
Brief Contributions__

Using Indexing Functions to Reduce Conflict
Aliasing in Branch Prediction Tables

Yi Ma, Hongliang Gao, and
Huiyang Zhou, Member, IEEE

Abstract—High-accuracy branch prediction is crucial for high-performance

processors. Inspired by the work on indexing functions to eliminate conflict-misses

in memory hierarchy, this paper explores different indexing approaches to reduce

conflict aliasing in branch-prediction tables. Our results show that indexing

functions provide a highly complexity-effective way to enhance prediction

accuracy.

Index Terms—Processor architectures.

Ç

1 INTRODUCTION

CURRENT microprocessor design trends expose branch prediction
as a primary performance bottleneck. Higher branch prediction
accuracy not only exploits higher degrees of instruction-level
parallelism (ILP), but also helps microprocessors to fit in the
shrinking power/energy consumption budget by wasting less
execution time on wrong paths.

With its critical role in processor design, there has been
extensive research on branch prediction to improve prediction
accuracy. Many existing branch predictors can be grouped into
two major categories: context-based and computational branch
predictors. Context-based branch predictors, including two-level
[17] and g-share predictors [8], employ various Markov Finite State
Machine (FSM) models to capture branch behavior [2]. Computa-
tional branch predictors, such as perceptron predictors [5], [6], [16],
model the branch correlation relationship as a linear combination
of branch history. For either class of predictors, the prediction
tables are usually indexed with a hash function of branch address
(pc) and some local/global history (LHR/GHR) bits. With limited
prediction table sizes, different branches interfere with each other
through shared table entries, which are known as conflict aliasing
[9]. Previous studies [9], [11], [14] showed that conflict aliases
undermine prediction accuracy severely for context-based branch
predictors, especially for simple hash functions such as the modulo
mapping (i.e., index = pc mod number of table entries), where the
number of entries in a table usually is a 2’s power.

For computational branch predictors such as perceptron
predictors, each entry in the prediction table contains multiple
perceptron weights, which capture the correlation between the
current branch outcome and relatively long branch history. These
large entries result in prediction tables with much fewer entries
than context-based predictors for the same hardware budget.
Therefore, the adverse impacts of conflict aliases are more evident
in perceptron predictors (see Section 5).

Conflict misses are also recognized as a performance bottleneck
in memory hierarchy. Besides employing set-associative structures,
indexing functions have been shown to be effective in eliminating
conflict misses [4], [7], [15]. In this paper, we explore indexing

functions to reduce conflict aliases in branch prediction tables. For
complex indexing functions such as prime-modulo mapping, we
propose expanding the branch target buffer (BTB) to amortize the
computation cost. Simple indexing functions such as bitwise-XOR
schemes, on the other hand, only need very limited hardware (e.g.,
a few XOR gates). Our experiments show that the indexing
functions are effective in improving branch prediction accuracy for
perceptron branch predictors (e.g., 4.5 percent on average for a
128-entry perceptron predictor) at negligible hardware costs. For
context-based branch predictors with large table sizes, slight
improvements (e.g., 1.6 percent on average for a 215-entry g-share
predictor) are observed from the indexing functions such as the
bitwise XOR mapping. Multiple indexing functions, in addition,
can also improve the prediction accuracy of optimized 2bcgskew
predictors (e.g., 3.8 percent on average for a 32K-bit predictor). Our
results also show that the complex indexing functions, although
more effective in reducing conflict misses in caches, do not
consistently outperform the simple indexing functions on branch
prediction tables and all the performance improvements can be
achieved with highly cost-effective indexing schemes that require
only a few XOR gates.

The remainder of the paper is organized as follows: Section 2
presents the related work on indexing functions to eliminate cache
conflict misses and introduces the notations that are used
throughout the paper. Latency concerns of complex indexing
functions are addressed in Section 3. Section 4 explores various
indexing functions in detail and Section 5 evaluates their
performance impact on different branch predictors. Section 6
concludes the paper.

