Programare Orientatd pe Obiecte

Laborator 1 - Structurarea datelor
Temal.l
Sa se analizeze programul Ex1_VS.c din Anexa 1.
Consideratii teoretice 1.1

Compilatoarele de C++ pot compila si surse C insa, cadnd se doreste compilarea de surse in C,
fisierele trebuie sa aiba extensia .C (nu .CPP), deoarece limbajul se decide implicit dupa extensie.

In cazul fisierelor antet (cele cu extensia .H) definite de utilizator, pentru a putea fi ciutate in
directorul curent, includerea se va face in forma urmatoare:

#include “nume fisier.h”

Modul grafic

Un program poate folosi monitorul in doud moduri de lucru:

e Modul de lucru text — este modul in care ecranul este impartit ntr-o matrice de “casute” de
dimensiune 80 x 25 (uzual). In fiecare casuta se poate afisa un caracter.

e Modul de lucru grafic — este modul de lucru in care ecranul este impartit intr-o matrice de
puncte (pixeli) de dimensiune 800x600, 1024x800, etc. Tn acest mod de lucru pe ecran pot fi
afisate atat caractere (de aceastd datd caracterele pot fi scrise de dimensiuni diverse si CU
fonturi diferite), cat si diferite obiecte grafice (puncte, linii, cercuri, etc.).

Tn ambele cazuri ecranul are coordonata 0,0 In coltul din stanga sus.

Cateva functii folosite pentru lucrul in modul grafic:
® void InitializeGraphicMode (void) -fhncﬁecanahﬁﬁahzeazérnodulgraﬁc.
® void CloseGraphicMode () - functie care inchide modul grafic.

® void circle(int, int, int, int) - functie care deseneaza un cerc de centru x si v, de
raza r si culoare c.

Deocamdata vom considera aceste functii ca niste functii de biblioteca, le vom lua si folosi ca atare.
Variabile

Variabilele se declara, de obicei, in trei locuri: in interiorul functiilor (variabile locale), in cadrul
definitiei parametrilor functiei (parametri formali) si in afara oricarei functii (variabile globale).
Variabilele locale sunt declarate in interiorul unei functii, ele fiind accesibile doar instructiunilor
care se afld in interiorul blocului in care sunt declarate variabilele. Parametri formali ai functiei se
comporta ca orice altd variabila locala din acea functie. Variabilele globale sunt cunoscute n intreg
programul si pot fi utilizate de catre orice zona a codului.

Functii

Forma generald a definirii unei functii:

specificator de tip nume functie(lista de parametrii)
{

corpul functiei

}

Programare Orientatd pe Obiecte

specificatorul de tip specificd tipul de date pe care il returneazad functia. Dacd nu este
specificat nici un tip, compilatorul presupune cd functia returneaza un rezultat de tip int.
lista de parametrii este o listd separatd prin virgule de tipul si numele parametrilor formali.
Parametrii formali primesc valorile argumentelor atunci cand este apelata functia, compilatorul
verificand Tn momentul apelului corespondenta intre parametrii actuali si cei formali.

In unele cazuri este preferat modelul care implica folosirea prototipului functiei (declararea ei),
definirea functiei urmand a fi facuta ulterior. Forma generala a prototipului unei functii:

specificator de tip nume functie(lista de parametrii);
Tn general functiile pot primi argumente in doua feluri: apel prin valoare si apel prin pointer.

