL
{
int numarator;
int numitor;
void Adun_ int (RATIONAL &x, int y);
b

void Afisez (RATIONAL x)
{




Programare Orientata pe Obiecte

cout<<x.numarator<<”/”<<x.numitor<<endl;
}i

void RATIONAL::Adun_int (RATIONAL &x, int y)
{

X.numarator += y*x.numitor;

Afisez (x);

}

void main ()
{
RATIONAL x;
X.numarator =
X.numitor = 3;
x.Adun_int(x,2);
}

4;

Indicatii 2.4
= Apelul metodei Muta trebuie facut folosind operatorul “.”” legat de un cerc.

Tema 2.5
Sa se renunte la parametrul de tip cerc din cadrul metodei Muta.
Consideratii teoretice 2.5

Tn exemplul cu clasa rRaT10NAL apelul functiei Adun_int era sub forma:

x.Adun_int(x,2);

Se observa cd variabila x apare de doud ori: la inceput fiind variabila care apeleazd functia
Adun_int sl apoi ca parametru al functiei Adun_int. Apdrand in doud locuri ne punem intrbarea
daca nu este posibila renuntarea la x ca si parametru? Pentru a putea face acest lucru vom fi nevoiti
sa ne folosim de pointerul this.

Atunci cand este apelatd o functie membru, 1 se paseazd automat ca argument implicit pointerul
this, care este un pointer catre variabila care a generat apelarea (variabila care a invocat functia).

Exemplul nostru va fi modificat astfel:
#include <iostream.h>

struct RATIONAL
{
int numarator;
int numitor;
void Adun_int (int y);
}i

void Afisez (RATIONAL x)
{

cout<<x.numarator<<”/”<<x.numitor<<endl;

}i

void RATIONAL: :Adun_int (int vy)
{
this->numarator += y*this->numitor;
Afisez (*this);
}




Programare Orientata pe Obiecte

void main ()

{

RATIONAL x;
x.numarator
X.numitor =
x.Adun_int (2
}

3;
)

Indicatii 2.5
= Se va elimina parametrul de tip cerc si se va inlocui cu cercul indicat de pointerul this.
= Atentie, this este pointer si uneori avem nevoie de cerc nu de adresa sa.

Tema 2.6

Sa se introduca in structura ceErc si celelalte functii care tin de cerc in mod asemanator cu functia
Muta.

Indicatii 2.6
= Atentie la func‘giile InitializeGraphicMode, CloseGraphicMode, circle.
= Se vor repeta temele 2.4 si 2.5 pentru fiecare din metodele respective.

Tema 2.7
Sa se renunte la scrierea lui this acolo unde este posibil.
Consideratii teoretice 2.7

La membrii unei structuri se poate obtine acces direct din cadrul unei functii membru, fara nici un
specificator de obiect sau structura.

this->x este echivalent cu %, unde x este un membru al structurii (atat cimp de date cat si metoda).
#include <iostream.h>

struct RATIONAL
{
int numarator;
int numitor;
void Adun_ int (int y);
}s

void Afisez (RATIONAL x)
{
cout<<x.numarator<<”/”<<x.numitor<<endl;

}s

void RATIONAL::Adun_int (int vy)
{

numarator += y*numitor;
Afisez (*this);

}

void main ()
{
RATIONAL x;
xX.numarator

X.numitor = 3;




Programare Orientata pe Obiecte

x.Adun_int (2);
}

Indicatii 2.7
= Desi se poate renunta la this nu uitati ca de fapt compilatorul il foloseste.

Tema 2.8

Sa se gaseascd un membru (variabild membru sau metodd) al structurii cERC care poate fi facut
privat si programul sa functioneze fara alte modificari.

Consideratii teoretice 2.8

Tntr-o structurd membrii pot fi de doua tipuri: publici sau privati. Membrii publici sunt membrii care
pot fi accesati atat de catre metodele definite in structurd cat si de functiile din afara structurii.
Membrii privati sunt membrii care pot fi accesati doar de catre metodele definite in structurd. Forma
generald pentru definirea structurii va deveni:

struct nume_ structura
{
public:

lista membrii publici;
private:

lista membrii privati;
public:

lista membrii publici;

}i
Implicit membrii unei structuri sunt publici.

Indicatii 2.8
= Membrul respectiv nu trebuie sa fie folosit din exteriorul structurii.

