
1

DATA COMPRESSION - INTRODUCTION

1. Definitions
Data Compression term is, I hope, well known. A possible general definition could be:

Data Compression is the processing done to some data in order to reduce
the dimension of their representation.

The compression efficiency obtained by one specific method can be evaluated by the compression

ratio. Considering the previous definition we have:

The compression ratio is equal to the ratio between the dimension of data
repre sentation without compression and the dimension of data
repre sentation obtained with compression.

Sometimes, for low compression ratios, the reversed ratio is considered, usually expressed in percent.

Depending on the context, we have to decide which of the two approaches is used. In specific cases the

compression ratio is redefined (detailed) corresponding to those situations.

Compression is done by changing the representation of the data, being a specific case of coding

(therefore, the terms compression and coding will be used almost interchangeable, as well-known for

different specific methods). Coding is done with regard to a specific data model, so that we are in a

more general case of modeling, in search for suitable (optimum) model of the data.

2. Classifications
In the compression area there are a lot of methods, usually presented individually , without trying to

integrate them. This leads us to the need of classifications, which can be done by different criteria.

The most important classification of compression methods is done regarding the data reconstruction

error. Considering this, we have two major categories:

1. Methods without loss – LOSSLESS – where data are reconstructed perfectly, without any

difference between original and reconstructed data. These methods apply generally when the

lossless reconstruction is critical: compression of executable code , program sources, texts, in

general data of numerical nature.

2. Methods with loss – LOSSY – where data are reconstructed within the limit of some errors

considered acceptable. The acceptance of some errors leads us to a spectacular growth of the

compression ratio compared to the previous case. These methods are applied in general to data of

2

analogical nature (which represent signals that originally where analogical) to be used by a

human. In that category fall the audio and video signals where, in the processing chain, a

quantizer exists anyway, so that some errors are inherent.

A general method is not always by default lossless or lossy. By example, the predictive techniques can

go in both categories, depending on the data they apply on (numerica l or analogical nature) and by the

existence in the processing chain of a quantizer.

Depending on the way the data source model changes in time the compression methods can be

classified in:

1. Static methods - where the model is fix, does not change in time , and it is build apriori, based on

some messages considered typical. In that category falls the compression used in fax

transmissions. Static methods are useful when the data stream statistics is known and it remains

unchanged, the resulting methods being dedicated to a specific context. Because of their static

approach they are well-suited for hardware imple mentations. The general compression (coding)

scheme for static methods is presented in Figure 1.1.

2. Semistatic Methods - where the model is built before coding (compression) based on the data that

will be coded and is kept unchanged during coding. The advantage consists in the adaptation of

the method to the data stream (methods being more general applicable). The disadvantages are

the need to pass twice through the data and the need to transmit the model to the decoder, fact

Data
to compress

Compressed
Data

Decompresed
Date

Decoding

 SOURCE MODEL

Coding

Figure 1.1 General compression scheme for static modeling

Data
to compress

Compressed
Data

Decompressed
Data

Coding

SOURCE
Model

Decoding

SOURCE
Model

Figure 1.2 General compression scheme for semistatic modeling

3

that overloads the compressed stream and worsens the performances. In that category we have

the method based on Huffman coding (well-known as “static ” Huffman – unfortunately a

misleading name but often used) . The general compression (coding) scheme for this case is

given in Figure 1.2.

3. Adaptive Methods (dynamic) - where compression starts at one state of the model, the same at

compression and decompression. The initial state of the model can be obtained as in any of the

previous cases. Each symbol is coded/decoded using the current model. After coding/decoding

the state of the model is updated in the same way at the coder and at the decoder. In this way

we overpass the two disadvantages of the semistatic methods. The most well known adaptive

methods are adaptive Huffman compression and dictionary methods . The general scheme for

adaptive modeling is given in Figure 1.3.

