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Abstract

Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction

problem that occurs in many areas of science. Most branch prediction research focuses on two-level adaptive branch

prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to

other application areas and fields for novel solutions to the problem. In this paper, we examine the application of neural

networks to dynamic branch prediction. We retain the first level history register of conventional two-level predictors

and replace the second level PHT with a neural network. Two neural networks are considered: a learning vector

quantisation network and a backpropagation network. We demonstrate that a neural predictor can achieve mispre-

diction rates comparable to conventional two-level adaptive predictors and suggest that neural predictors merit further

investigation.
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1. Introduction

Branch instructions are a major bottleneck in

the exploitation of instruction level parallelism

(ILP). The proportion of conditional branch

instructions in a program is relatively high. For

example, in general-purpose code conditional

branches occur approximately every 5–8 instruc-
tions [13]. In a simple processor, instructions from

the sequential path are typically pre-fetched from
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the instruction cache in an attempt to ensure that

its pipeline is fully utilised. A misfetch penalty

occurs when a branch is taken and incorrect in-

structions have been fetched into the pipeline. The

pipeline is then flushed and reloaded with in-

structions from the branch target. As more pipe-

line stages are introduced, the misfetch penalty

increasingly degrades processor performance.
Since there is such a high frequency of branches

in general-purpose code, it is essential to reduce

the performance degradation by using accurate

branch prediction to pre-fetch the correct instruc-

tions into the pipeline. A misprediction penalty

then only occurs if the branch prediction mecha-

nism incorrectly predicts the branch destination.
ed.
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The branch prediction problem, therefore, consists

of two sub-problems: firstly generating the correct

prediction and secondly in the case of a taken

branch predicting the correct branch target.

With ever increasing issue rates in multiple-in-

struction issue (MII) processors and deeper pipe-
lines the impact of a branch misprediction will

severely limit any gains in processor performance.

Very high prediction accuracy is required because

an increasing number of instructions are lost be-

fore a branch misprediction can be corrected. As a

result even a misprediction rate of a few percent

involves a substantial performance loss. Even a 3%

misprediction rate, achieved by current state-of-
the art two-level adaptive branch predictors, can

have a severe limiting impact on MII processor

performance [22]. Some researchers [2,22] envisage

that a next generation branch predictor could

consume 1 Mbyte of the hardware budget. This

suggests that current and near future branch pre-

dictors, though highly effective in prediction ac-

curacy, are not cost effective. Future branch
predictors must sustain prediction accuracy as

close to 100% as possible and yet be more cost

effective.

If branch prediction is to improve performance,

branches must be detected within the dynamic in-

struction stream, and both the direction taken by

each branch and the branch target address must be

correctly predicted. Furthermore, all of the above
must be completed in time to fetch instructions

from the branch target address without interrupt-

ing the flow of new instructions to the processor

pipeline. A classic branch target cache (BTC) [13]

achieves these objectives by holding the following

information for previously executed branches: the

address of the branch instruction, the branch tar-

get address and information on the previous out-
comes of the branch. Branches are then predicted

by using the PC address to access the BTC in

parallel with the instruction fetch process. As a

result each branch is predicted while the branch

instruction itself is being fetched from the in-

struction cache. Whenever a branch is detected

and predicted as taken, the appropriate branch

target is available at the end of the instruction
fetch cycle, and instructions can be fetched from

the branch target in the next cycle. Straightfor-
ward prediction mechanisms based on the previous

history of each branch give a prediction accuracy

of around 80–95% [13]. This success rate proved

adequate for scalar processors, but is generally

regarded as inadequate for superscalar designs.

The requirement for higher branch prediction
accuracy in superscalar systems and the availabil-

ity of additional silicon area led to a dramatic

breakthrough in the early 1990s with the devel-

opment of two-level adaptive branch prediction

[21,33]. More recently two-level branch predic-

tors have been implemented in several commer-

cial microprocessors [15,16]. However, although

high prediction rates are achieved with two-level
adaptive predictors, this success is obtained by

providing very large arrays of prediction counters

or pattern history tables (PHTs). Since the size of

the PHT increases exponentially as a function

of history register length, the cost of the PHT

can become excessive, and it is difficult to exploit a

large amount of branch history effectively. Two-

level adaptive branch predictors have two other
disadvantages. Firstly, in most practical imple-

mentations each prediction counter is shared

between several branches. There is therefore in-

terference or aliasing between branch predictions.

