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Abstract. Previous works have shown that neural branch prediction
techniques achieve far lower misprediction rate than traditional approaches.
We propose a neural predictor based on two perceptron networks: the
Combined Perceptron Branch Predictor. The predictor consists of two
concurrent perceptron-like neural networks, one using as inputs branch
history information, the other one using program counter bits. We carried
out experiments proving that this approach provides lower misprediction
rate than state-of-the-art conventional and neural predictors. In particu-
lar, when compared with an advanced path-based perceptron predictor,
it features 12% improvement of the prediction accuracy.

1 Introduction

Modern high-performance microprocessors rely on sophisticated and accurate
branch predictors to efficiently exploit Instruction Level Parallelism (ILP). Com-
plex front-ends, capable of filling large instruction windows, are required to sus-
tain high operating frequency and aggressive parallelism. Branch prediction is a
key element of such a system, providing correct fetch beyond branch boundary
and, therefore, large throughput instruction delivery.

Several advanced branch predictors have been suggested so far in the lit-
erature. Most of them are 2-bit counters table based predictors [1], organized
in order to minimize interference which may occur in the counter tables. For
example, the 2Bc-gskew predictor [2] is composed of four 2-bit counter tables:
a bimodal table (BIM), two gshare-like tables (G0 and G1) and a metapredic-
tor table (META). Depending on the outcome of the META table, the final
prediction is given either by the BIM table or by the majority vote of the pre-
dictions from the BIM, G0 and G1 tables. Other complex schemes have been
recently proposed, e.g. the Prophet/Critic hybrid branch predictor [3], based on
the combination of two components: the prophet and the critic. The critic uses
both branch history and future to give a critique of the prophet prediction, which
is used to make the final prediction for the current branch.

In this paper, we present an innovative branch predictor architecture, based
on a neural approach, first proposed by Jimenez et al. in [4] (the Perceptron
predictor). Our proposal features a novel mechanism, based on an additional
address-based perceptron, using some PC bits as inputs, to achieve superior ac-
curacy with respect to a single perceptron approach. Using PC bits as input



of the neural network, the proposed predictor can separate branches otherwise
collapsing in the same perceptron. We prove that this approach improves sig-
nificantly prediction accuracy with respect to state-of-the-art conventional and
neural predictors.

The paper is organized as follows: Section 2 introduces some background
about neural branch prediction. In Section 3, our proposal is presented. Section
4 shows obtained experimental results. Finally, Section 5 concludes the paper.

2 Neural Branch Prediction

Branch predictors based on neural methods have been recently studied [4–7],
showing that they are the most accurate predictors in the literature. In fact,
neural networks can exploit much longer histories than conventional branch pre-
diction algorithms, resulting in better performance.

The simplest neural network is the perceptron. For this network, the output
signal, pred, is a non-linear function (activation function) of y, which is a linear
combination of the network inputs, as stated by following equations:

pred = step(y) (1)

y = w • [1 x]T = w0 +

i=N∑

i=1

wixi (2)

where wi are N + 1 weights and xi are N inputs; w0 is called bias weight.
The activation function can assume various shapes for a generic neural network.
Perceptron uses the step function, which is a natural choice, when dealing with
branch prediction patterns. The step function means taken when it is 1 and not-
taken when 0. Vector w = [w0, w1, · · · , wN ] is said weight vector and specifies the
perceptron. Vector x = [x1, · · · , xN ] is the input vector, whose elements are the
inputs of the network. Weights can be dynamically trained, so that prediction
run-time adapts to the real taken/not-taken branch pattern.

The Perceptron predictor, presented in [4], uses perceptrons to predict branch
outcome. It is a history-based predictor, since it maintains a Global Branch
History Register (GBHR) and a set of local Branch History Registers (BHR),
collected in a Branch History Table (BHT). A history register, obtained con-
catenating local and global history, is used as input of a perceptron network
to perform the prediction. The perceptron to use is chosen by using the PC
bits of the current branch. Weights are 8-bit integers and they are selected in
a n × (h + 1) matrix, called Weight Table (WT). n and h are design parame-
ters: n has the meaning of number of entries of the WT, while h is the size of
the history register, which is the network input. Each row of the matrix is a
(h + 1)-length weight vector, which determines the perceptron. When the pre-
diction is performed, the least significant bits of the PC are used to select the
row corresponding to the weight vector to use. A fast adder provides to generate
the summation of the weights, according to applied inputs (see Equation 2), and
a comparator makes the prediction (see Equation 1). Every time the effective
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Fig. 1. Block diagram of the Combined Perceptron Branch Predictor

branch target is computed, the corresponding weight vector is updated, training
the weights values with the outcome pattern.