2 RELATED WORK

Indexing functions were studied initially to achieve uniform access
distribution across memory banks [3], [10]. The research was then
extended to cache indexing in order to eliminate conflict cache
misses [4], [7], [15].

In [4], various XOR-based indexing functions are evaluated on
different cache organizations. For an address addr, which is
decoded into several fields, as shown in Fig. 1, the first b bits are
the block offset (blk_off) where b is determined as log2ðblock sizeÞ,
whereas for branch prediction tables, b is log2ðinstruction sizeÞ.
The next two k-bit fields, where

k ¼ log2ðnumber of sets in the cache or branch prediction tableÞ;

are denoted as x and y. The traditional modulo-mapping is simply
index ¼ x. The bitwise XOR indexing function defines the index as
the bitwise XOR of x and y (i.e., index ¼ x^y).

Another XOR-based indexing function that has been shown
effective in eliminating conflict cache misses is the irreducible
polynomial mapping [4], [10], [15], which considers the line address
A as a polynomial function AðxÞ ¼ an�1x

n�1 þ . . .þ a1x
1 þ a0.

Then, based on modulo-2 polynomial arithmetic and an irreducible
polynomial P ðxÞ, the polynomial RðxÞ ¼ AðxÞ mod P ðxÞ is the
resulting index. The degree of the irreducible polynomial P ðxÞ
(over GF(2)) is k (i.e., the number of index bits). The implementa-
tion of the irreducible polynomial mapping requires parallel XOR
operations and does not incur overly complex circuits, as
addressed in [10].

The prime-modulo hashing, defined as index ¼ A mod p, where
p is a prime number closest to but smaller than the number of
cache sets, can achieve a more uniform cache access distribution
and has been shown to be less susceptible to pathological behavior
[7]. However, the computation of prime modulo involves high

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 8, AUGUST 2006 1057

. The authors are with the School of Computer Science, University of Central
Florida, Orlando, FL 32816-2362. E-mail: {yma, hgao, zhou}@cs.ucf.edu.

Manuscript received 26 Sept. 2005; revised 22 Feb. 2006; accepted 2 Mar.
2006; published online 21 June 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0331-0905.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

hardware cost and additional latency. In addition, the fragmenta-

tion problem leads to wasted cache sets when the number of cache

sets is not a prime number.
An alternative to the prime-modulo hashing, as proposed

in [7], is the prime-displacement hashing and defined as

index ¼ ðp � T þ xÞ mod ðnum of cache setsÞ, where p is a prime

number and T and x are address fields defined in Fig. 1. If the

binary representation of p takes few 1s, the implementation only

requires few shifting and truncated add operations.
Skewing [1] is a technique that uses different hashing functions

to index multiple cache ways to avoid conflict misses. The

irreducible polynomial mapping and prime-displacement hashing

can be used to improve upon skewed-associative caches by using

different irreducible polynomials or prime numbers to compute

the indexes for different cache ways [4], [7], [15]. In context-based

branch predictors, skewing is used to trade capacity aliases for

fewer conflict aliases [9].

3 ELIMINATING LATENCY OVERHEADS OF COMPLEX

INDEXING FUNCTIONS

In high-performance processors, branches are predicted in a

pipelined fashion. In a generic conditional branch prediction

model, shown in Fig. 2, in order to fetch up to one basic-block
instruction each cycle, the current branch pc is used to index both

the branch prediction table for prediction and the branch target

buffer (BTB) for path information (shown as (1) in Fig. 2). Based on

the predicted direction, the information of the predicted path,

including the starting fetch address, the length of the basic block,

and the next branch address along the predicted path, is selected

(shown as (2) in Fig. 2). In the next cycle, the next branch address

will then be used as the current branch pc (shown as (3) in Fig. 2).
For complex indexing functions, the computation latency may

exceed one cycle, which in turn undermines the throughput of the

instruction fetch unit. The solution that we propose is to expand

the path information field in each BTB entry to include the

prediction table index of the next branch, as shown in Fig. 3. The

prediction table index is only computed at the BTB replacement
when the next branch address information is collected. Then, when