Secondly, large arrays of prediction counters re-

quire extensive initial training before they can

predict accurately. Furthermore, the amount of

training required increases as additional branch
history is exploited, further limiting the amount of

branch history that can be exploited.

Finally, some branches remain stubbornly hard

to predict [19,28]. There are two cases. The out-

come of some data dependent branches is effec-

tively random and these branches will never be

accurately predicted. However, it should be pos-

sible to predict certain branches that are currently
hard to predict more accurately by identifying new

correlation mechanisms and adding them to the

prediction process. We suggest that neural pre-

dictors may prove to be a useful vehicle for in-

vestigating potential new correlation mechanisms.

We emphasise that most branch prediction re-

search is based on two-level adaptive branch pre-

dictors, which are themselves based on two closely
related correlation mechanisms. Yet, branch pre-

diction is a specific example of a general time series
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prediction problem that occurs in many diverse

fields of science. It is therefore surprising that there

has not been more cross-fertilisation of ideas be-

tween different application areas. A notable ex-

ception is a paper by Mudge�s group [7] that

demonstrates that all two-level adaptive predictors
implement special cases of the prediction by partial

matching (PPM) algorithm that is widely used in

data compression, speech recognition and hand-

writing recognition problems. Mudge uses the

PPM algorithm to compute a theoretical upper

bound on the accuracy of branch prediction. In

a later paper, Steven et al. [27] demonstrate that a

two-level predictor can be extended to implement a
simplified PPM algorithm with a resultant reduc-

tion in the misprediction rate. Time series predic-

tion is also an important research topic in neural

networks (NNs). It therefore appears natural to

look to NNs for a further cross-fertilisation of

ideas.

In this paper we explore how NNs can be used

to dynamically predict branch outcomes by fore-
casting future values of data series. One of our

main research objectives is to use NNs to identify

new correlations that can be exploited by branch

predictors. We also wish to determine whether

more accurate branch prediction is possible and to

gain a greater understanding of the underlying

prediction mechanisms. In this paper, we apply

NNs to dynamic branch prediction to demonstrate
that NNs can achieve the same prediction accu-

racy as a conventional two-level adaptive predic-

tor. We therefore restrict our neural network

inputs to using the same dynamic history register

(HR) information as a conventional two-level

predictor. Finally, we hope to design and evaluate

hardware implementations of simplified neural

branch predictors, although in this initial feasibil-
ity study, we have ignored the costs of imple-

menting the NNs, assuming that the predictions

would be produced in time to be useful. Alterna-

tively, our research may lead to the design of more

effective two-level branch predictors.

We explore the suitability of two NNs, a

learning vector quantisation network (LVQ) and a

backpropagation network, for branch prediction.
Through trace-driven simulation, we demonstrate

that neural predictors can achieve success rates
that are comparable to conventional two-level

adaptive predictors.
2. Related work

2.1. Two-level adaptive branch prediction

Most recent research on branch prediction has

focused on two-level adaptive prediction [6,11,17,

18,21,23,24,33–36]. In a two-level predictor, the

first level consists of a HR that records the out-

come of the last k branches encountered. The HR
may be a single global register (HRg) that records
the outcome of last k branches executed in the

dynamic instruction stream or one of multiple lo-

cal HRs (HRl) that records the last k outcomes of
each branch. The second level of the predictor,

known as the PHT, records the behaviour of a

branch during previous occurrences of the first

level predictor. The PHT typically consists of an

array of two bit saturating counters that is indexed
by the HR to obtain the prediction. With a k-bit
HR, 2k entries are therefore required if a global

PHT is provided, or many times this number if

separate HRs and therefore PHTs are provided for

each branch.

