
„Lucian Blaga” University of Sibiu
“Hermann Oberth” Engineering Faculty

Computer Science Department

Web Information Retrieval

First Technical Report

PhD title: “Data Mining for unstructured data”

Author:
Daniel MORARIU, MSc

 PhD supervisor:
 Professor Lucian VINTAN, PhD

SIBIU, 2005

Web Information Retrieval

Page 2 of 51

Contents

1 Introduction ..3

2 Data mining for Hypertext..5

2.1 Data mining in Databases ...5
2.1.1 Preprocessing data ..6

2.1.1.1 Cleaning data ..6
2.1.1.2 Data integration and transformation...7
2.1.1.3 Data reduction ..9
2.1.1.4 Entropy-Based Discretization...10

2.1.2 Data mining ..12
2.1.3 Mining association rules...14
2.1.4 Classification and prediction ..17
2.1.5 Clustering ...19

2.2 Text mining ..19
2.2.1 Text data analyzing and information retrieval..20

2.2.1.1 Basic measures for text retrieval ..20
2.2.1.2 Keyword-Based and Similarity-Based retrieval ...20
2.2.1.3 Latent semantic indexing..22

2.2.2 Keyword-based association ..23
2.2.3 Document classification analysis..23

2.3 Web mining ..24
2.3.1 Automatic classification on Web documents ...24
2.3.2 Web mining categories ...25

2.3.2.1 Web content mining ...25
2.3.2.2 Web structure mining ...26
2.3.2.3 Web usage mining ..30

3 Resource discovery systems ...33

3.1 Web directories...34
3.2 Representing of search results ..35

3.2.1 Hierarchical representation of search result ...36
3.2.2 Interactive map for representing the search result..39

3.3 Monitor specified pages ...40
3.4 User’s browser behavior...41
3.5 User refined search ...42
3.6 User profile ...43

4 Conclusions and further work ..46

References ..49

Web Information Retrieval

Page 3 of 51

1 Introduction

Impressive amounts of information potentially relevant to the user are contained in the web, this
information being very chaotic at the moment. The Web is becoming a huge repository of
information, and it is built in uncoordinated manner but yet restrictive. The Web is an environment
that grows continuously, it is populated and it implies a growth in participants, without having a
coordinated manner of building. These characteristics have as a result both pluses and minuses.
One of the pluses is the increase in the variety of the content. Information found on the Web is
undoubtedly larger than the one available trough news, radio and television. This is due to a
considerably large number of web developers. The lack of organization and the heterogeneity of
the data represent one of the minuses when trying to find information. Exploring the web is the
only way to find relevant information, this method being unfortunately time consuming. Queries
that contain words are the simplest method of searching information on the Web – method that
usually doesn’t return the expected results. Inexperienced users don’t know how to formulate
complex queries (like using preposition in the queries) and need more time to find information.

The growth of the Web in diversity and dimension gives it an inestimable value that makes it an
active repository of information. For the first time we can speak about an environment that has
almost as many authors as it has readers. The growing Web content makes it more and more
difficult to estimate real values from whole content. Its unsupervised progress makes it contain a
large number of redundant information.

The difficulty in finding and organizing relevant information grew exponentially with the growth
of information on the Internet and Intranets. Methods for searching relevant information for the
user were developed at the same time. Thus, a series of “search engines” was developed. Search
engines research grew rapidly in the past years, in areas such as algorithms, strategies and
architecture, increasing both effectiveness and quality of results. People want to find relevant
information quickly. Searching information on the web can be a frustrating activity when a search
engine returns thousands of documents for a given query. When searching, a user inputs a simple
keyword query (two or three words usually). The query response is usually a list of pages ranked
based on their similarity to the query. Search tools today have the following problems [Sou00]:

 Low precision - due to the irrelevancy of many of the search results – this leading to
difficulties in finding relevant information

 Low recall - due to the inability to index all the information available on the web – this
leads to difficulties in finding relevant information in un-indexed documents in the
search engine database

Most search engines are constantly looking on the net for new web pages and they use the page’s
summary or some reported keywords, to index the pages in a great database. When a user inputs
some specific keywords the searching engine returns the addresses of all documents indexed in the
database on those keywords. In order to raise the result’s quality, the search engine applies various
functions in order to assign relevance to a page (e.g.: page rank, similarity, back link and mixed
approaches) and gives precedence to pages with high weight, supposedly indicating greater
relevance.

I have structured this PhD report into two main parts (Chapters 2 and 3). Chapter 2 is a tutorial on
general data mining included due to its use for further studies in text mining. Than I present text
mining as far as changes are concerned in rapport with data mining. I will use this in future
studies. At the end of Chapter 2 I present Web content and usage mining in order to obtain the user

Web Information Retrieval

Page 4 of 51

profile, my main aim. In Section 2.3 I present a combination of classical literature and up to date
research. Chapter 3 is precisely the state of the art on returned search results reorganization from
the nowadays search engines. I present here a general perspective of current achievements as well
as on going research.

Acknowledgments

First of all I would like to express my sincere gratitude to my PhD supervisor Professor Lucian
VINŢAN for his responsible scientific coordination, for providing stimulating discussions and for
all his support. I would also like to thank the ones that guided me from the beginning of my PhD
studies: mat. Ioana MOISIL, eng. Boldur BĂRBAT, eng. Daniel VOLOVICI, eng. Dorin SIMA
and eng. Macarie BREAZU for their valuable generous professional support.

I would also like to thank SIEMENS AG, CT IC MUNCHEN, Germany, especially Vice-President
Dr. h. c. mat. Hartmut RAFFLER, for his very useful professional suggestions and for the financial
support that he and his company have provided. I want to thank my tutor from SIEMENS, Dr.
Volker TRESP, Senior Principal Research Scientist in Neural Computation for the scientific
support provided and for his valuable guidance in this wide interesting domain of research. I also
want to thank Dr. Kai Yu for useful information in the development of my ideas. Last but not least
I want to thank all those who supported me in the preparation of this technical report.

Web Information Retrieval

Page 5 of 51

2 Data mining for Hypertext

2.1 Data mining in Databases

Data mining [JaiMic01] refers to extracting or “mining” knowledge from large amounts of data. It
is the short term for “knowledge mining from data”. Many people treat data mining as a
synonymous for another popular used term, Knowledge Discovery in Databases, others view data
mining simply as an essential step in the process of knowledge discovery in databases. This step is
about solving problems by analyzing data presented (usually) in databases and trying to discover
such characteristics that can be used to organize massive databases. Thus data mining can be
defined as the process of discovering patterns in data and relationships between attributes from
data. This process must be automatic or (more usual) semi-automatic. Thus data mining represents
the process of discovering interesting knowledge from large amounts of data stored either in
databases, data warehouses, or other information repositories. Typically data mining systems have
the following major components:

 Databases, data warehouses, or other information repositories: Databases are created to
perform On-Line Transaction and query Processing (OLTP), covering most of day-to-
day operations and being detailed to be easily used for decision making. Data
warehouse systems offer help, for the specialists, in data analysis and decision making,
collective referred to as On-Line Analytical Processing (OLAP), providing facilities for
summarization, aggregation, storing and managing information at different levels of
granularity. Information repositories can also be flat files.

