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Abstract—Recent computer architectures can be configured in
lots of different ways. To explore this huge design space, system
simulators are typically used. As performance is no longer the
only decisive factor but also e.g. power usage or the resource
usage of the system it became very hard for designers to select
optimal configurations.

In this article we use a multi-objective design space exploration
tool called FADSE to explore the vast design space of the
Grid Alu Processor (GAP) and its post-link optimizer called
GAPtimize. For this case study we improved FADSE with
techniques to make it more robust against failures and to speed
up evaluations through parallel processing. For the GAP, we
present an approximation of the hardware complexity as second
objective besides execution time. Inlining of functions applied as a
whole program optimization with GAPtimize is used as example
for a code optimization.

We show that FADSE is able to thoroughly explore the
design space for both GAP and GAPtimize and it can find
an approximation of the Pareto frontier consisting of near-
optimal individuals in moderate time. For the GAP, FADSE can
find, due to the approximation of the complexity, more efficient
configurations than the ones proposed yet.

Index Terms—automatic design space exploration, multiob-
jective optimization, hardware complexity estimation, code op-
timization

I. INTRODUCTION

One of the future challenges when developing novel archi-
tectures is to cope with the increasing complexity of designs.
While for early processor architectures the available number
of transistors was a limiting bound the architectures proposed
more recently have the freedom to use lots of hardware.

Simple ideas to do this are increasing the cache sizes and
replicating processor cores, which leads to multi- and many-
core designs. Alternatively, novel processor architectures as
for example TRIPS (with EDGE [1]), RAW [2], VEAL [3],
WARP [4], or the Grid Alu Processor (GAP) can be used. The
GAP combines elements of superscalar processor architectures
with a coarse-grained reconfigurable array of functional units.
Its goal is to speed up the execution of sequential instructions
streams.

All novel processor architectures expose lots of parameters,
e.g. the number of processor cores, cache sizes, or memory
bandwidth. Theses parameters form a huge design space.
With multiple objectives and under specific constraints, as for
example timing behavior or the availability and affordability of

hardware resources, good points consisting of a combination
of parameters have to be found. It is getting very hard for
the system designers to cope with this increased complexity.
Tools for automatic design space exploration (ADSE) are very
convenient for this job. One of them is FADSE (Framework
for Automatic Design Space Exploration, [5]), which has its
focus on processor architectures.

FADSE has been developed to intelligently explore rele-
vant sub-spaces of a huge design space using state-of-the-art
evolutionary search algorithms. Therefore, it evaluates many
different individuals. Each individual is formed by a set of
parameters, where one value is selected for each parameter.
The main goal of the DSE is to find the Pareto front regarding
multiple objectives. The Pareto front consists of a set of
individuals which do not dominate each other [6], i.e. no
relation can be established between any two individuals (one
is better on one objective, the other one is better on another
objective).

As processor architectures get more complex and diverse the
optimization of programs by compilers and code optimizers
in general also gets harder because the quality of the settings
for these programs can be very different for apparently similar
target platforms. Therefore, we propose an ADSE to solve this
challenge, too. GAPtimize is a post-link optimizer to apply
feedback-directed platform specific optimizations on binaries
for the execution on the GAP.

The main contributions of this paper are (1) an improved
version of FADSE with higher robustness and a much higher
degree of parallelism, (2) the introduction of a model to
estimate the hardware complexity of different configurations
of the GAP, (3) a description of the performance achievable
with the GAP on configurations with varying complexities,
and (4) that FADSE can also be used to find good parameters
for software optimizations.

Details on FADSE, GAP, GAPtimize, and the objectives
used in the DSE are presented in Section II. The results of the
DSE are explained in Section III. The presented work is put in
context with related work in Section IV. Section V concludes
the paper.



II. RESEARCH METHODOLOGY AND TOOLS

In the following section, we introduce the components of
our case study and provide the basis for the design space
exploration (DSE) by presenting parameters and objectives.

