
SVMs for Improved Branch Prediction
ECS201A Computer Architecture, Prof. Matthew Farrens

Benjamin J. Culpepper Mark Gondree
culpepper@ucdavis.edu gondree@cs.ucdavis.edu

Abstract

This technical report is a preliminary investigation into the use of Support Vector Machines (SVMs) as a method
of branch prediction. We present a new dynamic branch predictor based on SVMs. The SVM predictor, at the
cost of a much larger hardware budget, can return a greater accuracy than current state-of-the-art predictors by
exploiting its ability to learn linearly inseparable boolean functions, a limitation of many well-known dynamic
branch predictors. Our untuned SVM predictor yields a 24% improvement over the best available dynamic neural-
method branch predictor and a 16% improvement over gshare on the SPEC95 go benchmark at a cost of 10 MB.
Tuning the SVM parameters would likely result in further performance gains. Branch prediction with SVMs is
largely unexplored in the literature. These favorable results suggest it is worthy of further investigation.

1 Introduction

Modern computer architecture design increasingly puts pressure on the performance of accurate branch predictors
to exploit instruction-level parallelism. Absurdly accurate branch prediction is required to support speculative
execution in deeply pipelined machines and in machines with a high rate of instruction issue [1]. The merit in
discovering better performing predictors is well known.

There is a growing trend among researchers to apply machine learning techniques to the problem of branch
prediction, starting with Vintan et al [2]. Our work follows this direction, exploring a new avenue of research:
the use of Support Vector Machines (SVMs) [3, 4] for dynamic branch prediction.

1.1 Paper Outline

This paper is organized as follows: Section 2 reviews previous work involving machine learning techniques ap-
plied to branch prediction. Section 3 gives a basic introduction to SVMs and the notation used throughout this
paper. Section 4 proposes an abstract dynamic branch predictor using SVMs. Section 5 explains the exper-
imental methodology and gives accuracy results from our initial experiments. Section 6 delineates important
recommendations for future experimental work.

2 Machine Learning in Branch Prediction

The scenario for branch prediction is perfectly suited for machine learning: a mechanism makes a prediction (in
this case the boolean response “taken” or “not taken”) and soon afterwards gets feedback on whether its guess
was correct or not, so it can improve future predictions.

Due to the computational complexity of many machine learning algorithms, online learning, which incremen-
tally adjusts the classifier to account for new examples as they are presented, is often not realizable. Calder
et al [5] train neural networks on static data (evidence-based static prediction) with the expectation that the
pre-trained net performs well when deployed as a predictor. Such techniques often suffer from over-training and
do not generalize well to unseen data.

1

Emer and Gloy [6] use genetic algorithms to “evolve” predictors within a high-dimensional design space to
search for accurate predictors. The prediction in this model is not a boolean value “taken” or “not taken”, but
is instead an individual from the family of predictors described by a certain set of design constraints. This is a
machine learning technique that is used off-line to design predictors.

Vintan et al [2] investigate the use of neural networks trained online using the Learning Vector Quantization
algorithm as dynamic prediction mechanisms. Unlike previous efforts that emphasized the static application of
machine learning, this application moves the intelligence into the predictor, demonstrating online learning.

Fern et al [7] use decision trees to do dynamic feature selection for classical branch predictors, which use a
table of saturating counters. In this model, online machine learning is used to combat the problem that classical
predictors cannot exploit large feature spaces (i.e. long branch histories) for predictions. The most useful features
are dynamically culled from a larger feature space using decision trees, and then fed to classical predictors.

2.1 Perceptron Branch Prediction

The use of the perceptron as a predictor was first suggested by Vintan et al [2]. The perceptron is one of the
simplest models of a neuron and was developed by Rosenblatt [8] to help study brain function. The simplest
perceptron is a neuron that connects several weighted inputs to a single output. Classically, the output y of the
perceptron is the dot product of the weights w = (w1, . . . , wn) and the inputs x = (x1, . . . , xn), with the bias
input b, which can be thought of as a weight w0 with constant input x0 = 1

y = b + 〈x,w〉 = w0 +
n∑

i=1

xiwi (1)

The output y is used to classify a new pattern x. The perceptron’s performance in classifying is improved by
incrementally adjusting its weights during training using the perceptron learning algorithm (Figure 1a).