An improvement to the Perceptron predictor is the Path-Based Perceptron
predictor. Branch path information is used when selecting neurons to get superior
accuracy. The path of a branch is composed of the past branch PCs. In a path-
based perceptron, the i-th weight of the weight vector to use for the prediction, is
the element of the i-th column of the Weight Table, indexed by the i-th element
of the Path Table, that is wi = WT [PT [i]]. This idea has been presented in [7],
where is proposed the Fast Path-Based Perceptron predictor. The predictor is
based on enhanced microarchitecture to minimize prediction latency. It staggers
computations in time, predicting a branch using a neuron selected dynamically
along the path to the branch, rather than selecting the neuron all at once.

In [8], Seznec proposes pseudo-tagging, a technique to reduce aliasing in the
perceptron table. Pseudo-tagging consists in using a few bits of the address of a
branch in the vector of weights. The author reports that this technique achieves
only a slight performance improvement with respect to the conventional per-
ceptron predictor (2.52 % on average, with a 16KB predictor, on 10 SPEC2000
integer benchmark).

3 Proposed Predictor Architecture

The Combined Perceptron Branch Predictor, proposed in the paper, combines
two different kinds of Perceptron: a history-based one and an address-based one.
The address-based Perceptron has as inputs some bits of the PC. Its output is
sensitive to the branch address and, if combined with the output of the history-
based Perceptron, which is sensitive to branch history, adds a contribution which



Algorithm 1 Prediction algorithm
/* Calculate the output of the

history-based perceptron */

y_hist=W_hist[PC][0];
for (j = 1; j <= HISTORY_LENGTH; j++)

{
k = PT[j-1];
if (history_reg[j-1])

y_hist += W_hist[k][j];
else

y_hist -= W_hist[k][j];
}

/* Calculate the output of the
address-based perceptron */

y_addr=W_addr[PC][0];
for ( j=1; j <= N_ADDR_BITS; j++)

{
k = PT[j-1];
if (PC[j-1])

y_addr += W_addr[k][j];
else

y_addr -= W_addr[k][j];
}

y = y_hist + y_addr;

if ( y >= 0 ) prediction = true;

else prediction = false;

the current branch itself. We designed the update pol-

icy of this component to make that a weight is decre-

Algorithm 2 Update algorithm
if (last_prediction!=outcome ||

(last_y <= THETA && last_y >= -THETA))

{
/*update the history-based perceptron*/

if (outcome) weight_inc(W_hist[PC][0]);
else weight_dec(W_hist[PC][0]);

for (j = 1; j <= HISTORY_LENGTH ; j++)
{

k = PT[j-1];
if (outcome == hist[j-1])

weight_inc(W_hist[k][j]);
else

weight_dec(W_hist[k][j]);

}

/*update the address-based perceptron*/
if (outcome) weight_inc(W_addr[PC][0]);
else weight_dec(W_addr[PC][0]);

for (j = 1; j <= N_ADDR_BITS; j++)

{
k = PT[j-1];

if (outcome == PC[j-1])
weight_inc(W_addr[k][j]);

else

weight_dec(W_addr[k][j]);
}

}
update_ghist();
update_lhist();

update_path();

Fig. 2. Algorithms for the prediction and update phase for the Combined Perceptron

Branch Predictor

significantly improves the prediction accuracy. The basic idea of our proposal is
to add to the final prediction a contribution to take into account branch address
related information, dealiasing branch which collapsed in a single entry of the
other component of the predictor.

Both subpredictors (history-based and address-based), which compose the
whole predictor, are Perceptron predictors which exploit branch path informa-
tion in the selection of the weight vector. The history-based predictor has the
same structure of the Path-Based predictor described in the previous section.
The address-based predictor uses a perceptron selected by the branch path, but
the input of the perceptron are the least significant bits of the address of the
current branch itself. We designed the update policy of this component to make
that a weight is decremented/incremented if the corresponding input (that is, an
address bit) has given a negative/positive contribution to the final prediction.

Furthermore, the activation function application is moved from the output
of the two single subpredictors to the output of the whole predictor. In this
way, each component cooperates in calculating the input value of the activation
function, which is subsequently applied.

The whole predictor output is ruled by following equations, which replace
Equation 1 and Equation 2.

pred = step(y) (3)

y = whist • [1 h]T + waddr • [1 x]T (4)

where whist is the the weight vector of the history-based perceptron, while waddr

is the weight vector of the address-based perceptron. h and x are, respectively,



the vectors of the input history and address bits. The activation function is the
step function and applies the summation of the two components of the predictor.