A. FADSE

The framework FADSE allows us to perform automatic
DSEs using the state of the art evolutionary multi-objective al-
gorithms implemented in jMetal [7] (NSGA-II [8], SPEA2 [9],
SMPSO [10] and many others). The main characteristics of
FADSE were already presented [5]; in the scope of this work
it has been improved fundamentally to reduce the time needed
for a DSE process and to increase its robustness.

The algorithms used for the DSE have been modified to be
run in a distributed manner. Creating new individuals for a new
generation is decoupled from evaluating individuals, which
allows running the simulations necessary for the evaluation of
individuals in parallel (down to the core level). FADSE works
on personal computers with commodity networks as well as
on supercomputers (it was e.g. tested on an IBM HPC with
120 Intel Xeon cores running RedHat Linux).

After running a DSE it is important to understand the
quality of the generated results. For this task, FADSE now
offers metrics that do not require the true Pareto front. It
supports the calculation of the hypervolume, which is the
volume enclosed between the Pareto front approximation and
the axes in a maximization problem, coverage, which is the
fraction of individuals from one population dominated by the
individuals from another population, and the so-called seven
point average distance [6]. These metrics can be used to (a)
compare different DSEs and (b) to measure the progress of a
certain DSE algorithm.

FADSE also integrates various improvements to increase
robustness which take into consideration situations when the a
simulator or a computer crashes or a connection is interrupted,
allowing FADSE to continue working without affecting the
results.

The framework was designed so that it can run almost
any existing simulator by writing a specific connector. It is
configured using an XML file, in which the user can configure
the simulator parameters, the simulated architecture and a set
of constraints (rules). These constraints are used to reduce the
search space and to help the algorithm to find a quasi-optimal
solution faster.

For a further speed-up of explorations the improved version
of FADSE can use a database to store the results of the
evaluations of individuals. This allows it to reuse already
calculated results which reduces the time required to find a
good solution considerably.

FADSE is available as open source.1

B. GAP

The Grid Alu Processor (GAP) is a single-core processor
architecture to speed up the execution of traditional single-
threaded instruction streams.

1Homepage of FADSE: http://code.google.com/p/fadse/
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Fig. 1. Architecture of the Grid Alu Processor

The GAP comprises a superscalar-like in-order front-end
consisting of fetch- and decode-unit which is used together
with a novel configuration unit. This unit is able to con-
currently map independent instructions as well as data or
control flow dependent instructions dynamically onto an array
of functional units (FUs), a branch control unit and several
load/store units to handle memory accesses (see Figure 1).

The array of FUs is organized in columns and rows. Each
column is dynamically and per configuration assigned to
one architectural register. Every instruction is assigned to
the column whose register matches the instruction’s output
register. The rows of the array are used to model dependencies
between instructions. A bimodal branch predictor is used to
effectively map control dependencies onto the array.

In order to save configurations for repeated execution all
elements of the array are equipped with some memory cells
which form configuration layers working similar to a trace
cache. Typically, 2, 4, 8, 16, 32, or 64 configuration layers are
available; the number of layers is an example for a dimension
of the design space.

To evaluate the architecture a cycle- and signal-accurate
simulator has been developed. It uses the Portable Instruction
Set Architecture (PISA) derived from a MIPS instruction set
architecture; hence the simulator can execute the identical
program files as the SimpleScalar simulation tool set [11].
Detailed information about the processor is given by Uhrig et
al. [12] and Shehan et al. [13].

Unlike traditional architectures the GAP has been designed
to be scalable, so to be able to make good use of small and
large processor dies. This is mainly achieved by the different
sizes of the array of FUs (from 16 to 992 FUs) as well as size
and organization of the caches.

The configurability of the architecture together with the
ability to execute legacy code without any modification on
any configuration of the GAP makes it very interesting as



candidate for a case-study with FADSE. A command-line
interface has been build for the GAP simulator to invoke it
with FADSE. To be able to detect unexpected behavior of the
simulator and hence to ensure robustness FADSE observes an
often-updated log file and compares values from this file with
reference data.