Jiménez et al introduce three dynamic predictors based on the perceptron:

the global perceptron predictor [9, 10] uses global branch pattern history data for input x.

the global/local perceptron predictor [11] uses both global and local pattern histories for x.

the fast path-based perceptron predictor [12] is a global perceptron predictor where each xiwi

calculation is performed incrementally along the path leading to the branch. This both reduces
the observed calculation time and correlates each output y with the path leading to the branch
(whereas before y is calculated at, and therefore correlated with, only the branch’s address).

The results are promising. The global perceptron improved branch misprediction rates on the SPEC2000
integer benchmarks by 10.1% over the best dynamic branch predictor available in the literature [9]. Follow-up
work [13, 14, 15, 16] has explored methods to improve predictor accuracy, to make predictions available earlier,
and to make operation less expensive on-chip. The sudden activity in perceptron prediction research is testament
to the power of this technique. The recent inclusion of a neural branch prediction toolsuite in Intel’s internal
IA-64 simulation environment is further evidence [17].

The perceptron, however, has well-established limitations: Minsky and Papert [18] show that perceptrons
cannot learn linearly-inseparable functions, like XOR, with 100% accuracy. Accordingly, Jiménez introduces the
notion of linearly-inseparable branches, a series of branch pattern history vectors x that cannot be discriminated
by a linear function into the classes “next branch taken” and “next branch not taken.” The poor performance
of the perceptron predictor for linearly-inseparable branches is acceptable only in light of the fact that classical
predictors perform nearly as poorly for linearly-inseparable branches [9].

Our work is a natural extension of this previous work in neural methods for dynamic prediction. There are
two basic options to learn linearly-inseparable functions: use a combination of linear classifiers to approximate a
non-linear classifier, or map data into a higher-dimensional space and then use a linear classifier. The first option
yields multi-layer neural networks. These are limited in many respects: there are many parameters to tune (and
few techniques for tuning them, other than exhaustive search), the learning algorithms rely on heuristics and are
prone to getting “stuck” in local minima of the solution space [19]. The second option yields Support Vector
Machines.

2

if ty ≤ 0 or |y| ≤ θ then if ty ≤ 1 or |y| ≤ θ then
for all wi for all xi ∈ SV

wi ← wi + txi update αi to
minimize 〈w,w〉 with ty ≥ 1

(a) (b)

Figure 1: The update algorithms for the Perceptron (a) and SVM (b). θ is a learning threshold parameter.
t ∈ {±1} is the true classification of the vector x. The sign of y is the classification hypothesis for x, given by
Equations 1 and 4 for the perceptron and SVM respectively.

3 Introduction to Support Vector Machines

Support Vector Machines (SVMs) [3, 4] are a type of kernel machine, one of a family of learning algorithms. The
general concept behind SVMs is that the original input x ∈ X is mapped onto a higher dimensional feature space
H by a (potentially non-linear) function φ(·) : X → H. The SVM learning algorithm is a linear classifier that
discriminates between the samples of φ(x) in the new feature space H. Similar to Equation 1, SVMs classify a
new pattern x using the output y given by

y = b + 〈φ(x), φ(w)〉 = w0 + Ker(x,w) (2)

Ker(·) is a kernel function, a function that returns the dot product of the image of the two inputs in the higher-
dimensional feature space. The existence of a kernel function means each input vector x does not need to be
mapped to φ(x). In fact, given a kernel function, we do not even need to know φ(·). This means we can exploit
the features of the higher dimensional space H without calculating there; the dot product in H can be computed
in X . There are many choices for kernels and, so far, no simple way of choosing the optimal kernel for any
particular problem instance.