 Databases or data warehouses server – is responsible for fetching the relevant data,
based on the user’s data mining request.

 Knowledge base – includes the domain knowledge that is used to guide the search or to
evaluate the interestingness of resulting patterns. The knowledge can include
hierarchical concepts, used to organize attributes or attribute values into different levels
of abstraction. The knowledge can be used to assess a pattern’s interestingness based on
its unexpectedness or additional interestingness constraints or thresholds and metadata.

 Data mining engine – is the essential component of the data mining system and ideally
consists of a set of functional modules for tasks such as characterization, association,
classification, cluster analysis, and evolution and derivation analysis.

 Pattern evaluation modules –component typically employing interestingness measures
and interacting with the data mining modules so as to focus the search towards
interesting patterns. It can used interestingness thresholds to filter out discovered
patterns. Alternatively, the pattern evaluation module may be integrated with the mining
module, depending on the implementation of the data mining method used. Usually the
evaluation of pattern interestingness is put in the mining process so as to confirm only
the interesting parents searched.

 Graphical user interface – is the module for interaction between users and the data
mining systems, allowing the user to interact with the system by specifying a data
mining query or task, providing information to help focus the search, and performing
exploratory data mining based on the intermediate data mining results. This component
allows the user to browse databases and data warehouses schemas or data structures,
evaluate mined patterns, and visualize the patterns in different forms.

Web Information Retrieval

Page 6 of 51

The process of knowledge discovery in database has more steps, data mining been one of these
steps:

 preprocessing data
 data mining
 pattern evaluation
 knowledge presentation

2.1.1 Preprocessing data

This is an important step in the process of knowledge discovery. Today real-world database or
repository data are highly susceptible to noise, incomplete and inconsistent data due to their
typically huge size. Its aim is to prepare data for analyzing. There are a number of data
preprocessing steps:

 data cleaning – to remove noise (a random error or variance in a specific data), and to
correct inconsistencies (the same object appears with two different attribute values) in
the data (for example a given concept may have different names in different databases,
or the same person can be registered as “Bill” in one database, but “William” in
another).

 data integration – to merge data from multiple sources into an appropriate form for
mining. It combines data from multiple sources into a coherent data store. It refers to the
homogeneity of data.

 data selection – to select relevant information from data for analysis
 data transformation – to prepare data for analysis. It contains operations like

normalizing data (scaling the values of the attribute so that they fall within a specified
range) that can improve the accuracy and efficiency of mining algorithms that involve
distance measurements

 data reduction – to reduce data size by aggregation, eliminating redundant features, or
clustering

2.1.1.1 Cleaning data

Cleaning data is the first sub-step and prepares data for processing. Because vast amount of data
are involved in the data mining process, these data are usually incomplete, noisy, and inconsistent.
Data cleaning routine attempts to fill the missing values, smooth out noise while identifying
outliers, and to correct inconsistencies in the data. Outliers are considered values out of range or
noise in data. Different methods can be used in the process of filling missing values.

 The “ignore the samples” method is not very effective, unless the samples contain
several attributes with missing values. This method is especially poor when the
percentage of missing values per attribute varies considerably.

 Another method is “fill the missing value manually”, where the great disadvantage of
this method is that it is time consuming and may not be feasible when it is given a large
data set with many missing values.

 “Use a global constant to fill in the missing values” is the method by which all
missing attribute values are replaced with the same constant. This method is simple but
it is not recommendable because the mining process may mistakenly think that they
form an interesting concept.

 Another method is “use the attributes mean to fill in the missing value” where all
missing values are replaced with the average of the values for the same attribute in the
database.

Web Information Retrieval

Page 7 of 51

 “Use the most probable value to fill in the missing value” is a good method but it is
time consuming because the probable value is determined by the use of regression,
inference-based tools using Bayesian formalism, or decision tree induction.

Due to usually noisy data the cleaning data process also uses techniques for smoothing noise in
data. The noise is a random error or variance in a specific variable. There are some techniques for
smoothing data [JaiMic01]. Usually these methods try to eliminate those values that occur
sporadically in the data but without any assurance that those data are not novelty in data. As a
result these techniques usually use a variable threshold for eliminating noise at different levels to
assure that novelty is not being eliminated. Some of these techniques are:

 Binning methods smooth sorted data values by consulting its “neighborhood”, that is,
the values around it. The sorted values are distributed into a number of “buckets” called
bins. Because binning methods consult the neighborhood of values, they perform local
smoothing. In this smoothing by bin means method, each value in a bin is replaced by
the mean value of the bin. In smoothing by bin boundaries, the minimum and maximum
values in a given bin are identified as the bin boundaries and each bin value is then
replaced by the closest boundary value.

 Another method is Clustering where outliers may be detected by clustering. Similar
values are organized into groups, or “clusters” and values that fall outside of the set of
cluster may be considered outliers.

 Regression is a method where data can be smoothened by fitting the data through a
function such as the regression. Linear regression can be used in finding the best line to
fit two variables, so that one variable can be used to predict the other variable. Multiple
linear regressions are an extension of the linear regression in which more than two
variables are involved and the data is fitted in a multidimensional surface. Using
regression to find a mathematical equation to fit the data helps smooth out the noise.
Usually outliers are identified by using a combination between computer and human
inspection. Many methods for data smoothing are also methods for data reduction
involving discretization.

Techniques of data preprocessing want to improve the data quality, thereby help to improve the
accuracy and efficiency of the subsequent mining process. Preprocessing is an important step in
the knowledge discovery process because a quality decision must be based on quality data.

Data recorded in transactions can produce inconsistencies in the data. There may also be
inconsistencies due to data integration, where a given attribute can have different names in
different databases. Inconsistencies can also be redundancies. Some of these redundancies can be
corrected manually or using methods for reducing noise.

2.1.1.2 Data integration and transformation

The process of data mining often requests merging data from multiple data stores. Thus in the data
integration steps data from multiple sources are combined into a coherent data store. The source
may include multiple databases, data cubes or flat files. Data cube consists of a lattice of cuboids,
each corresponding to a different degree of summarization of the given multidimensional data.
Partial materialization refers to the selective computation of a subset of the cuboids in the lattice
and full materialization refers to the computation of all of the cuboids in the lattice. There are a
number of issues to consider during data integration. Scheme integration is the method that merges
different kinds of input data (e.g. different file formats, different structure names, a. o.). Other
important issues can be Redundancy where an attribute is considered redundant if it can be
“derived” from another attribute. Inconsistencies in attributes dimension or naming can also cause

Web Information Retrieval

Page 8 of 51

redundancies in the resulting data set. Redundancies can be detected using correlation analysis,
where analysis can measure if one attribute implies the other, based on the available date. The
correlation between two attributes can be measured by [JaiMic01]:

BA

n

k kk
BA n

BBAA
r

σσ)1(
))((

1
, −

−−
= ∑ = , (2.1)

where A and B are the attributes, n represents the number of samples, BandA are the respective
mean values of A and B, and BA and σσ are the standard deviation of A and B computed thus:

1

)(
1

2

−

−
= ∑ =

n
AAn

k k
Aσ (2.2)

The correlation coefficient ranges from 1 (perfectly correlated), through 0 (no correlation) to -1
(perfectly invert correlated). If the resulting of rA,B are greater then 0, then A and B are positively
correlated, and if the value of A increases then the value of B increases. When rA,B tend to 0 then
there is no correlation between A and B. The higher the value, the more each attribute implies the
other. Hence, a high value may indicate that A (or B) can be removed as a redundancy. If the
resulting is equal with 0, then A and B are independent and there is no correlation between them.
If the resulting value is less than 0, then A, and B are negatively correlated (when the values of the
one attribute increase as the values of the other attribute decrease). When redundancies between
attributes are detected, duplication at the sample level is detected. The above formulas fail when

AAk = (or / and BBk =) ∀ k=1, n, when the values are constants, leading to nonsense values (in
this particular case the attribute need to be eliminated). Another important issue in data integration
is detection and resolution of data value conflict. This is due to differences in representation,
scaling or encoding. For example some databases can use the British unit measure and also can use
American system unit. Careful data integration from multiple sources can help reduce and avoid
redundancies and inconsistencies in the resulting data set.

