
1

The Combined Perceptron Branch Predictor
Matteo Monchiero Gianluca Palermo

Report n. 2004.35

Politecnico di Milano – Dipartimento di Elettronica e Informazione
Via Ponzio, 34/5, 20133 Milan, Italy

{monchier, gpalermo}@elet.polimi.it

Abstract— Previous works have shown that neural
branch prediction techniques achieve far lower mispredic-
tion rate than traditional approaches. We propose a neural
predictor based on two perceptron networks: the Combined
Perceptron Branch Predictor. The predictor consists of two
concurrent perceptron-like neural networks; one using as
inputs branch history information, the other one program
counter bits. We carried out experiments proving that this
approach provides lower misprediction rate than state-of-
the-art conventional and neural predictors.

I. INTRODUCTION

Modern high-performance microprocessors rely on
sophisticated and accurate branch predictors to efficiently
exploit Instruction Level Parallelism (ILP). Complex
front-ends, capable of filling large instruction windows,
are required to provide high frequency of operations
and aggressive parallelism. Branch prediction is a key
element of such a system, providing correct fetch be-
yond branch boundary and, therefore, large throughput
instruction deliver.

Traditional branch predictors [1] are based on one or
more tables of saturating 2-bit counters. The simplest
predictor, known as Bimodal, is composed of a table of
2-bit counters indexed by the least significative bits of the
Program Counter (PC). More complex approaches, the
Two-Level Adaptive predictors [2], use a local or global
history, stored in a Branch History Register (BHR) to
index into the 2-bit counter table, which represents the
second level history. To get advantages of both local and
global indexing, hybrid predictors, which combines two-
level or bimodal predictors as components, [3] have been
proposed. Several advanced branch predictors have been
suggested so far in the literature. Most of them are 2-bit
counter table based predictors and they are organized in
order to minimize interference which may occur in the
counter tables.

In this paper, we present an innovative branch pre-
dictor architecture, based on a neural approach, first

x1

x2

x3

...

xN

w1

w2

w3

...

wN

w0

σ(.)
y

pred

Fig. 1. Perceptron neural network

proposed by Jimenez et al. in [4] (the Perceptron predic-
tor). Our proposal features a novel mechanism, based on
an additional perceptron, using some PC bits as inputs,
to achieve superior accuracy with respect to a single
perceptron approach.

Section II introduces some background about neural
branch prediction. In Section III, our proposal is pre-
sented. Section IV shows obtained experimental results.
Finally Section V concludes the paper.

II. BACKGROUND

Branch predictors based on neural methods have been
recently studied [4], [5], [6], showing that they are
the most accurate predictors in the literature. In fact,
neural networks can exploit much longer histories than
conventional branch predictors.

The simplest neural network is the perceptron, whose
diagram is shown in Figure 1. The network output, pred,
is a non-linear function (σ) of y, which is a linear
combination of the network inputs, as stated in following
equations:

pred = σ(y) (1)

y = w0 +
i=N∑

i=1

xiwi (2)

2

PC

PT

BHT

GBHR

PC

WT_hist

P_hist P_addr

Prediction

y

Outcome

Update
logic

WT_addr

Fig. 2. Block diagram of the Combined Perceptron Branch Predictor

where wi are N + 1 weights and xi are N inputs; w0

is called bias weight. Function σ can assume various
shapes for a generic neural network. Perceptron uses
as σ a step function, which is a natural choice, when
dealing with branch prediction patterns. The step func-
tion means taken when it is 1 and not-taken when 0.
w̄ = [w0, w1, · · · , wN] is said weight vector and specifies
the perceptron. Weights can be dynamically trained, so
that prediction run-time adapts to the real taken/not-taken
branch pattern.

The Perceptron predictor, presented in [4], uses per-
ceptrons to predict branch outcome. It is a history based
predictor, since it maintains a Global Branch History
Register (GBHR) and a set of local Branch History
Registers (BHR), collected in a Branch History Table
(BHT). A history register obtained concatenating local
and global history is used as input of a perceptron
network to perform the prediction.

Weights are 8-bit integers and they are selected in
a n × (h + 1) matrix, called Weight Table (WT). n
and h are design parameters: n has the meaning of
number of entries of the WT, while h is the size of
the history register, which is the network input. Each
row of the matrix is an (h + 1)-length weight vector,
which determines the perceptron. When the prediction is
performed, the least significative bits of the PC are used
to select the row corresponding to the weight vector to
use. A fast adder provides to generate the summation of

the weights, according to applied inputs (see Equation
2), and a comparator makes the prediction (see Equation
1).