Sa ludm urmatorul exemplu: dorim sa facem o functie care sa interschimbe doud valori. O prima
varianta (scrisa rapid) ar arata in felul urmator:

#include <iostream.h>
void schimb (int x, int vy)

{

int r;
r X;
X = y;
y = ©;

}

void main ()

{

int m=5,n=7;

cout<<m<<" "<<n<" ",
schimb (m,n) ;
cout<<m<<" "<<n;

}

Vom avea insd urmatoarea surpriza programul va afisa: 5 7 5 7. Ce s-a intamplat de nu s-au
schimbat totusi valorile Tntre ele?

n functia main am definit cele doua variabile m, n pentru care se aloca memorie. in momentul in
care apelam functia schimb (m, n), aceasta functie foloseste variabilele locale %, y, r pentru care se
aloca memorie (pe stiva) atata timp cat va rula aceasta functie. Variabila x va primi valoarea lui m,
iar variabila y va primi valoarea lui n. Apoi se face schimbarea de valori intre variabilele locale x, v,
fara ca valorile din zona de memorie alocatd pentru variabilele m, n sa fie afectate. La revenirea din
functia schimb cele doua variabile m, n VOr avea tot aceleasi valori ca mai inainte.

main schimb

m=5 [P x=5 [Schimbarea valorilor se face
pentru variabilele locale X, y;
variabilele m, n din main
raman neschimbate

Programare Orientatd pe Obiecte

Acesta a fost un exemplu de apel prin valoare (in urma caruia nu am reusit sa schimbam valorile
variabilelor folosite n apelarea functiei).

Pentru ca totusi sa reusim ce ne-am propus vom folosi apel prin pointer. Exemplul nostru va arata
astfel:

#include <iostream.h>
void schimb (int *x, int *y)

{

int r;
r = *x;
*X = *y;
*y — r;

}

void main ()

{

int m=5,n=7;

cout<<m<<" "<<n<" ",
schimb (&m, &n) ;
cout<<m<<" "<<n;

}

Scris in acest fel programul va face ceea ce ne dorim. De fapt ce s-a modificat? Functia schimb are
acum ca si parametrii doi pointeri in care se vor memora adresele variabilelor m, n. De aceasta data
in functia schimb Se vor schimba valorile de la adresele de memorie date de x, vy, respectiv se vor
schimba valorile din zona de memorie unde sunt memorate variabilele m, n.

main schimb

) - Schimbarea valorilor se face
X = adresa luim pentru locatiile de memorie
a caror adrese sunt in X §i in
y (respectiv locatiile care
n=7 | pf y=adresaluin contin varibilele m si n)

Lucrul cu tastatura

Pentru a afla codul generat la apdsarea unei taste se foloseste functia getch (). Aceasta asteapta
apasarea unei taste si intoarce:

e pentru tastele normale codul ASCII al tastei apasate.

e pentru tastele speciale valoarea 0 sau OXEOQ urmate, la o noua apelare a functiei

getch (), de un cod al tastei apasate. Taste speciale sunt de exemplu: sagetile,
F1 - F12, tastele INS, DEL, PAGE UP, PAGE DOWN, HOME si END.

Indicatii 1.1
= Atentie, nu uitati de fisierul Ex1_VS.h
= Atentie la codul asociat TAB
= Atentie la restrictiile compilatorului de C.

Programare Orientatd pe Obiecte

Tema 1.2
Sa se modifice programul asa Incat sd gestioneze 4 (patru) cercuri.

Indicatii 1.2
= Se vor declara variabilele x4, y4, r4, c4 si se va modifica corespunzator programul.
= Atentie la codul asociat TAB.

Tema 1.3

Sa se modifice programul asa Incat sa gestioneze 10 (zece) cercuri.
Consideratii teoretice 1.3

Vectori

Un vector (o matrice cu o singura dimensiune) este o colectie de variabile de acelasi tip, apelate cu
acelasi nume. Accesul la un anumit element al vectorului se face cu ajutorul unui indice. Un vector
ocupd locatii de memorie contigue (consecutive). Forma generald pentru declararea unui vector
este:

tip nume variab[marime];

Vectorii trebuise declarati explicit astfel incat compilatorul sa aloce spatiu in memorie pentru ei.
tip declara tipul de baza al vectorului, care este tipul fiecarui element al sdu. marime indica
numarul de elemente al vectorului. Accesarea unui element al vectorului se va face astfel:

nume variab[indice]
unde indice va putea lua valori de la 0 lamarime-1.
Culori

Culorile pot fi privite ca numere intregi (de 32 biti) care combina pe cate 8 biti valorile pentru R, G
si B (fiecare pe 8 biti). In fisierul Ex1_VS.h se gasesc valorile pentru cateva culori uzuale:

BLACK BLUE GREEN CYAN

RED MAGENTA BROWN LIGHTGRAY
DARKGRAY LIGHTBLUE LIGHTGREEN LIGHTCYAN
LIGHTRED LIGHTMAGENTA YELLOW WHITE
Indicatii 1.3

= Se vor folosi patru vectori, cate unul pentru fiecare variabila x, y, r respectiv c.

= La initializare se recomanda folosirea unei bucle for pentru a initializa fiecare cerc, iar
valorile atribuite sa fie dependente de contorul buclei (de exemplu x [k]=200+10%k).

= Pentru culorile cercurilor se recomanda definirea unui vector global initializat explicit cu
culorile dorite, iar culoarea cercului x se va lua din acest vector prin indexare cu «.

= Datorita ordinii realizate in date se poate renunta la switch (Cerccurent) si Tnlocui cu o
singurd linie cu apel de Muta si indexare (dupa variabila cerccurent) in tablourile
corespunzatoare.

= Nu se va modifica functia Mmuta.

Programare Orientatd pe Obiecte

Tema 1.4

Sa se modifice programul astfel incat sa foloseasca o matrice care s memoreze datele cercurilor.
Consideratii teoretice 1.4

Matrici

Compilatorul de C admite declararea de matrici multidimensionale. Cea mai simpla forma de
matrice multidimensionala este cea bidimensionala, care poate fi privita ca un vector de vectori.
Definirea unei matrici se va face in felul urmator:

tip nume matrice[marimel] [marime2];
tip reprezintd tipul de date pentru elementele matricii. Matricele bidimensionale sunt stocate in

forma rénd-coloand, unde primul indice (marimel) indica randul iar al doilea (marime2) indica
coloana. Accesul la un element al matricii se face sub forma:

nume matrice[indicel] [indice2];

unde indice1 va lua valori intre 0 si marimel, iar indice2 va lua valori intre 0 si marime2. In ceea
ce priveste stocarea efectiva Tn memorie a matricii, indice2 se modificd mai repede decat indicel
atunci cand sunt parcurse succesiv elementele matricii.

Indicatii 1.4
= Se va folosi o singurd matrice, cu 4 coloane, corespunzatoare variabilelor x, y, r si c.
= Nu se va modifica functia muta.

Tema 1.5

Sa se defineasca o structura CERC, aferenta unui cerc, si sd se modifice corespunzator programul.
Consideratii teoretice 1.5

Structuri

O structura este un grup de variabile unite sub acelasi nume, ce pun la dispozitie un mod convenabil
de pastrare a informatiilor legate intre ele. O declarare de structura formeaza un sablon care poate fi
folosit pentru a crea variabile de acel tip. Membrii (elementele sau campurile) unei structuri sunt
variabilele care fac parte din structurd. Forma generala a definirii unei structuri este:

struct nume structura

{
tipl nume membrul;
tip2 nume membru2;

} variabile structura;

unde nume structura este numele structurii si variabile structura este lista de variabile de
tipul structurii. Cele doud pot fi omise, dar nu ambele simultan. Atentie definitia se termina cu
punct si virgula, deoarece este o instructiune. Avand definitd o structura, definirea unei variabile de
tipul structurii se va face astfel:

struct nume_ structura nume_ variabila;

Programare Orientatd pe Obiecte

Forma generald de acces la un membru al structurii este:

nume variabila.nume membru

In cazul unei variabile pointer la o structurd accesul la un membru al structurii se va face astfel:

nume pointer->nume membru

Limbajul C permite definirea explicitd a noi nume de tipuri de date prin utilizarea cuvantului cheie
typedef. Forma generala de folosire typedef este:

typedef tip vechi tip nou;

Daca tip_vechi este o structurd, noul tip de date definit se poate folosi fard a fi nevoie sa se
specifice de fiecare data cuvantul struct la definirea variabilelor.

