
Programare Orientată pe Obiecte

 - 1 -

Laborator 1 - Structurarea datelor

Tema 1.1

Să se analizeze programul Ex1_VS.c din Anexa 1.

Considerații teoretice 1.1

Compilatoarele de C++ pot compila și surse C însă, când se dorește compilarea de surse în C,

fișierele trebuie să aibă extensia .C (nu .CPP), deoarece limbajul se decide implicit după extensie.

În cazul fișierelor antet (cele cu extensia .H) definite de utilizator, pentru a putea fi căutate în

directorul curent, includerea se va face în forma următoare:

#include “nume_fisier.h”

Modul grafic

Un program poate folosi monitorul în două moduri de lucru:

• Modul de lucru text – este modul în care ecranul este împărțit într-o matrice de “căsuțe” de

dimensiune 80 x 25 (uzual). În fiecare căsuță se poate afișa un caracter.

• Modul de lucru grafic – este modul de lucru în care ecranul este împărțit într-o matrice de

puncte (pixeli) de dimensiune 800x600, 1024x800, etc. În acest mod de lucru pe ecran pot fi

afișate atât caractere (de această dată caracterele pot fi scrise de dimensiuni diverse și cu

fonturi diferite), cât și diferite obiecte grafice (puncte, linii, cercuri, etc.).

În ambele cazuri ecranul are coordonata 0,0 în colțul din stânga sus.

Câteva funcții folosite pentru lucrul în modul grafic:

• void InitializeGraphicMode(void) - funcție care inițializează modul grafic.

• void CloseGraphicMode() - funcție care închide modul grafic.

• void circle(int, int, int, int) - funcție care desenează un cerc de centru x și y, de

raza r și culoare c.

Deocamdată vom considera aceste funcții ca niște funcții de bibliotecă, le vom lua și folosi ca atare.

Variabile

Variabilele se declară, de obicei, în trei locuri: în interiorul funcțiilor (variabile locale), în cadrul

definiției parametrilor funcției (parametri formali) și în afara oricărei funcții (variabile globale).

Variabilele locale sunt declarate în interiorul unei funcții, ele fiind accesibile doar instrucțiunilor

care se află în interiorul blocului în care sunt declarate variabilele. Parametri formali ai funcției se

comportă ca orice altă variabilă locală din acea funcție. Variabilele globale sunt cunoscute în întreg

programul și pot fi utilizate de către orice zonă a codului.

Funcţii

Forma generală a definirii unei funcții:

specificator_de_tip nume_functie(lista_de_parametrii)

{

corpul_functiei

}

Programare Orientată pe Obiecte

 - 2 -

specificatorul_de_tip specifică tipul de date pe care îl returnează funcția. Dacă nu este

specificat nici un tip, compilatorul presupune că funcția returnează un rezultat de tip int.

lista_de_parametrii este o listă separată prin virgule de tipul şi numele parametrilor formali.

Parametrii formali primesc valorile argumentelor atunci când este apelată funcția, compilatorul

verificând în momentul apelului corespondența între parametrii actuali și cei formali.

În unele cazuri este preferat modelul care implică folosirea prototipului funcției (declararea ei),

definirea funcției urmând a fi făcută ulterior. Forma generală a prototipului unei funcții:

specificator_de_tip nume_functie(lista_de_parametrii);

În general funcțiile pot primi argumente în două feluri: apel prin valoare şi apel prin pointer.

Să luăm următorul exemplu: dorim să facem o funcție care să interschimbe două valori. O primă

variantă (scrisă rapid) ar arăta în felul următor:

#include <iostream.h>

void schimb(int x, int y)

{

 int r;

 r = x;

 x = y;

 y = r;

}

void main()

{

 int m=5,n=7;

 cout<<m<<" "<<n<<" ";

 schimb(m,n);

 cout<<m<<" "<<n;

}

Vom avea însă următoarea surpriză programul va afișa: 5 7 5 7. Ce s-a întâmplat de nu s-au

schimbat totuși valorile între ele?