III. PROPOSED PREDICTOR ARCHITECTURE

The Combined Perceptron Branch Predictor, proposed
in the paper, is based on the idea to combine two
different kinds of Perceptron: a history-based one and
a address-based one. The address-based Perceptron has
as inputs some bits of the PC. Its output is sensitive
to the branch address and, if combined with the output
of the history-based Perceptron, which is sensitive to
branch history, it adds a contribution which significantly
improves the prediction accuracy.

The two subpredictors (the history-based one and the
address-based one), which compose the whole predictor
are Perceptron predictors modified with respect to the
ones described in Section II. As proposed in [6], we
adopted, as components of our predictor, path-based
perceptrons, which use branch path information to get
superior accuracy. The path of a branch is composed of
the past branch PCs and it is stored in a Path Table (PT).
In a path-based perceptron, the i-th weight of the weight
vector is the element of the i-th column of the Weight
Table, indexed by the i-th element of the Path Table, as
indicated by the following formula:

wi = WT [PT [i]] (3)

3

Algorithm 1 Prediction algorithm
/*Calculate output of history-based perceptron*/
y_hist=W1[PC][0];
for (j = 1; j <= history_length; j++)
{

k = path[j-1];
if (history_reg[j-1])
y_hist += W1[k][j];

else
y_hist -= W1[k][j];

}

/*Calculate output of address-based perceptron*/
y_addr=W2[PC][0];
for (j=1; j <= N_BITS; j++)
{

k = path[j-1];
if (PC[j-1])

y_addr += W2[k][j];
else

y_addr -= W2[k][j];
}
y = y_hist + y_addr;

if (y >= 0) prediction = true;
else prediction = false;

Furthermore, σ function is moved from the output of
the two single subpredictors to the output of the whole
predictor. Single subpredictors behave as perceptron-like
neural networks with a linear σ function.

Figure 2 shows the block diagram of the proposed
predictor. We indicated as WT hist and P hist the Weight
Table and the perceptron logic of the history-based
subpredictor, while WT addr and P addr are related to
the address-based one. Perceptron logic is substantially
composed of an adder and some multiplexers which
sums selected weights depending on the inputs.

The Path Table (PT) holds last PC and it is used to
index into the Weight Tables. GBHR and a BHT store
information related to branch outcome history and supply
the history register which is the input of the history-
based subpredictor. The update logic is the circuitry
needed to update the predictor Weight Tables. Dashed
lines represent data transfers needed by the update phase.

The prediction algorithm is shown, as C-like pseu-
docode, in Algorithm 1. Weight Tables of both predictors
are concurrently accessed to get weight vectors. The
outputs of the perceptrons are calculated and summed
together. Finally a comparator decides the prediction
whether the obtained value is greater or less than zero.

Update algorithm details are shown in Algorithm 2.
The weights of the two subpredictors tables are modified
on mispredictions or when the value of y is too small.
A threshold is established for this purpose. Its value has
been set, so that weight vectors are updated if y falls

Algorithm 2 Update algorithm
if (last_prediction!=outcome ||

(last_y <= THETA && last_y >= -THETA))
{

/*update history-based perceptron*/
if (outcome) weight_inc(W1[PC][0]);
else weight_dec(W1[PC][0]);

for (j = 1; j <= history_length ; j++)
{

k = path[j-1];
if (outcome == hist[j-1])

weight_inc(W1[k][j]);
else

weight_dec(W1[k][j]);
}

/*update address-based perceptron*/
if (outcome) weight_inc(W2[PC][0]);
else weight_dec(W2[PC][0]);

for (j = 1; j <= N_BIT; j++)
{

k = path[j-1];
if (outcome == PC[j-1])
weight_inc(W2[k][j]);

else
weight_dec(W2[k][j]);

}
}
update_ghist();
update_lhist();
update_path();

TABLE I
PREDICTOR PARAMETERS

Parameter Value
W1 SIZE 137
HL 25
BHT SIZE 2048
LHL 4
W2 SIZE 254
N BITS 11

into a value range which is half of the weight range.
The update is performed following the rule:

∆w = outcome⊕ input (4)

A weight is incremented if the corresponding input has
given positive contribution, otherwise it is decremented.
The GBHR, the BHT and the PT are also updated in this
phase.