Two distinct prediction techniques have in fact

been developed, global and local (per-address). If a

global HR is used, the predictor exploits correla-
tion between the outcome of a branch and the

outcome of neighbouring branches that are exe-

cuted immediately prior to the branch. If a local

HR is used, the predictor exploits correlation be-

tween the outcome of a branch and previous out-

comes of the same branch.

Two-level branch predictors are usually classi-

fied using a system proposed by Yeh and Patt [34].
The six most common configurations are GAg,

GAp, GAs, PAg, PAp and PAs. The uppercase

first letter specifies the first-level mechanism, ‘‘G’’

global or ‘‘P’’ local (per-address). The lowercase

last letter specifies the second level, which can be

‘‘g’’ global, ‘‘p’’ local (per-address) or ‘‘s’’ a set of

branches mapping to the same PHT prediction

array. The ‘‘A’’ in the middle emphasises the
adaptive or dynamic nature of the predictor.

Therefore, GAg, GAp and GAs rely on global
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branch history and PAg, PAp and PAs rely on

local branch history. Additionally a separate BTC

is still required to provide branch target addresses.

In the case of a local predictor the local HRs can

be integrated into the BTC by adding a HR field to

each BTC entry.
Since most recent research on branch prediction

has concentrated on two-level adaptive techniques,

it is useful to explore some of the drawbacks of

two-level predictors. The main disadvantages can

be found in the following areas:

• High cost of PHT

• Branch interference
• Slow initialisation

The high cost of two-level predictors is a direct

result of the size of the second level PHT, which

increases exponentially in size as a function of HR

length. The high implementation cost of conven-

tional two-level predictors has had a subtle, but

important, impact on branch prediction research;
it has discouraged any developments that increase

the size of the PHT. Perhaps the most obvious

example is that researchers are deterred from at-

tempting to extract additional prediction accuracy

from very long HRs. Similarly, researchers are

discouraged from describing the program path

leading to each branch more accurately by re-

cording fuller path information [20], and from
combining global and local history information

in a single predictor. The use of additional pre-

diction information, such as the branch direction

information used in the simple backwards taken,

forward not taken (BTFNT) heuristic, is discour-

aged.

The high cost of a conventional PHT suggests

that alternative configurations should be consid-
ered. One possibility is to replace the PHT with a

prediction cache [8–10,27]. Although a tag field

must be added to each PHT entry, the very large

size of conventional PHTs suggests that the total

number of entries and therefore the total cost of

the PHT could be significantly reduced. The dan-

ger with a prediction cache is that cache misses will

increase the misprediction rate. The impact of
prediction cache misses can, however, be mini-

mised, at low cost, by restoring a two-bit predic-
tion counter to each entry of the conventional

BTC, which is still required in all two-level pre-

dictors to furnish the target address for each

branch. These BTC counters can then be used to

provide a default prediction whenever there is a

miss in the prediction cache [8]. Alternatively, an
entirely different approach, such as the neural

branch predictors introduced in this paper, can be

investigated.

In a global predictor, interference or aliasing in

the second level PHT occurs whenever two bran-

ches generate the same first-level HR pattern and

therefore access the same second-level PHT pre-

diction counter [23]. This causes the predictions for
two or more branches to affect each other. There

have been numerous studies that attempt to reduce

the impact of interference [5,10,17,18,24]. How-

ever, reducing the amount of interference has

generally also increased the initialisation mispre-

dictions and the cost of the predictor.

The third problem is PHT initialisation. In the

worst case, the 2k prediction counters associated
with each branch, where k is the length of the

HR, must be trained before the predictor is

fully effective. Even allowing for the fact that a

PHT is effectively a sparse matrix with many un-

used entries, this situation contrasts sharply with a

classic BTC that is fully initialised after one exe-

cution of each branch. The impact of PHT training

can be reduced by combining a two-level predic-
tor with a classic BTC in a hybrid predictor [6,26].

The BTC will then be used in preference to the

two-level predictor while the latter is being initia-

lised.