În funcția main am definit cele două variabile m, n pentru care se alocă memorie. În momentul în

care apelăm funcția schimb(m,n), această funcție folosește variabilele locale x, y, r pentru care se

alocă memorie (pe stivă) atâta timp cât va rula această funcție. Variabila x va primi valoarea lui m,

iar variabila y va primi valoarea lui n. Apoi se face schimbarea de valori între variabilele locale x, y,

fără ca valorile din zona de memorie alocată pentru variabilele m, n să fie afectate. La revenirea din

funcția schimb cele două variabile m, n vor avea tot aceleași valori ca mai înainte.

m = 5

n = 7

x = 5

y = 7

main schimb

Schimbarea valorilor se face

pentru variabilele locale x, y;

variabilele m, n din main

rămân neschimbate

Programare Orientată pe Obiecte

 - 3 -

Acesta a fost un exemplu de apel prin valoare (în urma căruia nu am reuşit să schimbăm valorile

variabilelor folosite în apelarea funcției).

Pentru ca totuși să reușim ce ne-am propus vom folosi apel prin pointer. Exemplul nostru va arăta

astfel:

#include <iostream.h>

void schimb(int *x, int *y)

{

 int r;

 r = *x;

 *x = *y;

 *y = r;

}

void main()

{

 int m=5,n=7;

 cout<<m<<" "<<n<<" ";

 schimb(&m,&n);

 cout<<m<<" "<<n;

}

Scris în acest fel programul va face ceea ce ne dorim. De fapt ce s-a modificat? Funcția schimb are

acum ca și parametrii doi pointeri în care se vor memora adresele variabilelor m, n. De această dată

în funcția schimb se vor schimba valorile de la adresele de memorie date de x, y, respectiv se vor

schimba valorile din zona de memorie unde sunt memorate variabilele m, n.

m = 5

n = 7

x = adresa lui m

y = adresa lui n

main schimb

Schimbarea valorilor se face

pentru locaţiile de memorie

a căror adrese sunt în x şi în

y (respectiv locaţiile care

conţin varibilele m şi n)

Lucrul cu tastatura

Pentru a afla codul generat la apăsarea unei taste se folosește funcția getch(). Aceasta așteaptă

apăsarea unei taste și întoarce:

• pentru tastele normale codul ASCII al tastei apăsate.

• pentru tastele speciale valoarea 0 sau 0xE0 urmate, la o nouă apelare a funcției

getch(), de un cod al tastei apăsate. Taste speciale sunt de exemplu: săgețile,

F1 – F12, tastele INS, DEL, PAGE UP, PAGE DOWN, HOME și END.

Indicații 1.1

 Atenție, nu uitați de fișierul Ex1_VS.h

 Atenție la codul asociat TAB

 Atenție la restricțiile compilatorului de C.

Programare Orientată pe Obiecte

 - 4 -

Tema 1.2

Să se modifice programul așa încât să gestioneze 4 (patru) cercuri.

Indicații 1.2

 Se vor declara variabilele x4, y4, r4, c4 și se va modifica corespunzător programul.

 Atenție la codul asociat TAB.

Tema 1.3

Să se modifice programul așa încât să gestioneze 10 (zece) cercuri.

Considerații teoretice 1.3

Vectori

Un vector (o matrice cu o singură dimensiune) este o colecție de variabile de același tip, apelate cu

același nume. Accesul la un anumit element al vectorului se face cu ajutorul unui indice. Un vector

ocupă locații de memorie contigue (consecutive). Forma generală pentru declararea unui vector

este:

tip nume_variab[marime];

Vectorii trebuise declarați explicit astfel încât compilatorul să aloce spațiu în memorie pentru ei.

tip declară tipul de bază al vectorului, care este tipul fiecărui element al său. marime indică

numărul de elemente al vectorului. Accesarea unui element al vectorului se va face astfel:

nume_variab[indice]

unde indice va putea lua valori de la 0 la marime-1.