Data transformation is used to transform or consolidate data into forms appropriate for mining.
Data transformation can involve some methods like smoothing (for noise removal method
presented in 2.1.1.1), aggregation (for summarizing the data), generalization (for replacing the
low level data with a high level concept), normalization (rescaling attributes to fit in the specified
range) and attribute construction (construction and adding of new attributes to help the mining
process). The attribute is normalized by scaling its values so that they fit to a small specified range.

Normalization is particularly useful for classification algorithms involving, for example, neural
networks or distance measurements. There are many methods for data normalization. Method min-
max normalization performs a linear transformation on the original data. If that minA and maxA are
the minimum and maximum values of an attribute A, this method maps a value v of A to v’ in the
range [new_minA, new_maxA], where new_minA and new_maxA are the limits of the new range, by
computing:

AAA
AA

A newnewnewvv min_)min_max_(
minmax

min' +−
−

−
= . (2.3)

This method preserves the relationships between the original data values. The second
normalization method is z-score normalization where the values for an attribute A are normalized
based on the mean and standard deviation of A. Thus a value v is normalized to v’ by computing:

Web Information Retrieval

Page 9 of 51

A

Avv
σ
−

=' , (2.4)

where A and σA are the mean and the standard deviation for the attribute A (presented earlier).
This method is used when the minimum and the maximum for the attribute A are unknown, or
when are outliers dominate. Another method is normalization by decimal scaling where the A’s
attribute values decimal point is moved. The number of decimal points moved depends on the
maximum absolute value of A. A value v of A is normalized to v’ by computing:

 j

vv
10

'= , (2.5)

where j is the smallest integer such that max(|v’|)<1. Normalization can change the original data
quite a bit.

In attribute construction, the new attributes are constructed from the given attributes and added
in order to help improve the accuracy and understanding of the structure in the high dimensional
data. Attribute construction can help ease the fragmentation problem when decision tree
algorithms are used for classification. By combining attributes, attribute construction can discover
missing information about the relationship between data attributes that can be useful for
knowledge discovery.

2.1.1.3 Data reduction

Complex data analysis and data mining on huge amounts of data may take a very long time,
making such analysis impractical or infeasible. Data reduction is a technique that can be applied to
obtain a reduced representation of the data set that is much smaller in volume, and closely
maintains the integrity of the original data. That is, mining on reduced data set should be more
efficient yet produce the same (or almost the same) analytical results. There are some techniques
for data reduction (for details see [JaiMic01]):

 data cube aggregation – some aggregation operations are applied to the data in the
construction of the data cube. Data cubes store multidimensional aggregated
information. Each cell holds an aggregate data value, corresponding to the data point in
multidimensional space. Concept hierarchies may exist for each attribute, allowing the
analysis of data at multiple levels of abstraction. Data cubes provide fast access to pre-
computed, summarized data, thereby benefiting on-line analytical processing as well as
data mining. The cube created at the lowest level of abstraction is referred to as the base
cuboid. A cube for the highest level of abstraction is the apex cuboid. Data cube created
for various levels of abstraction are often referred to as cuboids. Because data cube
provide fast access to pre-computed data, they should be used when possible to reply to
queries regarding aggregated information.

 dimension reduction – irrelevant or redundant attributes or dimensions may be
detected and removed. Typically, attribute subset selection methods are applied, where
the goal is to find a minimum set of attributes such that the resulting probability
distribution of the data classes is as close as possible to the original distribution obtained
using all attributes. The “best” or “worst” attribute are determined using tests of
statistical significance, which assume that the attributes are independent of one another.
Many other attribute evaluation measures can be used, such as the information gain and
the average entropy (presented in the next paragraph).

Web Information Retrieval

Page 10 of 51

 data compression – encoding mechanisms are used to reduce or “compress” the data
set size. There are two popular methods of lossy data compression (when we can
reconstruct only an approximation of the original data, with losses). First there is the
wavelet transformation method where the linear signal processing techniques are
applied to the data vector, and transform it into a numerically different vector of wavelet
coefficients. The two vectors, the original and the wavelet, are of the same length, but
the wavelet vector can be truncated and can be retained by storing only a small fraction
of the strongest coefficients. The second method is the principal component analysis
where the idea is to search for an orthogonal vector that can best be used to represent
the data and the dimension is smaller than the original dimension. The original data are
thus projected onto a much smaller space.

 numerosity reduction – the data are replaced or estimated by alternative, smaller data
representation. These techniques may be parametric (where the model is used to
estimate the data, so that typically only the data parameter needs to be stored, instead of
the actual data), or nonparametric (where histograms, clustering and samples are used
for storing reduced representation of the data).

 discretization and concept hierarchy generation – is used to reduce the number of
values for a given continuous attribute by dividing the range of the attribute into
intervals. Interval labels can then be used to replace actual data values reducing the
number of values for an attribute. A concept hierarchy allows the mining of data at
multiple levels of abstraction and is a powerful tool for data mining. There are different
methods for numeric concept hierarchy generation like binning, histogram analysis,
cluster analysis and entropy based discretization (the first three presented earlier).

2.1.1.4 Entropy-Based Discretization

The measure named Entropy Based Discretization is a measure commonly used in information
theory, that characterizes the (im) purity of an arbitrary collection of samples, being a measure of
homogeneity of samples. The entropy can be used to recursively partition the values of a numeric
attribute.
Given a collection S of n samples grouped in c target concepts (classes), the entropy of S relative
to the classification is:

∑
=

−=
c

i
ii ppSEnt

1
2)(log)((2.6)

where pi is the proportion of S belonging to class i. In all calculations involving entropy we define
0*log2 0 to be 0. Note that the entropy is 0 if all members of S belong to the same class, and the
entropy is maxim (log2c) when the samples are equally distributed to classes. If the samples, in the
collection, are unequally distributed in classes the entropy is between 0 and log2c.
One interpretation of entropy from information theory is that it specifies the minimum number of
bits of information needed to encode the classification of an arbitrary member of S. If pi is 1, the
receiver knows the drawn sample will be positive, so no message needs to be sent, and the entropy
is zero. On the other hand, if pi is 1/c, c/2 bits are required to indicate whether the drawn sample is
in what class. For example in the two classes case if pi is 0.8, then a collection of messages can be
encoded using an average less than 1 bit per message by assigning shorter codes to collections of
positive samples and longer codes to less likely negative samples. The logarithm is still base 2
(even if we have more classes then 2) because entropy is a measure of the expected encoding
length measured in bits. If the target attribute can take c possible values, the entropy can be as
large as log2c.