2.2. Neural branch prediction

Calder introduced ideas from artificial intelli-
gence to branch prediction by using a neural

branch predictor to derive static branch predic-

tions [3]. He termed this new technique �Evidence-
based Static Prediction� (ESP). However, Calder
was concerned entirely with static or compile-time

branch prediction. His predictions were therefore

based on information about a program�s structure
that was readily determined by a compiler. For
example, a branch successor path that leads out of

a loop or function is less likely to be followed than
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a path that remains within the loop or function.

The idea of Calder�s neural branch predictor was
to map static features associated with each branch

to the probability that the branch will be taken.

This approach provides several advantages over

the traditional static branch prediction program-
based heuristics [1]. First, the technique can be

applied to a large range of programming lan-

guages, compilers and architectures, since the

neural net will perform a dynamic mapping of

static features to the probability that the branch

will be taken. Second, since the technique uses

artificial intelligence algorithms, the most useful

heuristics are automatically applied to derive the
prediction in cases where more than one heuristic

applies, making it unnecessary to order heuristics.

Calder achieves a misprediction rate of 20%, re-

markably low for static branch prediction. Since

Calder�s predictions were performed at compile

time, he was unable to feed the dynamic branch

histories used by two-level predictors into his NNs.

As a result, perhaps the most useful contribution
of his paper is to suggest a wide range of alterna-

tive inputs that might correlate with branch out-

comes and which might therefore be usefully

added to dynamic predictors.

Jim�eenez, independently and simultaneously to

our investigation into the potential of applying the

principles of NNs to dynamic branch prediction,

has also investigated neural methods for dynamic
branch prediction [14]. His study focuses on a

perceptron predictor; we also focus on two per-

ceptron predictors: a simple learning vector

quantisation (LVQ) neural predictor and a back-

propagation neural network predictor. The major

difference between the two studies is that Jim�eenez
only uses the history register as input values to his

perceptron predictor, whereas we use the history
register and the branch address as input values to

our LVQ and backpropagation neural predictors.

Furthermore, Jim�eenez claims to have developed

the first perceptron predictor that successfully uses

NNs. As far as we are aware, the first known

perceptron predictor was developed by Vintan

[29–32].

The perceptron and the Adeline [12] are two of
the simplest models used by NNs for pattern rec-

ognition. A perceptron net consists of a single
layer of neurons. Each of the inputs is connected

to each neuron by one-way data connections, and

each of these connections has an associated

weight. The size of the weight is applied to its

connection to determine a single output signal.

Additionally, each neuron applies a threshold ac-
tivation function to its input signals, known as the

bias weight. It is important to use bipolar input

signals ()1, 1) rather than binary input signals

(0, 1) because a weight with an input signal of 0

would have no impact on the network. The output

signal is the sum of bias weight with the summa-

tion of the product of each input signal and its

associated weight.

output signal ¼ w0 þ
Xn

i¼1
wi � input signali

In the case of branch prediction, a prediction is

considered to be taken if the output signal is P0

and a prediction is considered not-taken if the

output signal is <0.
Both Jim�eenez and Vintan retained the first level

history register of a two-level predictor to supply

input signals to their perceptron predictors.

However, Vintan�s input signals consisted of the

branch address as well as the history register. In

both studies the neural network was dynamically

trained after each branch prediction. Vintan ap-

plied the well-known training algorithm that is
usually applied to the backpropagation learning

algorithm [12]. The backpropagation learning al-

gorithm has two steps. The first step is the forward

propagation step that computes the weighted sums

and activations for each input value. The second

step is used to update the weight for each input

value and is a backward pass through the neural

network. In contrast, Jim�eenez used a simpler
training algorithm. In his predictor an input value

to the network was either )1 or +1. If the input
value was the same as the previous branch out-

come, where a not-taken branch is associated

with )1 and a taken branch associated with aþ 1,

then the weight was incremented. Conversely,

if the input value was the not same as the previ-

ous branch outcome then the weight was decre-
mented.