this BTB entry is reaccessed, the next branch index field will be

used directly to index the branch prediction table for next branch

prediction (shown as (3) in Fig. 3). In this way, the computation

latency of the indexing functions is effectively shifted off the

branch prediction critical path. In addition, such a prestored index

also enables the use of a prediction table with any number of

entries (i.e., not necessary a 2’s power). Note that the next branch

index field is accessed at the same time as the next branch address

field (shown as (2) in Fig. 3). Therefore, there is no associated

latency penalty. Although appending the prediction table index

into the BTB incurs additional storage cost, it does not significantly

affect the critical access latency of prediction tables. Our experi-

ments using CACTI 3.2 [13] show that adding 24 extra bits into an

8-byte data block incurs only 3.5 percent access time penalty for a

2k-entry 4-way BTB using 90nm technology.
For simple indexing functions such as the bitwise XOR

mapping, there is no need to expand BTB entries. As the XOR

operations on each bit can be performed in parallel, the extra

latency is only one XOR gate, which is unlikely to affect the

prediction critical path.

4 INDEXING BRANCH PREDICTION TABLES

Although using indexing functions to eliminate conflict aliasing in

branch prediction tables is inspired by the indexing functions for

caches, there exist major differences between cache indexing and

branch prediction table indexing. First, adding set associativity

incurs the cost of tags, especially for context-based predictors,

which usually feature a large number of table entries to explore

branch correlation. Second, in branch prediction tables, each entry

captures certain branch history behavior. Therefore, it is important

that, once the table entries are allocated for a particular branch,

they will be accessed by the same branch even with the set-

associative organizations to get previously learned history knowl-

edge. This incurs additional constraints compared to set-associa-

tive caches since the common replacement policy, such as LRU,

cannot maintain such placement consistency. Third, while an

aliasing in caches definitely results in a cache miss, an aliasing in

branch predictor tables does not necessarily incur a misprediction.

Therefore, indexing functions such as prime-modulo mapping that

are effective in reducing conflict cache misses may not work well

with branch prediction tables (see Section 5).
Next, we explore various indexing functions for different

branch predictors. We first focus on branch predictors using single

hashing functions, including g-share and perceptron predictors.

Then, we address multiple indexing functions using 2bcgskew

branch predictors.

1058 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 8, AUGUST 2006

Fig. 1. Decoding an address addr.

Fig. 2. A generic branch predictor model with an indexing function fn.

Fig. 3. Expanding the path information in BTB to store complex index computation.

4.1 Single Indexing Functions

For conciseness, we assume a branch prediction table with
2k entries. For a table with an arbitrary number of entries, the
index can be computed at BTB replacement and stored in the BTB
as discussed in Section 3.

4.1.1 Modulo Mapping

This traditional indexing function defines index as:
Index ¼ x ¼ A mod 2k, where x and A use the same notations as
in Fig. 1. In a g-share predictor, A is pc½31 : 2�^GHR½k� 1 : 0�
(assuming the instruction size as 4 bytes and a 32-bit pc) and, for
perceptron predictors, A is simply pc½31 : 2�.

4.1.2 Bitwise-XOR Mapping

The bitwise-XOR indexing function defines the index as
Index ¼ y^x, where y and x are defined as in Fig. 1. For g-share
predictors, the bitwise XOR index is pc½2kþ 1 : kþ 2�^pc½kþ 1 :
2�^GHR½k� 1 : 0� and such a computation can be carried out using
the same number of XOR gates as the modulo mapping, but with
fan-ins increased from 2 to 3. For perceptron predictors, the bitwise
XOR mapping requires k XOR gates and the index becomes
pc½2kþ 1 : kþ 2�^pc½kþ 1 : 2�.