Web Information Retrieval

Page 11 of 51

To illustrate this, suppose S is a collection of 12 samples (presented in Table 2.1). The presented
collection contains 3 classes denoted “a”, “b”, and ”c”. There are 5 samples in class “a”, 3
samples in class “b” and 4 samples in class “c”. We adopt the notation S=[5a, 3b, 4c]. The
entropy of S relative to this classification computed using (2.6) is:

 [] 5545.1
12
4log

12
4

12
3log

12
3

12
5log

12
54,3,5 222 =−−−=cbaEntropy

 Attributes(words)
Samples (docs)

attrib1 attrib2 attrib3 attrib4 attrib5 attrib6 classes

v1 1 5 7 0 1 1 a
v2 1 1 0 0 7 5 b
v3 0 0 1 7 1 0 c
v4 1 3 7 1 0 1 a
v5 2 1 8 0 0 0 a
v6 0 0 0 0 10 7 b
v7 0 0 7 10 7 0 c
v8 0 0 5 3 8 1 c
v9 2 2 5 2 0 1 a
v10 0 1 0 1 9 5 b
v11 0 1 4 1 9 2 c
v12 1 4 6 1 0 0 a

Table 2.1 Training examples with term frequency

Entropy represents the expected number of bits needed to encode the class (for us “a”, “b”, “c”) of
a randomly drown sample from S (under the optimal, shortest – length code). Therefore, entropy is
a measure of the impurity in a collection of training samples. Using entropy an attribute
effectiveness measure is defined in classifying the training data. The measure is called information
gain, and is simply the expected reduction in entropy caused by partitioning the samples according
to this attribute. More precisely, the information gain of an attribute relatively to a collection of
samples S, is defined as:

)()(),(
)(

v
AValuesv

v SEntropy
S
S

SEntropyASGain ∑
∈

−≡ (2.7)

where Values(A) is the set of all possible values for attribute A, and Sv is the subset of S for which
attribute A has the value v. The first parameter is just the entropy of the original collection S, and
the second term is the expected value of the entropy after S is partitioned using attribute A. In
other words, the information gain is therefore the expected reduction in entropy caused by
knowing the value of attribute A. The information gain is the number of bits saved when encoding
the target value of an arbitrary member of S, by knowing the value of attribute A.

Continuing the example above we now attempt to compute the informational gain. Attributes can
only take two values: 0 if the sample doesn’t contain that attribute and 1 otherwise. We denote the
set of samples containing an attribute as Sattribi>0 and Sattribi=0 otherwise. For example for attrib1 the
12 samples are divided as follows, 5 of the class “a” and 1 of the class “b” are in Sattrib1>0 and 2
from the class “b” and 4 from the class “c” are in Sattrib1=0. The informational gain in respect to
each attribute is computed below using formula 2.7:

Web Information Retrieval

Page 12 of 51

7705,09182,0*5,06498,0*5,05545,1

)(
12
6)(

12
6)(),(001 11

=−−=

−−= >= attribattrib SEntropySEntropySEntropyattribSGain

418296.0811278.0*333.02987.1*66.05545.1

)(
12
4)(

12
8)(),(002 22

=−−=

−−= => attribattrib SEntropySEntropySEntropyattribSGain

811278.00.0*25.0991076.0*75.05545.1

)(
12
3)(

12
9)(),(003 33

=−−=

−−= => attribattrib SEntropySEntropySEntropyattribSGain

284159.00.1*333.04056.1*666.05545.1

)(
12
4)(

12
8)(),(004 44

=−−=

−−= => attribattrib SEntropySEntropySEntropyattribSGain

617492.00.0*333.04056.1*666.05545.1

)(
12
4)(

12
8)(),(005 55

=−−=

−−= => attribattrib SEntropySEntropySEntropyattribSGain

263733.00.1*333.0436278.1*666.05545.1

)(
12
4)(

12
8)(),(006 66

=−−=

−−= => attribattrib SEntropySEntropySEntropyattribSGain

Thus if a threshold equal to 0.5 is applied after computing the informational gain we will take into
account only attrib1, attrib3, attrib5. Thus entropy based discretization can reduce data size using
class information and allows the selection of the best attributes.

2.1.2 Data mining

Data mining is an essential step in process of knowledge discovery data where AI methods are
applied in order to extract patterns (rules) from data. In the data mining step the user
communicates with the data mining system using a set of data mining primitives designed in order
to facilitate efficient and fruitful knowledge discovery. Those primitives include the database
portion or the data set specifications in which the user is interested and the kinds of knowledge to
be mined. A data mining query language is designed to incorporate these primitives, allowing
users to flexibly interact with the data mining systems. A data mining task can be specified in the
form of a data mining query, which is the input of the data mining system.

Data mining can be classified into descriptive data mining and predictive data mining. Concept
description is based on descriptive data mining and describes a given set of task relevant data in a
concise and summative manner, presenting interesting general properties of the data. Concept
description consists in characterization and comparison or discrimination. There are two general
approaches to concept characterization: the data cube on-line analytical processing approach and
the attribute oriented induction approach. Both are approaches based on attribute or dimension.

For a data mining system there are some primitives like task relevant data, the kind of knowledge
to be mined, background knowledge, interestingness measures, and presentation and visualization
of discovered patterns [JaiMic01,Sou00].

Web Information Retrieval

Page 13 of 51

Task relevant data – specifies a portion of the database that is investigated, because usually the
user is interested only in a subset of the dataset. The difficult task for this step is to specify the
relevant attributes or dimensions involved in the problem. Users have only a rough idea of what
the interesting attributes for exploration might be.

The kind of knowledge to be mined – specifies the data mining functions to be performed, such
as characterization, discrimination, association, classification, clustering, and evolution analysis. In
this step the user can specify and provide more pattern templates that all discovered patterns must
match. These templates can be used to guide the discovery process.
Background knowledge – some knowledge about the domain to be mined is specified for guiding
the knowledge process of discovery. A powerful form of background knowledge is known as
concept hierarchies. They allow the discovery of knowledge at multiple levels of abstraction. This
is represented like a set of nodes organized in a tree, where each node represents a concept.

