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DATA COMPRESSION - INTRODUCTION 

 

1. Definitions  
Data Compression term is, I hope, well known. A possible general definition could be: 

Data Compression is the processing done to some data in order to reduce 
the dimension of their representation. 

The compression efficiency obtained by one specific method can be evaluated by the compression 

ratio. Considering the previous definition we have: 

The compression ratio is equal to the ratio between the dimension of data 
repre sentation without compression and the dimension of data 
repre sentation obtained with compression. 

Sometimes, for low  compression ratios, the reversed ratio is considered, usually expressed in percent. 

Depending on the context, we have to decide which of the two approaches is used. In specific cases the 

compression ratio is redefined (detailed) corresponding to those situations. 

 

Compression is done by changing the representation of the data, being a specific case of coding 

(therefore, the terms compression and coding will be used almost interchangeable, as well-known for 

different specific  methods). Coding is done with regard to a specific data model, so that we are in a 

more general case of modeling, in search for suitable (optimum) model of the data. 

 

2. Classifications 
In the compression area there are a lot of methods, usually presented individually , without trying to 

integrate them. This leads us to the need of classifications, which can be done by different criteria. 

 

The most important classification of compression methods is done regarding the data reconstruction 

error. Considering this, we have two major categories: 

1. Methods without loss – LOSSLESS – where data are reconstructed perfectly, without any 

difference between original and reconstructed data. These methods apply generally when the 

lossless reconstruction is critical: compression of executable code , program sources, texts, in 

general data of numerical nature. 

2. Methods with loss – LOSSY – where data are reconstructed within the limit of some errors 

considered acceptable. The acceptance of some errors leads us to a spectacular growth of the 

compression ratio compared to the previous case. These methods are applied in general to data of 
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analogical nature (which represent signals that originally where analogical) to be used by a 

human. In that category fall the audio and video signals where, in the processing chain, a 

quantizer exists anyway, so that some errors are inherent. 

 

A general method is not always by default lossless or lossy. By example, the predictive techniques can 

go in both categories, depending on the data they apply on (numerica l or analogical nature) and by the 

existence in the processing chain of a quantizer. 

 

Depending on the way the data source model changes in time  the compression methods can be 

classified in: 

1. Static methods - where the model is fix, does not change in time , and it is build apriori, based on 

some messages considered typical. In that category falls the compression used in fax 

transmissions. Static methods are useful when the data stream statistics is known and it remains 

unchanged, the resulting methods being dedicated to a specific context. Because of their static 

approach they are well-suited for hardware imple mentations. The general compression (coding) 

scheme for static methods is presented in Figure 1.1.  

2. Semistatic Methods - where the model is built before coding (compression) based on the data that 

will be coded and is kept unchanged during coding. The advantage consists in the adaptation of 

the method to the data stream (methods being more general applicable ). The disadvantages are 

the need to pass twice  through the data and the need to transmit the model to the decoder, fact 
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Figure 1.1 General compression scheme for static modeling 
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Figure 1.2 General compression scheme for semistatic modeling 
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that overloads the compressed stream and worsens the performances. In that category we have 

the method based on Huffman coding (well-known as “static ” Huffman – unfortunately a 

misleading name but often used) . The general compression (coding) scheme for this case is 

given in Figure 1.2. 

3. Adaptive Methods (dynamic) - where compression starts at one state of the model, the same at 

compression and decompression.  The initial state of the model can be obtained as in any of the 

previous cases. Each symbol is coded/decoded using the current model. After coding/decoding 

the state of the model is updated in the same way at the coder and at the decoder. In this way 

we overpass the two disadvantages  of the semistatic methods. The most well known adaptive 

methods are adaptive Huffman compression and dictionary methods . The general scheme for 

adaptive modeling is given in Figure 1.3.  