Tema 2.9
Sa se introducd o noud metoda care sa permita definirea tuturor datelor din structura cERC private.
Consideratii teoretice 2.9

Pentru a declara variabilele din structura private este necesard o functie publicad care sa faca
initializarea variabilelor respective. Devenind private variabilele nu vor mai putea fi modificate
decét cu ajutorul metodelor definite in structura.

Exemplul cu structura RATIONAL ar putea fi rescris astfel:
#include <iostream.h>

struct RATIONAL

{

private:
int numarator;
int numitor;

public:
void Adun_ int (int y);
void Initializez (int x, int vy);

}i




Programare Orientata pe Obiecte

void Afisez (RATIONAL x)
{

cout<<x.numarator<<”/”<<x.numitor<<endl;
}i

void RATIONAL::Initializez(int x, int vy)
{

numarator = x;
numitor = y;

}i

void RATIONAL::Adun_int (int vy)
{

numarator += y*numitor;
Afisez (*this);
}

void main ()
{
RATIONAL x;
X.Initializez (4,3);
x.Adun_int (2);
}

Indicatii 2.9
= Se va folosi 0 metodd publica (cu patru parametrii) care va initializa toate variabilele
respective.

Tema 2.10
Sa se transforme structura CERC 1n clasa CERC.
Consideratii teoretice 2.10

In C++ o structurd este echivalenti cu o clasi, singura diferentd fiind aceea ci intr-o structurd
membrii sunt implicit publici iar intr-o clasa membrii sunt implicit privati. Forma generald a
definirii unei clase este:

class nume clasa
{
public:

lista membrii publici;
private:

lista membrii privati;
public:

lista membrii publici;

}s

O variabila definitd de tipul unei clase este un obiect, iar in loc de definire vom spune ca instantiem
un obiect de tipul clasei.

#include <iostream.h>

class RATIONAL
{
private:
int numarator;
int numitor;




Programare Orientata pe Obiecte

public:
void Adun_int (int y);
void Initializez (int x, int vy);

}i

void Afisez (RATIONAL x)
{

cout<<x.numarator<<”/”<<x.numitor<<endl;
b

void RATIONAL::Initializez(int x, int vy)
{

numarator = x;
numitor = y;

}i

void RATIONAL::Adun_int (int vy)
{

numarator += y*numitor;
Afisez (*this);
}

void main ()

{

RATIONAL x; //instantierea obiectului x
x.Initializez (4,3);

x.Adun_int (2);

}

Indicatii 2.10
= Atentie la tipul implicit al membrilor.

Tema 2.11

Sa se separe codul sursa aferent clasei cERc 1n fisiere separate (cerc.cpp si cerc.h) care sa fie parte a
proiectului.

Consideratii teoretice 2.11

Prin directiva #include compilatorul stie ca trebuie sa citeasca nu numai fisierul sursa (care contine
directiva) ci si fisierul care este specificat in directivd. Prin aceasta directivd se introduc pentru
citire si compilare fisiere antet pentru sistemul de fisiere al functiilor de biblioteca.

Utilizatorii pot avea sursele scrise in mai multe fisiere, care vor trebui organizate in proiecte pentru
ca compilatorul sa stie de unde poate citi functiile. Proiectele sunt colectii de fisiere sursa (.cpp).
Principala conditie Intr-un proiecte este aceea ca in fisierele sursd nu are voie sd existe decat o
singura functie main.

Compilarea unui proiect se face prin compilarea fiecarui fisier component al proiectului.

Indicatii 2.11
= In proiect se includ doar fisierele cpp.
= Fiecare figier cpp este compilat separat, link-editarea este comuna.




Programare Orientata pe Obiecte

Anexa 2
Ex2 VS.c
#include <windows.h>

#include "Ex2_VS.h"

int culori[10] = { RED, WHITE, BLUE, YELLOW, GREEN,
BROWN, CYAN, MAGENTA, LIGHTRED, LIGHTGREEN };

CERC c[10]; // 10 cercuri

int main()

{

int CercCurent = 0, gata = 0, Kk;

InitializeGraphicMode();

// initializarea cercurilor
for (k = 0; k < 10; k++)

{

c[k].x = 50 * k + 100;

c[kl.y = 200;

c[k]l.r = 10 * k + 25;

c[k].c = culorilk];

Afiseaza(&cl[k]); // si afisarea lor
}

while (!gata)
switch (_getch())

