
Dynamic Feature Selection for Hardware Prediction

Alan Fern, Robert Givan, Babak Falsafi, and T. N. Vijaykumar

School of Electrical & Computer Engineering
Purdue University
1285 EE Building

West Lafayette, IN 47907
{ afern, givan, babak, vijay} @ecn.purdue.edu

he num-
infor-

ion” for
ign the
eval-
able on
res.

nce in

uch as

3,1],

lize on

such

dictors

values

es of

nce

aturat-

global

r reg-

types

a gen-
Abstract

Most hardware predictors are table based (e.g. two-level branch predictors) and have exponential size growth in t
ber of input bits or features (e.g. previous branch outcomes). This growth severely limits the amount of predictive
mation that such predictors can use. To avoid exponential growth we introduce the idea of “dynamic feature select
building hardware predictors that can use a large amount of predictive information. Based on this idea, we des
dynamic decision tree (DDT) predictor, which exhibits only linear size growth in the number of features. Our initial
uation, in branch prediction, shows that the general-purpose DDT, using only branch-history features, is compar
average to conventional branch predictors, opening the door to practically using large numbers of additional featu

1 Introduction

Hardware prediction and speculation is a key technique to hide latency and improve performa

computer systems. Computer architects are exploiting predictive techniques in a variety of tasks s

branch prediction [28,29]; value prediction [19]; cache way prediction [7]; memory address [1

dependence [21], and sharing prediction [17,16]. In all cases, these hardware predictors capita

repetitive application behavior resulting in predictability in system event outcomes. By predicting

outcomes and thereby hiding the long latency of the corresponding system events, hardware pre

improve performance. For instance, value predictors rely on the repetitive occurrence of specific

in an application’s execution to hide long read latencies in the memory system.

A hardware predictor is typically a finite state machine that, given its internal state and the valu

some input bits, orfeatures, outputs a prediction of the unknown value of a particular bit. For insta

state-of-the-art branch predictors typically maintain some internal state such as a table of 2-bit s

ing counters and use local history [29] (corresponding to prior outcomes of the same branch),

history [20,29] (corresponding to prior outcomes of any branch), branch program counters [22], o

ister values [25] as input features. Hybrid predictors may incorporate two or more input feature

[9].

The vast majority of previously proposed hardware predictors are table-based—for example,

-based

ssible

lue for

unda-

nce the

based

n able to

accu-

nly be

e oper-

at can

esides

utcomes

ocessor

f rele-

nding

es. We

ech-

t scale

scuss

le with
ting in
ust be

 based
entify
 of the
eral mechanism that is a component of nearly all branch prediction schemes is the two-level table

predictor introduced by Yeh & Patt [28]. Such table-based predictors store a counter for each po

combination of values of the input features. Each such counter generally tracks the most likely va

the bit being predicted given the particular combination of features that selects that counter. A f

mental and significant limitation of table-based prediction techniques is thatthe size of a table-based

predictor scales exponentially with the number of input features made available to it(e.g., if a global

history branch predictor usesn history bits as input features the size of the table used scales as 2n). Due

to the exponential scaling property of table-based predictors the number of input features and he

predictive information that can be made available to such predictors is extremely limited. Table-

methods have been successful for predicting branches mainly because researchers have bee

identify small sets of features (e.g., recent global/local history) that lead to acceptable prediction

racies.

In general, however, table-based predictors suffers significant drawbacks. While there may o

a few features relevant to any single prediction, the set of relevant features may change during th

ation of the predictor—as a result, for some problems there may be no single small feature set th

be used to achieve high accuracy. For instance, in both value prediction and branch prediction, b

other branch outcomes (in the case of branches) and load addresses (in the case of values), o

may be correlated with instruction program counters, load addresses, register names, or other pr

state [25] constituting a prohibitively large feature space for implementation in tables.1

Our work below enables hardware prediction to be applied to domains where no small set o

vant features can be determined in advance. In addition, our work opens up the possibility of exte

current prediction domains like branch prediction to consider many more processor-state featur

believe that fully exploiting the potential for hardware prediction in support of new speculative t

niques requires the development of effective alternatives to table-based predictors that do no

exponentially with the number of input features considered during prediction. In Section 7 we di

1. Other processor state has been used by various table-based branch-prediction schemes but this is only possib
some form of information loss (such as using XOR to combine features) or hybrid scheme that requires commit
advance to particular feature groupings—the hybridized predictors use different features sets, where each set m
small. At any particular time one of the hybridized predictors is selected to make a prediction, with the selection
on its recent performance relative to the other predictors. This approach requires that the designer be able to id
multiple small subsets of features such that at least one of the subsets will lead to adequate performance most
time. Such subsets need not exist and may be difficult to identify when they do exist.
- 2 -

ature

n rel-

in

uire,

frame-

n, our

d during

table-

e logic

n, and

ction

com-

dictor

nsider

predic-

istory:

tomat-

most

. Inter-

mpara-

s and

them-

ssfully

ess rel-
the two recent alternatives [31,32] and contrast them with our approach.

In this paper, we propose the framework ofdynamic feature selectionto provide hardware predic-

tion that scales linearly in size with the number of input features. To make a prediction, dynamic fe

selection: (1) monitors a large number of features—large enough to include most or all informatio

evant for making predictions at any time, and (2) selects and stores information aboutonly the most rel-

evant features from the larger feature set. Such a predictor can monitor a very large set of features

step (1) without using the prohibitive amount of table space that traditional predictors would req

and only in step (2) be very selective in order to keep table sizes reasonable.

We then present and evaluate a particular predictor based on the dynamic feature selection

work. Our “dynamic decision tree” (DDT) predictor uses an on-line adaptation ofdecision treesfrom

the machine learning research community to implement dynamic feature selection. By its desig

predictor has a storage requirement that grows reasonably as additional features are considere

prediction, allowing the prediction to be sensitive to many more features than is possible with

based approaches. We argue that the lookup and update times for our predictor, as well as th

overhead, is within the tight time and space constraints required for practical hardware predictio

we thus expect that future hardware prediction applications can benefit from this technique.

As an initial evaluation of our predictor we perform experiments in the domain of branch predi

because of the easy availability of suitable benchmarks and high-quality alternative predictors for

parison. It is not our goal in this paper to show better performance than the best-known branch pre

but to introduce and evaluate a new framework of feature selection which enables predictors to co

large numbers of features in a systematic manner, adding to design options for future hardware

tion schemes. To evaluate our approach, we built a branch predictor which monitors 64 bits of h

the most recent 32 bits of both local and global history. We demonstrate that our approach can au

ically select (without any built-in knowledge of which bits are local/global/recent/less recent) the

useful bits from these 64 features in order to compete successfully with table-based approaches

ference-free simulation results on SPECint95 indicate that our predictor on average performs co

ble to conventional interference-free GAp and PAp predictors with similar storage requirement

generally performs close to the better of GAp and PAp, while accuracies among GAp and PAp

selves vary significantly across applications. These results indicate that our approach is succe

selecting the relevant features from the large set provided. We note that similar gains and robustn
- 3 -

s not

there

lso,

ter val-

r bits

nt.

elec-

ribing

hard-

mple-

ults for

it is

a

pre-

nd the

cerned

accu-

ay be

nal

redict

omain

ed to

ode is
ative to GAp and PAp can be achieved using a hybrid technique [9,20], but our technique doe

require dividing the feature space by hand into global and local bits—in other prediction domains

may not be an obvious effective division of the feature space to exploit with a hybrid predictor. A

our technique opens the door to branch prediction using additional processor state such as regis

ues without any serious distraction from the more important history bit features, as the registe

would be automatically ignored when not relevant and automatically focussed upon when releva

Sections 2 and 3 introduce our terminology for prediction and motivate the dynamic feature s

tion approach in more detail. Section 4 contains the key technical contributions of the paper, desc

previous machine learning work on decision trees and our novel on-line adaptation of that work to

ware prediction—here we define “dynamic decision tree”. Section 5 argues that DDTs can be i

mented under the necessary time and storage constraints. Section 6 gives our simulation res

DDTs in the branch prediction domain. Section 7 discusses related work.

2 Dynamic Prediction: Terminology and Problem Description

In a binary prediction problem the task is to predict the unknown value of a particular bit—this b

called thetarget bit, and its eventual value is called thetarget outcome, or outcomefor short. To aid in

predicting the target outcome ann-bit vector is made available to the predictor—this vector is called

feature vectorand generally conveys information about the target bit. For example, in the branch

diction domain the feature vector may consist of the last 8 bits of global branch-outcome history a

target bit corresponds to the future outcome of an unresolved branch. In this work, we are con

with dynamicpredictors—these are predictors that adjust their internal state over time to improve

racy by better fitting the relationship between the feature vector and target outcome (which m

changing over time).

A dynamic hardware predictor is a finite state machine that has two modes of operation. Inpredic-

tion modethe input is a feature vector and the output is a prediction of the target outcome. Inupdate

modethe input is afeature vector/target outcomepair and there is no output other than updated inter

predictor state—intuitively, the new internal state should cause the predictor to be more likely to p

the given outcome in the future when encountering the given feature vector. For example in the d

of branch prediction, which we will frequently use as an example domain, prediction mode is us

speculatively resolve a conditional branch when it is encountered during prefetch, and update m
- 4 -

, our

ctions.

torage

aking

satu-

escribe

nch

ential

rage.

ction).

tor are

example

ed on

r that

avoid

h is to

ature to

false

he same
used to update the predictor tables when the branch is actually resolved.

3 Motivation for the Dynamic Feature Selection Approach

In this section we give an informal introduction to the idea of dynamic feature selection. Put simply

goal is to enable hardware predictors to consider large numbers of features while making predi

This is fundamentally impossible with current table-based hardware predictors because the s

requirement for these predictors grows exponentially with the number of features considered in m

predictions.