Culori

Culorile pot fi privite ca numere întregi (de 32 biți) care combină pe câte 8 biți valorile pentru R, G

și B (fiecare pe 8 biți). În fișierul Ex1_VS.h se găsesc valorile pentru câteva culori uzuale:

BLACK BLUE GREEN CYAN

RED MAGENTA BROWN LIGHTGRAY

DARKGRAY LIGHTBLUE LIGHTGREEN LIGHTCYAN

LIGHTRED LIGHTMAGENTA YELLOW WHITE

Indicaţii 1.3

 Se vor folosi patru vectori, câte unul pentru fiecare variabilă x, y, r respectiv c.

 La iniţializare se recomandă folosirea unei bucle for pentru a iniţializa fiecare cerc, iar

valorile atribuite să fie dependente de contorul buclei (de exemplu x[k]=200+10*k).

 Pentru culorile cercurilor se recomandă definirea unui vector global inițializat explicit cu

culorile dorite, iar culoarea cercului k se va lua din acest vector prin indexare cu k.

 Datorită ordinii realizate în date se poate renunța la switch(CercCurent) și înlocui cu o

singură linie cu apel de Muta și indexare (după variabila CercCurent) în tablourile

corespunzătoare.

 Nu se va modifica funcția Muta.

Programare Orientată pe Obiecte

 - 5 -

Tema 1.4

Să se modifice programul astfel încât să folosească o matrice care să memoreze datele cercurilor.

Consideraţii teoretice 1.4

Matrici

Compilatorul de C admite declararea de matrici multidimensionale. Cea mai simplă formă de

matrice multidimensională este cea bidimensională, care poate fi privită ca un vector de vectori.

Definirea unei matrici se va face în felul următor:

tip nume_matrice[marime1][marime2];

tip reprezintă tipul de date pentru elementele matricii. Matricele bidimensionale sunt stocate în

forma rând-coloană, unde primul indice (marime1) indică rândul iar al doilea (marime2) indică

coloana. Accesul la un element al matricii se face sub forma:

nume_matrice[indice1][indice2];

unde indice1 va lua valori între 0 și marime1, iar indice2 va lua valori între 0 și marime2. În ceea

ce privește stocarea efectivă în memorie a matricii, indice2 se modifică mai repede decât indice1

atunci când sunt parcurse succesiv elementele matricii.

Indicații 1.4

 Se va folosi o singură matrice, cu 4 coloane, corespunzătoare variabilelor x, y, r și c.

 Nu se va modifica funcția Muta.

Tema 1.5

Să se definească o structură CERC, aferentă unui cerc, și să se modifice corespunzător programul.

Considerații teoretice 1.5

Structuri

O structură este un grup de variabile unite sub același nume, ce pun la dispoziție un mod convenabil

de păstrare a informațiilor legate între ele. O declarare de structură formează un șablon care poate fi

folosit pentru a crea variabile de acel tip. Membrii (elementele sau câmpurile) unei structuri sunt

variabilele care fac parte din structură. Forma generală a definirii unei structuri este:

struct nume_structura

{

 tip1 nume_membru1;

 tip2 nume_membru2;

 ...

} variabile_structura;

unde nume_structura este numele structurii și variabile_structura este lista de variabile de

tipul structurii. Cele două pot fi omise, dar nu ambele simultan. Atenție definiția se termină cu

punct și virgulă, deoarece este o instrucțiune. Având definită o structură, definirea unei variabile de

tipul structurii se va face astfel:

struct nume_structura nume_variabila;

Programare Orientată pe Obiecte

 - 6 -

Forma generală de acces la un membru al structurii este:

nume_variabila.nume_membru

În cazul unei variabile pointer la o structură accesul la un membru al structurii se va face astfel:

nume_pointer->nume_membru

Limbajul C permite definirea explicită a noi nume de tipuri de date prin utilizarea cuvântului cheie

typedef. Forma generală de folosire typedef este:

typedef tip_vechi tip_nou;

Dacă tip_vechi este o structură, noul tip de date definit se poate folosi fără a fi nevoie să se

specifice de fiecare dată cuvântul struct la definirea variabilelor.