Interestingness measure – is used to separate uninteresting pattern from knowledge. This is used
to guide the process of mining or to evaluate the discovered patterns. This can reduce substantially
the number of patterns, typically only a small fraction of these patterns will actually be interesting
to the given user. There are some objective measures of pattern interestingness. Some are based on
the structure of patterns and some are based of the statistic underlying them. Generally, each
measure is associated with a threshold that can be controlled by the user. One measure is
simplicity. This can be viewed as a function of the pattern structure, defined in terms of pattern
size in bits, or the number of attributes or operations appearing in the pattern. Another measure is
certainty where each discovered pattern has a measure of certainty associated with it that assesses
the validity or “trustworthiness” of the pattern. A measure of certainty for the rules “A=>B”,
where A and B are sets of items, is confidence:

taining_Atuples_con_#
Both_A_and_ntaining_b_tuples_co#B)(Aconfidence =⇒ (2.8)

Another measure is utility. It measures the potential usefulness or interestingness of the pattern. It
can be estimated by a utility function, such as support. The support associated to a pattern refers to
the percentage of task-relevant data tuples for which the pattern is true:

_of_tuplestotal_#
Both_A_and_ntaining_b_tuples_co#B)support(A =⇒ (2.9)

The last measure of interestingness presented here is the novelty. The novelty bringing patterns are
those that contribute with new information or increase performance to the given pattern set. For
example data exception may be considered novelty in that it differs from the data expected based
on the statistical model or user belief. Another strategy in detecting novelty is to remove redundant
patterns (a discovered rule can be implied by another rule that is already in the knowledge based or
in the derived rule set).

Presentation and visualization of discovered patterns – is the form in which the discovered
patterns are to be displayed. The visualization of discovered patterns in various forms can help
users with different backgrounds to identify patterns of interest and to interact or guide the system
in future discovery.

There are some algorithms of data analysis grouped in four categories. They are grouped according
to the idea of the algorithm used for mining: mining association rules, classification, prediction,
and clustering.

Web Information Retrieval

Page 14 of 51

2.1.3 Mining association rules

Mining association rules consists of first finding frequent item-set (set of items such as A or B,
satisfying a minimum support threshold, or percentage of task-relevant tuples), from which strong
association rules in the form of A =>B are generated. These rules also satisfy a minimum
confidence threshold. Association rules can be classified into several categories based on different
criteria. The association rules can be classified by the type of values handled in the rule into
Boolean or quantitative. The association rules can be classified by dimension into single
dimension or multidimensional. The association rules can be classified by the level of abstraction
involved in the rule, into single level or multilevel (where different attributed are at different levels
of abstraction). For mining association rules there are some classical algorithms like Apriori,
Frequent Pattern Growth, Multilevel Association Rules, and Constraint Based Rule Mining (for
details see [JaiMic01]).

The Apriori algorithm explores the level-wise mining an apriori property (all nonempty subsets of
a frequent item-set must also be frequent). The name of the algorithm is based on the fact that the
algorithm uses prior knowledge and is based on the iterative approach known as a level-wise
search. In this approach every k-itemsets are used to explore (k+1)-itemsets. At first we compute
the set of 1-itemsets, denoted L1 that contains the frequency of each item from the set. Using L1 we
create the 2-itemsets frequency set that contains all pairs of itemsets that occur together in the set.
L2 is used to find L3, and so on, until no more frequent k-itemsets can be found. For finding each
Lk set we need a full scan of the database. The Apriori algorithm has a basic property that says that
all nonempty subsets of frequent itemsets must also be frequent. As follows I will present an
example for the Apriori algorithm.
For example consider the next transactional database:

TID List of items
T100 I1,I2,I5
T200 I2,I4
T300 I2,I3
T400 I1,I2,I4
T500 I1,I3
T600 I2,I3
T700 I1,I3
T800 I1,I2,I3,I5
T900 I1,I2,I3

Table 2.2 Transactional database

In this table we have 9 transactions and 5 different items. The steps for the Apriori algorithm are:

1. For the first iteration each item is a member of the candidate set of 1-itemsets denoted C1.
The algorithm scans all transactions in order to count the number of occurrences for each
item.

2. Let 2 be the threshold value that represents the minimal transaction support count. The set
L1 of frequent 1-itemsets is created taking only the candidates that satisfy the threshold.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses L1⋈L1 to generate
candidates set denoted C2. L1⋈L1 is equivalent to L1 x L1 and requires the two joining

itemsets to share items and the C2 consists of

2

1L 2-itemsets.

Web Information Retrieval

Page 15 of 51

4. The transactions are scanned and the support count of each candidate itemset from C2 is
updated.

5. The set of frequent itemset, L2, is then determined from set C2 considering only those
candidates that satisfy the threshold.

6. To discover the set of frequent 3-itemsets, L3, the algorithm uses L2⋈L2 to generate the
new candidates set C3. The set L3 is then determined from C3 considering only those
candidates that satisfy the threshold.

7. The algorithm uses C4=L3⋈L3 to generate a candidate set of 4-itemsets. All new
candidates are pruned since its subset is not frequent. Thus L4 is an empty set, and the
algorithm terminates, having found all the frequent itemsets.

In the next figure we present the evolution of the Apriori algorithm for the given transactional
database.

Compare the count
for each items with

the threshold
Scan D for count
each candidate

 C2
Items Sup.count

{I1,I2} 4
{I1,I3} 4
{I1,I4} 1
{I1,I5} 2
{I2,I3} 4
{I2,I4} 2
{I2,I5} 2
{I3,I4} 0
{I3,I5} 1
{I4,I5} 0

 C2
Items

{I1,I2}
{I1,I3}
{I1,I4}
{I1,I5}
{I2,I3}
{I2,I4}
{I2,I5}
{I3,I4}
{I3,I5}
{I4,I5}

Generate C2

Scan D for
count each
candidate

Compare the
count for

each items
with the
threshold

 C3
Items Sup.count

{I1,I2,I3} 2
{I1,I2,I5} 2

 C3
Items

{I1,I2,I3}
{I1,I2,I5}

Generate C3

Scan D for
each candidate

Compare the
count for each
items with the

threshold

 C1
Items Sup.count
{I1} 6
{I2} 7
{I3} 6
{I4} 2
{I5} 2

 L1
Items Sup.count
{I1} 6
{I2} 7
{I3} 6
{I4} 2
{I5} 2

 L3
Items Sup.count

{I1,I2,I3} 2
{I1,I2,I5} 2

 L2
Items Sup.count

{I1,I2} 4
{I1,I3} 4
{I1,I5} 2
{I2,I3} 4
{I2,I4} 2
{I2,I5} 2

Figure 2.1 Generation of candidate itemsets and frequent itemsets.

Once the frequent itemsets from the transaction have been found, it is straightforward to generate
strong association rules from them (that satisfy both minimum support and minimum confidence
presented in 2.1.2) and take in consideration only the frequent itemsets that satisfy minimum
confidence threshold. This can be done using the formulas for confidence and support presented
earlier (2.8 and 2.9). For each frequent itemsets are generated all nonempty subsets, and for every
nonempty subset are generated rules that have the minimum confidence threshold. Since the rules
are generated from frequent itemsets, each one automatically satisfies the minimum support. As an

Web Information Retrieval

Page 16 of 51

example suppose the data contain the frequent itemset L={I1, I2, I5}. The nonempty subsets of L
are {I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, and {I5}. The resulting association rules are:

%1002
2,215

%297
2,512

%336
2,521

%1002
2,152

%1002
2,251

%504
2,521

==∧⇒

==∧⇒

==∧⇒

==⇒∧

==⇒∧

==⇒∧

confidenceIII

confidenceIII

confidenceIII

confidenceIII

confidenceIII

confidenceIII

If the minimum confidence threshold is, say, 70%, then only the second, third, and last rules above
are output, since these are the only generated rules that are also strong.