For example, the GAp and PAp two-level branch predictors introduced in [29] assign a two-bit

rating counter to each possible branch feature vector. For example, the feature vectors used to d

branches in the GAp predictor containn global history bits, requiring 2n two-bit counters (one for each

possible history). To the best of our knowledge, prior to the original report on our work [33], all bra

predictors that perform as well as or better than the GAp and PAp schemes inherit this expon

growth property, which severely limits the number of features they can consider given fixed sto

This property is also inherited by other table-based hardware predictors (outside of branch predi

We will say that predictors such as GAp and PAp that have counters for each possible feature vec

table-based predictors.

To understand the space savings we hope to derive over table-based predictors, consider an

prediction problem having feature vectors and target with the following properties:

• when features 1 and 2 are true, feature 3 equals the target outcome, and

• otherwise if feature 1 is true then feature 4 equals the target outcome, and

• otherwise if feature 1 is false then feature 5 equals the target outcome.

Note that for a table-based predictor to learn this pattern, it will have to allocate 32 counters bas

all combinations of values for features 1 through 5. However, from the properties given, it is clea

only one feature out of features 3, 4, and 5 is relevant for any one prediction. We are trying to

considering all combinations of features 3, 4, and 5 for such prediction instances. Our approac

consider one feature at a time, and select the most predictive single feature—we then use that fe

divide the prediction problem into two subproblems: one for the feature vectors with that feature

and one for those with that feature true. Each of these subproblems can then be addressed in t
- 5 -

lts we

lved in

edict-

h fea-

levant

just

ful, but

nt fea-

et and

actice

atures

lected

arks the

lose to

princi-

use of

f fea-

of pre-

e field

n.

s as a

ic deci-
manner (i.e. selecting the next most predictive feature). In the branch prediction domain the resu

present below show that for SPECint95 benchmarks, selecting justonehistory bit (one feature) dynam-

ically and predicting with just that bit can often outperform GAp or PAp style predictors that use

counters.

Now consider the same example just described, but where there are 5 additional features invo

the problem (i.e., useful perhaps when the target characteristics change) which are not useful in pr

ing the current target. Table-based predictors have no mechanism for dynamically detecting whic

tures are useful directly, and would need to have times as many counters due to the 5 irre

features. In contrast, our approach will dynamically select one bit at a time, and will essentially

ignore the irrelevant features (they are considered each time a single feature is selected as use

combinations of values of the irrelevant features are never considered—as a result the irreleva

tures have a linear rather than exponential effect on the storage required).

Why do we expect that we can dynamically select a small number of features from a large s

still obtain good prediction accuracy? Apart from abstract examples like that just described, in pr

this phenomenon has been observed in the branch prediction domain. In [10] a small number of fe

werestatically selected from a larger feature set on a per-branch basis (off-line) and only the se

features were used by a predictor assigned to each branch. It was shown that for most benchm

accuracies of the predictors that only used the smaller but carefully selected feature sets were c

those of predictors that used the entire set of features. A predictor that forms rules based on the

ple of utilizing only a small set of carefully selected features is said to performfeature selection. Previ-

ous research has given no method for performing feature selection dynamically. Through the

dynamicfeature selection, our predictor avoids exponential growth in size relative to the number o

tures considered.

In the next section we use the dynamic feature selection approach to design one specific type

dictor, based on a decision tree method. Decision trees are widely used for prediction tasks in th

of machine learning [34] and provide a natural way to incorporate feature selection into predictio

4 The Dynamic Decision Tree Predictor

This section describes the dynamic decision tree (DDT) predictor. First, we discuss decision tree

general means of representing predictors. Second, we discuss the main component of the dynam

216

25
- 6 -

or.

feature

tion for

into a

rtition,

ly, this

st likely

accu-

ch fea-

eature

ng an

define

se rea-

e depth

e has a

ing to

de in

iction

e .

rsively

ut-

t at the

child

hen the
sion tree, the correlation predictor. Finally, we give the structure and function of the DDT predict

4.1 Decision Trees

Table-based predictors learn and store a prediction for each of the exponentially many possible

vectors (i.e. each possible combination of feature values). Rather than store a separate predic

each feature vector, we can avoid exponential growth by partitioning the set of feature vectors

small number of subsets and then only store a single prediction for each subset. Given such a pa

the prediction for a feature vector is the prediction stored for the subset that the vector is in. Clear

method performs best when a high percentage of the vectors in each subset have the same mo

outcome—in this case, using that likely outcome as the prediction for that subset results in a high

racy. Doing this we can avoid providing resources for learning/storing a separate outcome for ea

ture vector. Instead, resources must be provided for dynamically selecting a partition of possible f

vectors into “good” subsets, for determining which subset a feature vector falls into, and for learni

outcome for each subset. By providing space and time efficient methods for these tasks, we can

predictors that can consider a much larger number of features than is currently possible. For the

sons we consider a new class of hardware predictors, based on binary decision trees.

A decision treeis a binary tree where each node is labelled with a feature or its negation. Thedepth

of a decision tree node is the number of arcs traversed on the path from the root to the node. Th

of a tree is the depth of its deepest node. An example decision tree is shown in Figure 1—this tre

depth of 2.

Making Predictions with a Decision Tree. The label of a tree node is referred to as thetestof the

node. This test, evaluated with respect to a given feature vector, is equal to either 0 or 1, accord

whether that feature is false or true in the feature vector. For example, the test of the root no

Figure 1 evaluates to the value of feature , which might be global history bit 8 in a branch pred

domain. Likewise the test of the root’s left child evaluates to the negation of the value of featur

Given a binary decision tree and a feature vector, the prediction made by the tree is defined recu

as follows. If the root node is a leaf node (i.e., the tree is a single node), then return as the predicted o

come the value of the test at the root node for the given feature vector. Otherwise, evaluate the tes

root node for the feature vector, and return the prediction made by either the left child tree or right

tree of the node, depending on whether the test evaluates to 0 or 1, respectively. For example, w

f 8

f 1
- 7 -

th is

ction

edic-

rule for

rule

the

es that

rules

/state

maxi-

in any

e high

3 that

omains

ed for

blems;

of the

sidered

.

les.
tree in Figure 1 is presented with a feature vector such that , , and , a pa

followed from the root through the node labeled to the leaf node labelled . The final predi

for this feature vector is 1 since that is the value of (perhaps local history bit 1 for a branch pr

tion domain).

A decision tree can be viewed as representing a set of prediction rules such that there is one

each leaf. Any feature vector will activate exactly one rule from this set of rules. The prediction

corresponding to each tree leaf can be written as an IF/THEN rule, as shown in Figure 1.

Advantages of Decision Trees.Rules formed by a decision tree are not required to utilize all

available features but instead can select a small number of features to use while ignoring featur

are less predictive. Doing so, a decision tree in theory has the ability to form highly predictive

while at the same time avoiding any exponential growth in predictor size as the number of history

bits considered increases. The size of a decision tree, however, does grow exponentially with the

mum depth of the tree. This depth determines the maximum number of features that can occur

single predictive rule (like those in Figure 1). Decision trees are advantageous in domains wher

accuracy can be achieved by small rules built from a large feature space. We argued in Section

branch prediction is one such a domain, it is reasonable to expect other speculative prediction d

to have this property.

It may appear that decision trees are similar to context trees, which have been previously us

branch prediction [11] and are general enough to be applied to other hardware prediction pro

however, a decision tree can capture a far greater variety of predictive rules than a context tree

same depth, and context trees exhibit the same exponential growth in the number of features con

that table-based predictors show. See Section 7 for a more complete discussion of context trees

f 8 1= f 3 0= f 10 1=

f 3 f 10

f 10

Figure 1: Example of a 5 node, depth 2 binary decision tree and its corresponding prediction ru

f1 - local history bit 4

f8 - global history bit 3

f3 - global history bit 3

f10 - local history bit 1

f8

f1 f3

f10 f10

IF (f8 AND f3) THEN Predict(f10)

IF (f8 AND f3) THEN Predict(f10)

IF (f8) THEN Predict(f1)

Corresponding prediction rules:
- 8 -

th-

set of

then

batch

ding of

amic

ics to

used to

ecision

ts.

ntinues

erion

to two

ch parti-

data set

me the-

as the

timated

main

cy can

ically

be our

sed as

the tree
Training Decision Trees.Most known methods of training decision trees are batch training me

ods rather than dynamic ones (for example ID3 [23], CARTE [2]). These methods use a training

feature-vector/target-outcome pairs to construct the decision tree off-line. The resulting tree is

used to make predictions in its intended domain. Though it does not seem practical to perform

learning in hardware prediction domains, due to time and space constraints, a basic understan

the principles employed by batch learning methods is helpful for understanding our novel dyn

training method, described in the following sections.

Most batch training algorithms recursively grow a tree from the top down using greedy heurist

select tests at each decision node. First, the entire training data set is analyzed and a heuristic is

select a test that is judged to aid the prediction task most; this test is associated with the root d

node. Then,based on this test,the training data is partitioned into two smaller left and right data se

These sets are used as training data to recursively grow left and right subtrees. The recursion co

until a stopping criterion is met. Methods differ in the test selection heuristic and the stopping crit

used. Intuitively a test selection heuristic should select a test that partitions a given data set in

more predictable sets. The worst possible test to select is one that divides a data set such that ea

tion contains an equal number of examples with 1 and 0 target outcomes. The best test divides a

such that all of the examples belonging to each partition block have the same target outcome. So

oretical and empirical investigations of test selection heuristics appear in [3], [4], [5].