4.1.3 Irreducible-Polynomial (I-Poly) Mapping

The polynomial RðxÞ, which is determined by
RðxÞ ¼ AðxÞmod P ðxÞ, is the binary representation of the index
and it can be computed in the following manner [10]:
RðxÞ ¼ an�1Rn�1ðxÞ þ . . .þ a1R1ðxÞ þ a0R0ðxÞ, w h e r e RiðxÞ ¼
xi mod P ðxÞ can be precomputed once the I-poly P ðxÞ is selected.
The implementation of the I-poly mapping requires XOR gates
with multiple fan-ins. In our experiments, among all the
irreducible polynomials with degree k, we select one that does
not incur too many additional fan-ins to the XOR gates. For g-share
branch predictors, A ¼ pc½31 : 2�^GHR½k� 1 : 0�, whereas, for
perceptron predictors, A ¼ pc½31 : 2�.

4.1.4 Prime-Modulo Mapping

Based on a prime number p, which is closest to but smaller than 2k,
the index is computed as Index ¼ A mod p. Since the prime-
modulo mapping only uses a prime number of table entries, it
results in wasted table entries or the fragmentation problem [7],
which may lead to inferior performance compared to other
mapping schemes. To eliminate such inefficiency, we propose
another prime-modulo scheme (referred to as a-prime-modulo

mapping), defined as follows: Index ¼ A mod p mod 2k, where p is
a prime number that is closest to but larger than the number of
table entries. In this way, all table entries will be utilized at a cost of
slightly nonuniform access distribution since the first few entries
are used more often than others.

The computation latency of the prime-modulo indexing
function can be hidden by expanding BTB entries to store the
prime-modulo results, as discussed in Section 3. Since such prime-
modulo computation is only performed at BTB replacement, it
presents additional constraints for branch predictors requiring
history information such as g-share predictors. The reason is that
the history information may vary after the BTB replacement. As a
result, for g-share predictors, the prime-modulo indexing function
is defined as (pc½31 : 2� mod p mod 2kÞ^GHR instead of

ðpc½31 : 2�^GHRÞ mod p mod 2k:

For perceptron predictors, the prime-modulo indexing function is
ðpc½31 : 2� mod pÞ mod 2k.

4.1.5 Prime-Displacement Mapping

In the prime-displacement mapping, the index is computed as
Index ¼ ðT � pþ xÞ mod 2k, where T and x use the same notations

as in Fig. 1. The performance of the prime-displacement mapping

is dependent on the selection of the prime number p. In this paper,
we select p as 17 to minimize the hardware cost to implement such
computation (i.e., a 4-bit shift and one truncated addition). For
g-share branch predictors, A ¼ pc½31 : 2�^GHR½k� 1 : 0� and, for
perceptron predictors, A ¼ pc½31 : 2�.

4.2 Multiple Indexing Functions

The skewing technique, exemplified with the optimized 2bcgskew

branch predictor [12], is shown to be highly effective to eliminate
conflict misses by trading capacity misses. As the optimized
2bcgskew predictor has multiple branch prediction tables (one
bimodal table, two g-share tables, and one meta table), we can use
different indexing functions for each of them to further reduce

conflict aliases.

5 EXPERIMENTAL METHODOLOGY AND RESULTS

To evaluate the performance impact of the indexing functions
upon different branch predictors, the Championship Branch
Prediction (CBP) [18] branch traces are used as they encompass

representative workloads from a wide range applications, includ-
ing multimedia (MM), server (SERV), integer (INT), and floating-
point (FP) applications. Among them, the INT and FP benchmarks
are from the SPEC CPU 2000 benchmark suite. The branch
misprediction rate is measured as the number of mispredictions

per 1,000 instructions (MPKI). The timing simulator with the CBP
traces, unfortunately, is currently unavailable. In our experiments,
we also use an ideal BTB for the complex indexing functions,
including prime-modulo and irreducible polynomial functions, in
order to model the best performance that can be achieved.

In our first experiment, we evaluate the single indexing
functions on g-share branch predictors with different sizes. The
baseline (i.e., the modulo mapping) misprediction rates on average

are 13.58, 11.82, 9.89, 8.35, 7.08, 5.97, and 5.18 MPKI when
prediction table sizes (not including BTB) ranging from 29 to
215 entries (i.e., from 1K bits to 64K bits). The reductions in
misprediction rates (measured by MPKI reduction, the higher the
better) achieved by various indexing functions are shown in Fig. 4.