Figure 1 shows the block diagram of the proposed predictor. We indicated as
WT hist and P hist the Weight Table and the perceptron logic of the history-
based subpredictor, while WT addr and P addr are related to the address-based
one. Perceptron logic is substantially composed of an adder which sums selected
weights depending on the inputs. The Path Table (PT) holds the branch path,
that is, last branch PCs, and it is used to index into the Weight Tables. GBHR
and a BHT store information related to branch outcome history and supply the
history register which is the input of the history-based subpredictor. The update
logic is the circuitry needed to update the predictor Weight Tables. Dashed lines
represent data transfers needed by the update phase.

The prediction algorithm is shown, as C-like pseudocode, in Algorithm 1
(Figure 2).Weight Tables of both predictors are concurrently accessed to get
weight vectors. The outputs of the perceptrons are calculated and summed to-
gether. Finally, a comparator decides the prediction whether the obtained value
is greater or less than zero.

Update algorithm details are shown in Algorithm 2.The weights of the two
subpredictors tables are modified on mispredictions or when the value of y is
too small. A threshold is established for this purpose. Its value has been set, so
that weight vectors are updated if y falls into a value range which is half of the
weight range (that is, THETA = 64). The update is performed following the
rule: ∆w = outcome ⊕ input, which means that a weight is incremented if the
corresponding input has given positive contribution, otherwise it is decremented.
The GBHR, the BHT and the PT are also updated in this phase.

3.1 Implementation Issues

Implementation of perceptron-based branch predictors has been studied in [4,
7]. The most critical component, heavily impacting on prediction latency, is
the weights summation, which can be effectively implemented using a Wallace
compressor. A pipelined implementation has been proposed for the Path-Based
Perceptron [7], but it is feasible only considering global history. Local-global
Perceptron predictors, if pipelined, would need too large hardware budget, since
one pipeline per local history table (i.e. BHT) entry would be needed.

The architecture of the Combined Perceptron Branch Predictor can be im-
plemented as shown in Figure 3. Since each column of the WTs is independently
accessed by the program counter or by an element of the Path Table, WTs can
be sliced and organized in banks, each of them containing as many ways as the
Weight Tables (WTs) columns accessed by using the same addressing logic. The
summation relative to the history-based and address-based perceptrons are im-
plemented by a single block which generates the final value of the activation
function, composed by a Selective Inverter, a Wallace tree and a parallel adder.
The Selective Inverter, is a circuit to selectively invert fetched weights, according
to the predictor inputs, i.e. the history register and a portion of the program
counter bits. The Wallace tree is used to reduce the number of the operands to
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Fig. 3. Implementation of the Combined Perceptron Branch Predictor

2 operands, which are added by the final adder. The most significant bit of the
output is the prediction.

The proposed implementation results only slightly more complex than the
implementation of the Perceptron Predictor [4]. In fact, the same design can be
adopted also for a Perceptron. The main difference is the width of the summation,
and therefore of the Wallace tree. For example, regarding 8KB predictor as shown
in Table 1, the Combined Perceptron requires 42 weights, while the Perceptron
27, resulting in 2 gate levels of the Wallace tree saving. Considering 90 nm CMOS
process estimated latency for a prediction is 905 ps for the Combined Perceptron
and 770 ps for the the Perceptron (-15%).

4 Experimental Results

In order to evaluate the proposed architecture, in terms of prediction accuracy,
we measured misprediction rate for the proposed predictor and several differ-
ent predictors. Reported results have been obtained using the Championship
Branch Prediction (CBP) [9] framework, which is a trace-driven µop-based Intel
IA32 simulation environment. Branch predictors were simulated on conditional
branches of the given input trace. The Combined Perceptron predictor source
code is available on the web [10,11].

We used the instructions traces provided within the CBP framework. The
benchmark set is composed of 20 traces, 30M instructions per trace, Each trace
belongs to a specific class: INT (integer), FP (floating point), MM (multimedia),
SERV (server). The INT/FP workloads are components of SPEC; the multime-
dia has some video/speech recognition; for the most part the server is tpcc/web
server stuff.

In this paper, we compare the proposed predictor to well known state-of-the-
art predictors:



Table 1. Simulated predictor configurations

Total hardware budget
8KB 16KB 32KB

GShare history length 15 16 17
2Bc-gskew # entries (per table) 8K 16K 32K

history length 13 14 15
Perceptron WT # entries 304 443 630

history length 26 36 51
WT # entries 325 639 644

Path-Based global history length 17 19 40
Perceptron BHT # entries 2048 2048 2048

local history length 4 4 7
WT hist # entries 137 214 493
global history length 25 32 32

Combined BHT # entries 2048 2048 2048
Perceptron local history length 4 5 11

WT addr # entries 254 462 457
# address bits 11 14 17

– GShare. It is a global two-level adaptive predictor, which uses the XOR
between the global history and the branch address to minimize aliasing in
the 2-bit counter table [1].