For our initial work presented here we have focused on using immediate predictive accuracy

metric for our test selection heuristic. This means the selected test at a node is the one that is es

to have the highest accuracy if used to directly predict the outcomes of the data set examples. A

reason for selecting this metric is because of the ease with which fast on-line estimators of accura

be constructed.

To use decision trees in hardware prediction domains, we propose a novel method of dynam

training decision trees rather than use batch-training methods. The following two sections descri

proposed dynamic decision tree. We first describe the correlation feature selector that will be u

the accuracy-based test-selection mechanism at each decision tree node. Next, we describe

architecture and the computations involved in training and making predictions with the tree.
- 9 -

rom a

of

pdates

ature in

n is to

counter

posi-

t out-

target

mputa-

of the

have

t the

features

that
4.2 The Correlation Feature Selector

The correlation feature selector is a mechanism for selecting a “most predictive” single feature f

large set of candidate features (e.g., 32 local and 32 global history bits), given repeated observation

feature vector/target outcome pairs. After observing each pair, the correlation feature selector u

information stored about each feature in order to be able to select the best feature at any time.

Given a set of features, a correlation feature selector associates a signed counter to each fe

the set. We use both the sign and the magnitude of the counters in our predictor. Our intentio

update the values so that after encountering of a large number of feature/outcome pairs, a large

magnitude for a feature will indicate that feature is strongly correlated with the outcome (either

tively or negatively, according to the sign of the counter). Upon observing a feature vector/targe

come pair, the update method increments each counter for a feature which agrees with the

outcome, and decrements the remaining counters. Figure 2 shows a diagram depicting this co

tion. After observing a long sequence of feature vector/target outcome pairs, the magnitude

counter value for a given feature is proportional to the number of correct predictions that would

been made by using the better of that feature or its complement to directly predict the outcome.2

At various points in the dynamic decision tree algorithm described below, we wish to selec

most predictive feature amongst various subsets of the entire feature space. Given candidate

2. Let be the number of correct predictions made by after observing instances since initialization. We know
and ’s counter is and from these we can get that .

Figure 2: After observing outcomeO the value of each feature is XOR’ed withO and the
results are used to increment or decrement the counter value of each feature.

O - observed outcome

Vi - value ofi’th feature

counteri - value ofi’th correlation counter

.

.

.counter1

V1

O

XOR

inc/dec

counter

countern

Vn XOR

inc/dec

counter

C f() f T
C f() C f()+ T= f V f C f() C f()– Max C f() C f(),() T Vf+() 2⁄=
- 10 -

ing

n. We

even-

sed by

based

ason,

r any

rs.

o trees.

rather

re dis-

com-

each

rm of

t, and

diction

update
, we select as theselected featurethe feature with the highest magnitude counter, break

ties by selecting the feature of lower index. Figure 3 shows a diagram depicting this computatio

provide a complete formal definition of the correlation feature selector in the Appendix.

The counters in a correlation feature selector are, of course, finite precision, and therefore will

tually saturate. However, unlike the counters in table-based predictors, these counters are u

comparingthem to each other to select a maximum value (table-based predictors make decisions

only on the sign of the counter rather than its magnitude relative to other counters). For this re

allowing the counters to saturate may lose important relative information. Instead, wheneve

counter in a correlation feature selector would saturate, we halve the magnitude of all its counte

4.3 The Dynamic Decision Tree

We describe the data and functionality at each DDT node, and then how nodes are combined int

Please note that this description concentrates on conveying the key concepts and functionality

than presenting the actual implementation. Approaches to efficient concrete implementation a

cussed and analyzed in Section 5. Also note that our description here is somewhat informal—a

plete formal definition of a DDT is presented in the Appendix for reference.

4.3.1 Nodes of a Dynamic Decision Tree

There are two types of DDT node: leaf nodes, which have no children, and internal nodes, which

have two children that are predictors themselves (typically other tree nodes but generally any fo

predictor). The two node types have very similar functionality. We describe the internal nodes firs

then indicate which aspects are omitted for leaf nodes.

Each node has two modes of operation: a prediction mode and an update mode. In the pre

mode, the node receives a feature vector and must make an outcome prediction quickly. In the

f 1 … f n, ,

.
.

.
.

.
.

.
.

.

.
.

.
.

Figure 3: Computing the selected feature given the counter values of the features.

MAX best-index

ABS

ABS

counter1

countern

counter - correlation counter value of the
i’th feature

best-index - index of the selected feature
- 11 -

mprove

a cor-

scribed

dic-

by the

reams

is then

dicted

ion in

he per-

vor of

per-

selec-

lation

single

red by

e

tar-

8] use

based

re

lay an

aluates

lation).

nearly
mode, the node receives a feature vector/outcome pair, and must update its internal state to i

future predictions based on the information in the pair. The essential internal state of each node is

relation feature selector defined over the candidate features along with two extra features de

below.

A critical part of the function of each internal node is in managing/combining the two child pre

tors in order to make a good prediction for the stream of feature vector/target outcome pairs seen

node. The role of each node as “manager” involves splitting this stream of pairs into two subst

according to the feature currently measured to be most predictive. Each of these two substreams

passed to one of the child predictors—the intention is that each substream will be more easily pre

(typically the target outcomes will be more uniform) than the original stream because the informat

the most predictive feature has been used to split the stream. The “managing” node also tracks t

formance of the child predictors and may choose to neglect their “recommended prediction” in fa

a prediction based on a single feature if that prediction is outperforming the child predictors. This

formance tracking is efficiently implemented by adding a single feature to the correlation feature

tor at the node—this feature represents the child predictor’s recommendation, and the corre

selector automatically estimates its accuracy and compares it to the accuracies of the alternative

feature predictions. For each input feature vector, we call the most predictive feature (as measu

the correlation feature selector) thesplit featurefsplit, and we call the child predictor selected by th

most predictive feature theselected child. Figure 4 shows a node splitting a stream of feature vector/

get outcome pairs between its children. Other predictors such as the Bi-Mode branch predictor [1

the idea of splitting the original branch stream into substreams, however, the stream splitting is

on a fixed set of features (PC bits) and not dynamically tuned to the incoming stream.

Data at Each Node of the Dynamic Decision Tree.At each node, there is a correlation featu

selector that includes counters for the candidate features as well as two “extra” features which p

important role in the predictor. The first extra feature is called theconstant feature(denoted fc), whose

value is always 1. Each node’s feature selector has a counter for the constant feature, which ev

the option at that node to always return the same prediction (1 or 0 based on the sign of the corre

This counter is important for recognizing when the input stream of feature vectors to a node has

uniform target outcomes. The second extra feature is thesubtree feature(denoted fsub), which is equal
- 12 -

ee fea-

dictor.

it is

e chil-

well as

-

e tree

ld

as the

parent

es

ild
e

rs.
e.
to the outcome predicted by the selected child predictor. The counter corresponding to the subtr

ture evaluates how good it is to make predictions based on the output of the selected child pre

This feature is not used for prediction, but is important during learning for determining whether

better to predict locally at this node based on a single feature or to use the prediction of one of th

dren.3

Figure 5 shows the features used by the correlation feature selector of each internal node as

the computations to select the child prediction that is used to update fsub. A child is selected according

to the output of the xor gate, which represents either fsplit or fsplit depending on the sign of the correla

tion between fsplit and the target outcome. Thus, the sign of the correlation determines whether th

node is labelled by fsplit or fsplit. The effect of the xor gate is to select child 1 (child 0) when we wou

predict 1 (predict 0) based on only the value of the split feature and its correlation value. This h

3. The correlation selector’s counter for does not measure the accuracy of either child, but the accuracy of the
weighted combination of the children over the entire stream of feature vector/target outcome pairs seen by the
node. That is, for each feature vector/target output pair only the selected child effects the counter of .

Split feature (f2) values and target outcomes for each pair.

Vectors f1 f2 … fn Outcome
F1 — 0 … — 0
F2 — 1 … — 1
F3 — 1 … — 0
F4 — 0 … — 0
F5 — 1 … — 1
F6 — 1 … — 1

features{
child
predictor 0

child
predictor 1

(F1,0)
(F2,1)
(F3,0)
(F4,0)
(F5,1)
(F6,1)

(F1,0)

(F4,0)

(F2,1)
(F3,0)

(F5,1)
(F6,1)

fsplit = f2

Decision
Node

Child 0 stream Child 1 stream

Figure 4: The decision node receives a stream of feature vector/target outcome pairs and divid
the pairs between the two child predictors based on the value of its split feature (in this case f2). The
table in the upper right shows the value of the split feature f2 for each of the six feature vectors in the
input stream along with the corresponding target outcomes. A feature vector is sent to the right ch
predictor if the value of the spit feature is 1 and sent to the left predictor otherwise. The goal of th
decision node is to split the input stream into two more predictable streams for the child predicto
Thus, the split feature is selected to be the feature that is most correlated with the target outcom

NOTE: Substreams arriving at each child have
more uniform target outcomes than the original
input stream for the decision node. The child
streams are not perfectly uniform because f2 is
not a perfect predictor of the target outcome.

Input stream of feature vector /
target outcome pairs

fsub

fsub
- 13 -

iased

s

e

irectly

r with

hase.

gation

-most

n the

d target

include

tion.
is, if
practically useful effect of letting predictor 1 (predictor 0) focus on predicting streams that are b

toward outcomes of 1 (outcomes of 0).

Additionally, each node storessummary informationabout the counters to enable quick prediction

without accessing the counter values. The summary information includesbest-indexwhich is the index

of , the correlation counter signs of and , and bitsuse-sub?anduse-fc? indicating whether

the prediction should be made using a feature or using the prediction of the selected child.