The weights w are related to the previously seen m training vectors in the set Training = {xj} by the following

w =
m∑

j=1

αjφ(xj) (3)

By adjusting the values for αj , the SVM training algorithm discovers a hyperplane in H that discriminates
between the two categories of training data. However, there may be many discriminating hyperplanes in H. The
SVM learning algorithm chooses the one with the maximum margin around it (the maximum-margin hyperplane).
Intuitively, this prevents overfitting and creates a robust discriminator that will generalize well to new patterns.

As it turns out, not every training vector contributes to Equation 3: only those training vectors which are
on the margin of the discriminating hyperplane are significant [20]. These are called the support vectors. As
these are discovered, they populate a set of support vectors SV = {xi} ⊆ Training. Combining this notion with
Equations 2 and 3 yields

y = b + 〈φ(x), φ(w)〉 = w0 +
∑

xi∈SV

αi〈φ(x), φ(xi)〉 = α0 +
∑

xi∈SV

αiKer(x,xi) (4)

The SVM update algorithm that finds the maximum-margin hyperplane (Figure 1b) and the SV selection
algorithm can be implemented in several ways: via gradient ascent, by solving a quadratic optimization problem,
by doing sequential minimal optimization, through chunking and decomposition, by doing heuristic selection,
etc. . . See [4, 3] for a more detailed introduction to these topics. We offer suggestions for optimized, online,
sequential learning and selection algorithms from the literature which may be applied to the problem described
here in Section 6.3.

4 Dynamic Branch Prediction with SVMs

SVMs can be used to learn correlations between the behavior t ∈ T = {±1} = {“not taken”, “taken”} of the
current branch and the global history of previous branch behavior x ∈ X = T h. In this section, we give some

3

intuition of how the predictor can be implemented in hardware and some rough storage costs for the predictor.
For this preliminary investigation, we ignore issues such as the time of calculation and the time to access values
from cache.

We use a global pattern history register of h bimodal values to store x, the behavior of the last h branches. In
other words, X = {±1}h. This vector, called PHT , can be represented as a register of h boolean values.

Our predictor uses n SVMs, similar to how Jiménez et al employ a table of perceptrons [9]. Under this model,
each SVM only needs to learn a small category of branches, effectively splitting the work of classifying all branches
in the program between several SVMs. The ith SVM, which we informally call SV M [i], is distributed between
two tables in hardware: the weight table (SV Mα) and the table of support vectors (SV MSV). For each SVM, we
set a strict maximum of m on the number of support vectors that can be collected during incremental training.

When a branch is encountered:

1. The branch address is hashed to index i, to access SV M [i].

2. SV M [i]’s weights, SV Mα[i], are fetched into an (m+1)-dimensional vector register of floating point weights,
α = (α0 . . . αm). In parallel, SV M [i]’s m support vectors are fetched from SV MSV [i] into m h-dimensional
bimodal vectors SV1 . . . SVm.

3. The dot products ki = Ker(PHT, SVi) for i ∈ {1 . . .m} are calculated in parallel. There are many sim-
ple kernels available for which this is a fast computation. (Section 6.2 offers some suggestions on kernel
selection.)

4. The floating point multiplications ai∗ki for i ∈ {1 . . .m} are calculated in parallel. The parallel floating point
multiplications can be approximated in one cycle using an array of CID/DRAM cells and analog-to-digital
converters, as in Genov and Cauwenberghs [21].

5. The results of the multiplications and the bias, y = a0 +
∑m

i=1 aiki are summed. This sum of m + 1 values
may be done quickly with a Wallace-tree of carry-save adders as in Jiménez [11], or using techniques from
Genov and Cauwenberghs [21].

6. The final prediction is the sign of y. The predictor stores the value of i, for later training of SV M [i].

7. When the true behavior t of the branch is known, shift the values in PHT , add t, and train SV M [i].

There are many training and selection techniques, each of which would incur a different computational cost
but would not, in general, increase the hardware complexity of the predictor.