From Fig. 4, it can be seen that the performance impacts vary
for different indexing functions. The simple bitwise XOR indexing
function (labeled “XOR”) improves prediction accuracy for all

g-share configurations except for a prediction table with
212 entries. For a large table of 215 entries (i.e., 64K bits), it reduces
the misprediction rate from 5.18 to 5.10 MPKI (i.e., a 1.6 percent
improvement). Complex indexing functions, including the irredu-
cible polynomial (labeled “i-poly”), prime modulo (labeled

“prime”), and a-prime modulo (labeled “a-prime”) mapping,
show no consistent performance improvement over simpler ones

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 8, AUGUST 2006 1059

Fig. 4. Average misprediction rate reductions (the higher the better) achieved by

indexing functions on g-share branch predictors with different table sizes ranging

from 29 to 215 entries.

and are susceptible to pathological behavior. The prime-displace-
ment (labeled “p_disp”) mapping performs better than the bitwise
XOR mapping for large prediction tables while it is less effective
for small ones.

A closer look at each individual category of benchmarks, which
is reported as misprediction rates normalized to the baseline
misprediction rates for a g-share predictor with 215 entries shown
in Fig. 5, reveals that the SERV benchmarks benefit most from the
indexing functions as they have the largest branch working set (a
misprediction rate reduction of 3 percent with the bitwise XOR
mapping). For the FP benchmarks, the indexing functions increase
the misprediction rates. However, since the baseline misprediction
rates for the FP benchmarks are quite limited (1.32 MPKI), the
impacts of indexing functions are actually very small for the FP
workloads. The irreducible polynomial mapping suffers from
pathological behavior and increases the misprediction rates for all
types of workloads.

Overall, we can see that carefully selected indexing functions
(e.g., the bitwise XOR mapping for small prediction tables and
prime-displacement mapping for larger tables) can improve the
g-share branch predictors slightly with negligible hardware cost
(i.e., a few XOR gates for the bitwise XOR mapping or shifting and
addition for the prime displacement mapping).

Next, we examine the impact of the indexing functions upon
computational branch predictors, or perceptron predictors. In this
experiment, we choose the perceptron predictors with 10-bit LHR
and 34-bit GHR. The average misprediction rates using the
baseline modulo indexing function are 6.04, 4.88, 3.96, 3.47, and
3.18 MPKI, respectively, for a prediction table with 64 (23.7K bits),
128 (47.3K bits), 256 (94.7K bits), 512(189.4K bits), and 1,024
(378.9 K bits) perceptrons.

In addition to the indexing functions discussed in Section 4, we
also model an LRU placement method to highlight the perfor-
mance potential of conflict reduction for perceptron predictors. In
this LRU approach, each perceptron maintains a tag field and an
LRU field. When a branch is replaced from the prediction table, its
index is saved in a secondary mapping table, which is used to
make sure that same branch will access the same perceptron when
it reaccesses the prediction table. Note that this LRU method is
only used to show the performance potential of eliminating conflict
aliases, rather than as a practical design. The reductions in the
misprediction rate resulting from the indexing functions and the
LRU approach are reported in Fig. 6.

From Fig. 6, it can be seen that the indexing functions can
reduce misprediction rates significantly for a wide range of
perceptron predictors. Smaller size prediction tables, e.g., a table
with 128 perceptrons, generally benefit more from the indexing
functions than large size prediction tables, e.g., a 1,024-entry table.
The reason is that the smaller tables result in a higher number of

conflict aliases. All the indexing functions exhibit significant
improvement on prediction accuracy. For small table perceptron
predictors (64 and 128 entries), the prime-displacement mapping
achieves the best performance improvement and reduces the
misprediction rate by 0.20 MPKI (a 3.3 percent improvement) and
0.22 MPKI (a 4.5 percent improvement), respectively. Irreducible
polynomial mapping performs well for a 256-entry prediction
table, while the prime modulo and a-prime modulo mapping
achieve the highest improvement for a 512 and 1,024-entry
prediction table, respectively. The simple bitwise XOR scheme,
on the other hand, also achieves good performance improvement
for large prediction tables. Given its high cost-effectiveness, the
bitwise XOR mapping would be a more appropriate design option.
The LRU results shows that, even with carefully selected indexing
functions, there is still a significant performance potential by
further reducing conflict aliases.