Both researchers conclude that greater correla-

tions are achieved by neural predictors than by
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two-level predictors and greater prediction accu-

racy can be achieved. Jim�eenez showed that his

predictor achieved a misprediction rate of 1.71%,

which equates to 36% fewer mispredictions than a

McFarling style hybrid two-level predictor [18].

Vintan showed that his predictor achieved a mis-
prediction rate of about 11%, which equates to 3%

improvement in the misprediction rate for his

neural predictor over a conventional two-level

predictor. The difference in the prediction accuracy

between Jim�eenez and Vintan study�s may be ex-
plained by the fact that Jim�eenez focused his study
on history register lengths as input values for his

perceptron predictor and was able to achieve cor-
relations for history register lengths up to 66 bits.

In contrast, Vintan used a combination of the

branch address and the history register length as

input values into his multiplayer layer percep-

tron predictor, which restricted his maximum his-

tory register length of 10 bits. Furthermore, the

difference in the training algorithms may be a

critical factor in determining the behaviour of the
NNs.
3. Branch prediction models

We first briefly consider the performance of a

simple learning vector quantisation (LVQ) neural

predictor. We then compare the performance of
conventional two-level adaptive predictors with a

neural predictor using a backpropagation net-

work. In both cases the prediction process is based

on two inputs: the branch PC�s 10 least significant
bits and the HRg, HRl or a combination of HRg

and HRl of the k previous branches.
We assume that all predictions are being made

during the instruction fetch (IF) stage of the pro-
cessor pipeline. All our predictors therefore oper-

ate in parallel with a classic BTC that detects

branches and furnishes the branch target address.

Since an instruction is not decoded until the ID

stage of the pipeline, then only hits in the BTC are

known to be branch instructions. The actual pre-

diction is generated by either a neural network or a

two-level predictor. Nevertheless, a miss in a BTC
always results in a default prediction of not-taken,

irrespective of the prediction delivered by the
predictor, since the instruction is not necessarily a

branch. A 1K four-way set associative BTC is used

throughout the paper.
3.1. An LVQ neural predictor

The first neural network we examined was an

LVQ [12] model. Our objective was to determine

whether respectable success rates could be deliv-

ered by a simple LVQ network that was dynami-

cally trained after each branch prediction.

The LVQ predictor contains two ‘‘codebook’’

vectors: the first vector, Vt, is associated with the
branch taken event and the second, Vnt, with the
not-taken event. Vt is initialised to all ones and Vnt
to all zeros. During the prediction process, the

input parameters of the branch address (10 least

significant bits) and the k bits of the HR are con-

catenated to form a single input vector, X . Modi-
fied Hamming distances are then computed

between X and the two codebook vectors.

HD ¼
X

i

ðXi � ViÞ2

The vector with the smallest Hamming distance is

defined as the winning vector, Vw, and is used to
predict the branch. A win for Vt therefore indicates
‘‘predict taken’’, while a win for Vnt indicates
‘‘predict not-taken’’. When the branch outcome is

determined, the codebook vector Vw that was used
to make the prediction is then adjusted as follows:

Vwðt þ 1Þ ¼ VwðtÞ þ =� aðtÞ½X ðtÞ � VwðtÞ�

To reinforce correct predictions, the vector is in-

cremented whenever a prediction was correct and

decremented otherwise. The factor aðtÞ represents
the learning factor and is usually set to a small

constant less than 0.1. In contrast, the losing vec-

tor is unchanged. The neural predictor will there-

fore be trained continuously as each branch is

encountered. It will also be adaptive since the

codebook vectors will always tend to reflect the

outcome of the branches most recently encoun-

tered. In our LVQ predictors, the most recently
encountered branches may be global, local or a

combination of global and local depending on the

HR information used as input signals.
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3.2. Branch prediction using a backpropagation

neural network predictor

Our second neural network is a backpropaga-

tion neural network [4]. The prediction informa-
tion is fed into a backpropagation net (Fig. 1)

which predicts the outcome of each branch. Later

when the outcome of the branch is known, the

error in the prediction is backpropagated through

the neural network using the classic backpropa-

gation algorithm.