 

Depending on the information used to build the model we can classify most of the lossless 

compression methods  in: 

1. Compression methods based on statistic modeling of discrete sources (statistic methods) 

Statistic  modeling of a discrete source of information consists of giving to each symbol of the 

source alphabet a probability of appearance and, after that, a code with a smaller number of bits 

to the symbols with a greater probability of appearance. In that category we have the Shannon-

Fano coding, Huffman coding (the semistatic version is known as optimal for the symbol by 

symbol coding)  and arithmetic coding (which codes sequences of symbols and not individual 

symbols . 

2. Compression methods based on linguistic modeling of discrete sources (dictionary methods) 

These methods are based on the fact that the symbols generated by the source have some 

restrains regarding the combinations they can appear. Because of that restrains not all the 

possible combinations appear with the same probability.  The idea is to build a dictionary from 

words of the source language. After putting a word in the dictionary, if the word appears again it 

is replaced by some information regarding its position inside the dictionary. In this case the 

dictionary itself represents the model of the source. LZ77, LZ78, LZW fall in this category. 

Data 
to compress 

Compressed 
Data 

Decompressed 
Data 

Coding 

SOURCE
MODEL 

Decoding 

SOURCE 
MODEL 

 
Figure 1.3 General compression scheme for adaptive modeling 
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3. General compression-decompression model 
The most general model of a data compression system is given in Figure 1.4. The first transform is the 

one which reduces the entropy in order to eliminate the parameters of the messages that are not 

important to the final user (the lossy part). The next transform preserves entropy but reduces the 

redundancy in order to improve transmission or storage efficiency (the lossless part ). In the case when 

transmission is done on a noisy channel some redundancy can be reintroduced by using error 

correcting codes. Because by these codes we do not achieve compression but the contrary we do not 

present them at all. 

 

4. Some examples 
In the following we present some simple compression examples, somehow empirical. These are not 

used in practice by themselves, in that simple form, but usual as steps in more complex schemes. We 

present them in order to exemplify the concepts of static/semistatic/adaptive and statistic/dictionary 

coding respectively. By analyzing the results we notice that none of the methods is useful in all 

situations, for some (unhappy chosen) streams we do not get compression at all, but instead we can 

have a growth of the representation. 

 

4.1. Run Length Encoding  - RLE 

We present in the following a RLE version as implemented in the BinHex 4.0 format. This format 

uses, apart from the RLE coding, a standard comment, an imposed header and a 7 bits coding of the 

resulted binary stream. In the following we present only the RLE step, the others can be found in the 

BinHex 4.0 documentation. 

 

The basic idea of RLE is to code the length of the repetitive sequences (called “runs”). We present an 

input data stream and the RLE encoded output data stream. 
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Figure 1.4 General compression-decompression model 



5 

input stream  output stream RLE 

00 11 22 33 44 55 66 77  00 11 22 33 44 55 66 77 

11 22 22 22 22 22 22 33  11 22 90 06 33    

11 22 90 33 44     11 22 90 00 33 44   

 

By analyzing the example we notice: 

• Symbols that are not part of a “run” are not processed at all. 

• The “runs” are replaced by a triple containing the repe ated symbol, the 90H marker and the 

length of the “run”. 

• In case of the 90H marker appearance in the input stream it has to be replaced by a specific 

sequence (using the fact that the runs do not have a 0 length). 

Even if in practice we can use a different coding approach, we have to solve 2 problems: coding of the 

“run” and the appearance of the marker. 

 

We notice that the method becomes useful only when runs of length 4 or greater exist (shorter runs 

must be left unchanged) and the efficiency is reduced by the existence of the marker in the data stream 

(when the stream is in fact expanded). 

 

As presented, the method is based on a static modeling of the data stream. If we want a semistatic 

modeling, we can make an analysis of the data stream in advance and choose as marker a symbol that 

appears less often in the stream. Certainly, the chosen marker must be sent to the decoder (for 

example, as the first byte in the compressed stream). If we want an adaptive  modeling, we can make a 

continuous analysis of the data stream already transmitted and change the marker on-the-fly. 