A great disadvantage of this algorithm is that it needs to scan all transactions from the database to
generate each candidate, and for large databases this is time consuming. For this algorithm there
are different variations for reducing the time, like partitioning the data (mining on each partition
and then combining the results), and sampling the data (mining on a subset of data). The frequent
pattern growth (FP-growth) is a method of mining frequent item-sets without candidate
generation. It constructs a highly compact data structure to compute the original transaction
database.

In the Frequent Pattern growth (FP-growth) algorithm we adopt a divide and conquer strategy:
compress the database representing frequent items into a frequent pattern tree (FP-tree) retaining
the itemset association information. Then divide such a compressed database into a set of
conditional databases (a special kind of projected database), each associated with one frequent
item.

To illustrate this, consider the transactional database presented in Table 2.2. Scan the database like
in the Apriori algorithm which counts the set of frequent items (1-itemsets) and their support
counts (frequencies). Let 2 be the minimum support count (the threshold). The obtained set is
sorted descending by support count, resulting a set denoted L = [I2:7, I1:6, I3:6, I4:2, I5:2]. Using
this set the FT-tree is constructed as follows. We create the root of the tree, labeled with “null”.
We scan the database again. The items in each transaction are processed in the order that they
appear in L and a branch is created for each transaction. We first take the transaction “T100: I1, I2,
I5”. We put the items in L order {I2, I1, I5} and leads to the construction of the first branch of the
tree with three nodes {(I2:1), (I1:1), (I5:1)}. The node I2 is linked as a child of the “root”, the node
I1 is linked to I2 and the node I5 is linked to I1. We take the next transaction T200 that contains
the items I2 and I4 in L order, which would result in a branch where I2 is linked to the root and I4
is linked to I2. However, this branch would share a common prefix {I2}, with the existing path for
T100. Therefore, we increment the count of the I2 node by 1, and create a new node {I4:1}, which
is linked as a child of I2. When considering the branch to be added for a transaction, the count of
each node along a common prefix is incremented by 1, and nodes for the items following the
prefix are created and linked accordingly. In this manner all transactions from the database are
analyzed. The FR-tree is summarized in Figure 2.2.

Web Information Retrieval

Page 17 of 51

Item Support Node link

I2 7
I1 6
I3 6
I4 2
I5 2 I3:2

I1:2 I2:7

I4:1 I3:2 I1:4

I4:1 I3:2 I5:1

I5:1

Null{}

Figure 2.2 A FP-tree

In the next step the patterns are extracted from the FP-Tree as follows. Let’s first consider I5
which is the last item in L, rather than the first. I5 occurs in two branches of the FP-tree. The paths
formed by these branches are {(I2 I1 I5:1), (I2 I1 I3 I5:1)}. Considering I5 as a suffix, we have
two prefix paths which form its conditional pattern base. Its conditional FP-tree contains only a
single path [I2:2, I1:2]; I3 is not included because its support count of 1 is less than the threshold.
The single path generates all the combinations of frequent patterns: [I2 I5:2, I1 I5:2, I2 I1 I5:2].
This is done for all items. The process is summarized in Table 2.3.

item conditional pattern base conditional FP-tree frequent patterns generated
I5 {(I2 I1:1), (I2 I1 I3:1)} {I2:2, I1:2} {(I2 I5:2), (I1 I5:2), (I2 I1 I5:2)}
I4 {(I2 I1:1), (I2:1)} {I2:2} {(I2 I4:2)}
I3 {(I2 I1:2), (I2:2), (I1:2)} {(I2:4, I1:2), (I1:2)} {(I2 I3:4), (I1 I3:4), (I2 I1 I3:2)}
I1 {(I2:4)} {I2:4} {(I2 I1:4)}

Table 2.3 Mining the FP-tree by creating conditional (sub)pattern bases

The Fp-growth method transforms the problem of finding long frequent patterns to looking for
shorter ones recursively and then concatenating the suffix. This method is less time consuming
comparing with the Apriori algorithm for huge databases.

After finding the frequent itemsets from the transactional database, it is straightforward to generate
strong association rules from them (that satisfy both the minimum support and the minimum
confidence) (like in Apriori example presented above).

Multilevel association rules can mine using several strategies. These are based on how the
minimum support threshold is defined at each level of abstraction. Constraint based rules mining
allows users to focus the search by providing meta-rules and additional mining constraints.

2.1.4 Classification and prediction

Classification and prediction are two forms of supervised data analysis that can be used to extract
models describing important data classes or to predict future data trends. While classification

Web Information Retrieval

Page 18 of 51

predicts categorical labels, the prediction models continuous valued functions. Data classification
is a two-step process. In the first step a model is built, based on predetermined set of data classes
or concepts, by analyzing database samples described by the attributes. Each sample is assumed to
belong to a predefined class. Since the class label of each training sample is provided this step is
also known as supervised learning. The learned model is represented as classification rules,
decision trees, et al. In the second step the model is used for classification. First the predictive
accuracy of the model is estimated. The accuracy of a model on a given test set is the percentage
of test set samples that are correctly classified by the model. If the accuracy of the model is
considered acceptable, the model can be used to classify future data samples for which the class
label is not known. Prediction can be viewed as the construction and usage of a model to assess the
class of an unlabeled sample, or to assess the value or value ranges of an attribute that a given
sample is likely to have. A commonly accepted view in data mining is to refer to the use of
prediction to predicted class labels as classification, and the use of prediction to predict continuous
values as prediction. There are five criteria for the evaluation of classification and prediction
methods like predictive accuracy (refers to the ability of the model to correctly predict the class
label of new or previously unseen data), computational speed (refers to the computational costs
involved in generating and using the model), robustness (the ability of the model to make correct
prediction given noisy data or data with missing values), scalability (refers to the ability to
construct the model efficiently given large amounts of data) and interpretability (refers to the level
of understanding and insight that is provided by the model). There are some common algorithms
used for data classification and prediction [Ian00].

ID3 and C4.5 are the two greedy algorithms for the induction of the decision trees. Each
algorithm uses theoretically an information measure to select the attribute tested for each non-leaf
node in the tree. Pruning algorithms attempt to improve accuracy by removing tree branches
reflecting noise in the data. Decision trees can be easily converted to classification IF-THEN rules.

Naive Bayesian classification and Bayesian belief networks - are based on Bayes theorem of
posterior probability. Like in naive Bayesian classification (which assume class conditional
independence), Bayesian belief networks allow class conditional independencies to be defined
between subset of variables.

Backpropagation [Mit97] is a neural network algorithm for classification using supervised
learning that employs a method of gradient descent. It searches for a set of weights that can model
the data so as to minimize the mean squares distance between the network’s class prediction and
the actual class label of data samples. Rules may be extracted from trained neural networks in
order to help improve the interpretability of the learned network.

Nearest neighbor classifier and case based reasoning classifier are methods based on instances
of classification in that they store all of the training samples in the pattern space. In genetic
algorithms, populations of rules “evolve” via operations of crossover and mutation until all rules
within a population satisfy classes that are not distinguishable based on the available attributes.
Fuzzy set approaches replace “brittle” threshold cutoffs for continuous valued attributes with
degree of membership functions.

