
The O-GEHL branch predictor
�

André Seznec
IRISA/INRIA/HIPEAC

Abstract

We introduce the Optimized GEometric History Length
(O-GEHL) branch predictor which efficiently exploits
very long global histories in the 100-200 bits range.
The O-GEHL predictor is derived from the GEometric
History Length (GEHL) predictor.

The GEHL predictor features several predictor ta-
bles

�������
(e.g. 8) indexed through independent func-

tions of the global branch history and branch address.
The prediction is computed through the addition of the
predictions read on the predictor tables. The set of
used global history lengths forms a geometric series,
i.e., � �
	��
��������� � ����� , thus allowing to efficiently
capture correlation on recent branch outcomes as well
as on very old branches.

The O-GEHL predictor further improves the ability
of the GEHL predictor to exploit very long histories
through the addition of dynamic history fitting and dy-
namic threshold fitting.

Presentation outline

In Section 1, we first present the GEHL predictor
principles and its main characteristics. Section 2 de-
scribes the extra features of the O-GEHL predictor and
the configuration of the predictor submitted to CBP.
Section 3 briefly reviews the related works that had
major influences in the O-GEHL predictor proposi-
tion.

Due to space limitations, no performance analysis
of the O-GEHL behavior is provided in this write-up.

�
This work was partially supported by an Intel research grant

and an Intel research equipment donation

1 The GEometric History Length branch
predictor

1.1 General principle

The GEometric History Length (GEHL) branch
predictor is illustrated on Figure 1. The GEHL predic-
tor features M distinct predictor tables Ti, ��� �����
indexed with hash functions of the branch address and
the global branch history. The predictor tables store
predictions as signed counters. To compute a predic-
tion, a single counter C(i) is read on each predictor
table Ti. The prediction is computed as the sign of the
sum S of the M counters C(i), �"! #�$�%'&)(+*�, !.- ���/�
1. The prediction is taken if S is positive and not-taken
if S is negative.

Distinct history lengths are used for computing the
index of the distinct tables. Table T0 is indexed using
the branch address. The history lengths used in the
indexing functions for tables Ti,

� � �0�1� are of the
form � ���/�2�3� * ���04 � ����� , i.e., the lengths L(i) form a
geometric series.

Sign= prediction

Σ

M tables T(i)

Figure 1. The GEHL predictor
For the CBP submission, we only focus on a 8-table

GEHL predictor.

1For p-bit signed counters, predictions vary between 57698;:�<
and 6 8;:�< 5>= and are centered on 5 <?

1

1.2 Updating the GEHL predictor

The GEHL predictor update policy is derived from
the perceptron predictor update policy [2]. The GEHL
predictor is only updated on mispredictions or when
the absolute value of the computed sum S is smaller
than a threshold � . Saturated arithmetic is used. More
formally, the GEHL predictor is updated as follows,
Out being the branch outcome:

if ((� !=Out) or (� �� ���))
for each i in parallel
if Out then - ���/� � - ���/� $ �

else
- ���/�0� - ���/���
�

1.3 Degrees of freedom in the design of GEHL
predictors

Numerous degrees of freedom exist in the design of
a GEHL predictor. First one can vary the number M
of tables in the GEHL predictor. Experiments showed
that using 4 to 12 tables provides high level of ac-
curacy. Second, experiments showed that using 4-bit
or 5-bit counters with 4 to 12 tables is cost-effective.
Third, one can vary the parameters L(1) and L(M-1) 2.
Experiments showed that for storage budgets varying
from 32 Kbits to 1 Mbits, the GEHL predictor is able
to capture correlation on very long histories in the hun-
dred bits range. Fourth, one can vary the threshold �
for updating the predictor. Using � � �

, the number
of tables in the GEHL predictor is a good tradeoff.

1.4 About indexing functions complexity

The index functions used in the submitted predic-
tor involve a single stage of three-entry exclusive-OR
gates for computing each index bit. Some of the ad-
dress bits and some of the history bits are ignored as
follows. For computing the hash function to index Ta-
ble Ti, �	� being the number of entries on Ti, we regu-
larly pick 3n bits in the vector of bits composed with
the least significant bits of the branch address and the
L(i) bits of history. Then we simply hash this 3n bit
vector in a n-bit vector using a single stage of 3-entry
exclusive-OR gates. (see the INDEX function in the
predictor code).

2
���
��	��� : <���	� <����
������

1.5 Information for indexing a global history
branch predictor

For computing the indexes for global history predic-
tors, most studies consider either hashing conditional
branch history with the branch address or hashing path
history with the branch address. These solutions lead
to consider some paths as equal even before computing
the effective index in the predictor tables. The impact
of this phenomenon on predictor accuracy is impor-
tant when using short history. On the GEHL predictor,
it impairs the accuracy of the predictions provided by
the tables indexed with short histories.