Indicaţii 1.5

 Se va defini un vector de elemente de tip CERC.

 Se va modifica funcția Muta astfel încât să primească doar un parametru referitor la CERC și

deplasările (în total 3 parametrii).

 Atenție la declararea (prototipul), definirea și apelul corespunzător al funcției Muta.

Tema 1.6

Să se renunțe la variabilele dx și dy din main fără a se modifica însă funcția Muta.

Indicații 1.6

 Se vor lua în considerare apeluri ale funcției Muta ori de câte ori este cazul.

Tema 1.7

Să se introducă două funcții Sterge și Afiseaza care să realizeze ștergerea și respectiv afișarea

unui cerc primind ca și parametru cercul. Acestea vor fi singurele funcții care mai conțin funcția

circle.

Tema 1.8

Să se adauge o facilitate suplimentară de modificat raza cercului curent: la apăsarea F1 raza crește

cu 10 iar la apăsarea F2 raza scade cu 10.

Considerații teoretice 1.8

Tastele F1 și F2 sunt taste speciale care transmit câte 2 coduri:

• F1: 0 urmat de 59

• F2: 0 urmat de 60

Indicaţii 1.8

 Implementarea va fi asemănătoare funcției Muta, iar numele funcției va fi Creste.

Programare Orientată pe Obiecte

 - 7 -

Anexa 1

Ex1_VS.c

#include <windows.h>
#include "Ex1_VS.h" // includerea fisierului antet propriu "Ex1_VS.h"
 // care trebuie existe in directorul curent.

// prototipuri de functii considerate "de biblioteca"
void InitializeGraphicMode(void);
void CloseGraphicMode();
void circle(int, int, int, int);

// prototip functie proprie
void Muta(int* x, int* y, int r, int c, int dx, int dy);

// variabile globale, pentru un cerc vom avea urmatoarele date:
// x, y = coordonatele centrului cercului
// r = raza cercului
// c = culoarea cercului
// se vor defini 3 cercuri

//variabilele pentru cele 3 cercuri
int x1,y1,r1,c1, x2,y2,r2,c2, x3,y3,r3,c3;

int main()
{
// variabile locale

int CercCurent = 0;
 // variabila care indica cercul curent, poate lua 3 valori:
 // 0 - pentru cercul x1, y1, r1, c1
 // 1 - pentru cercul x2, y2, r2, c2
 // 2 - pentru cercul x3, y3, r3, c3

int gata = 0;
int dx, dy;

 // cod
 InitializeGraphicMode(); // se face trecerea in modul grafic

 // initializarea variabilelor pt. cerc 1
 x1 = 100; y1 = 200; r1 = 25; c1 = YELLOW;
 circle(x1, y1, r1, c1); // se deseneaza cercul 1

 // initializarea variabilelor pt. cerc 2
 x2 = 300; y2 = 200; r2 = 50; c2 = RED;
 circle(x2, y2, r2, c2); // se deseneaza cercul 2

 // initializarea variabilelor pt. cerc 3
 x3 = 500;y3 = 200;r3 = 100; c3 = BLUE;
 circle(x3, y3, r3, c3); // se deseneaza cercul 3

 // se intra intr-o bucla in care se ramane atata timp cat gata=0
 while (!gata)
 switch (_getch()) // se asteapta apasarea unei taste
 {
 case ESC: // daca s-a apasat ESC se va iesi din bucla
 gata = 1; // prin valoarea 1 pe care o primeste gata
 break;
 case TAB: // daca s-a apasat TAB