Linear, nonlinear, and generalized linear models of regression can be used only for prediction.
In linear regression, data are modeled using a straight line. Linear regression models a random
variable, Y (called a response variable), as a linear function on another random variable, X (called
a predictor variable). Many nonlinear problems can be converted to linear problems by performing
transformations on the predictor variables.

Web Information Retrieval

Page 19 of 51

Stratified k fold cross-validation is a recommended method for estimating classifier accuracy.
Bagging and boosting methods can be used to increase overall classification accuracy by learning
and combining a series of individual classifiers. Sensitivity, specificity, and precision are useful
alternatives to the accuracy measure, particularly when the main class of interest is in the minority.

2.1.5 Clustering

Clustering is the unsupervised process of grouping the data into classes (or clusters) so that objects
within a class (cluster) have high similarity, but are very dissimilar in comparison with the objects
from other classes (clusters). Dissimilarity is assessed based on the attribute values describing the
objects. Cluster analysis can be used as a standalone data mining tool to gain insight into the data
distribution, or serve as a preprocessing step for other data mining algorithms in the detection of
clusters. Clustering is a dynamic field of research in data mining. Many clustering algorithms have
been developed. These can be categorized into partitioning methods, hierarchical methods, density
based methods, grid-based methods and model-based methods [JaiMic01].

A partitioning method first creates an initial set of k partitions, where k is the arbitrary number of
partitions to be constructed; then it uses an iterative relocation technique that attempts to improve
the partitioning by moving objects from one group to another. On the other hand the hierarchical
method creates a hierarchical decomposition of given set of data. The method can be classified as
being either agglomerative (button-up) or divisive (top-down), based on how the hierarchical
decomposition is formed. To compensate for the rigidity of merge or split, the quality of
hierarchical agglomeration can be improved by analyzing object linkages at each hierarchical
partition or by integrating other clustering techniques, such as iterative relocation. A density based
method clusters objects based on the notion of density. It either grows clusters according to the
density of the neighborhood objects or according to some density function. A grid based method
first quantifies the object space into a finite number of cells that form a grid structure, and then
performs clustering on the grid structure. A model based method creates a model for each of the
clusters and finds the best fit of the data to that model. Typically model based methods involve
statistical approaches or neural network approaches (such as competitive learning and self
organizing feature maps). For more details related to there clustering methods see
[JaiMic01,Ian00]

2.2 Text mining

As we presented by now data mining is about looking for patterns in a database that is considered
to be structured data. In reality a substantial portion of the available information is stored in text,
which consists of large collections of documents from various sources, such as news articles,
research papers, books, digital libraries, e-mail messages and web pages. Data stored in text format
is considered semi-structured data in that they are neither completely unstructured nor completely
structured, because a document may contain a few structured fields such as title, authors,
publication, data, et al. Unfortunately these fields usually are not filled in, the majority of people
don’t loose time to complete these fields. Some researchers suggest that the information needs to
be organized during the creation time, using some planning rules. This is pointless because most
people will not respect them. This is considered a characteristic of unordered egalitarianism of
Internet [Der00]. Any attempt to apply the same organizing rules will determine the users to leave.
The result for the time being is that most information needs to be organized after it was generated,
and searching and organizing tools need to work together.

Web Information Retrieval

Page 20 of 51

From enormous quantity of information, only a small fraction will be relevant to the user. Thus,
users need tools to be able to compare different documents, rank the importance and relevance of
the documents, or find patterns and trends across multiple documents. Without knowing what
could be in the documents, it is difficult to formulate effective queries for analyzing and extracting
useful information from data. Thus, text mining has become an increasingly popular and essential
theme in data mining.

2.2.1 Text data analyzing and information retrieval

Information retrieval (IR) is a field developed in parallel with database systems. Information
retrieval is concerned with the organization and retrieval of information from a large number of
text-based documents. A typical information retrieval problem is to locate relevant documents
based on user input, such as keywords or example documents. Usually information retrieval
systems include on-line library catalog systems and on-line document management systems. Since
information retrieval and database systems each handle different kinds of data, there are some
database system problems that are usually not present in information retrieval systems such as
concurrency control, recovery, transaction and management. There are also some common
information retrieval problems that are usually not encountered in traditional database systems,
such as unstructured documents, approximate search based on keywords and the notion of
relevance.

2.2.1.1 Basic measures for text retrieval

May [Relevant] be the set of documents relevant to a query and [Retrieved] be the set of
documents retrieved. The set of documents that are both relevant and retrieved is denoted by
[] []RetrievedRelevant ∩ . There are tow basic measures for assessing the quality of text retrieval:

 Precision: is the percentage of retrieved documents that are in fact relevant to a query.
It is defined as follows:

{ } { }

{ }Retrieved
RetrievedRelevant I

=precision (2.10)

 Recall: is the percentage of documents that are relevant to the query and were in fact
retrieved.

{ } { }

{ }Relevant
RetrievedRelevant I

=recall (2.11)

2.2.1.2 Keyword-Based and Similarity-Based retrieval

Most information retrieval systems support keyword-based and similarity-based retrieval. In
keyword-based information retrieval, a document is represented by a string, which can be
identified by a set of keywords. A user provides a keyword or an expression formed out of a set of
keywords, such as “car and repair shop”. A good information retrieval system needs to consider
synonyms when answering such query. This is a simple model that can encounter two difficulties:
(1) the synonyms problem, keywords may not appear in the document, even though the document

Web Information Retrieval

Page 21 of 51

is closely related to the keywords; (2) the polysemy problem: the same keyword may mean
different things in different contexts.

The information retrieval system based on similarity finds similar documents based on a set of
common keywords. The output for this system is based on the degree of relevance measured based
on using keywords closeness and the relative frequency of the keywords. In some cases it is
difficult to give a precise measure of the relevance between keyword sets. The information
retrieval system often associates a stop list with the set of documents. A stop list is a set of words
that are deemed “irrelevant” and can vary when the document set varies. Another problem that
appears is stemming. A group of different words may share the same word stem. A text retrieval
system needs to identify groups of words where the words in a group are small syntactic variants
of one another, and collect only the common word stem per group.

In information retrieval systems the document is modeled based on the frequency of the words of
the document. Starting with a set of d documents and t terms, we can model each document as a
vector υ in t dimensional space ℝt. The coordinates of υ are numbers that measure the association
of the terms with respect to the given document. It is generally defined as 0 if the document does
not contain the term, and nonzero otherwise. υ[i] can indicate the frequency of the term in the
document. Similar documents are expected to have similar relative term frequency, and we can
measure the similarity among a set of documents or between a document and a query. There are
many metrics for measuring the document similarity. One is cosine similarity defined as:

21

21
21),(

vv
vvvvsim ⋅

= (2.12)

where v1·v2 is the standard dot products defined as ∑
=

t

i
iivv

1
21 and ||v1|| is defined as 111 vvv ⋅= .