In a backpropagation neural network there are

two steps through the network [4]. The first step is
a forward sweep from the input layer to the output

layer, and then there is a backward step from the

output layer to the input layer. The forward step

propagates the input vector of the net into the first

layer. Outputs from this layer produce a new

vector, which is used as the input into the second

layer. This procedure is repeated through to the

final layer. The outputs of the final layer are the
output signals of the network. In the case of a

neural branch predictor there is only one output

signal, which is used as the prediction. The back-

ward step is similar to the forward step, except that

error values are propagated back through the

network. These error values are used to determine

how the weights are changed. The back propaga-

tion algorithm is therefore used to generate the
weights. Inputs and outputs of a backpropagation

algorithm may not be restricted to discrete values

which results in a wider range of ways to codify

inputs and outputs.
Fig. 1. A global backpropag
Four different networks have been developed:

two of them use global history information while

the other two use local history information. The

two versions of each arise because the inputs to the

net are coded in two different ways: binary using 0

and 1 for not-taken and taken branches respec-
tively, and bipolar, using )1 and 1. To exploit these
different input encodings, two different activation

functions are also required, a sigmoidal function

for binary inputs and a bipolar sigmoidal function

for bipolar inputs:

Sigmoidal function : 1=ð1þ e�bxÞ

Bipolar sigmoidal function : 2=ð1þ e�bxÞ � 1

The factor b controls the degree of linearity in the
two activation functions. In particular, as b ap-

proaches infinity, the functions become step func-

tions, the form of the activation function used in

multi-layer perceptron (MLP) networks.

When predicting a branch using binary inputs, a

value greater than or equal to 0.5 on the output cell
is considered to be a taken prediction, whereas any

value lower than 0.5 is a not-taken prediction. In

the bipolar case, positive values or 0 indicate a

taken prediction and negative values not-taken.

The network is not initially trained, so random

values are chosen for the weights between [�2=X ,
2=X ], where X corresponds to the number of inputs

to the net. This selection of weights guarantees that
both the weights and their average value will be

close to zero and that the net is not biased initially

towards either taken or not-taken.
ation neural predictor.
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4. Trace-driven simulation results

4.1. Simulation environment

Our simulations used the Stanford integer
benchmark suite, a collection of eight C programs

designed to be representative of non-numeric code,

while at the same time being compact. The

benchmarks are computationally intensive, with

an average dynamic instruction count of 273,000.

About 18% of the instructions are branches of

which around 76% are taken. Some of the bran-

ches in these benchmarks are known to be partic-
ularly difficult to predict; see for example Mudge�s
detailed analysis [19] of the branches in quicksort.

Branch prediction researchers generally use the

SPEC benchmark suite but we consider that the

SPEC benchmark suite may not necessarily be

the most suitable benchmarks for branch predic-

tion. The programs in the Stanford integer bench-

mark suite are shorter than those in the SPEC
benchmark suite. This means that each branch in

the Stanford integer benchmark suite is executed

fewer times than each branch in the SPEC bench-

mark suite. Branches in the Stanford benchmark

suite are therefore more difficult to predict because

the initial training problems are more acute than

those in the SPEC benchmark suite and thus pro-

vide a better test of prediction accuracy.
The Stanford benchmarks were compiled using

a C compiler developed at the University of

Hertfordshire for the Hatfield superscalar archi-

tecture (HSA) [25]. Instruction traces were then

obtained using the HSA instruction-level simula-

tor, with each trace entry providing information

on the branch address, branch type and target

address. These traces were used to drive a series of
trace-driven branch predictors. The trace-driven

simulators are highly configurable, the most im-

portant parameter being the number of HR bits.

As output, the simulators generate the overall

prediction accuracy, the number of incorrect target

addresses and other useful statistics.

4.2. Conventional two-level predictors

For comparative purposes, we first simulated

three global predictors, a GAg predictor, a GAs
predictor with 16 PHTs and a GAp predictor

(Fig. 2). The average misprediction rate initially

falls steadily as a function of global HR length,

before flattening out at a misprediction rate of

around 9.5%. In general, there is no benefit in in-

creasing the HR length beyond 16 bits for the GAg
predictor and 14 bits for the GAs/GAp predictors.