The global pattern history table PHT is of size h. To store the n SVMs described above requires a SV Mα

table of size bn(m + 1) and a SV MSV table of size nmh, where b is the weight’s floating point precision in
bits. Combined, the basic hardware cost of the predictor is bn + bnm + nmh + h. For any particular fixed
hardware budget we can tune each of the parameters {n, m, h}. We estimate that the cost of the hardware logic
for computing each of the prediction and update steps is small in comparison to the cost of the PHT and SV M
tables.

5 Experimentation

We evaluated the performance of the SVM predictor using trace driven simulation. Traces were gathered from
the SPEC Integer benchmarks using the SimpleScalar Tool Set1 simulating the Alpha instruction set.

5.1 Design Space

The main design parameters for the SVM branch predictor are summarized below.
1Available online at http://www.simplescalar.com/

4

h The size of the global pattern history table PHT
n The number of SVMs used
m The maximum number of support vectors each SVM may accumulate

Hash(·) The hash function used to map each branch address to one of the n SVMs
Ker(u,v) The kernel function

AlgoSV M (θ, . . .) The algorithm to train each SVM, a function of the learning error θ

We did not (yet) tune these parameters by exhaustively searching the design space to minimize misprediction
results, unlike Jiménez et al [9]. For its accessibility and reputation as a well-known kernel function, we chose to
experiment with the radial basis kernel function, Kerradial(·). As a naive first hash function, we chose Hash(PC) =
PC/4 mod n. We divide by 4 because each branch address is word-aligned.

5.2 Simulation

Ad-hoc Incremental SVM learning algorithm. The AlgoSV M used here is similar to the classical SVM
training algorithm most often provided in the literature, based on solving a quadratic optimization prob-
lem, described by Vapnik [22]. The specific algorithm2 is described by Joachims [23].

To simulate incremental training in an online scenario, each SVM is trained so its j-th prediction is based
only on the previous w branches it has witnessed. It can be thought of as training under a sliding window.
That is, SV M [i]’s j-th prediction is based on training with set Trainingj = {j − w, . . . , j − 1}. Likewise,
its j + 1 prediction is based on training with set Trainingj+1 = {j − w + 1, . . . , j}.
This ensures that the number of support vectors has a maximum, with m ≤ w. It also roughly simulates
the behavior of the fully-online incremental SVM algorithm [24] we were not able to implement (further
discussion in Section 6.3) using the leave-one-out feature on the j − w-th support vector.

After a little trial-and-error investigation, we chose θ = 0.001.

Sampled Ad-hoc Incremental SVM learning simulation. Let the function N(i) count the number of branches
in the trace whose address will hash to i. It is the number of times SV M [i] will be queried for a prediction.

To speed-up the simulation, we only simulated a fraction k of the activity of each SVM. That is, for
each i, the training and prediction of SV M [i] is simulated for kN(i) randomly selected branches. For each
randomly selected branch, the PHT is populated with the results of the h preceding branches in the trace,
SV M [i] is trained on the results of the w previous branches from the trace whose addresses hash to i, the
prediction is made, and it is compared with the actual behavior from the trace. This technique is known as
stratified sampling; stratification is the process of grouping members of the population into relatively homo-
geneous subgroups before sampling. Statisticians believe this technique yields an accuracy representative
of the predictor’s accuracy throughout the entire trace.

5.3 Simulation Results

Performance was simulated over traces of 10,000,000 branches for the SPEC95 benchmark 099.go. We chose go
because it is the “most difficult” benchmark in terms of accuracy according to Jiménez et al [12], and therefore
leaves the most room for improvement. We also believe that performance gains on go will generalize to other
benchmarks.