Indicatii 1.5
= Se va defini un vector de elemente de tip cerc.

= Se va modifica functia muta astfel incat sa primeascd doar un parametru referitor la cERC si
deplasarile (in total 3 parametrii).

= Atentie la declararea (prototipul), definirea si apelul corespunzator al functiei Muta.
Tema 1.6
Sa se renunte la variabilele dx si dy din main fard a se modifica insa functia Muta.

Indicatii 1.6
= Se vor lua in considerare apeluri ale functiei Muta ori de cate ori este cazul.

Tema 1.7

Sé se introduca doud functii sterge $i Afiseaza care sd realizeze stergerea si respectiv afisarea
unui cerc primind ca si parametru cercul. Acestea vor fi singurele functii care mai contin functia

circle.

Tema 1.8

Sa se adauge o facilitate suplimentard de modificat raza cercului curent: la apdsarea F1 raza creste
cu 10 iar la apasarea F2 raza scade cu 10.

Consideratii teoretice 1.8

Tastele F1 si F2 sunt taste speciale care transmit cate 2 coduri:
e F1:0urmatde 59
e F2:0urmat de 60

Indicatii 1.8
= Implementarea va fi asemanatoare functiei Muta, iar numele functiei va fi creste.

Programare Orientatd pe Obiecte

Anexa l

Exl VS.c

#include <windows.h>
#include "Ex1_VS.h" // includerea fisierului antet propriu "Ex1_VS.h"
// care trebuie existe in directorul curent.

// prototipuri de functii considerate "de biblioteca"
void InitializeGraphicMode(void);

void CloseGraphicMode();

void circle(int, int, int, int);

// prototip functie proprie
void Muta(int* x, int* vy, int r, int c, int dx, int dy);

// variabile globale, pentru un cerc vom avea urmatoarele date:

// x, y = coordonatele centrului cercului
// r = raza cercului
// c = culoarea cercului

// se vor defini 3 cercuri

//variabilele pentru cele 3 cercuri
int x1,yl,rl,cl, x2,y2,r2,c2, x3,y3,r3,c3;

int main()
{

// variabile locale

int CercCurent = 0;
// variabila care indica cercul curent, poate lua 3 valori:
// @ - pentru cercul x1, yl, rl, cl
// 1 - pentru cercul x2, y2, r2, c2
// 2 - pentru cercul x3, y3, r3, c3

int gata = 0;
int dx, dy;

// cod

InitializeGraphicMode(); // se face trecerea in modul grafic

// initializarea variabilelor pt. cerc 1
x1 = 100; yl = 200; rl = 25; cl = YELLOW;
circle(x1l, y1, rl, cl); // se deseneaza cercul 1

// initializarea variabilelor pt. cerc 2
X2 = 300; y2 = 200; r2 = 50; c2 = RED;
circle(x2, y2, r2, c2); // se deseneaza cercul 2

// initializarea variabilelor pt. cerc 3
x3 = 500;y3 = 200;r3 = 100; c3 = BLUE;
circle(x3, y3, r3, c3); // se deseneaza cercul 3

// se intra intr-o bucla in care se ramane atata timp cat gata=0
while (!gata)

switch (_getch()) // se asteapta apasarea unei taste

{

case ESC: // daca s-a apasat ESC se va iesi din bucla
gata = 1; // prin valoarea 1 pe care o primeste gata
break;

case TAB: // daca s-a apasat TAB

-7-

Programare Orientatd pe Obiecte

CercCurent++; // trecem la cercul urmator
CercCurent %= 3; // dupa cercul 2 urmeaza cercul 0
break;

case OxEO: // pentru sageti se genereaza intai OxEOQ

switch (_getch()) // apoi un cod specific
{

case LEFT: dx = -10;dy = 0;break; // 10 pixeli la stanga
case RIGHT: dx = 10;dy = 0;break; // 10 pixeli la dreapta
case UP: dx = 0;dy = -10;break; // 10 pixeli in sus
case DOWN: dx = 0;dy = 10;break; // 10 pixeli in jos
default: dx = 0;dy = 0;break;