With the DSE, we want to find for the GAP the relation
between used hardware resources and the achievable perfor-
mance. Therefore, FADSE can select values for the parameters
in Table I.

TABLE I
PARAMETER SPACE FOR GAP

Description Domain
Cr Array: rows {4, 5, 6, 7, ..., 32}
Cc Array: columns {4, 5, 6, 7, ..., 31}
Cl Array: layers {1, 2, 4, 8, ..., 64}
Cc1 Cache: line size {4, 8, 16}
Cc2 Cache: sets {32, 64, 128, 256, ..., 8192}
Cc3 Cache: lines per set {1, 2, 4, 8, ..., 128}

C. GAPtimize

One of the most important features of GAP is that the
complete mapping of instructions, which could be understood
as placement and routing, is done in hardware, hence without
the need of using any special software to recompile or prepare
a program for the execution on the GAP. This enables the
execution of legacy code, for which source code is not
available.

For the evaluation of platform-specific code optimizations
in this situation a post-link optimizer has been developed. Our
post-link optimizer is called GAPtimize. It works on statically
linked executable files compiled with GCC for PISA.

GAPtimize is able to use information about the config-
uration of the target platform as well as performance data
collected from a previous run of the program as feedback.
Because of this, it can perform feedback-directed and adaptive
code-optimizations.

Currently, as optimizations for the GAP predicated execu-
tion, a special scheduling technique, inlining of functions, a
software-assisted replacement strategy for the configuration
layers [14], and static speculation [15] have been implemented.
We put the focus here on the inlining of functions (also called
inline expansion).

In short, inlining replaces function calls with copies of the
body of the called function. With this technique, the number of
instruction cache misses shall be reduced because the accesses
to the program data are more sequential which leads to less
cache conflicts and a higher impact of prefetching. A kind
of prefetching is implemented in the GAP because on an
instruction cache miss the complete cache line consisting of
multiple instructions is loaded into the cache. By reducing the
number of function returns the number of indirect jumps is
reduced, too. For the GAP, indirect jumps are very likely to
lead to reconfigurations of the array which causes an additional
penalty. Nevertheless, the more functions are inlined the larger

gets the memory footprint of the program and the more cache
conflicts can occur simply because more areas of the memory
are mapped to the same cache line.

Inlining is performed by lots of compilers, for example
GCC. The outstanding feature of the implementation of func-
tion inlining in GAPtimize over the implementation GCC (in
the version used for GAP) is its application as whole program
optimization. GAPtimize works on statically linked binaries,
hence it can perform analyses and optimizations on the whole
program.

The main challenge is choosing the right function callers
which shall be replaced by copies of the function body. For
this, we developed a comparably simple heuristics inspired by
work on inlining in combination with machine learning [16],
[17], [18], [19]. Our heuristics exposes four parameters (see
Table II).

TABLE II
PARAMETER SPACE FOR FUNCTION INLINING WITH GAPTIMIZE

Parameter Domain
max_caller_count {0, 1, 2, 3, ..., 100}
weight_of_caller {0, 1, 2, 3, ..., 100}
length_of_function {0, 1, 2, 3, ..., 10000}
insns_per_caller {0, 1, 2, 3, ..., 200}

Not more than max_caller_count callers are inlined
by GAPtimize. Each of them must have been executed
at least weight_of_caller times in a reference run.
The function which is called must not be longer than
length_of_function measured in static instructions. Be-
yond this, a classification number C for the caller must not be
larger than insns_per_caller. C is the dynamic weight
of the caller divided by the static number of instructions of the
target function. This ratio is equal to the number of instructions
which have to be added to the program in order to remove the
execution of one pair of function call and return.

FADSE can run GAPtimize with a command line interface;
a file in YAML format is used to pass the parameters to
GAPtimize. Unexpected behavior is detected by observing and
analyzing the standard output.