Figure 2 summarizes some simulation parameter values that were simulated: for gshare, n and h are related
by n = 2h; for the Fast Path-Based Neural (FPBN) predictor, h was tuned using Newton’s method; and for
SVM, we began optimizing n and h using Newton’s but report on intermediate values (before convergence) for
now. Figure 3 shows the misprediction rates of each simulated predictor for each hardware budget. We find that
at much larger hardware budgets than have been previously considered in the literature, the SVM predictor can
yield improved accuracy over the current state-of-the-art predictors. We also report the surprising result that

2The software that implements this algorithm, SV M light, is available online at http://svmlight.joachims.org/

5

Hardware gshare fpb perceptron SVM predictor
Budget h n h n h n m
1 MB 21 221 = 2097152 41 4000 20 50 1200
10 MB 24 224 = 16777216 43 200000 20 500 739
20 MB 25 225 = 33554432 43 390167 20 1000 668

Figure 2: A breakdown of the hardware budgets for each simulation of gshare, tuned fast path-based perceptron,
and untuned SVM predictors. Above, h is the length of the PHT and n is the number of saturating counters,
perceptrons, or SVMs respectively. For the SVM predictor, m is the number of support vectors.

10
4

10
5

10
6

10
7

10
8

6

8

10

12

14

16

18

20

Cost (bytes)

P
er

ce
nt

 M
is

pr
ed

ic
te

d

Hardware Cost versus Percent Mispredicted for 099.go

gshare
Tuned FPBN
SVM, PHT 20
SVM, PHT 30

Figure 3: Hardware budget versus average misprediction rate over the SPEC95 benchmark 099.go.

gshare appears to outperform FPBN at hardware budgets greater than 768 KB. Our untuned SVM predictor
was 7% more accurate than gshare and 16% more accurate than FPBN at 1 MB, and 16% more accurate than
gshare and 24% more accurate than FPBN at 10 MB. At hardware budgets smaller than 1 MB, the performance
of SVM is poorer than that of both other classifiers, though we believe tuning the SVM parameters will diminish
the difference considerably (as well as improve performance at higher costs).

The SVM predictor was evaluated for n = 1000, 500, 100, and 50 machines, and PHTs h = 20 and 30. The
number support vectors, m, was adjusted dynamically by the learning algorithm. The poorer performance of
PHT h = 30 as compared to PHT h = 20, with fixed n = 1000 and higher cost, indicates that the optimal h
value lies on the lower side of 20 (h < 20).

6 Future Work

As there is no available evidence of research in applying SVMs to branch prediction, there is much future work
to be done. This report indicates SVMs are promising branch predictors, capable of providing increased accuracy
as the available hardware budgets grow and cause other techniques’ accuracy per cost functions to “saturate” as

6

do gshare and FPBN in Figure 3.
Beyond branch prediction, there may be useful application of SVMs to the problems of value prediction (to

enable speculation on register values), next trace prediction (for fetching traces from a trace cache), and as
the basis for a cache replacement policy (to reduce miss rate by adapting dynamically to the program’s cache
accesses).

6.1 Improvements Specific to this Investigation

We have sampled only sparsely from the design space parameters, and believe that optimization of the parameters
will lead to performance gains. For each hardware budget, Jiménez et al exhaustively search the perceptron
predictor’s design space for the h value that maximizes performance. h is thusly tuned for performance. Jiménez
et al used experimentation to derive a relationship between the learning variable θ and the design parameters h
and n, and we expect to find a similar relation in SVM’s learning parameter θ. We also suspect there may be
a near-linear relationship between n and m (the number of machines and the number of support vectors each
machine will need during training). Data to support these suspicions are not yet available, due to lack of CPU
cycles for simulation. To address this deficiency we have developed an extension to our simulator that spreads
the computational load of sampling from the design space parameters over many workstations. The problem
is receives enormous speedup from parallelization as no inter-node communication is necessary, but storing the
simulation results for SVM will require us to procure additional disk space (we have, however, run simulations of
gshare and FPBN this way).

It should be noted that it is unfair to compare the untuned SVM predictor’s best performance with that of a
tuned perceptron predictor.

To better refine the experimental work here, we would like to further explore the design parameters, and
implement an online, incremental SVM learning algorithm that is called as the simulator runs. This will enable
more comprehensive comparisons between our technique and other, well-known methods.

6.2 Kernel Selection

Experimentation with different kernels would be worthwhile. There are many kernels available and custom easily-
computable kernels could be developed for the problem of branch prediction. We experimented with the radial
basis kernel, Kerradial, because it was the most accessible for simulation.