}

// in functie de sageata apasata s-au dat valori pt. dx si dy

// abia acum se muta cu dx si dy cercul curent
switch (CercCurent)

{
case 0: // daca CercCurent=0
Muta(&xl, &yl, rl, cl, dx, dy); // mutarea cercului 1
break;
case 1: // daca CercCurent=1
Muta(&x2, &y2, r2, c2, dx, dy); // mutarea cercului 2
break;
case 2: // daca CercCurent=2
Muta(&x3, &y3, r3, c3, dx, dy); // mutarea cercului 3
break;
}
break;
}
CloseGraphicMode(); //inchiderea modului grafic
return 0;

}

void Muta(int* x, int* vy, int r, int c, int dx, int dy)
//***
// functie care muta un cerc cu deplasamentele dx si dy
{
// sterge cercul din pozitia veche, prin scrierea
// unui cerc de culoarea fondului (negru) peste el
circle(*x, *y, r, BLACK);

// sunt modificate coordonatele centrului cercului
*x += dx; // mutare pe orizontala
*y += dy; // mutare pe verticala

// desenare a cercului in noua pozitie
circle(*x, *y, r, c);

//**

// cod considerat "de biblioteca", luat ca atare
//**

// pentru utilizare modul grafic
HWND console_handle;
HDC device_context;

void InitializeGraphicMode()
//***************************

// functie care face trecerea din modul text in modul grafic

{

console_handle = GetConsoleWindow();

-8-

Programare Orientatd pe Obiecte

device_context = GetDC(console_handle);
Sleep(100);
}

void CloseGraphicMode()
YA T T e T T T

// functie care inchide modul grafic

{
}

ReleaseDC(console_handle, device_context);

void circle(int x, int y, int r, int c)
//*************************************
// functie care deseneaza un cerc (x,y,raza,culoare)

{
HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
SelectObject(device_context, pen);
SelectObject(device_context, GetStockObject(NULL_BRUSH));
Ellipse(device_context, x = r, v — r, x + v, y + r);
DeleteObject(pen);

}

Exl VS.h
// codurile pentru diferite taste
#define ESC 27
#define TAB 9
#define LEFT 75 // cu OxE@ in fata
#define RIGHT 77 // cu OxE@ in fata
#define UP 72 // cu OxE@ in fata
#define DOWN 80 // cu OxE@ in fata
#define F1 59 // cu 0 in fata
#define F2 60 // cu 0 in fata
#define F3 61 // cu 0 in fata
#define Fu4 62 // cu 0 in fata
// valorile pentru culori "clasice"
#define BLACK (int)RGB(0, 0, ©0)
#define BLUE (int)RGB(0, 0,255)
#define GREEN (int)RGB(0,255, 0)
#define CYAN (int)RGB(0,255,255)
#define RED (int)RGB(255, 0, 0)
#define MAGENTA (int)RGB(255, 0,255)
#define BROWN (int)RGB(128, 0, ©0)
#define LIGHTGRAY (int)RGB(255,255,204)
#define DARKGRAY (int)RGB(0,128, 0)
#define LIGHTBLUE (int)RGB(0, 0,128)
#define LIGHTGREEN (int)RGB(153,204, 0)
#define LIGHTCYAN (int)RGB(204,255,255)
#define LIGHTRED (int)RGB(255,128,128)
#idefine LIGHTMAGENTA (int)RGB(128, ©0,128)
#define YELLOW (int)RGB(255,255, 0)
#define WHITE (int)RGB(255,255,255)