D. Objectives Used

Objectives are used to describe the quality of configurations.
The quality of a configuration for the GAP and GAPtimize
is mainly described by the used hardware resources and the
performance which can be achieved:

1) Performance: The time which has to be spent on the
execution of a program is a valid candidate to measure the
quality of a processor’s configuration. For this, we configure
our cycle-accurate simulator with the configuration generated
by the DSE algorithm and run the simulation. It counts the
total number of clock cycles for the simulation and the number
of instructions which it has executed. These values are used
to calculate the number of clocks per instruction (CPI).
The goal is to reduce this measure. It is comparable because
the number of instructions is the same with every run of the
program and with any configuration of the processor.



TABLE III
CONSTANTS AND THEIR VALUES TO APPROXIMATE HARDWARE

COMPLEXITY OF THE GAP

Constant Value Description
hALU 1.00 FU comprising an ALU
hLSU 3.50 Load-store unit (LSU)
hl 0.02 Configuration layer for a FU
hr 0.02 Top-register

Things are different with GAPtimize, which can change
the number of instructions needed to execute the benchmark
program to complete. Hence, we again measure the number
of clock cycles for the program but divide it by the number of
instructions executed without using GAPtimize. We call this
measure clocks per reference instruction (CPRI).

2) Hardware Complexity: The GAP is very scalable, hence
performance results have to be seen always in context with the
used resources. To solve this, a model is needed to measure
the hardware complexity of the GAP.

It is not possible to use bullet-proof numbers as there is
not yet a hardware implementation for the GAP available. We
therefore introduce an approximation model. The targets of
this model are (a) to be able to compare the hardware com-
plexity of two configurations of the GAP and (b) compare the
performance of two processors with different configurations
but the same overall complexity. Hence, the purpose of the
measure called complexity in the following is not to estimate
the area used by the processor but to estimate the ratio between
the complexities of two differently configured processors for
comparison.

The complexity H of the GAP is composed of the processor
front-end Hfront, the array consisting of the ALUs and
the load-store units with complexities HALUs and HLSUs,
the instruction cache with complexity HICache and some
other components which exist exactly once in the GAP and
are independent of parameters. These components contribute
Hconstant; the data cache is one of them because it is not
configurable (at the moment). To conclude, H can be defined
as:

H = Hfront +HALUs +HLSUs +HICache +Hconstant

As we need the complexities only for comparability, we
ignore Hfront and Hconstant in the following because they
are the same for all configurations of GAP.

To be able to calculate the complexities of the functional
units in the array we declare the constants in Table III. To find
appropriate values for these constants we use the following
three approaches:

• The thermal simulation tool HotSpot [20] comprises a
floor plan for the 64 bit Alpha 21264 processor [21]. This
floor plan was gained from carefully taking the measures
from a die photo from this processor.

• Gupta et al. present in their article [22] numbers for
several parts of a processor and try to find process-
independent numbers to estimate their size.2

2The standard deviation of the values they used is quite high.

• The combined simulator for power, area, timing and
temperature McPat [23] is shipped with a configuration
for the 64 bit Alpha 21364 processor which extends the
Alpha 21264. The area approximation is based on the
work by Gupta et al. (see above) and Rodrigues [24].

From these approaches we isolated the size of a 64 bit ALU,
a 64 bit register and 64 kb of instruction cache. As the GAP
is a 32 bit processor we divided the size of the ALU and
the register by two; this method is supported by e.g. Gupta et
al. [22]. The numbers are finally normalized to the size of an
integer ALU (so, hALU := 1 for all sources); Table IV shows
the results.

TABLE IV
RATIO OF 32BIT REGISTER AND 64 BK INSTRUCTION CACHE COMPARED

TO A 32 BIT INTEGER ALU (hALU := 1)

Data Source 32 bit register 64 kb ICache
McPat for Alpha 21364 0.031 15.678
HotSpot Alpha 21264 0.008 16.767
Gupta et al. 0.017 17.131
Average 0.019 16.525

The results for a 32 bit register vary quite a lot between
the different data sources. Nevertheless, the cost of a register
is for all sources very small compared to the cost of a 32
bit integer ALU. Because of this, we set hr := 0.02. We
choose as additional cost for a configuration layer the same
cost hl := 0.02 although th rquired memory is double the size
but of a much lower complexity. For a load-store unit numbers
were available only from McPat and the floor plan, they vary
between ca. 1.5 and 5.4 times the size of an integer ALU. We
define hLSU := 3.5.