Specifically, we suggest experimentation with a kernel developed independently by both Sadohora [25] and
Khardon et al [26] specifically for learning boolean functions:

〈φ(x), φ(v)〉 = KerDNF(x,v) = −1 +
h∏

i=1

(2xivi − xi − vi + 2)

where φ(·) maps the h-variable boolean data to a much larger feature space of dimension 3h− 1. For each design
choice of h, the product can be expanded statically and optimized to simplify calculation even further.

6.3 Learning Algorithm Selection

A more accurate simulation would utilize an online algorithm, and there are several available in the literature
that would serve our purpose. Cauwenberghs and Poggio [24] have developed an incremental learning algorithm
for SVMs that has successfully been deployed in silicon [21]. Other incremental online SVM learning algorithms
may also be fruitful to investigate.

6.4 Other Suggestions

Many lessons learned from 3 years of research on neural branch prediction can also be applied to SVMs. To
decrease the time to produce a prediction, one might incrementally compute the values in Equation 4 as we
approach the branch [12], or tweak the prediction algorithm to begin computation of Equation 4 early by using
old history data and injecting newer data as it becomes available [14]. To increase predictor accuracy, one might

7

use a redundant history table [13, 16], try a combination of global and local pattern histories [11], or find a
better behaving hash function [15].

A potential weakness of the SVM predictor is its increased hardware budget. We expect it will be possible
to trim costs by tuning the parameters, careful avoidance of duplication of support vectors from one SVM to
another, and using lower precision floating point registers. The focus of this paper is on foundational work and
on initial experiments to investigate accuracy, not trimming costs. We hope to explore this issue further and
discover parameterizations that improve the SVM predictor’s accuracy per cost at limited cost budgets. Many of
the suggestions in Section 6 may reveal insight towards this goal.

Prediction delay is an important factor to be considered when evaluating a branch prediction technique. Ideally,
a predictor can be evaluated in a single cycle, but using Wallace-tree adders may preclude operations in fewer
cycles than the depth of the tree. Fortunately, these trees can be shallow, and there is no reason the SVM branch
predictor cannot run at a multiple of the host CPU clock, or even completely asynchronously so long as the
prediction is available in time.

We present the SVM’s prediction as the sum of m values, executed in a single stage. One method of reducing the
delay incurred by this stage is to calculate the prediction incrementally, as Jiménez has done for the perceptron
predictor [12]. Another approach is to reduce the impact of a delay, as suggested by Jiménez et al [27]. For
example, the SVM predictor can be used as an overriding predictor. In this scenario the CPU consults a small,
quick method for an initial prediction, and overrides this initial prediction at a small cost if the accurate-but-
complicated SVM predictor later disagrees.

7 Conclusion

In this report we have proposed an entirely new application of SVMs, one which the computer architecture
community has yet to explore in the literature: branch prediction. The key advantage of SVMs is their ability
to robustly predict linearly-inseparable branches, a problem for both current state-of-the-art neural-method and
saturating-counter predictors.

This initial investigation has revealed that an untuned SVM predictor with a large hardware budget can have
24% fewer mispredictions than Jiménez’s tuned path-based perceptron at a comparable budget. We believe that
these results are just a suggestion of the SVM predictor’s full capability. As noted in Section 6, there are many
avenues to explore in making a SVM-based predictor faster and more accurate in the future.

References

[1] John L. Hennessy and David A. Patterson, Computer Architecture A Quantitative Approach Third Edition,
Morgan Kauffman Publishers, 2003.

[2] Lucian N. Vintan and Mihaela Iridon, “Towards a high performance neural branch predictor,” in Proceed-
ings of the 1999 International Joint Conference on Neural Networks. July 1999, vol. 2, pp. 868–873, IEEE
Computer Society.

[3] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University
Press, 2000.

[4] Bernhard Schölkopf, Chris Burges, and Alex Smola, Eds., Advances in Kernel Methods - Support Vector
Learning, MIT Press, 1999.