Beyond this point there is either no significant

benefit from new correlations or any benefit is

negated by the additional number of initialisations

required in the PHTs.

We also simulated three local predictors: a PAg,

a PAs and a PAp predictor (Fig. 3). The local

predictors achieve misprediction rates of around
7.5%, significantly better than the global predic-

tors. The best performance of 7.48% is achieved

with a PAp predictor and a 28-bit HR. This im-

provement is largely achieved because local pre-

dictors, unlike their global counterparts, continue

to benefit from additional HR bits. However, with

both global and local two-level predictors the ac-

curacy does not improve smoothly as a function of
HR length.

4.3. An LVQ branch predictor

Global predictors perform better with some

branches, while local predictors perform better

with others. It is therefore highly desirable to

combine both forms of prediction within a single
predictor. Unfortunately, combining both global

and local history registers within a conventional

two-level predictor is very costly since both the size

and cost of the PHTs increase exponentially as a

function of history register length. In contrast, it is

very easy to combine global and local history in-

formation in a neural predictor since there is no

explosive cost increase corresponding to the ex-
ponential growth of the PHT size.

Three LVQ predictors were considered with the

following inputs:

• PC+HRl

• PC+HRg

• PC+HRl+HRg

The input vector for the neural network was

constructed by concatenating the 10 least signifi-



Fig. 2. Conventional global two-level predictors.

Fig. 3. Conventional local two-level predictors.
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cant bits of the PC with HRg, HRl or a combi-

nation of HRg+HRl as appropriate. Initially

the values of the learning step aðtÞ were varied
between 0.1 and 0.001. Eventually the value aðtÞ ¼
0:01 was standardised after it had been demon-

strated that the predictor was largely insensitive to



Fig. 4. LVQ branch predictors.
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slight variations in aðtÞ. The simulation results are
presented in Fig. 4.

The global LVQ predictor achieved an average

misprediction rate of 13.54%. Furthermore, only
modest further benefits were realised by increasing

HR beyond four bits. The global predictor was

therefore unable to benefit from large amounts of

HRg information. The local LVQ predictor

achieved a significantly lower misprediction rate of

10.91%. However, although this figure was re-

corded with a 30-bit HRl, the local predictor was

also unable to adapt to a large amount of history
register information, and no significant improve-

ments were observed with HR sizes greater than 6–

10 bits. The superior performance of the local

predictor is not entirely unexpected; there is likely

to be far more positive re-enforcement of predic-

tion information between distinct branches in a

local predictor. In contrast, a global predictor

must ‘‘learn’’ about each branch separately.
Finally, a hybrid global and local LVQ predic-

tor, with equal numbers of HRg and HRl bits,

yielded a marginal improvement on the local LVQ

predictor levels, pushing the best average mispre-

diction rate down to 10.78% (see Fig. 4).

Overall, the results of the LVQ predictor are in

line with the average accuracy of 88.10% achieved
by a classic BTC with these benchmarks. However,

global conventional two-level predictors and local

conventional two-level predictors achieve superior

performance to our LVQ predictors. Our simple
LVQ predictors are therefore unable to compete

with conventional two-level adaptive predictors.

Nevertheless, we found these first results very en-

couraging. An LVQ network solves a binary

classification problem by attempting to find a

single multi-dimensional plane that divides the

input space, in this case a taken and a not-taken

space, into two. Although the plane can be chan-
ged dynamically as each branch executes, it ap-

pears unlikely that an entirely satisfactory solution

can be found. Since our LVQ predictors nonethe-

less managed to equal the performance of a classic

BTC, we were encouraged to develop further

neural predictors.
4.4. A backpropagation neural predictor

A total of four backpropagation neural pre-

dictors were simulated:

• A global backpropagation neural predictor,

using PC+HRg, with binary inputs.