{

case ESC:
gata = 1;
break;

case TAB:
CercCurent++;
CercCurent %= 10;
break;

case OXEO: // pentru sageti se genereaza intai OxEO
switch (_getch()) // apoi un cod specific
{
case LEFT: Muta(&c[CercCurent],-10, 0); break;
case RIGHT: Muta(&c[CercCurent], 10, ©0); break;
case UP: Muta(&c[CercCurent], 0,-10); break;
case DOWN: Muta(&c[CercCurent], 0, 10); break;
}
break;

case 0x00: // pentru F1, F2 se genereaza intai 0x00
switch (_getch()) // apoi un cod specific
{
case F1l: Creste(&c[CercCurent],+10); break;
case F2: Creste(&c[CercCurent],-10); break;
}
break;

}
CloseGraphicMode(); //inchiderea modului grafic
return 0;

}

void Afiseaza(CERC* ce)




Programare Orientata pe Obiecte

YA T e T T T
// desenare a cercului

{
}

circle(ce->x, ce->y, ce->r, ce->c);

void Sterge(CERC* ce)
[ [ xxFxkkkrhkhkhkhkhkkk

// stergere a cercului

{
}

circle(ce->x, ce->y, ce->r, BLACK);

void Muta(CERC #*ce, int dx, int dy)
//*********************************

// functie care modifica pozitia unui cerc

{

Sterge(ce); // stergere cerc

ce—>x += dx; // modificare pozitie x
ce—>y += dy; // modificare pozitie y
Afiseaza(ce); // desenare in noua pozitie

}

void Creste(CERC* ce, int dr)
//***************************

// functie care modifica raza unui cerc

{

Sterge(ce); // stergere cerc
ce—>r += dr; // modificare raza
Afiseaza(ce); // desenare in noua pozitie

}

//**********************************************************

// cod considerat "de biblioteca", luat ca atare

//**********************************************************

// pentru utilizare modul grafic
HWND console_handle;
HDC device_context;

void InitializeGraphicMode()
//***************************

// functie care face trecerea din modul text in modul grafic

{
console_handle = GetConsoleWindow();
device_context = GetDC(console_handle);
Sleep(100);

}

void CloseGraphicMode()

AT T T T T
// functie care inchide modul grafic

{
}

ReleaseDC(console_handle, device_context);

void circle(int x, int y, int r, int c)
//*************************************

// functie care deseneaza un cerc (x,y,raza,culoare)

{

-10 -



Programare Orientata pe Obiecte

HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);

SelectObject(device_context, pen);
SelectObject(device_context, GetStockObject(NULL_BRUSH));

Ellipse(device_context, x — r, v -

DeleteObject(pen

);

// codurile pentru diferite taste

#tdefine ESC 27
#tdefine TAB 9
#define LEFT 175
#tdefine RIGHT 77
#tdefine UP 72
#define DOWN 80
#tdefine F1 59
#tdefine F2 60
#tdefine F3 61
#tdefine Fu 62

//
//
//
//
//
//
//
//

cu
cu
cu
cu
cu
cu
cu
cu

OXEQ
OxXEO
OxEO
OxXEO
0 in
0 in
0 in
0 in

in f
in f
in f
in f
fata
fata
fata
fata

// valorile pentru culori "clasice"
(int)RGB( 0,

(int)RGB( 0,

(int)RGB( 0,255, 0)
(int)RGB( @,255,255)
(int)RGB(255,
(int)RGB(255,
(int)RGB(128,
(int)RGB(255,255,204)
(int)RGB( 0,128, 0)
(int)RGB( 0,
(int)RGB(153,204, 0)
(int)RGB(204,255,255)
(int)RGB(255,128,128)
(int)RGB(128,
(int)RGB(255,255, 0)
(int)RGB(255,255,255)

#define BLACK
#tdefine BLUE
#define GREEN
#tdefine CYAN
#tdefine RED
#define MAGENTA
#tdefine BROWN
#tdefine LIGHTGRAY
#idefine DARKGRAY
#define LIGHTBLUE
#tdefine LIGHTGREEN
#define LIGHTCYAN
#tdefine LIGHTRED
#tdefine LIGHTMAGENTA
#define YELLOW
#define WHITE

typedef struct
{

int x;

int y;

int r;

int c;
} CERC;

// prototip functii proprii
void Muta(CERC *ce, int dx, int dy);
void Creste(CERC* ce, int dr);
void Afiseaza(CERC* ce);

void Sterge(CERC* ce

// prototipuri de functii considerate "de biblioteca"

);

void InitializeGraphicMode();
void CloseGraphicMode();
void circle(int, int, int, int);

Ex2 VS.h

ata
ata
ata
ata

0, 0)
0,255)

0, 0)
0,255)
0, 0)

0,128)

0,128)

r, x+r,y+ r);

-11 -