[5] Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael Mozer, and Benjamin
Zorn, “Evidence-based static branch prediction using machine learning,” ACM Trans. Program. Lang. Syst.,
vol. 19, no. 1, pp. 188–222, 1997.

[6] Joel Emer and Nikolas Gloy, “A language for describing predictors and its application to automatic synthesis,”
in Proceedings of the 24th annual international symposium on Computer architecture. 1997, pp. 304–314,
ACM Press.

8

[7] Alan Fern, Robert Givan, Babak Falsafi, and T. N. Vijaykumar, “Dynamic feature selection for hardware
prediction,” Tech. Rep. TR-ECE 00-12, Purdue University, School of Electrical and Computer Engineering,
2000.

[8] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Spartan,
1962.

[9] Daniel A. Jiménez and Calvin Lin, “Dynamic branch prediction with perceptrons,” in Proceedings of the
Seventh International Symposium on High Performance Computer Architecture, 2001, pp. 197–206.

[10] Daniel A. Jiménez and Calvin Lin, “Perceptron learning for predicting the behavior of conditional branches,”
in Proceedings of the International Joint Conference on Neural Networks (IJCNN-01), July 2001.

[11] Daniel A. Jiménez and Calvin Lin, “Neural methods for dynamic branch prediction,” ACM Transactions
on Computer Systems, vol. 20, no. 4, pp. 369–397, November 2002.

[12] Daniel A. Jiménez, “Fast path-based neural branch prediction,” in Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture. 2003, p. 243, IEEE Computer Society.

[13] A. Seznec, “Redundant history skewed perceptron predictors: pushing limits on global history branch
predictors,” Tech. Rep. 1554, IRISA, 2003.

[14] David Tarjan, Kevin Skadron, and Mircea Stan, “An ahead pipelined alloyed perceptron with single cycle
access time,” in Proceedings of the 2004 Workshop on Comlexity Effective Design, June 2004.

[15] David Tarjan and Kevin Skadron, “Revisiting the perceptron predictor again,” Tech. Rep. CS-2004-28,
University of Virginia, Dept of Computer Science, September 2004.

[16] A. Seznec, “Revisiting the perceptron predictor,” 1620, IRISA, 2004.

[17] Edward Brekelbaum, Jeff Rupley II, Chris Wilkerson, and Bryan Black, “Hierarchical scheduling windows,”
in Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture. 2002, IEEE
Computer Society.

[18] M.L. Minsky and S.A. Papert, Perceptrons, MIT Press, 1969.

[19] Nello Cristianini, “A tutorial on support vector and kernel machines,” June 2001,
http://www.support-vector.net/icml-tutorial.pdf.

[20] Bernhard Schölkopf, “Svm and kernel methods,” December 2001,
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz.

[21] Roman Genov and Gert Cauwenberghs, “Kerneltron: Support vector “machine” in silicon,” IEEE Transac-
tions on Neural Networks, vol. 14, no. 5, September 2003.

[22] Vladimir N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.

[23] T. Joachims, Advances in Kernel Methods - Support Vector Learning, chapter 11, Making large-Scale SVM
Learning Practical, pp. 169–184, MIT Press, 1999.

[24] Gert Cauwenberghs and Tomaso Poggio, “Incremental and decremental support vector machine learning,”
in Advances in Neural Information Processing 13, 2000, pp. 409–415.

[25] Ken Sadohara, “Learning of boolean functions using support vector machines,” in Proceedings of the 12th
International Conference on Algorithmic Learning Theory. 2001, pp. 106–118, Springer-Verlag.

[26] R. Khardon, D. Roth, and R. Servedio, “Efficiency versus convergence of boolean kernels for on-line learning
algorithms,” Tech. Rep. TR-2004-12, Tufts University CS Dept, 2004.

[27] Daniel A. Jiménez, Stephen W. Keckler, and Calvin Lin, “The impact of delay on the design of branch
predictors,” in International Symposium on Microarchitecture, 2000, pp. 67–76.

9