Operations at each Node of the Dynamic Decision Tree.In prediction mode, a node consults th

summary information (generated by the previous update phase) to determine whether to predict d

with the currently most predictive feature or to instead use that feature to select a child predicto

which to make the prediction. Figure 6 shows the computations performed during the prediction p

The top-most MUX uses the summary informationuse-fc? anduse-sub?to determine whether to make

a prediction with the constant feature (use-fc? is true), the selected child (use-sub?is true), or the split

feature directly. Note that the purpose of the XOR operations is to select either the value or its ne

based on whether the correlation counter indicates a positive or negative correlation. The bottom

MUX corresponds to the MUX in Figure 5 and selects which of the two children to use based o

value of the split feature, Vsplit, and the sign of its correlation.

In update mode, a node updates its correlation feature selector based on the feature values an

outcome of the current feature vector/target outcome pair. Note that the feature values used here

fc fsubf1 fn

candidate features (e.g., history bits)1

MUX

Vsplit

sign(fsplit)
child 0 prediction child 1 prediction

Figure5: Thefeaturesof thecorrelationpredictor for internalnodesandcomputations forchildselec
The inclusion of the xor gate allows a node to be labeled by either a feature or its negation. That
sign(fsplit) is positive then the node’s label is fsplit and child 1 is selected when fsplit is 1 (otherwise child 0
is selected). Similarly ifsign(fsplit) is negative then the node’s label isfsplit and child 1 is selected when fsplit
is 0(otherwise child 0 is selected).

fc - constant feature

fsub - subtree feature, stores the value of
the selected child’s prediction

Vsplit - value of the split feature

sign(fsplit) - sign of the correlation value of fsplit
XOR

f split f c f split
- 14 -

phase.

dictor

-

update

ction.

g the

sum-

ren

ternal

re. We

tor to

he cur-
the constant feature and the child-based feature available from the preceding prediction

In addition to updating its own correlation selector, the node must activate the selected child pre

so that the child will also update its feature selector.4 Note that onlyonechild needs to update its selec

tor (i.e., to learn) because only one child is expected to be used in predicting each instance—we

the selector in the “selected child” since that is the child which would be considered during predi

This update occurs even if the current prediction is being made by a single feature, neglectin

child’s recommendation.5 After the correlation feature selector of a node has been updated the

mary information stored at the node is updated based on the new correlation values.6 Finally, note that

update can occur at all nodes in parallelalong the path formed by the sequence of selected child

from the root down,but must not occur at the other nodes.

We have now completed the description of internal nodes. Leaf nodes behave identically to in

nodes except they do not have child predictors and therefore do not use or maintain an featu

4. If the child predictor is not another tree node, but some other kind of predictor, this activation signals that predic
update whatever state it maintains. In our implementation, the child predictor is always another tree node.

5. In this case, the update allows the child predictor to improve by learning so that eventually it may be better than t
rently preferred single feature.

fcfsub

f1....fn

candidate features

1

MUX

Vsplit

child 0 prediction child 1 prediction

Select

MUX

sign(fc)

use-sub?
Prediction

• The node’s summary information is
shown in bold assign(fsplit), sign(fc),
best-index, use-fc?, use-sub?.

• The topmost MUX selects among
, , and based onuse-fc?

anduse-sub?.

• Select latches the value of
based onbest-indexwhich is gener-
ated as shown in Figure 3.

• The bottommost MUX updates
with the selected child’s prediction.

fc fsplit fsub

fsplit

fsub

ChildSelect

use-fc?

PI

Prediction

Branch Features

Summary Info.

child 0 child 1

This figure defines the following icon:

XORsign(fsplit)

best-index

XOR

Figure 6: Prediction Phase of an Internal DDT Node (abbreviated PI).

fc fsub

fsub
- 15 -

namic

ir basic

ree. This

he tree

).

In this

key to

rma-

an be

imple-

e fea-

xample,

each

ation

ce—in

rs for

index

imple-

ature
r this rea-
alues,

good-
ature
nt to
tween
provide a complete formal definition of the dynamic decision tree in the Appendix for reference.

4.3.2 Combining the Nodes into a Dynamic Decision Tree.

Internal and leaf nodes of the above design are connected into a full binary tree to form the dy

decision tree hardware predictor. The connection of these elements into a tree does not alter the

operation, except in one respect: we restrict each node so that the “most predictive feature”

selected during update cannot be the same as that selected by any ancestor of that node in the t

restriction prevents the node from splitting on a feature that has already been used earlier in t

(such a split would result in one of the child predictors at that node seeing an empty input stream

5 Predictor Implementation Issues

In Section 4 we presented an abstract description of dynamic decision trees and how they work.

section, we present a discussion of real on-chip implementation issues for a DDT predictor. The

a realistic implementation of DDTs for the purpose of hardware prediction is to organize the info

tion collected in the trees in the form of tables that occupy moderate on-chip real estate and c

accessed quickly. Tables offer the advantages of simplicity as well as the existing expertise in

menting and optimizing prediction structures as tables.

Many hardware prediction tasks involve numerous separate prediction problems using the sam

ture space; where each prediction problem ideally needs a separate hardware predictor. For e

branch prediction involves many prediction problems over the same feature space of history bits—

problem involves only dynamic occurrences of a single static branch. Efficient DDT implement

depends critically on sharing logic between many DDT predictors over the same feature spa

branch prediction, this means a DDT predictor will have only one logic array shared by predicto

all static branches (table-based predictors do similar but less critical sharing of the logic used to

into the table). Aliasing between separate problems (such as occurs in typical branch predictor

6. One final practical point: we believe it is important to minimize the frequency with which the value of the split fe
changes, because such changes can dramatically alter the streams of data seen by the child predictors. Fo

son, when updating we implement a preference for keeping unchanged in the case of tied correlation v
even if a feature with a smaller index is involved in the tie. Additionally, when comparing correlation values the ‘
ness’ of is measured by the correlation value of . Thus, the split feature will only be changed if another fe
is performing at least as well as the subtrees given the current . In the long run, we believe it will be importa
implement an even stronger preference to sticking with the current split feature to avoid oscillation/vacillation be
features of similar predictive utility. We have not addressed this issue further in this work, however.

fsplit
fsplit fsplit

fsplit f sub
fsplit

fsplit
- 16 -

ll the

umber

blems,

ple-

table.

-

ation

con-

value

sists of

e PHF

e DDT

wever,

sepa-

e for

ts per

iction

node

tor to

s on the

ne in

select

logic is
mentations) complicates this picture only slightly and we can still share the DDT logic between a

predictors.

Because typically only one tree (or in the case of wide-issue superscalar machines, a small n

of trees) is used to predict or learn at a time, all the logic can be shared among many similar pro

amortizing the implementation cost of the logic. Such an organization lends itself well to being im

mented using tables by grouping the information stored at a particular node of each tree into a

Each table is then accessed by apredictor hash function(PHF), which for branch prediction is a lower

order prefix of PC bits from the branch being predicted. The PHF is used to select the tree inform

corresponding to the current problem from the tables.

The critical information stored at each node in a DDT is the correlation feature selector, which

sists of one saturating counter for each feature. In table form, this information is stored in acorrelation

table, a two-dimensional table of correlation feature selectors indexed on one dimension by PHF

and on the other dimension by tree node. Thus, the row corresponding to a given PHF value con

the correlation feature selectors for all tree nodes used for the corresponding predictor—given th

value, the table can then produce all the relevant correlation feature selectors for processing by th

logic.

The values stored in the correlation table are updated in the update phase of the predictor. Ho

to expedite the time-critical prediction phase, we can additionally store summary information in a

rate table (as described in Section 4, and including for example the identity of the “splitting” featur

each DDT node) for each problem—this summary information amounts to a small number of bi

tree node, and is kept in a separate much smaller table, called theprediction table, for the entire DDT,

again indexed by PHF and by tree node. Figure 7 shows the two tables and their contents.

In prediction mode, the PHF and a vector of the feature values are sent to the DDT. The pred

table is accessed with the PHF, and a row containing the prediction summary information for each

is read out. The summary information at every node is used in conjunction with the feature vec

select the decision to be made at that node: either to predict based on a single feature or to pas

prediction of the appropriate child, as shown earlier in Figure 6. Although this selection can be do

parallel at all the nodes, the overall prediction comes from combining the decisions at all nodes to

a path through the tree, a process sequential in the depth of the tree. Because the selection
- 17 -

tation

ortized

iction

atures,

e tree.

to the

the

sion

l to the

pective

com-

nodes

by
essentially a multiplexor that uses the summary information to choose one feature, its implemen

may be moderately space expensive. To alleviate this problem, the implementation cost is am

over all the predictors using the same feature space as this logic is reused repeatedly.

The prediction process can be viewed as reading parameters for the DDT logic from the pred

table followed by a single parallel decision operation at all nodes based on the parameters and fe

finished off by returning a prediction from a tree leaf along the selected sequential path through th

Once the parallel decision operations have occurred, the signals coming from the prediction table

DDT logic define a single path from the root of the tree to one leaf—it is along this path ofactivated

nodes(or some prefix of it) that the prediction flows back to the root. As shown in Figure 7 above

prediction table, the DDT logic, which inherits the topology of the DDT, performs the parallel deci

operations at all nodes and returns the prediction. The only operation that uses time proportiona

depth of the tree is the flow of the prediction up the tree, after the nodes have selected their res

decision in parallel. The depth of the tree is at most 7 in our work to date, so this process can be

pleted within a small number of gate delays. The prediction process identifies a path of activated

S1 S2 S3 S4 S5 S6 S7

PI1

PI2 PI3

PL4 PL5 PL6 PL7

Candidate

Features

To
 a

ll

no
de

s

CB1 CB2 CB3 CB4
. . . . CB7

UL0 UL1 UL2

Prediction

Summary Information

PIi - i’th internal prediction node (see Figure 6)

PLi - i’th leaf prediction node, these are the same as the
PI’s of Figure 6 except that they have no children.