Fig. 5. Backpropagation neural predictors.
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• A global backpropagation neural predictor,

using PC+HRg, with bipolar inputs.

• A local backpropagation neural predictor, using

PC+HRl, with binary inputs.

• A local backpropagation neural predictor, using

PC+HRg, with bipolar inputs.

We did not simulate a backpropagation neural
predictor that uses a combination of HRg and

HRl. The simulation results are plotted in Fig. 5 as

a function of HR length. A learning rate of 0.125

was used throughout.

The global backpropagation neural predictor

with binary inputs (0 or 1) achieves a mispredic-

tion rate of 11.28%, which is significantly better

than the global LVQ predictor. However the glo-
bal backpropagation predictor with bipolar inputs

()1, +1) significantly improves on this figure and
achieves a misprediction rate of 8.77%. Intuitively,

feeding in not-taken results as minus one allows

the backpropagation neural predictor to exploit

correlations between not-taken branches and the

branch being predicted. In contrast, if not-taken

results are fed in as zero, they can have little di-
rect result on the final outcome, since their

weighted input into each intermediate neural cell

must always be zero. Interestingly, the predic-

tion accuracy also continues to improve as HR

length is increased, and only finally dips below a
misprediction rate of 9% with a HR length of 26

bits.

The local backpropagation neural predictor

consistently outperforms the global backpropaga-

tion neural predictor. With binary inputs, the best

misprediction rate is 10.46%, while with bipolar

inputs 8.47% is achieved. Significantly, backprop-

agation neural prediction performance is now
comparable with the performance of conventional

two-level adaptive predictors (see Fig. 6). The best

global backpropagation neural predictor with a

misprediction rate of 8.77% is 5.2% better than the

best GAs predictor, while the best local back-

propagation predictor at 8.47% is 13.2% worse

than the best PAs predictor (see Fig. 6).
5. Conclusions

In this study, we sought to determine whether a

neural network could mimic a two-level adaptive

branch predictor and achieve comparable success

rates. Two types of neural predictors were simu-

lated, an LVQ predictor and a backpropagation
predictor. While the LVQ predictor only achieved

results comparable to a traditional BTC, the

backpropagation predictor performance was com-

parable to conventional two-level adaptive pre-

dictors. In the case of global predictors, the best



Fig. 6. Conventional two-level predictors compared with backpropagation neural predictors with bipolar inputs.
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neural predictor was marginally superior to the

best conventional two-level predictor. In the case

of local predictors, the best conventional two-level
predictor was marginally superior to the best

neural predictor. These results suggest that not

only can NNs generate respectable prediction re-

sults, but in some circumstances a neural predictor

may be able to exploit correlation information

more effectively than a conventional predictor.

Traditionally, NNs undergo exhaustive and

often very time-consuming training before they are
used. In this respect, branch prediction appears to

be an unpromising application for NNs. In branch

prediction, a neural network is expected to sample

the outcome of a specific branch once and to then

predict the same branch when it is encountered for

a second time. The most exciting result of these

simulations is therefore the extent to which back-

propagation NNs are able to assimilate and benefit
from large amounts of history register information

with a minimum of training. The distinct drop in

the bipolar backpropagation misprediction rate

when 26 bits of HR are used is a good illustration

of this result. Our results therefore suggest that

NNs can adapt rapidly enough to be successfully

used in dynamic branch prediction.

NNs provide an extremely interesting topic for
future branch prediction research. One challenge is
to construct composite input vectors for neural

network predictors that will enable them to out-

perform conventional predictors. This task
involves both identifying new correlation mecha-

nisms that can be exploited by neural prediction

and tailoring the input information to fully exploit

the capabilities of a neural predictor.

Work is ongoing to design hardware imple-

mentations of the neural models simulated, and it

seems feasible to build neural network predictors

that work quickly enough to be useful within a
sensible silicon budget. For example, by coding the

+1/)1 signals as 0/1 and the weights and thresh-
olds as small fixed-point signed fractions, the

apparently expensive multiplications and floating-

point arithmetic become much simpler and faster

operations.
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