The cost of a 64 kb instruction cache compared to an
integer ALU is ca. 16.5 on average for the three data sources.
CACTI [25] calculates a total area of 5.52mm2 for a cache
with parameters similar to those of the alpha processors3. To be
able to use CACTI to dynamically approximate the complexity
of the instruction cache HICache we set 16.5 equal to an
instruction cache with a total area of 5.52mm2. We calculate
the approximated area of a cache for the GAP with CACTI and
then multiply it with 16.5/5.52mm2 = 2.99 1

mm2 ≈ 3 1
mm2 to

get its complexity compared to an ALU.
With these constants, we can define the complexities HALUs

and HLSUs. In both formulas, where Cc is the number of
columns, Cr is the number of rows, and Cl is the number of
configuration layers of the array of FUs, we first calculate the
complexity of the units and then add the complexity caused
by the configuration layers:

HALUs = (Cc ∗ hr + Cr ∗ Cc ∗ hALU ) + Cr ∗ Cc ∗ Cl ∗ hl

HLSUs = Cr ∗ hLSU + Cr ∗ Cl ∗ hl

For a GAP with an array of 12 lines and columns, 32
configuration layers and 8 kb instruction cache, the hardware
complexity H is computed as follows:

H = HALUs +HLSUs +HICache

3Cacti 5.3 web interface, 64 kb total size, 128 byte line size, 2-way
associative, 1 bank, 90 nm technology



HALUs = (12∗0.02+12∗12∗1.00)+12∗12∗32∗0.02 =
144.24 + 92.16 = 236.40
HLSUs = 12 ∗ 3.50 + 12 ∗ 32 ∗ 0.02 = 49.68
HICache = 0.856mm2 ∗ 3 1

mm2 = 2.57
H = 236.4 + 49.68 + 2.57 = 288.65
In this work, our developed FADSE has two distinct objec-

tives: to minimize the CPI (or CPRI, depending on the context)
and to minimize the global hardware complexity (H).

III. EVALUATION

After describing our setup for the evaluation in Section III-A
we show our results for the design space exploration (DSE)
with the GAP in Section III-B. Results for the GAP together
with GAPtimize are shown in Section III-C.

A. Evaluation Methodology

A kind of DSE has been performed for the GAP by Shehan
et al. [13]. In this manual exploration, 14 benchmarks from the
MiBench Benchmark Suite [26] were selected. In difference
to the evaluation here the instruction cache size was set to
a fixed value, i.e. 8x128x1 x 8 byte = 8 kb. As result, it is
suggested as rule of thumb to use the same number of lines
and columns for array sizes up to 16x16. For an even larger
array, it is proposed to choose 16 columns and 32 lines. In
the following, these results in combination with a much larger
cache are referred to as manually selected configurations.

We choose NSGA-II [8] as algorithm for the DSE and
run it with FADSE on the design space as described in
Section II-B. With 5295 possible configurations for the array
and 192 configurations for the instruction cache it comprises
1016640 individuals in total for the GAP. GAPtimize has ca.
2.1∗1010 configurations, i.e. together with GAP we get a max.
design space of ca. 2.1∗1016 individuals. With the restrictions
introduced later the design space to explore for GAP together
with GAPtimize has a size of ca. 1.8∗1013 individuals. FADSE
was run using different population sizes so the influence
of this parameter could be observed on the results. The
crossover probability was set to 0.9 and mutation probability to
1/(number of parameters); the distribution indexes for mutation
and crossover were set to 20 as recommended [8]. We have
used single point crossover and bit flip mutation operators.
The selection operator is Binary Tournament as proposed by
Deb et al. [8].