In order to limit this phenomenon on the O-GEHL
predictor, we include the non-conditional branches in
the branch history ghist (inserting a taken bit) and we
also use a path history, phist consisting of 1 address bit
per branch. Since confusion on paths decreases when
the history length increases, we use a maximum path
history length of 16 on the O-GEHL predictor submit-
ted to CBP.

2 The O-GEHL predictor

In this section, we present the O-GEHL predictor.
The O-GEHL predictor is derived from the GEHL pre-
dictor by augmenting it with dynamic update threshold
fitting and dynamic history length fitting.

2.1 Dynamic threshold fitting for the GEHL pre-
dictor

Experiments showed that the optimal threshold �
for the GEHL predictor varies for the different applica-
tions. For some of the benchmarks and using a 8-table
GEHL predictor, the difference between using � ���
or � � �!

as a threshold results in 0.5 misp/KI vari-
ations. However, we remarked that for most bench-
marks there is a strong correlation between the quality
of a threshold � and the relative ratio of the number
of updates on mispredictions "$#�% *'&(& and the num-
ber of updates on correct predictions ")#+*-,(./.102*43 : ex-
perimentally, in most cases , for a given benchmark,
when "$#5% *'&(& and "$#5*6,2./.10(*43 are in the same range,� is among the best possible thresholds for the bench-
mark.

Therefore, we implement a simple algorithm that
adjusts the update threshold while maintaining the ra-
tio 798;:=<?>@>7A8;B�C2D-D-E@B@F close to 1. This algorithm is based on a
single saturated counter TC (for threshold counter).

2

if ((� !=Out) � TC= TC + 1; if (� is saturated
positive) ��� � � $ � ; TC=0; ���
if ((� == Out) & (� ���� �)) � TC= TC - 1; if
(� is saturated negative) ��� � � � � ; TC=0; ���

Using a 7-bit counter for TC was found to be a good
tradeoff.

2.2 Dynamic history length fitting for the GEHL
predictor

Juan et al [3] proposed to continuously adapt the
branch history length during execution for global his-
tory branch predictors. The GEHL predictor offers an
opportunity to implement such an adaptative history
length fitting. We consider a predictor featuring 8 ta-
bles, but using 11 history lengths L(j) forming a geo-
metric series. For three of predictor tables, Tables T2,
T4 and T6, two possible history lengths are used: Ta-
ble T2 is indexed using either L(2) or L(8), Table T4 is
indexed using either L(4) or L(9), Table T6 is indexed
using either L(6) or L(10).

The algorithm we propose to select the history
length for indexing the predictor makes a rough esti-
mation of the aliasing ratio encountered on Table T7,
i.e., the predictor component using the longer history
apart L(8), L(9) and L(10). Intuitively, if Table T7 ex-
periences a high degree of aliasing then short histories
should be used on Tables 2, 4 and 6, if Table T7 en-
counters a low degree of aliasing then long histories
should be used.

To compute this estimation of the aliasing ratio,
we add a tag bit to some entries of Table T7 and we
use a single saturating 9-bit counter AC (for aliasing
counter). On a predictor update, the tag bit records
one bit of the address of the branch and the following
computation is performed:

if ((p!=out) & (� �� � �)) �
if ((PC & 1) == Tag[indexT[7]]) AC++; else
AC= AC - 4;
if (AC == SaturatedPositive) Use Long his-
tories
if (AC == SatutedNegative) Use Short His-
tories
Tag[indexT[7]] = (PC & 1); �

When the last update of the corresponding entry in
Table T7 has been been performed using the same

(branch, history) pair, AC is incremented. When the
last update has been performed by another (branch,
history) pair, AC is incremented on false hits and
decremented by 4 on misses.

In average, AC will stay positive if the ratio of con-
flicting updates on Table T7 by distinct branches re-
mains below 40 %.

Using a 9-bit counter and flipping from short to long
histories and vice-versa only on saturated values guar-
antees that such flippings are very rare.

Remark Associating a tag bit per entry in predictor
table T7 is not needed. For instance one can associated
only a tag bit to one out of N entries and ignore the
other entries in the algorithm to update the AC counter.
For the CBP challenge predictor, we use only 1 K
tag bits for a 2 Kentries Table T7.

Impact of adaptative history length fitting

On the CBP benchmarks, using adaptative history
length fitting on the GEHL predictor reduces by 7 % in
average the number of mispredictions instead of using
a single history length per predictor table.