 

4.2. Simple statistic coding 

To exemplify that method we propose to code the next data stream: 

ABABACAD 

The simplest coding is the coding on 2 bits for each symbol (corresponding to a 4 symbols alphabet) 

as: 

A – 00, B – 01, C – 10, D – 11 

So, the coded sequence becomes: 

0001000100100011 

having 16 bits. 

 

Statistic coding consists in making the statistic of symbol occurrence and using of shorter codes for 
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high frequency symbols. So, we evaluate the frequencies of appearance: 

A – 4, B – 2, C – 1, D – 1 

and consider codes accordingly: 

A – 0, B – 10, C – 110, D – 111 

The encoded stream is now: 

01001001100111 

having only 14 bits, achieving some compression compared to the previous case. 

 

The method falls in the semistatic category, at the first pass we build the model (codes) and only at the 

second pass we do the coding. For the practical implementation of the method the codes allocated to 

each symbol have to be transmitted to the decoder (not considered in the previous example), so that the 

gain achieved could be undermined. We have n’t specified yet how to build such codes starting from 

frequencies (by example using the Shannon-Fano or the Huffman methods) but we keep in mind the 

idea of taking into account the data stream statistics (preferably unbalanced). 

 

4.3. Dictionary based coding and MTF  

For this example we consider the sequence ABCDDDCCBBAA which we code based on a dictionary. 

We build a dictionary with all the symbols (therefore containing ABCD) and as coding of a symbol we 

consider its index inside the dictionary. The static case dictionary is presented in the first columns of 

the next table: 

Static d ictionary  Adaptive dictionary MTF 

Data 
stream 

Dictionary Index 
(code) 

 Data 
stream 

Current 
dictionary  

Index 
(code) 

Updated 
dictionary 

A ABCD 0  A ABCD 0 ABCD 
B ABCD 1  B ABCD 1 BACD 
C ABCD 2  C BACD 2 CBAD 
D ABCD 3  D CBAD  3 DCBA 
D ABCD 3  D DCBA 0 DCBA 
D ABCD 3  D DCBA 0 DCBA 
C ABCD 2  C DCBA 1 CDBA 
C ABCD 2  C CDBA 0 CDBA 
B ABCD 1  B CDBA 2 BCDA 
B ABCD 1  B BCDA 0 BCDA 
A ABCD 0  A BCDA 3 ABCD 
A ABCD 0  A ABCD 0 ABCD 

After coding we get the 012333221100 sequences . Obviously, for now we have no gain at all. 

 

In the following we consider the „Move To Front” (MTF) method for updating the dictionary. So, 

after coding of a symbol based on the dictionary, the symbol is “m oved to front” inside the dictionary. 
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In this way we try to optimize the representation of symbols repeating themselves at short time 

intervals, their index having in that case lower values. The method falls in the adaptive modeling case 

based on a dictionary, and, as all the adaptive methods, consists in: 

• Coding / decoding based on the current model (current dictionary) 

• Updating of the model (dictionary)  

 

In the last columns of the previous table we present the case of applying the MTF method on the data 

considered. At each step the current dictionary is the one obtained by updating that from the previous 

step. The resulted stream is 012300102030. 

 

If we build the histogram of appearance for the generated indexes, we notice the unbalancing of the 

distribution in order to promote small indexes. 

Without MTF  With MTF 
0 ***  0 ****** 
1 ***  1 ** 
2 ***  2 ** 
3 ***  3 ** 

This fact allows us to apply to the obtained data stream a statistic method (as the simple one presented 

above), which will lead us to better results if the stream is unbalanced. We notice that the method is 

valuable as an intermediate step in a longer chain of processing (idea generally valid in data 

compression). Obviously, if the assumption regarding the repetition of the symbol is not justified, the 

MTF effect can be insignificant or even negative. The MTF method can be used also in the case where 

dictionaries contain strings of symbols (the case used in practice) not only individual symbols as 

presented previously for simplicity. Furthermore, we can take in consideration dictionary updates by 

moving only k positions to front (not to the first position) and moving to front only when a dictionary 

entry is repeatedly used (not at each use). 

 