Programare Orientată pe Obiecte

 - 8 -

 CercCurent++; // trecem la cercul urmator
 CercCurent %= 3; // dupa cercul 2 urmeaza cercul 0
 break;
 case 0xE0: // pentru sageti se genereaza intai 0xE0
 switch (_getch()) // apoi un cod specific
 {
 case LEFT: dx = -10;dy = 0;break; // 10 pixeli la stanga
 case RIGHT: dx = 10;dy = 0;break; // 10 pixeli la dreapta
 case UP: dx = 0;dy = -10;break; // 10 pixeli in sus
 case DOWN: dx = 0;dy = 10;break; // 10 pixeli in jos
 default: dx = 0;dy = 0;break;
 }
 // in functie de sageata apasata s-au dat valori pt. dx si dy

 // abia acum se muta cu dx si dy cercul curent
 switch (CercCurent)
 {
 case 0: // daca CercCurent=0
 Muta(&x1, &y1, r1, c1, dx, dy); // mutarea cercului 1
 break;
 case 1: // daca CercCurent=1
 Muta(&x2, &y2, r2, c2, dx, dy); // mutarea cercului 2
 break;
 case 2: // daca CercCurent=2
 Muta(&x3, &y3, r3, c3, dx, dy); // mutarea cercului 3
 break;
 }
 break;
 }

 CloseGraphicMode(); //inchiderea modului grafic
 return 0;
}

void Muta(int* x, int* y, int r, int c, int dx, int dy)
//***
// functie care muta un cerc cu deplasamentele dx si dy
{
 // sterge cercul din pozitia veche, prin scrierea
 // unui cerc de culoarea fondului (negru) peste el
 circle(*x, *y, r, BLACK);

 // sunt modificate coordonatele centrului cercului
 *x += dx; // mutare pe orizontala
 *y += dy; // mutare pe verticala

 // desenare a cercului in noua pozitie
 circle(*x, *y, r, c);
}

//**
// cod considerat "de biblioteca", luat ca atare
//**

// pentru utilizare modul grafic
HWND console_handle;
HDC device_context;

void InitializeGraphicMode()
//***************************
// functie care face trecerea din modul text in modul grafic
{
 console_handle = GetConsoleWindow();

Programare Orientată pe Obiecte

 - 9 -

 device_context = GetDC(console_handle);
 Sleep(100);
}

void CloseGraphicMode()
//*********************
// functie care inchide modul grafic
{
 ReleaseDC(console_handle, device_context);
}

void circle(int x, int y, int r, int c)
//*************************************
// functie care deseneaza un cerc (x,y,raza,culoare)
{
 HPEN pen = CreatePen(PS_SOLID, 1, (COLORREF)c);
 SelectObject(device_context, pen);
 SelectObject(device_context, GetStockObject(NULL_BRUSH));
 Ellipse(device_context, x - r, y - r, x + r, y + r);
 DeleteObject(pen);
}

Ex1_VS.h

// codurile pentru diferite taste
#define ESC 27
#define TAB 9
#define LEFT 75 // cu 0xE0 in fata
#define RIGHT 77 // cu 0xE0 in fata
#define UP 72 // cu 0xE0 in fata
#define DOWN 80 // cu 0xE0 in fata
#define F1 59 // cu 0 in fata
#define F2 60 // cu 0 in fata
#define F3 61 // cu 0 in fata
#define F4 62 // cu 0 in fata

// valorile pentru culori "clasice"
#define BLACK (int)RGB(0, 0, 0)
#define BLUE (int)RGB(0, 0,255)
#define GREEN (int)RGB(0,255, 0)
#define CYAN (int)RGB(0,255,255)
#define RED (int)RGB(255, 0, 0)
#define MAGENTA (int)RGB(255, 0,255)
#define BROWN (int)RGB(128, 0, 0)
#define LIGHTGRAY (int)RGB(255,255,204)
#define DARKGRAY (int)RGB(0,128, 0)
#define LIGHTBLUE (int)RGB(0, 0,128)
#define LIGHTGREEN (int)RGB(153,204, 0)
#define LIGHTCYAN (int)RGB(204,255,255)
#define LIGHTRED (int)RGB(255,128,128)
#define LIGHTMAGENTA (int)RGB(128, 0,128)
#define YELLOW (int)RGB(255,255, 0)
#define WHITE (int)RGB(255,255,255)