Si - summary information for nodei (see Figure 6)

CBi - correlation counter bank for node i

ULi - update logic for tree layeri (see Figures2 and3)

DDT Logic

Corr elation Table

Figure 7: Overview of the DDT hardware predictor showing the connections between the
DDT logic, the correlation and prediction tables, and the update logic. Each table is accessed
a predictor hash function (PHF) that selects one predictor from the table.

Prediction Table

PHF

PHF
- 18 -

ate.

needs

ith the

t PHF

iction

eature

ntify-

‘split

predic-

at the

nged

ps the

hared

is also

can be

sired.

her in

elating

e loss

ask is

e tree

e

from a leaf to the root along which the prediction is returned. This path is used below during upd

When a target outcome is resolved, the decision tree corresponding to the prediction instance

to be updated by executing an update phase. To that effect, the correlation table is accessed w

PHF, returning the row of correlation feature selectors constituting the DDT predictor state for tha

value. The resulting row is updated using the feature vector of feature values for the current pred

instance, and then stored back in the correlation table. In particular, during this update, the split f

(and other summary information, similarly) at every node of the tree in parallel is computed by ide

ing the feature with the maximum counter magnitude, as shown earlier in Figure 3. Because the

feature’ at one or more nodes may have changed due to the updating of the correlation table, the

tion table now has to be updated with new summary information as shown by the update paths

bottom of Figure 7—this update ensures that future prediction will adapt by incorporating the cha

split feature.

The logic required to compute the maximum among the counters of all the features is perha

most expensive overhead of our technique. Much as the selection logic in prediction mode is s

among all the predictors using the same feature space, the logic for the maximum computation

shared and need only be replicated as many times as the depth of the tree. Even that replication

avoided by performing the maximum-computation sequentially one level of the tree at a time if de

While we believe this can typically be computed within a problems space and time constraints eit

parallel or in sequence along the activated path, we also believe that approximations to the corr

feature selector along the lines described in [9] can reduce the costs of this computation with littl

in accuracy. In that work, the task was to dynamically select the best of a set of predictors—this t

closely related to the task of dynamically selecting the highest correlated feature.

5.1 Table Size Estimates

We estimate the size of a correlation table entry and a prediction table entry, as a function of th

depth (denoted asd), the number of features monitored in the nodes (denoted asn), and the number of

bits in the feature counters (denoted asb). The size of each correlation table entry, therefore, is:

In the leaf nodes, there are onlyn+1 counters: fc, f1,..., fn. In the internal nodes, there is one mor

leaves() bits per leaf[] # internal nodes() bits per internal node[]+

2d #counters/leaf() b[] 2d 1–() #counters/internal() b[]+ 2d n 1+() b[] 2d 1–() n 2+()b[]+= =
- 19 -

it for

e

re to

tion at

lation

ranch

dic-

e

e DDT

ighly-

lection

f his-

r each

we

n these

owl-

e see-

r use

that

ictor.
counter, fsub, that estimates the selected child’s outcome correlation.

The size of each prediction table entry is given by:

Each leaf contains bits of summary information to keep track of the decisive feature, one b

whether we are using the split feature for prediction or fc, and one more bit for the sign of the featur

being used for prediction. Note that we use bits, instead of log bits, to track the split featu

avoid encoding/decoding delays in selecting the decision suggested by the summary informa

every node during the prediction phase. The prediction table entry is much smaller than the corre

table entry (by about a factor ofb) enabling fast access during the time-critical prediction phase.

6 Experiments

To demonstrate the DDT’s effectiveness in selecting features dynamically, we use the DDT for b

prediction and compare to table-based predictors. This paper is a first step towards evaluatingdynamic

feature selectionusing the DDT. As such, we compare an interference-free version of our DDT pre

tor against interference-free versions of GAp and PAp.7 We note that it is not our immediate goal her

to beat the state-of-the-art in branch prediction, but rather to demonstrate that our general-purpos

predictor can effectively select the relevant feature bits from a large set in order to compete with h

specialized branch predictors. We intend future research to determine how to best use this se

capability both in branch prediction and in other prediction domains.

We varied the key parameter controlling the predictor size (tree depth for DDT, and number o

tory bits used for GAp and PAp), and compared the accuracy obtained by the three predictors fo

fixed size (here “size” is taken to be the number of state bits stored in tables for the predictor —

argued in Section 5 that the logic required could be shared across many branch instances). I

experiments our predictor has available 64 history bits (32 global and 32 local bits) without any kn

edge of which bits are more recent history bits or which bits are global/local. For instance, befor

ing dynamic branch instances, our DDT is just as likely to select the 32nd history bit as the first fo

in prediction. In spite of this lack of built-in knowledge about the feature space, our results show

7. By interference-free we mean that each static branch is assigned its own DDT/GAp/PAp pred

leaves() bits per leaf[] # internal nodes() bits per internal node[]+

2d #bits summary/leaf[] 2d 1–() #bits summary/internal[]+ 2d n 2+[] 2d 1–() n 4+[]+= =

n

n n
- 20 -

ntially

tions,

even

n on

allows

l com-

of the

he true

culative

sulting

istory

a total

d

8, 10,

h,
the DDT predictor is able to automatically select useful bits from the 64 bits. These results substa

support our claim that DDT predictors can automatically select useful state bits to make predic

even in domains where the architect does not know ahead of time which bits these will be (or

where the useful bits vary over time so that no fixed set will provide good prediction).

We carried out all simulations using trace-driven inputs generated by SimpleScalar 2.0 [6] ru

eight integer benchmarks from the SPECint95 suite. This was the same suite used in [10], which

us to draw some conclusions below based on their results. All benchmarks were simulated unti

pletion and Table 1 shows the inputs and the number of static and dynamic branches for each

benchmarks used. All predictor counters were updated directly after each prediction based on t

branch outcome. It was demonstrated in [30] that this counter update method as opposed to spe

updates or updating only after a branch has been resolved does not significantly impact the re

accuracies.

The GAp and PAp predictors utilized two-bit saturating counters and were simulated using h

lengths ranging from 8 to 16 bits yielding predictor sizes ranging from 0.5 to 128 Kbits.8 The dynamic

decision tree was given the feature set LG that consists of 32 local and 32 global history bits for

of 64 binary features.9 Eight-bit signed correlation counters were used10 and the tree depths were varie

from 0 to 7 yielding predictor sizes ranging from 0.57 to 147.17 Kbits (see Section 5.1).

6.1 Results and Analysis

We conducted experiments for interference-free PAp and GAp predictors using history lengths of

Benchmark Input
Static

Branches
Dynamic
Branches

Benchmark Input
Static

Branches
Dynamic
Branches

compress test.in 486 3889933 li text.lsp 709 148707928

gcc cccp.i 19555 195124643 m88ksim ctl.raw 1400 92366311

go 2stone9.in 5215 106288644 perl jumble.in 2087 332004699

ijpeg vigo.ppm 1725 98664499 vortex vortex.raw 6822 299718894

Table 1. Inputs and number of dynamic and static branches for SPECint95 benchmarks.

8. Note that by “predictor size” we mean the size of a predictor for a single static branch.

9. Results not shown here indicate that DDT with 32 bits each of L&G history outperforms DDT with 16 bits of eac
showing that dynamic feature selection enables exploitation ofuseful history unavailable to traditional techniques.

10. Preliminary study indicated that 8 bit counters perform reasonably for the DDT predictor on these benchmarks.
- 21 -

s of 0,

tor on

n rate

e 8.

er pre-

some

to the

dicates

ark
ent

on
mic

ues.
12, 14, and 16 bits and for the dynamic decision tree predictor using the LG feature set for depth

1, 3, 5, and 7. We selected these numbers to yield predictors of comparable sizes. Themisprediction rate

for a predictor on a benchmark is defined to be the number of mispredictions made by the predic

the benchmark divided by the number of dynamic branches in the benchmark. We give mispredictio

versus predictor size curves for the PAp, GAp, and DDT predictors for each benchmark in Figur

As expected and as previously known, when GAp and PAp are compared to each other neith

dictor is superior across all benchmarks, and in fact each is significantly better than the other for

benchmark. The differences in their relative performance across benchmarks can be attributed

different information they utilize. The graphs also show that for all benchmarks exceptgoandijpeg the

dynamic decision tree curve is as good or better than the best of the GAp and PAp curves. This in

ijpeg

0

1

2

3

4

5

6

7

8

9

10

0.1 10 1000

size (Kbits)

vortex

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 10 1000

size (Kbits)

m88ksim

0

1

2

3

4

5

6

7

8

9

10

0.1 10 1000

size (Kbits)

ijpeg

0

1

2

3

4

5

6

7

8

9

10

0.1 10 1000

size (Kbits)

perl

0

1

2

3

4

5

6

7

8

9

10

0.1 10 1000

size (Kbits)

go

0

2

4

6

8

10

12

14

16

18

0.1 10 1000

size (Kbits)

gcc

0

1

2

3

4

5

6

7

8

9

10

0.1 10 1000

size (Kbits)

Figure 8: The above graphs show the percent misprediction versus size curves for each benchm
using the dynamic decision tree, GAp and PAp two-level predictors. Note for all graphs the perc
misprediction scales are the same, except forgo andvortex. The data points on the GAp and PAp
curves from left to right correspond to history lengths of 8, 10, 12, 14, and 16. The data points
the dynamic decision tree curve correspond to depths of 0, 1, 3, 5, and 7. All nodes of the dyna
decision trees used the LG feature set (64 features) and 8-bit counters to store correlation val

li

0

1

2

3

4

5

6

7

8

9

10

0.1 10 1000

size (Kbits)

%
 M

is
pr

ed
ic

tio
n

compress

0

1

2

3

4

5

6

7

8

9

10

0.1 10 1000

size (Kbits)

%
 M

is
pr

ed
ic

tio
n

DDT

GAp

PAp
- 22 -

rules

uding

int on

s. Note

y sim-

Sur-

t 0.03

les

ingle

nce on

re pre-

e supe-

select

Ap on

edicted

pre-

n that

tors

unrea-

ry bits

nches

, for

o such

can be

ch of
that DDT is able to robustly select important features on a per-branch basis, and to form prediction

using these features. The feature selection ability of DDT coupled with its larger feature set (incl

both local and global history) make it a morerobust predictor across benchmarks than GAp or PAp.