The normalized branch misprediction rates for each category of
workloads, as shown in Fig. 7 for a perceptron predictor with
256 perceptrons, show that the INT and SERV benchmarks benefit
the most by reducing conflict aliases. Floating-point benchmarks
have low misprediction rate (0.73 MPKI) and the prime-displace-
ment mapping slightly increases the misprediction rate (0.04 MPKI)
due to some pathological behavior.

Overall, the experiments show that the indexing functions can
improve the prediction accuracy of perceptron predictors sig-
nificantly. One complexity-effective design choice would be using
the prime-displacement for small prediction tables and the bitwise
XOR for large prediction tables. The cost of hardware implementa-
tion is negligible as neither bitwise XOR mapping nor prime
displacement mapping requires complex implementation.

As discussed in Section 4, we use optimized 2bcskew branch
predictors to study the impact of multiple indexing functions. The
2bcgskew predictor contains two g-share tables (2N�1 bits in total),
a bimodal table, one meta table (2N�2 bits in total), and one shared

1060 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 8, AUGUST 2006

Fig. 5. Normalized misprediction rates for a g-share branch predictor with

215 entries (the lower the better). The baseline misprediction rates (in MPKI) are

included for each category of benchmarks.

Fig. 6. Misprediction rate reductions (the higher the better) achieved by indexing

functions on perceptron branch predictors with different table sizes.

Fig. 7. Normalized misprediction rates for a perceptron branch predictor with

256 entries (the lower the better). The baseline misprediction rates (in MPKI) are

included for each category of benchmarks.

hysteresis table (2N�2 bits). The baseline 2bcgskew hashing
functions use pc and ðN� 11Þ GHR bits for the bimodal and
metatables, pc and 4 � ðN� 11Þ and 8 � ðN� 11Þ GHR bits for the
two g-share tables. As the exhaustive combinations of different
indexing functions present a large design space, we focus on the
indexing functions with low complexity. For 2bcgskew predictors
with N = 12, 13, 14, 15, 16 (i.e., from 4K to 64 K bits), the baseline
misprediction rates are 12.90, 9.48, 6.87, 5.73, and 4.88 MPKI,
respectively. The reductions achieved from various indexing
functions, including the bitwise XOR on the bimodal table (labeled
“bim_xor”), the prime displacement on the bimodal table (labeled
“bim_p_disp”), different prime displacement on the bimodal and
meta table (labeled “bim_p_disp_meta_p_disp”), the bitwise XOR on
all tables (labeled “all_xor”), and different prime displacement on
all tables (labeled “all_p_disp”), are shown in Fig. 8.

From Fig. 8, it can be seen that simple indexing functions such
as the prime displacement mapping on the bimodal table can
significantly reduce the misprediction rates for all 2bcgskew
predictors except N = 14, for which the “all_xor” mapping
produces better improvement. The prime-displacement mapping
upon all tables achieves the highest improvement for a 64K-bit
2bcgskew predictor. For a 32K-bit prediction table, all indexing
approaches improve the prediction accuracy. Detailed examination
upon individual benchmarks reveals that the original 2bcgskew
indexing functions have severe pathological behavior with one FP
benchmark and our indexing functions effectively avoid it and
improve the prediction accuracy significantly on average (e.g., a
3.8 percent improvement from “bim_p_disp”).

