
Arithmetic coding with integer representation

1. Representation of numbers

Let’s consider a fixed point representation of numbers in [0-1) interval

0.bbbbbbbbbbbb...

We can consider 1 = 0.11111111111111.... (an infinite number of 1)

We use a finite length representation by keeping (in an integer variable) only the first 32 bits.

0. bbbbbbbbb...bbb bbbbbbbbbbbb...
 keep first 32 bits drop the rest

We use in the arithmetic coder:

Low – unsigned integer value on 32 bits
High – unsigned integer value on 32 bits
Range – unsigned integer value on 64 bits

We initialize:

High = 0xFFFFFFFF and keep in mind that it is followed by an infinite number of 1’s
Low = 0x00000000 and keep in mind that it is followed by an infinite number of 0’s

In that case:

• the first bit of the representation describes the half of the [0-1) interval where the value lies
• the first 2 bits of the representation describes the quarter of the [0-1) interval where the value

lies:

0bbbb... 1bbbb...
00bbbb... 01bbbb... 10bbbb... 11bbbb...

2. Shiftings to be done
 in order to keep Range big enough.

2.1. First shifting: when both high and low are in the same half

before:
High 0h1h2h3h4...h31 or High 1h1h2h3h4...h31
Low 0l1l2l3l4...l31 Low 1l1l2l3l4...l31

action:
send 0 to output, shift left and add a bit send 1 to output, shift left and add a bit

after:
High h1h2h3h4...h311 or High h1h2h3h4...h311
Low l1l2l3l4...l310 Low l1l2l3l4...l310

2.2. Second shifting (underflow): when high and low are in 2’nd and 3’th quarters

before:
High 10h1h2h3h4...h30
Low 01l1l2l3l4...l30

action:
extract the second bit, increment a counter, shift 1 bit left the last 30 bits and add a bit

after:
High 1h1h2h3h4...h301
Low 0l1l2l3l4...l300

The exact value of the extracted bit will be known only at the next first shifting, when the
corresponding number of bits (according to the counter) will be written to output.

3. Representation of MODEL

The simplest representation could be one based on 2 vectors: counts[] and sums[] indexed by
the symbol.

An example...

symbol 0 1 2 3 ... NrSymb-1 NrSymb
counts[] 2 5 3 2
sums[] 0 2 7 10 S

count[] = the count for each symbol (frequency of occurrence of the symbol).
sums[] = the sum of counts of symbols before the symbol.
S = the sum of counts for all the symbols.

The range for a symbol is now given by:
- for symbol 2 (by example)

7 / S – 10 / S

- generally

sums[symbol]/sums[NrSymb] – sums[symbol+1]/sums[symbol]

The standard floating point arithmetic coder updating formulas:

High = Low + Range * LimitH(symbol)

Low = Low + Range * LimitL(symbol)

become:

High = Low + Range * sums[symbol+1]/sums[NrSymb]-1

Low = Low + Range * sums[symbol]/sums[NrSymb]

4. Closing the output stream

In theory, at the end a value (any) from the range [Low-High) should be send to the decoder. The
simplest case is to send the whole 32 bits representation of Low.

We can save 30 bits by sending only a 2 bit value corresponding to the left margin of the quarter that
lies between Low and High (we have 3 cases described in the next figure). The decoder must
provide 0’s after the input stream ends (to complete the 32 bit required value).

First quarter Second quarter Third quarter Forth quarter Case 00... 01... 10... 11...

1 Low Send 01 High

2 Low Send 10 High

3 Low Send 01 or 10 High

Implementation requirements:
• High, Low on 32 bits.
• The number of symbols should be configurable (at least by a constant value). Adding an

EOF symbol can be useful to inform the decoder about the end of the stream.
• The model should change after each symbol (i.e. we have to implement a dynamic

approach).
• Fixed initialization of the model with all counts 1 is acceptable/enough. (You can try also to

use a precomputed initialization).
• Encapsulate the coder/model in a class in order to easy implement later a contextual

approach with different coders for different contexts in a data stream.
• Use only bitwise operations (shifting, logical) not arithmetic operations (multiplication,

division).

Implementation advices:
• Start with a static approach until it works and only after that put code in an Update method.
• If you need debugging choose a small number of symbols in the alphabet.