2.3 Fitting in a 64 Kbits storage budget

The dynamic history length fitting presented above
requires extra storage space in addition of the predictor
tables. A O-GEHL predictor featuring 8 tables would
normally lead to 8 2K 4-bit counters tables and a 1K
1-bit tag table associated with Table T7, i.e. a total of
65 Kbits. For fitting in the 64Kbits storage budget of
CBP, Table T1 uses only 1K counters, thus reducing
the storage budget to 61 Kbits. Experiments showed
that using 5-bit counters on the tables using short his-
tory is slightly beneficial (tables T0 and T1). There-
fore while respecting the storage budget constraints,
the predictor submitted to the CBP mixes 5-bit coun-
ters and 4-bit counters.

The characteristics of the submitted O-GEHL pre-
dictor are summarized in Table 1. Using 200 as L(10)
the maximum history length and 3 as L(1) is one of
the best tradeoffs on the set of the benchmark traces.
However using any value in the interval 150-250 for
L(10) and any value in the interval 2-6 for L(1) brings
very similar simulation results, i.e. the total number

3

Table T0 T1 T2 T3 T4 T5 T6 T7

short history length L(0)=0 L(1)=3 L(2)=5 L(3)=8 L(4)=12 L(5)=19 L(6)=31 L(7)=49
long history length - - L(8)=79 - L(9)=125 - L(10)=200 -
counter width (bits) 5 5 4 4 4 4 4 4
tag bit - - - - - - - 0.5
entries 2K 1K 2K 2K 2K 2K 2K 2K
storage budget (bits) 10K 5K 8K 8K 8K 8K 8K 8K +1K (tags)

Table 1. Characteristics of the O-GEHL predictor submitted to the CBP: a total of 64Kbits

of mispredictions for these pairs of values are not ex-
ceeding the presented results by more than 4%.

2.4 Performances of the O-GEHL predictor

The simulation results obtained with the O-GEHL
predictor are summarized in Table 2.

3 The O-GEHL predictor and related works

The use of multiple global history lengths in a single
branch predictor was initially introduced in [4], then it
was refined by Evers et al. [1] and further appeared in
many proposals. By using several short history com-
ponents, the O-GEHL predictor suffers from very lim-
ited aliasing impact on short histories.

As neural inspired predictors [5, 2], the O-GEHL
predictor does not use storage based metapredictors,
but computes the prediction through an adder tree.
This adder tree does not “waste” storage space for
meta prediction. As the perceptron predictor, the O-
GEHL predictor also uses a specific partial update pol-
icy considering a threshold. We improved this update
policy through proposing dynamic threshold fitting.

The O-GEHL predictor implements dynamic his-
tory length fitting [3] and can adapt its behavior to each
application.

The main contribution of the O-GEHL predictor

FP-1 FP-2 FP-3 FP-4 FP-5
1.408 0.906 0.413 0.181 0.041

INT-1 INT-2 INT-3 INT-4 INT-5
0.694 5.519 8.998 0.940 0.343

MM-1 MM-2 MM-3 MM-4 MM-5
7.218 9.019 0.229 1.358 4.427

SERV-1 SERV-2 SERV-3 SERV-4 SERV-5
1.999 1.912 4.422 3.407 2.956

Table 2. Accuracy of the 64Kbits O-GEHL pre-
dictor (misp/KI)

over previously proposed predictors is its ability to
efficiently exploit very long history. Due to the use
of geometric history lengths associated with dynamic
history length fitting, the O-GEHL predictor is able
to achieve high accuracy on a wide range of appli-
cations. For some applications, the number of differ-
ent (branch, history) pairs explodes when the history
length increases. On these applications, the O-GEHL
predictor achieves high accuracy because 5 out of 8
predictor tables are using history lengths shorter than
12. On other applications, correlation exists with very
old branches. The O-GEHL predictor is able to capture
this correlation since some of its tables are indexed us-
ing history lengths in the 100-200 bits range.
References

[1] M. Evers, P.Y. Chang, and Y.N. Patt. Using hy-
brid branch predictors to improve branch predic-
tion accuracy in the presence of context switches.
In ��� .�� Annual International Symposium on Com-
puter Architecture, pages 3–11, 1996.

[2] D. Jiménez and C. Lin. Dynamic branch predic-
tion with perceptrons. In Proceedings of the Sev-
enth International Symposium on High Perform
ance Computer Architecture, 2001.

[3] T. Juan, S. Sanjeevan, and J. J. Navarro. A third
level of adaptivity for branch prediction. In Pro-
ceedings of the 25th Annual International Sympo-
sium on Computer Architecture, June 30 1998.

[4] S. McFarling. Combining branch predictors.
Technical report, DEC, 1993.

[5] L. N. Vintan and M. Iridon. Towards a high perfor-
mance neural branch predictor. In IJCNN’99. In-
ternational Joint Conference on Neural Networks.
Proceedings., 1999.

4