Depending on the information used to build the model we can classify most of the lossless

compression methods in:

1. Compression methods based on statistic modeling of discrete sources (statistic methods)

Statistic modeling of a discrete source of information consists of giving to each symbol of the

source alphabet a probability of appearance and, after that, a code with a smaller number of bits

to the symbols with a greater probability of appearance. In that category we have the Shannon-

Fano coding, Huffman coding (the semistatic version is known as optimal for the symbol by

symbol coding) and arithmetic coding (which codes sequences of symbols and not individual

symbols .

2. Compression methods based on linguistic modeling of discrete sources (dictionary methods)

These methods are based on the fact that the symbols generated by the source have some

restrains regarding the combinations they can appear. Because of that restrains not all the

possible combinations appear with the same probability. The idea is to build a dictionary from

words of the source language. After putting a word in the dictionary, if the word appears again it

is replaced by some information regarding its position inside the dictionary. In this case the

dictionary itself represents the model of the source. LZ77, LZ78, LZW fall in this category.

Data
to compress

Compressed
Data

Decompressed
Data

Coding

SOURCE
MODEL

Decoding

SOURCE
MODEL

Figure 1.3 General compression scheme for adaptive modeling

4

3. General compression-decompression model
The most general model of a data compression system is given in Figure 1.4. The first transform is the

one which reduces the entropy in order to eliminate the parameters of the messages that are not

important to the final user (the lossy part). The next transform preserves entropy but reduces the

redundancy in order to improve transmission or storage efficiency (the lossless part). In the case when

transmission is done on a noisy channel some redundancy can be reintroduced by using error

correcting codes. Because by these codes we do not achieve compression but the contrary we do not

present them at all.

4. Some examples
In the following we present some simple compression examples, somehow empirical. These are not

used in practice by themselves, in that simple form, but usual as steps in more complex schemes. We

present them in order to exemplify the concepts of static/semistatic/adaptive and statistic/dictionary

coding respectively. By analyzing the results we notice that none of the methods is useful in all

situations, for some (unhappy chosen) streams we do not get compression at all, but instead we can

have a growth of the representation.

4.1. Run Length Encoding - RLE

We present in the following a RLE version as implemented in the BinHex 4.0 format. This format

uses, apart from the RLE coding, a standard comment, an imposed header and a 7 bits coding of the

resulted binary stream. In the following we present only the RLE step, the others can be found in the

BinHex 4.0 documentation.

The basic idea of RLE is to code the length of the repetitive sequences (called “runs”). We present an

input data stream and the RLE encoded output data stream.

Destination

Data
source

Transforms to
reintroduce entropy

Inverse transforms
entropy conserving

Decoding using
error correcting

codes

Coding using
error correcting

codes

Entropy reduction
transforms

Entropy conserving
transforms

Channel (maybe with errors)
/ Storage

Figure 1.4 General compression-decompression model

5

input stream output stream RLE

00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77

11 22 22 22 22 22 22 33 11 22 90 06 33

11 22 90 33 44 11 22 90 00 33 44

By analyzing the example we notice:

• Symbols that are not part of a “run” are not processed at all.

• The “runs” are replaced by a triple containing the repe ated symbol, the 90H marker and the

length of the “run”.

• In case of the 90H marker appearance in the input stream it has to be replaced by a specific

sequence (using the fact that the runs do not have a 0 length).

Even if in practice we can use a different coding approach, we have to solve 2 problems: coding of the

“run” and the appearance of the marker.

We notice that the method becomes useful only when runs of length 4 or greater exist (shorter runs

must be left unchanged) and the efficiency is reduced by the existence of the marker in the data stream

(when the stream is in fact expanded).

As presented, the method is based on a static modeling of the data stream. If we want a semistatic

modeling, we can make an analysis of the data stream in advance and choose as marker a symbol that

appears less often in the stream. Certainly, the chosen marker must be sent to the decoder (for

example, as the first byte in the compressed stream). If we want an adaptive modeling, we can make a

continuous analysis of the data stream already transmitted and change the marker on-the-fly.