It is interesting to observe the performance of the depth-zero decision trees (the left-most po

each decision-tree curve) compared to the performance of GAp and PAp across the benchmark

that a depth-zero tree is equivalent to a single correlation predictor so that predictions are made b

ply selecting asingle featurefrom the 64 LG features and using its value as the predicted outcome.

prisingly this predictor is able to achieve nearly the same or better performance (losing by at mos

percent) than theworseof the 16-history-bit versions of GAp or PAp for the benchmarkscompress,

m88ksim, ijpeg, andvortex. In addition, the depth-zero tree beatsboth the 16-history-bit GAp and PAp

predictors on them88ksimbenchmark. Despite the fact that the GAp and PAp predictors form ru

involving 16 features (using counters) and the depth-zero tree forms rules involving only a s

dynamically selected feature, the depth-zero trees achieve nearly the same or better performa

these benchmarks. This result demonstrates the utility of feature selection mechanisms in hardwa

dictors.

The curves also show that for the four benchmarkscompress, m88ksim, perl, andvortex the DDT

curve is better than both the GAp and PAp curves. There are several potential explanations for th

rior performance of the dynamic decision tree on these benchmarks. First, the ability of DDT to

the “best” features on a per-branch basis may be responsible for its ability to beat both GAp and P

these four benchmarks. It is possible that some branches within a particular benchmark are pr

best with global history while others are predicted best with local history and still others may be

dicted best with a combination of the two. Second, experiments not presented here have show

DDT gains predictive value from exploiting history bits beyond 16 bits. The GAp and PAp predic

we implemented consider at most history bits 0 through 15 (considering more bits would have an

sonable and exponential cost in predictor size) whereas the DDT considers global and local histo

0 through 31. Thirdly, we expect DDT to have a less severe warm-up penalty for some static bra

since DDT has the ability to ignore irrelevant features—adding an irrelevant feature to GAp

instance, doubles the number of counters that must be warmed up for good performance; n

warm-up penalty applies to DDT. This phenomenon should be most significant for branches that

predicted well by rules involving only a small number of features. We have not yet determined whi

216
- 23 -

erfor-

GAp

It is

iden-

que.

nt).

is that

d for

elected

ve fea-

s were

inter-

ance

y pre-

ost

y use

es for

edic-

in the

here

ble for

nt.
the three factors just mentioned or possibly others are primarily responsible for the superior p

mance of DDT on these four benchmarks.

The graphs show that forli andgccthe dynamic decision tree curves are nearly the same as the

and PAp curves respectively. Note that DDT robustness is again apparent: forli it is GAp that performs

better than PAp, and forgcc it is the reverse; in each case DDT is near the better of GAp and PAp.

interesting to note that for these two benchmarks DDT and the better of GAp and PAp give nearly

tical misprediction versus size curves in spite of the drastic differences in implementation techni

Why is go hard? The performance of the dynamic decision tree on thego benchmark is signifi-

cantly inferior to that of both the PAp and particularly the GAp predictor (losing by 5.78 perce

Although the reason for the inferior performance is not yet certain, we have formed one hypothes

is supported by the work published in [10]. Recall from Figure 3, that decision trees are suite

domains where accurate predictions can be made by rules involving a small number of features s

from a larger set of features. [10] gives evidence for the hypothesis thatgo requires rules involving a

large number of features. In that work experiments were conducted where the three most predicti

tures (based on global history) were selected off-line for each static branch and only those feature

used to train a GAp-like predictor. On all of the benchmarks shown above exceptgo the interference-

free versions of this offline three-feature predictor achieved accuracies very close to those of the

ference-free GAp predictor using 16 global history bits. This result suggests that the poor perform

of DDT ongo is directly attributable to the need for rules depending on many features to accuratel

dict the branches ingo. Note that DDT for a depth makes predictions based on rules using at m

features for any one prediction, whereas the corresponding sized GAp or PAp predictor ma

considerably more features at once for a given prediction (GAp and PAp use all available featur

everyprediction). For example, for DDT using LG at depth-seven, the corresponding sized GAp pr

tor uses 16 history bits for every prediction where DDT is using at most eight.

We also note that whereas GAp significantly outperforms DDT on thegobenchmark, PAp with his-

tory length 14 significantly outperforms the comparable depth DDT on theijpeg benchmark (by 1.23

percent for a history of 16). The reason for this is also unclear at this point. We note one anomaly

ijpeg results: all three predictors seem to benefit similarly from increasing size until 10 Kbits, w

PAp derives much greater benefit from further size increase. The effect is striking, and is responsi

the advantage PAp has over DDT at large size, but we have not found an explanation at this poi

d

d 1+
- 24 -

above.

ictor

ajor

t can be

imply a

t tree

aking it

erent

n only

rding to

tory bit

this

ust be

hand

e blow-

are

from

at use

redic-

n accu-

at uses

cted are

spect

pose
7 Related Work

Here we consider only the work most closely related to our proposed approach but not covered

The work in [11] introduced the use of context trees for branch prediction—however, this pred

is not tied to the branch prediction domain and could be applied to other domains with no m

changes. The rules that can be expressed by a context tree are a strict subset of the rules tha

expressed by a DDT of the same depth. This can be seen by considering that a context tree is s

decision tree with the following three restrictions: First, all nodes at the same depth of a contex

must use the same test. In contrast a DDT has the freedom to select tests on a per-node basis, m

a more flexible decision structure. A DDT of maximum depth , can use as many as diff

features11 to form prediction rules, one at each node, whereas a context tree of the same depth ca

use features. Second, the tests that appear in a context tree must be in the same order (acco

depth) as they appear in the feature vector. Thus, even if the first feature of the feature vector (his

0) is not important it is still used to divide the incoming data stream whereas the DDT would ignore

feature. Third, the depth of a context tree is the same as the number of features (all features m

used) causing its size to blow-up exponentially with the dimension. A decision tree on the other

has the freedom to use a depth that is much smaller than the number of features, thus avoiding th

up in size. Context trees are similar to theprediction by partial matching (PPM)algorithm used for

branch prediction in [8]. In that work it was pointed out that the GAp/PAp two-level predictors

approximations to the PPM algorithm and that PPM a has slight advantage resulting mainly

reduced warm-up error.

One method, used in branch prediction, for using more features is to combine predictors th

different sets of features. In [20] a method was described for dynamically selecting one of two p

tors to be used for a branch based on an estimate of which predictor achieved a higher predictio

racy for that branch. [9] extended this work and provided a mechanism to select betweenN predictors

on a per-branch basis. Thus, it is possible for these methods to select a predictor for a branch th

the most appropriate feature set. Note, however, that the potential feature sets that may be sele

fixed off-line and are not dynamically adjusted to meet the needs of a particular branch. In this re

the DDT is a more flexible prediction method than that of combining predictors. For example, sup

11. This is the number of nodes in a depth full binary decision tree.

d 2d 1+ 1–

d

d

- 25 -

tions

based

y or

d to

nen-

pre-

rge

dic-

sing a

ing

this

s pre-

od are

ed for

all of

here

ch pre-

rdware

such

r neu-

l net-

k that

both

uch

ld of

ss all

nder-
a predictor is formed by combining a GAp and PAp predictor. It is only possible to make predic

based either on all the local history bits or all the global history bits. Predictions can not be made

on a combination of local and global history whereas the DDT has that flexibility (while this ma

may not be critical in branch prediction, in wider hardware prediction this flexibility can be expecte

be useful). Furthermore, the individual predictors that are currently combined still suffer from expo

tial blow-up. We also note that DDTs can also be hybridized. For example, we could form a hybrid

dictor using two DDTs—one with a large amount of local history information and one with a la

amount of global history information. We have shown elsewhere that hybrids of multiple DDT pre

tors can often make better predictions than a single large DDT (with equivalent space usage) u

machine-learning technique called “boosting” [12].

Work in [14] provides a limited form of feature selection in the branch prediction domain, provid

a method for dynamically searching for the ‘best’ history length to use during a prediction. Using

method a predictor can ignore higher order history bits dynamically. The sizes of the predictor

sented, however, are still exponential in the maximum history length. Feature sets under this meth

much less general than those under DDT. For example, suppose that only history bit 15 is need

prediction. The DDT is likely to select just this feature, however, dynamic history length must use

bits 0 through 15. It is also not clear how to generalize this method to other prediction domains w

the features may have no natural ordering from more useful to less useful (like recentness in bran

diction).

There has been some recent work that adapts machine learning techniques to dynamic ha

prediction. To the best of our knowledge, prior to our original DDT report [33] there was only one

proposal [35] (also see [32] for a more recent presentation), which explored the use of multi-laye

ral networks for dynamic branch prediction. Later work explored the use of single-layer neura

works, known as perceptrons, again for branch prediction. We are not aware of any other wor

considers the use of decision-tree learning for dynamic hardware prediction.