10 of the 14 benchmarks used by Shehan et al. were selected
as benchmarks to reduce the time needed to evaluate an
individual of the design space.

B. ADSE on GAP

For every generation of size n, the NSGA-II algorithm
normally knows n already evaluated individuals, the parent
generation. They are used to generate with crossover and
mutation n new individuals called offspring, which have to be
evaluated. When this is completed, n individuals are selected
from the union of the parent generation and the offspring.

We initially set the population size to 100 and obtained
the results in Figure 2(a) and 2(b). Slightly better results
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Fig. 2. Individuals of the last of 55 generations calculated with FADSE
(population size 100) for GAP in comparison with results for configurations
selected with the rule of thumb

were generated by FADSE than the ones obtained by the
manual exploration. The main outcome is that with FADSE
configurations for the GAP can be found which use much
less hardware resources to achieve the same CPI as manually
selected configurations. A more thorough analysis showed us
that with the rule of thumb, the array normally has too many
columns which cannot be used efficiently. This means that
FADSE is indeed able to help the designer make better choices.
The overall shape of the curve in Figure 2(a) also shows that
increasing the hardware complexity above 1000 does not result
in much higher performance (for the selected benchmarks).
With this complexity, you can build a GAP with an array of
32 lines, 11 columns and 32 layers (i.e. 32x11x32), and 512
kb instruction cache (i.e. 16x2048x2 * 8 byte).

To evaluate the influence of the population size, which is
an important factor for the total duration of a DSE process,
we set it to different values (12, 24, 50, and 100). For 12 and
24, we were not able to reliably find good results because the



selection/mutation did not work effectively. To compare the
progress made with generations of size 50 and 100 in respect
to the number of evaluated individuals we calculated the
hypervolume and coverage for each generation. The difference
in hypervolume is less than 1% (only marginal). Coverage (see
Figure 3) does not show a clear winner, too. A large population
clearly has the benefits of a better exploration but it will also
mean more simulations.
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Fig. 3. Coverage comparison between a DSE process with a population of
100 and another one with a population of 50

The selection process of the individuals can be observed in
Figure 5. The number of new individuals, i.e the individuals
which have never been generated before in the exploration,
decreases over time, e.g. from 100 to 35. Due to this fact, it
is very effective to save results for individuals for reuse for
example in a database. This can speed up the DSE very much.
In a run with 100 generations a total reuse factor of 67% was
observed.

The number of those individuals which are better than their
parents and hence survive for the next generation decreases
over time, too. According to Figure 5 at the beginning of
the exploration many of the offspring individuals are better
than their parents, therefore they are moving into the next
generation. As the algorithm progresses less and less good
individuals are found. This is adequately correlated with the
hypervolume, whose improvement from one generation to the
next decreases (Figure 4).
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Fig. 5. Comparison between the number of newly generated individuals
(offspring) and the number of them that actually reach the next generation

C. ADSE on GAP together with GAPtimize

Because FADSE is not restricted to a single domain we
also coupled it with GAPtimize, the post-link optimizer for the
GAP. As case-study, we are using inline expansion of func-
tions and a simple heuristics (see Section II-C). To increase
the potential of improvement for this code modification we
first compiled the benchmarks without inlining functions (i.e.
-fno-inline).

From a prior thorough analysis we know that improvements
are mainly caused by making instructions accessible faster.
This can be because they are either in the instruction cache or,
as complete configuration, on a configuration layer. Because
of this, a GAP with a large instruction cache or many configu-
ration layers will profit from inline expansion only marginally.
So, to see if FADSE can choose good parameters for our
heuristics, we restrict the instruction cache to 8 kb and the
number of configuration layers to 8.

For a first evaluation we select the benchmark dijkstra, about
which we know that it is sensitive to inline expansion, and
run this single benchmark with GAP and an array of 12x12
functional units. Because the hardware is fixed we have CPRI
as single objective. We found out that FADSE finds fitting
values for the parameters; the execution time is reduced by
9.1%.