4.2. Simple statistic coding

To exemplify that method we propose to code the next data stream:

ABABACAD

The simplest coding is the coding on 2 bits for each symbol (corresponding to a 4 symbols alphabet)

as:

A – 00, B – 01, C – 10, D – 11

So, the coded sequence becomes:

0001000100100011

having 16 bits.

Statistic coding consists in making the statistic of symbol occurrence and using of shorter codes for

6

high frequency symbols. So, we evaluate the frequencies of appearance:

A – 4, B – 2, C – 1, D – 1

and consider codes accordingly:

A – 0, B – 10, C – 110, D – 111

The encoded stream is now:

01001001100111

having only 14 bits, achieving some compression compared to the previous case.

The method falls in the semistatic category, at the first pass we build the model (codes) and only at the

second pass we do the coding. For the practical implementation of the method the codes allocated to

each symbol have to be transmitted to the decoder (not considered in the previous example), so that the

gain achieved could be undermined. We have n’t specified yet how to build such codes starting from

frequencies (by example using the Shannon-Fano or the Huffman methods) but we keep in mind the

idea of taking into account the data stream statistics (preferably unbalanced).

4.3. Dictionary based coding and MTF

For this example we consider the sequence ABCDDDCCBBAA which we code based on a dictionary.

We build a dictionary with all the symbols (therefore containing ABCD) and as coding of a symbol we

consider its index inside the dictionary. The static case dictionary is presented in the first columns of

the next table:

Static d ictionary Adaptive dictionary MTF

Data
stream

Dictionary Index
(code)

 Data
stream

Current
dictionary

Index
(code)

Updated
dictionary

A ABCD 0 A ABCD 0 ABCD
B ABCD 1 B ABCD 1 BACD
C ABCD 2 C BACD 2 CBAD
D ABCD 3 D CBAD 3 DCBA
D ABCD 3 D DCBA 0 DCBA
D ABCD 3 D DCBA 0 DCBA
C ABCD 2 C DCBA 1 CDBA
C ABCD 2 C CDBA 0 CDBA
B ABCD 1 B CDBA 2 BCDA
B ABCD 1 B BCDA 0 BCDA
A ABCD 0 A BCDA 3 ABCD
A ABCD 0 A ABCD 0 ABCD

After coding we get the 012333221100 sequences . Obviously, for now we have no gain at all.

In the following we consider the „Move To Front” (MTF) method for updating the dictionary. So,

after coding of a symbol based on the dictionary, the symbol is “m oved to front” inside the dictionary.

7

In this way we try to optimize the representation of symbols repeating themselves at short time

intervals, their index having in that case lower values. The method falls in the adaptive modeling case

based on a dictionary, and, as all the adaptive methods, consists in:

• Coding / decoding based on the current model (current dictionary)

• Updating of the model (dictionary)

In the last columns of the previous table we present the case of applying the MTF method on the data

considered. At each step the current dictionary is the one obtained by updating that from the previous

step. The resulted stream is 012300102030.

If we build the histogram of appearance for the generated indexes, we notice the unbalancing of the

distribution in order to promote small indexes.

Without MTF With MTF
0 *** 0 ******
1 *** 1 **
2 *** 2 **
3 *** 3 **

This fact allows us to apply to the obtained data stream a statistic method (as the simple one presented

above), which will lead us to better results if the stream is unbalanced. We notice that the method is

valuable as an intermediate step in a longer chain of processing (idea generally valid in data

compression). Obviously, if the assumption regarding the repetition of the symbol is not justified, the

MTF effect can be insignificant or even negative. The MTF method can be used also in the case where

dictionaries contain strings of symbols (the case used in practice) not only individual symbols as

presented previously for simplicity. Furthermore, we can take in consideration dictionary updates by

moving only k positions to front (not to the first position) and moving to front only when a dictionary

entry is repeatedly used (not at each use).