Neural-network predictors are qualitatively much different than decision trees—however,

types of predictors grow only linearly in the number of features, allowing the consideration of m

more predictive information than possible with table-based methods. It is well known in the fie

machine learning that there is no single prediction architecture that dominates all others acro

domains. Thus, it is desirable to develop a library of hardware-prediction architectures and to u
- 26 -

low, we

redic-

pre-

t work

lving

More

redic-

ason-

, and

stored

that is

h and

ercep-

ntical

o

t). This

depth-

ver, by

.

as the

T pre-

r of

void

pre-

al to
bers.
stand their relative strengths and weaknesses in order to make the best design choices. Be

briefly compare the primary alternatives to table-based architectures in the existing “hardware-p

tion library”.

The multi-layer neural networks in [32] were shown to have promising accuracy in the branch

diction domain. However, there remain serious, unresolved hardware implementation issues. Tha

used the training method of error backpropagation, which is somewhat complicated (e.g. invo

floating point numbers and multiplication) compared to decision-tree and perceptron training.

work needs to be done to evaluate the feasibility of multi-layer neural networks as a hardware p

tion architecture. However, both the perceptron predictor from [31] and the DDT appear to have re

ably efficient hardware implementations. Below, we compare the prediction times, training times

storage requirements of these architectures.

The perceptron makes predictions by taking a weighted sum of the feature values (a weight is

for each feature) and comparing the result to a threshold. This process can be carried out in time

logarithmic in the number of features. The prediction time for the DDT depends only on tree dept

not on the number of features. Thus, in terms of prediction time the DDT has an advantage over p

trons in domains with many features.

Regarding training, it is interesting that the perceptron training method presented in [31] is ide

to training a depth-zero DDT (i.e. a single DDT leaf node).12 That is, training a perceptron amounts t

updating a single correlation feature selector (each counter corresponds to a perceptron weigh

suggests that the training time and storage requirements of the perceptron are similar to that of a

zero DDT. As we increase the depth of a DDT (to improve accuracy) the space increases—howe

using parallelism the training time can remain similar to a depth-zero tree (and thus perceptron)

More specifically, the perceptron is somewhat simpler to train than the DDT presented here,

perceptron does not require the computation of the summary information that is used by the DD

diction circuitry (see Section 5). Computing this information takes time logarithmic in the numbe

features. Effectively the DDT performs an extra logarithmic amount of work during training to a

that work during prediction. This transfer of work is not required by the DDT, but is desirable since

12. For those familiar with perceptron training, this equivalence is only true when the learning rate parameter is equ
one. This was the choice used in [31], which has the advantage of avoiding multiplication and floating point num
- 27 -

id the

ake a

oga-

hine

5, 27].

n mem-

e data

e stor-

work to

ation

atively

l node

tch. Our

re found

. Third,

re at a

an all

that at

nt.

. This

candi-

idered.

lly with

nsider

feature

eci-
diction time is often a primary bottlekneck. For the perceptron it does not seem possible to avo

logarithmic work during prediction, i.e. the perceptron must compute a sum over all features to m

prediction. Note that it is the DDT’s explicit use of feature selection that allows it to transfer the l

rithmic work from prediction time to training time.

Finally we want to compare our DDT with related work outside of hardware prediction. Mac

learning research offers several methods of dynamically training decision trees, such as [26, 1

These methods, however, all require that the observed feature vector/outcome pairs be stored i

ory and therefore are not practical for most hardware-prediction domains, which will produce hug

sets. The dynamic training method used by the ID4 decision tree system [24] does not require th

age of past feature vector/outcome pairs and to the best of our knowledge is the closest previous

our DDT. There are several differences between our DDT and ID4. First, ID4 uses an inform

rather than accuracy based test selection heuristic. Building on-line estimators of accuracy is rel

simple compared to estimating information. Second, if ID4 determines that the test at an interna

should change then the child subtrees of the node are discarded and must be retrained from scra

DDT does not discard subtrees after a test has been changed, but instead uses the trees if they a

to be beneficial and otherwise allows them to adapt to the characteristics of the new data streams

ID4 does not consider the performance of the subtrees when it decides to change the split featu

node. Our DDT changes the split feature only if another feature is judged to be more predictive th

other features (including the split feature) and the subtrees. Our empirical investigations suggest

least for the branch prediction domain it is beneficial to take the subtree performance into accou

8 Conclusion

In this paper we presented a novel framework, dynamic feature selection, for hardware prediction

framework enables a predictor to dynamically select the most useful features from a large set of

date features—using storage which grows only linearly in the number of candidate features cons

In comparison to table-based hardware prediction schemes, where the storage grows exponentia

the number of features, using dynamic feature selection makes it possible for a predictor to co

much larger amounts of information in making predictions.

This paper also presents and evaluates a hardware prediction scheme implementing dynamic

selection. Our Dynamic Decision Tree (DDT) predictor is derived from an on-line adaptation of “d
- 28 -

t indi-

-based

ictor

cross

le by

nch-

can be

on can

rom a

seful).

esign

ine of

on.

owship

eiser.
tec-

iences

-
S VII)

curacy
chi-

: What
sion trees”, widely-used tools in machine-learning research. We presented simulation results tha

cate that this general-purpose predictor on average performs comparably to conventional table

interference-free predictors designed specifically for branch prediction. In addition, the DDT pred

is generally more robust than familiar branch predictors, performing close to the best of them a

applications that favor various familiar predictors — this robustness is similar to that achievab

hybridizing familiar predictors, but again it is achieved here without such special-purpose bra

related technique (our predictor’s robustness derives from general-purpose feature selection and

expected to generalize across prediction domains). We showed that dynamic feature selecti

approximate conventional table-based predictors’ performance by selecting useful features f

much larger set of features (without any specialized knowledge about which of the features are u

Our results indicate that the DDT successfully implements dynamic feature selection, adding to d

options for future hardware prediction schemes. We expect the DDT to be the beginning of a l

innovations in hardware prediction problems that benefit from the use of dynamic feature selecti

9 Acknowledgements

This material is based upon work supported under a National Science Foundation Graduate Fell

and Award No. 9977981-IIS.

10 References

[1] Michael Bekerman, Stephan Jourdan, Ronny Ronen, Gilad Kirshenboim, Lihu Rappoport, Adi Yoaz, and Uri W
Correlated load-address predictors. InProceedings of the 26th Annual International Symposium on Computer Archi
ture, pages 54–63, May 1999.

[2] L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. Stone.Classification and Regression Trees. Wadsworth, 1984.

[3] Leo Breiman. Some properties of splitting criteria.Machine Learning, 24(1):41–47, July 1996.

[4] Carla Brodley. Automatic selection of split criterion during tree growing based on node location. InProceedings of the
Twelfth International Conference on Machine Learning, pages 73–80, 1995.

[5] Wray Buntine and Tim Niblett. A further comparison of splitting rules for decision-tree induction.Machine Learning,
8:75–85, 1992.

[6] Doug Burger and Todd M. Austin. The SimpleScalar tool set, version 2.0. Technical Report 1342, Computer Sc
Department, University of Wisconsin–Madison, June 1997.

[7] Brad Calder, Dirk Grunwald, and Joel Emer. Predictive sequential associative cache. InHPCA96, February 1996.

[8] I-Cheng K. Chen, J. Coffey, and Trevor Mudge. Compression and branch prediction. InProceedings of the Seventh In
ternational Conference on Architectural Support for Programming Languages and Operating Systems (ASPLO,
pages 128–137, October 1996.

[9] Marius Evers, Po-Yung Chang, and Yale N. Patt. Using hybrid branch predictors to improve branch prediction ac
in the presence of context switches. InProceedings of the 23rd Annual International Symposium on Computer Ar
tecture, May 1996.

[10] Marius Evers, Sanjay J. Patel, Robert S. Chappell, and Yale N. Patt. An analysis of correlation and predictability
- 29 -

Ar-

orithms.

r-

l

anch

g Sys-

n Re-

depen-

o-

r

uring.

-

tive ex-
25)

-

redic-
makes two-level branch predictors work. InProceedings of the 25th Annual International Symposium on Computer
chitecture, pages 52–61, June 1998.

[11] Etian Federovsky, Meir Feder, and Shlomo Weiss. Branch prediction based on universal data compression alg
In Proceedings of the 25th Annual International Symposium on Computer Architecture, pages 62–72, June 1998.

[12] Alan Fern and Robert Givan. Online ensemble learning: An empirical study. InProceedings of the Seventeenth Inte
national Conference on Machine Learning, 2000.

[13] Doug Joseph and Dirk Grunwald. Prefetching using Markov Predictors. InProceedings of the 24th Annual Internationa
Symposium on Computer Architecture, pages 252–263, June 1997.

[14] Toni Juan, Sanji Sanjieevan, and Juan J. Navarro. Dynamic history-length fitting: A third level of adaptivity for br
prediction. InProceedings of the 25th Annual International Symposium on Computer Architecture, pages 155–166,
June 1998.

[15] D. Kalles and T. Morris. Efficient incremental induction of decision trees.Machine Learning, 24, 1996.

[16] An-Chow Lai and Babak Falsafi. Memory sharing predictor: The key to a speculative coherent DSM. InProceedings
of the 26th Annual International Symposium on Computer Architecture, May 1999.

[17] An-Chow Lai and Babak Falsafi. Selective, accurate, and timely self-invalidation using last-touch prediction. InPro-
ceedings of the 27th Annual International Symposium on Computer Architecture, June 2000.

[18] Chih-Chieh Lee, I-Cheng K. Chen, and Trevor Mudge. The bi-mode branch predictor. InProceedings of the 30th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO 30), pages 4–13, December 1997.