– 2Bc-gskew. We simulated the predictor proposed by Seznec [2].

– Perceptron. This is the Jimenez’s Perceptron predictor proposed in [12].
Only a global history information is used to compute the perceptron output.

– Path-Based Perceptron. It is an improved version of the Perceptron pre-
dictor. Weights are selected exploiting path information and a mixed lo-
cal/global history is used.

Parameters space of the simulated predictors, including the proposed pre-
dictor, has been explored. More than 10,000 random generated configurations
have been simulated and best predictors have been selected. Table 1 reports the
parameters values of the optimal configurations for each predictor.

Figure 4 shows the average misprediction rate of the different branch pre-
dictors, when the size is varied. We simulated 8KB, 16KB and 32KB predic-
tors. It can be observed that the Combined Perceptron Branch Predictor fea-
tures the smallest misprediction rate for every size ranging from 3.5 to 2.8
mispredictions/K-instruction. The overall behavior of the proposed predictor
is 12.5% better than the optimized configuration of the Path-Based predictor
and 34% better than the GShare predictor.

In Figure 5, the plot of the misprediction rate of the simulated predictors
for each benchmark, for the size of 8KB, is reported. It can be observed that
the Combined Perceptron predictor achieves better performance over the other
predictors for every benchmark (except for INT-4 and MM-1). A large decrease
of the mispredictions is evident on integer and server benchmarks. All the simu-
lated predictors behave homogeneously across all the benchmarks. On the other
hand, the 2Bc-gskew predictor clearly results in fewer misprediction on integer
programs than on server ones.
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Results about exploration of different addressing modes into the Weight Ta-
bles are reported in Figure 6, for both the Perceptron Predictor and the Com-
bined Perceptron Predictor. We consider pure addressing mode, which means
that Weight Tables are accessed only by global history bits, and the local-global
one, which mixes local and global history. Furthermore, the path-based and local-
global path-based addressing modes, which use also path information. Observing
Figure 6(a), it is evident that path-based solutions feature good accuracy for
a relatively small history length (up to 24–26), while for longer history perfor-
mance decreases rapidly. This is mainly due to path interference, which occurs in
the path-based predictors, since weights ideally belonging to different path may
collapse into the same weight, because some weights of the paths may physically
overlap. This does not happen for the others two configurations, because a weight
vector is maintained for each branch. Local-global history significantly impact on
predictor performance. In fact, 10% accuracy improvement is achieved by using
local-global addressing. Although local-global predictors feature more complex
implementation, since pipelining is not possible, they represent a worthwhile
choice.
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Fig. 6. Misprediction rate versus history length, considering different addressing modes
into the Weight Tables (8KB predictor size)
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Fig. 7. Address bits – History length Ratio versus misprediction rate for the simulated
configurations and different predictor size

Figure 6(b) shows addressing mode analysis for the Combined Perceptron
Branch Predictor. While path interference makes that path information is not
effectively exploited in the Perceptron Predictor, the Combined Predictor suc-
ceeds in getting far lower misprediction rate by de-interfering paths. In fact, for
history length shorter than 40 bits, up to 8% performance gain is obtained by
path-based predictor, both for the local-global and the global one. In addition
to this it is evident that the local-global path-based predictor reaches a mispre-
diction rate minimum, since effectively exploit information related to both path
and local-global history.

Figure 7 shows scatter plots of the misprediction rate versus the Address
bits – History length Ratio (defined as the ratio of the number of address bits
used as input of the address-based predictor and length of the history used as
input of the history-based predictor) for the simulated configurations and pre-
dictor size of 8KB, 16KB, 32KB. These results show that the contribution of the



address-based component significantly improves perceptron predictor accuracy.
The phenomenon is evident for each predictor size: if the points on the Pareto
curve of each plot are observed, a minimum for the misprediction rate can be
found, when the value of the Address bits – History length Ratio is approxi-
mately 0.4.

5 Concluding Remarks

An innovative branch predictor architecture, based on a neural approach, has
been presented. We show that combining a history-based perceptron with an
address-based perceptron significantly improves prediction accuracy. We car-
ried out experiments on a set of the benchmark traces. The proposed predictor
achieves 34% lower misprediction rate than the baseline GShare predictor and
12% lower misprediction than a state-of-the-art Perceptron predictor. Results
prove that the branch predictor architecture we propose succeeds in exploiting
information related to branch path, unlike conventional path-based architecture
which suffers from path interference in the Weight Table.
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