The proposed architecture can be configured by setting
the following parameters:
• W1 SIZE: number of entries of the Weight Table

of the history-based subpredictor;
• HL: global history length;
• BHT SIZE: BHT number of entries;

4

TABLE II
PREDICTOR RESOURCE OCCUPATION

Resource Symbolic expression [bit] Resource occupation [bit]
WT hist W1 SIZE × (HL+ LHL+ 1)× 8 32,880
WT addr W2 SIZE × (N BITS + 1)× 8 24,384
BHT BHT SIZE × LHL 8,192
GBHR HL 25
PT max{HL+ LHL,N BIT} × dlog2(max{W1 SIZE,W2 SIZE})e 232
Last y register 32
Last prediction register 1
Total 65,746

• LHL: local history length;
• W2 SIZE: number of entries of the Weight Table

of the address-based subpredictor;
• N BITS: number of bits to be used as inputs of the

address-based subpredictor;
We explored design space parameters and we find the

optimal predictor configuration, shown in Table I.
From these parameters resource occupation of the

predictor can be easily calculated. We list the storage
resources needed by the proposed predictor and the
number of bits needed in Table II. WT hist and WT addr
are the two Weight Tables. BHT and GBHR are the
Branch History Table and the Global Branch History
Register. PT is the Path Table. In particular, we can
observe that Weight Table size is determined by the
dimensions of weight vectors, other than the number of
entries. Path Table size depends on the largest Weight
Table to index, relatively both to the number of entries
and to the number of bits of each element in the PT.
Furthermore, registers for recording the last value of y
and the last prediction is needed by the update logic.

IV. EXPERIMENTAL RESULTS

We report experimental results, obtained using the
CBP framework on the 20 benchmark traces provided.
Table III shows the misprediction rate (expressed in
mispredicted branches per 1000 instructions) achieved by
our predictor. An average value of 3.486 can be observed,
34% better than the baseline GShare predictor (15-bit
history length). We conducted experiments comparing
the Combined Perceptron to a state-of-the-art perceptron
predictor. Our approach results in a much lower mispre-
diction rate.

V. CONCLUSIONS

An innovative branch predictor architecture, based on
a neural approach, has been presented. We carried out
experiments on the benchmarks provided. The proposed
predictor achieves 34% lower misprediction rate than the

TABLE III
MISPREDICTION RATE [NUMBER OF MISPREDICTED BRANCHES

PER 1000 INSTRUCTIONS]

Benchmark Misprediction Rate
DIST-FP-1 1.858
DIST-FP-2 1.098
DIST-FP-3 0.425
DIST-FP-4 0.195
DIST-FP-5 0.183
DIST-INT-1 3.578
DIST-INT-2 6.588
DIST-INT-3 8.065
DIST-INT-4 1.584
DIST-INT-5 0.325
DIST-MM-1 7.548
DIST-MM-2 9.460
DIST-MM-3 1.408
DIST-MM-4 1.444
DIST-MM-5 5.046
DIST-SERV-1 3.337
DIST-SERV-2 3.510
DIST-SERV-3 5.204
DIST-SERV-4 4.737
DIST-SERV-5 4.118
Average 3.486

baseline GShare predictor and lower misprediction than
a state-of-the-art Perceptron predictor.

REFERENCES

[1] M. Evers and T.-Y. Yeh. Understanding branches and designing
branch predictors for high performance microprocessors. Pro-
ceedings of the IEEE, 89(11):1610–1620, November 2001.

[2] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch
prediction. In Proc. MICRO-24, pages 51–61. ACM Press, 1991.

[3] S. McFarling. Combining branch predictors. Technical Report
TN-36, Western Research Laboratory, June 1993.

[4] D. A. Jimenez and C. Lin. Neural methods for dynamic branch
prediction. ACM Transactions on Computer Systems, 20(4):369–
397, November 2002.

[5] L. N. Vintan and M. Iridon. Towards a high performance
neural branch predictor. In Proceedings of the International Joint
Conference on Neural Networks, July 1999.

[6] D. Jimenez. Fast path-based neural branch prediction. In
Proceedings of MICRO-36, 2003.