[19] Mikko H. Lipasti, Christopher B. Wilkerson, and John P. Shen. Value locality and load value prediction. InProceed-
ings of the Seventh International Conference on Architectural Support for Programming Languages and Operatin
tems (ASPLOS VII), October 1996.

[20] Scott McFarling. Combining branch predictors. Technical Report TN-36, Digital Equipment Corporation, Wester
search Laboratory, June 1993.

[21] Andreas Moshovos, Scott E. Breach, and T. N. Vijaykumar. Dynamic speculation and synchronization of data
dences. InProceedings of the 24th Annual International Symposium on Computer Architecture, June 1997.

[22] Ravi Nair. Dynamic path-based branch prediction. InProceedings of the 29th Annual IEEE/ACM International Symp
sium on Microarchitecture (MICRO 29), pages 142–152, December 1996.

[23] J. R. Quinlan. Induction of decision trees.Machine Learning, 1(1):81–106, 1986.

[24] J. Schlimmer and D. Fisher. A case study of incremental concept induction. InProceedings of AAAI-86 Fifth National
Conference on Artificial Intelligence, pages 496–501, August 1986.

[25] Zak Smith, Timothy H. Heil and J. E. Smith. Improving branch predictors by correlating on data values. InProceedings
of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 32), pages 28–37, Decembe
1999.

[26] Paul E. Utgoff. Incremental induction of decision trees.Machine Learning, 4, 1998.

[27] Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse. Decision tree induction based on efficient tree restruct
Machine Learning, 29, 1997.

[28] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive branch prediction. InProceedings of the 24th Annual IEEE/ACM In
ternational Symposium on Microarchitecture (MICRO 24), pages 51–61, December 1991.

[29] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adaptive branch prediction. InProceedings of
the 19th Annual International Symposium on Computer Architecture, May 1992.

[30] Tse-Yu Yeh and Yale N. Patt. A comprehensive instruction fetch mechanism for a processor supporting specula
ecution. InProceedings of the 25th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO,
pages 129–139, November 1992.

[31] Daniel Jimenez and Calvin Lin. Neural methods for dynamic branch prediction.ACM Transactions on Computer Sys
tems, 20(4):369-397, 2002.

[32] Colin Egan, Gordon Steven, Patrick Quick, Ruben Anguera, Fleur Steven, and Lucian Vintan. Two-level branch p
tion using neural networks.Journal of Systems Architecture, to appear.
- 30 -

ction.

fea-

ciated

or a

with

unter

ure)

nges

t-

tially

,

is

of fea-

f this
[33] Alan Fern, Robert Givan, Babak Falsafi, and T. N. Vijaykumar. Dynamic feature selection for hardware predi
Technical Report (TR-00-12), School of Electrical and Computer Engineering, Purdue University, 2000.

[34] Tom Mitchell.Machine Learning. MIT Press and McGraw-Hill, 1997.

[35] Lucian Vintan and M. Iridon. Toward a high performance neural branch predictor.International Joint Conference on
Neural Networks, 1999.

Appendix

In this Appendix, we provide for reference formal definitions and descriptions for the correlation

ture selector and the dynamic decision tree.

Correlation Feature Selector.We define for any set of features to be a bank of

signed counters, one for each feature in . We write for the value of the counter asso

with feature , and when the feature set is implicitly clear, we write as an abbreviation. F

given bank of counters , we also define theutility of each feature , written , to be the

absolute value of the counter value associated with feature in ,i.e., .

Again, when the bank of counters is implicitly clear, we will abbreviate the utility as .

We may also wish to know whether the feature selected is positively or negatively correlated

the outcome. For this purpose, we define a function that returns if the signed co

 is positive, and otherwise. Again, where is implicitly clear, we will write .

Updating a Correlation Predictor. We define , where is a mapping from

to representing the observed feature vector (so that is the observed value of feat

and is either or representing the corresponding target outcome. cha

the counter values in as follows: for each feature we execute the “if” statementif

then else . Figure 2 shows the functional diagram of this computation.

Selecting Features with a Correlation Predictor.Given a sequence of feature vector/target ou

come pairs represented by and , we can show that the result of sequen

updating an initially zero bank of counters by executing the updates

…, in order will result in counter values such that for each feature ,

proportional to the number of correct predictions that would have been made by using the better

ture or its complement to directly predict the outcome. Figure 3 shows the functional diagram o

computation.

CS F() F F

F CSf F()

f F CSf

CS F() f U f CS F()()

f CS F() U f CS F()() CSf F()=

U f

Sign CSF() f,() 1

CSf F() 0 CSF() Sign f()

Update CSF() V T, ,() V

F 1 0,{ } V f() f

T 1 0 Update CSF() V T, ,()

CS F() f V f() T=()

CSf ++ CSf
––

V1 … Vm, , T1 … Tm, ,

CS F() Update CSF() V1 T1, ,()

Update CSF() Vm Tm, ,() f U f

f

- 31 -

fea-

a cor-

s use

ties

ictions

l dia-

es, as

ary

ign(

am of

put to

g the

our

er-

he left

ach

ositive

the

iction

e pair

e of

y the

during

it must
Nodes of the Dynamic Decision Tree.Each tree node takes as input the values of the branch

tures, , and in addition each internal node also has two child predictors. Each node has

relation feature selector: leaf nodes’ selectors are , whereas internal node

. Note that the order of the features is important in that we prefer to break

by using earlier features, and thus prefer to make predictions using and disprefer to make pred

using the child predictors via , given ties in the correlation values. Figure 4 shows the functiona

gram of this computation.

In addition, each node contains summary information based on the correlation selector valu

follows: fsplit caches the value of , caches the value offc =

, and at internal nodes only caches the value offsub =

. The equality comparison returns 1 if it is true and 0 otherwise. This summ

information is used to speed up the critical prediction path. It would also be reasonable to cache Sfc)

and Sign(fsplit), as they are also used in the prediction phase. Figure 5 shows the functional diagr

this computation.

We now describe the computation performed by each node during the prediction phase. The in

the prediction phase is the feature vector mapping the features to , describin

branch. Our prediction is calculated as follows. If is true we return the value of as

prediction. Otherwise, if is false we return as our prediction. Oth

wise, we use the child prediction indicated by the split feature: we use the prediction returned by t

child if is false, and the prediction returned by the right child otherwise. In e

case, we are comparing (with xor) the feature value to the sign of the correlation to handle both p

and negative correlation appropriately. So, for example, if is highly negatively correlated with

outcome, we want to use as our prediction. Figure 6 shows the functional diagram of the pred

phase of an internal node.

Finally, we describe the update phase, where the input is a feature vector/target outcom

. First, the value of is updated by selecting a child predictor based on the valu

as was done above and setting equal to the prediction returned b

selected child. Note that the child selection and resulting prediction may have already been done

the prediction phase (and can then be reused/shared here), but if it was not done in prediction

f 1 … f n, ,

CS fc f 1 … f n, , ,()

CS fc f 1 … f n fsub, , , ,()

fc

fsub

Best f 1 … f n, ,() xuse-fc?

Best fc f 1 … f n fsub, , , ,() xuse-sub?

Best fc f 1 … f n fsub, , , ,()

V f 1 … f n, , 0 1,{ }

xuse-fc? Sign f c()

xuse-sub? V fsplit() Sign fsplit()⊕

V fsplit() Sign fsplit()⊕

f 1

f 1

V T,() fsub

V fsplit() Sign fsplit()⊕ V fsub()
- 32 -

above)

.

es.

lue

ta seen

lved in

ce to

dic-
still be done for update. Second, the correlation selection counters at the node (described

are updated by performing the function where we assume maps to

Finally, the summary information is updated as described above based on the new counter valu

One final practical point: we believe it is important to minimize the frequency with which the va

of the split featurefsplit changes, because such changes can dramatically alter the streams of da

by the child predictors. For this reason, when updatingfsplit we implement a preference to keepingfsplit

unchanged in the case of tied correlation values, even if an earlier feature in the sequence is invo

the tie. In the long run, we believe it will be important to implement an even stronger preferen

sticking with the current split feature to avoid oscillation/vacillation between features of similar pre

tive utility. We have not addressed this issue further in this work, however.

CS F()

Update CSF() V T, ,() V fc 1
- 33 -

	Abstract
	1 Introduction
	2 Dynamic Prediction: Terminology and Problem Description
	3 Motivation for the Dynamic Feature Selection Approach
	4 The Dynamic Decision Tree Predictor
	4.1 Decision Trees
	Figure 1: Example of a 5 node, depth 2 binary decision tree and its corresponding prediction rules.

	4.2 The Correlation Feature Selector
	Figure 2: After observing outcome O the value of each feature is XOR’ed with O and the results ar...
	Figure 3: Computing the selected feature given the counter values of the features.

	4.3 The Dynamic Decision Tree
	4.3.1 Nodes of a Dynamic Decision Tree
	Figure 4: The decision node receives a stream of feature vector/target outcome pairs and divides ...
	Figure 5: The features of the correlation predictor for internal nodes and computations for child...
	Figure 6: Prediction Phase of an Internal DDT Node (abbreviated PI).

	4.3.2 Combining the Nodes into a Dynamic Decision Tree.
	5 Predictor Implementation Issues
	Figure 7: Overview of the DDT hardware predictor showing the connections between the DDT logic, t...

	5.1 Table Size Estimates
	6 Experiments
	Table 1. Inputs and number of dynamic and static branches for SPECint95 benchmarks.

	6.1 Results and Analysis
	Figure 8: The above graphs show the percent misprediction versus size curves for each benchmark u...
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	10 References

	Appendix