6 CONCLUSIONS

In this paper, we explore various indexing functions to reduce
conflict aliasing in different branch predictors. The results show
that simple indexing functions such as the bitwise XOR mapping
and prime-displacement mapping can improve prediction accu-
racy significantly for perceptron predictors. Slight improvements
are also observed for g-share predictors using simple XOR and
prime-displacement schemes. Multiple simple indexing functions,
in addition, are effective to improve prediction accuracy for
2bcgskew predictors. Considering the negligible cost of these
simple indexing functions, we argue that the indexing functions
should be carefully explored in designing a highly accurate branch
predictor.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
valuable suggestions to improve the paper.

REFERENCES

[1] F. Bodin and A. Seznec, “Skewed-Associativity Improves Performance and
Enhances Predictability,” IEEE Trans. Computers, vol. 46, 1997.

[2] I.K. Chen, J.T. Coffey, and T.N. Mudge, “Analysis of Branch Prediction via
Data Compression,” Proc. Seventh Intl Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS-VII), 1996.

[3] J. Frailong, W. Jalby, and J. Lenfant, “XOR Schemes: A Flexible Data
Organization in Parallel Memories,” Proc. Int’l Conf. Parallel Processing,
1985.

[4] A. Gonzalez, M. Valero, N. Topham, and J. Parcerisa, “Eliminating Cache
Conflict Misses through XOR-Based Placement Functions,” Proc. Int’l Conf.
Supercomputing (ICS-97), 1997.

[5] D. Jimenez and C. Lin, “Dynamic Branch Prediction with Perceptrons,”
Proc. Seventh Int’l Symp. High Performance Computer Architecture (HPCA-7),
2001.

[6] D. Jimenez and C. Lin, “Neural Methods for Dynamic Branch Prediction,”
ACM Trans. Computer Systems, 2002.

[7] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using Prime Numbers For
Cache Indexing to Eliminate Conflict Misses,” Proc. 10th Int’l Symp. High
Performance Computer Archictecture (HPCA-10), 2004.

[8] S. MacFarling, “Combining Branch Predictors,” technical report, DEC, 1993.
[9] P. Michaud, A. Seznec, and R. Uhlig, “Trading Conflict and Capacity

Aliasing in Conditional Branch Predictors,” Proc. 24th Int’l Symp. Computer
Architecture (ISCA-24), 1997.

[10] B. Rau, “Pseudo-Randomly Interleaved Memories,” Proc. 18th Int’l Symp.
Computer Architecture (ISCA-18), 1991.

[11] S. Sechrest, C. Lee, and T. Mudge, “Correlation and Aliasing in Dynamic
Branch Predictors,” Proc. 23rd Int’l Symp. Computer Architecture (ISCA-23),
1996.

[12] A. Seznec, “An Optimized 2bcgskew Branch Predictor,” technical report,
IRISA, 2003.

[13] P. Shivakumar and N. Jouppi, “CACTI 3.0: An Integrated Cache Timing,
Power, and Area Model,” WRL Technical Report 2001/2, Aug. 2001.

[14] A. Talcott, M. Nemirovsky, and R. Wood, “The Influence of Branch
Prediction Table Interference on Branch Prediction Scheme Performance,”
Proc. Int’l Conf. Parallel Architectures and Compilation Techniques (PACT),
1995.

[15] N. Topham and A. Gonzalez, “Randomized Cache Placement for
Eliminating Conflicts,” IEEE Trans. Computer, vol. 48, no. 2, Feb. 1999.

[16] L. Vintan and M. Iridon, “Toward a High Performance Neural Branch
Predictor,” Proc. Int’l Joint Conf. Neural Networks, 1999.

[17] T.-Y. Yeh and Y. Patt, “Alternative Implementations of Two-Level
Adaptive Branch Prediction,” Proc. 22nd Int’l Symp. Computer Architecture
(ISCA-22), 1995.

[18] The First JILP Championship Branch Prediction, http://www.jilp.org/cbp,
2004.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 8, AUGUST 2006 1061

Fig. 8. Miss rate reductions (the higher the better) from various indexing functions

on 2bcgskew branch predictors with different table sizes.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