As next step the number of benchmarks is increased to
10. The hardware is still fixed; it is again a single-objective
optimization problem. Figure 6 shows the results. Because not
all benchmarks are sensitive to inlining the reduction of the
execution time is only 3.9%.

To make things more complex the hardware configuration
is released. FADSE has to find now in parallel efficient
hardware configurations and for these configurations effective
parameters for the inlining heuristics (Figure 7 for dijkstra and
Figure 8 for 10 benchmarks). It can cope with this challenge
very well. It can be concluded that the proposed heuristics is
general enough to select with a single set of parameters and
for a given hardware configuration a good set of function calls
also for multiple benchmarks. In other words, FADSE was in
connection with the heuristics able to perform inlining as an
adaptive code optimization.
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IV. RELATED WORK

As mentioned before there is no prior work on the approxi-
mation of the hardware complexity of the GAP. The presented
design space exploration (DSE) is also the first multi-objective
one for this processor.

With respect to FADSE there are existing tools which try
to address the problem of automatic DSE in the domain of
processor architectures. One of them is Magellan [27] which
focuses on multi-core architecture. From our point of view, the
main drawbacks of this tool are that it is bound to a certain
simulator (SMTSIM) and that it is not multi-objective in a true
way. The user can set a boundary for its power/area ratio but
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Fig. 8. DSE of inlining and hardware parameters for 10 benchmarks, executed
on GAP with NxNx8 array and 8 kb instruction cache

cannot explore the entire Pareto front in a single run.
Archexplorer.org [28] is a collaborative website where users

can upload components of processors contributing to a DSE
with the goal to find an optimal processor. The used algorithms
cannot be controlled and the tool is strongly related to UNISIM
(at the moment), hence it cannot be used for a different
processor simulator easily.

NASA [29] also shows similarities. It can connect to any
simulator, it is extensible, but it does not provide many DSE
algorithms yet. The authors present only one self-developed
single-objective algorithm and suggest that multi-objective
algorithms could be implemented. It lacks a technique for the
distributed evaluation of individuals, too.

M3Explorer [30] offers a variety of multi-objective DSE
algorithms, but it lacks the distributed simulation.

As conclusion, even though parallel algorithms exist and al-
though sequential evolutionary algorithms can be parallelized
easily, none of the presented tools shows this ability. This
and its configurability are strong advantages of the improved
version of FADSE introduced in this article to reduce the time
needed for a DSE dramatically.

V. CONCLUSION AND FUTURE WORK

In this article, an new version of the framework for auto-
matic design space explorations (FADSE) has been introduced.
It is very configurable and can, with the improvements pre-
sented, run the simulations needed for evaluating individuals
in parallel and in a distributed manner with high robustness.
Increasing parallelism and buffering results leads to a strong
reduction of the time needed for the exploration.

With FADSE the design space of the architectural parame-
ters of the Grid Alu Processor has been explored. To do this,
we first presented an approximation of the hardware complex-
ity of the processor. Then we approximated the Pareto frontier
with respect to the two objectives performance and hardware
complexity. FADSE demonstrated that GAP is scalable and
bigger caches do not cancel the effects of the ALU array and
the configuration layers.

FADSE is also able to cope with hardware and software
parameters and find good solutions even in a huge design space
( 1.8∗1013 individuals). To demonstrate this we searched with
FADSE in parallel for efficient hardware configurations and
effective parameters for a heuristics to performance function
inlining as whole program optimization with GAPtimize. This
worked very well, hence FADSE can be used for adaptive
static code optimizations.

As future work we propose to add an interface to FADSE
so that the user can influence the DSE with preferences and
expertise. Technically speaking, the user will be able to specify
an ontology with relations between the parameters by describ-
ing fuzzy functions and relations between them. Beyond this,
FADSE could also be extended to decide automatically if the
DSE can be stopped or if improvements are still made. It
would also be interesting to see how different DSE-algorithms
perform and to compare their behavior automatically.
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