To illustrate this, suppose S is a collection of 12 samples like that presented in Table 2.1. Each row
represents a document vector, and each entry (attribute) represents the frequency of the word in the
document. The similarities of three vectors, 2 from same class (v1, v2) and one from another class
(v4), using formulas presented early are:

8102,7101731

7177,8570011

7749,8110751

222222
4

222222
2

222222
1

=+++++=

=+++++=

=+++++=

v

v

v

66110110773511

18517100071511

41

21

=⋅+⋅+⋅+⋅+⋅+⋅=⋅

=⋅+⋅+⋅+⋅+⋅+⋅=⋅

vv

vv

The similarities between documents according to 2.12 are:

9630.0

8102.7*7749.8
66),(

2353.0
7177.8*7749.8

18),(

41

21

==

==

vvsim

vvsim

The similarity ranges from 1 (perfectly similar), to 0 (dissimilar). Great values of similarity
represent a small angle between vectors and therefore the vectors (the documents) are similar.
Resulting thus the documents v1 and v2 are considered to be similar and v1 and v4 are considerate
dissimilar.

Web Information Retrieval

Page 22 of 51

Each document from the set can be represented as a vector. Using similarity we can construct a
similarity-based index, and when a query occurs, it is represented like a vector. This vector is used
to search for their nearest neighbors in a document collection. The problem in this representation is
that usually the dimension of the set of documents and the number of terms is quite large and leads
to the problem of inefficient computation. On the other hand high dimensionality leads to a very
sparse vector and increases the difficulty to detecting relationships between terms. A method
called latent semantic indexing was developed to reduce the size of the frequency table for
analysis.

2.2.1.3 Latent semantic indexing

It is used for reducing the size of frequency matrix. This method uses singular value
decomposition (SVD), a well-known technique in matrix theory. Given a t × d term frequency
matrix representing t terms and d documents, the SVD method removes columns to reduce the
matrix to size k × d, where k is usually taken to be around a few hundred for large document
collections. To minimize the amount of information loss, only the least significant parts of the
frequency matrix are omitted. The latent semantic indexing method consists of the following basic
steps:

1. Create a term frequency matrix, frecvency_matrix. Compute singular value
decomposition of frequency_matrix by splitting the matrix into three smaller matrices,
U, S, V, where U and V are orthogonal matrices (UTU = I and VTV = I), and S is a
diagonal matrix of singular values. Matrix U have size t x k, the V matrix have size k x
d, and matrix S is of size k ×k.

2. For each document d, replace its original document vector by a new one that excludes
the terms eliminated during SVD

3. Store the set of all vectors, and create indexes for them using advanced
multidimensional indexing techniques.

Most matrixes that represent a set of documents are sparse matrixes, having most of elements
equal to 0. A better representation in the memory of those matrixes is to keep only the values there
are greater than 0 and the position of those values for each line of the matrix. This allows us to
store the frequency_matrix without lose (for details see [cs.utk]).

There are other techniques for text retrieval like invert index or signature files. The invert index
technique is an index structure that maintains two hash indexed or B+ tree indexed tables:
document_table and term_table. The document_table contains a set of document records, each
containing two fields: doc_id and posting_list (list of terms) that occur in the document, sorted
according to some relevance measure. The term_table contains a set of term records, each
containing two fields: term_id and posting_list (specifies a list of document identifiers in which
the term appears).

The signature file is a file that stores a signature record for each document in the database. Each
signature has a fixed size of b bits representing terms. Each bit of a document signature is
initialized to 0. A bit is set to 1 if the term it represents appears in the document. A signature S1
matches another signature S2 if each bit that is set in signature S2 is also set in S1.

Web Information Retrieval

Page 23 of 51

2.2.2 Keyword-based association

Association analysis first preprocesses the text data by parsing, stemming, removing stop words
and so on, and then evokes association mining algorithms. In a document database, each document
can be viewed as a transaction, while a set of keywords in the document can be considered as a set
of items in the transaction. That is, the database format is:
{document_id, a_set_of_keywords}.

The problem of keyword association mining in document databases is thereby mapped to item
association mining in transaction database, where many interesting methods have been developed
(like Apriori). Notice that a set of frequencies occurring consecutively or closely located keywords
may form a term or a phrase. This process can help detect component associations, that is,
domain-dependent terms or phrases, such as {Stanford, University}, or noncompound
associations, such as {dollars, shares, exchange}. Mining based on these associations is referred to
as “term level association mining” (as opposed to mining on individual words). Term recognition
and term level association mining have two advantages in text analysis: (1) terms and phrases are
automatically tagged so that there is no need for human effort in tagging documents, and (2) the
number of meaningless results is greatly reduced, as is the execution time of mining algorithms.
Mining term level can be used to find associations among a set of detected terms and keywords. It
is interesting to find associations between pairs of keywords or terms from a given set of keywords
or phrases or find the maximal set of terms occurring together.

2.2.3 Document classification analysis

There are an increasing number of online documents and an automated document classification is
an important task. It is essential to be able to automatically organize such documents into classes
so as to facilitate document retrieval and analysis. One possible general procedure for this
classification is to take a set of pre-classified documents and consider them as the training set. The
training set is then analyzed in order to derive a classification scheme. Such a classification
scheme often needs to be refined with a testing process. After that this scheme can be used for
classification of other on-line documents. The classification analysis decides which attribute-value
pairs set has the greatest discriminating power in determining the classes. An effective method for
document classification is to explore association-based classification, which classifies documents
based on a set of associations and frequently occurring text patterns. Such an association-based
classification method proceeds as follows: (1) keywords and terms can be extracted by information
retrieval and simple association analysis techniques; (2) concept hierarchies of keywords and
terms can be obtained using available term classes, or relying on expert knowledge or some
keyword classification systems. Documents in the training set can also be classified into class
hierarchies. A term-association mining method can then be applied to discover sets of associated
terms that can be used to maximally distinguish one class of documents from another. This
produces a set of association rules for each document class. Such classification rules can be
ordered - based on their occurrence frequency and discriminative power - and used to classify new
documents.

Usually the key phrases do not come from a fixed vocabulary, but are likely to be phrases that
occur in the text of the document itself. Maybe only a smaller training set is available – after all,
assigning phrases to documents involves expensive intellectual labor. This technique is
inapplicable because it can only form models for the key phrases that are used in the training data.
But instead the key phrases could be chosen from the text itself. Given a document, rudimentary

Web Information Retrieval

Page 24 of 51

lexical techniques based on punctuation and common words could be used to extract a set of
candidate key phrases. Then, features could be computed for each phrase, like how often it appears
in that document, how close to the beginning of the document it first occurs, how often it has been
used as a key phrase in other training documents, whether it occurs in the title, abstract or section
headings, whether it occurs in the title of the paper cited in the reference list, and so on.

2.3 Web mining

Web is a huge service which offers a lot of information [LawGil99]. The web also contains a rich
and dynamic collection of hyperlink information and web page access and usage information,
providing rich sources for data mining. The mining of web pages is so different from mining of
text documents. The web is too huge and is still growing rapidly, the information stored on the
web is continuously updated and the web pages contain far more authoring style and content
variations than any set of books or other traditional text based documents. Another problem for
web mining is that the web serves a diversity of user communities, and the users may have very
different backgrounds, interests, and usage purposes. When users want to find something on the
web only a small fraction of the information on the web is relevant or useful to the current user.
These challenges have promoted research into efficient discovery and use of resources on the
Internet. There are many index-based Web engines that search the web, index pages, build and
store huge keyword-based indexes. These indexes help locate sets of Web pages containing certain
keywords. Thus an experienced user can be able to quickly locate documents by providing a set of
keywords and phrases. As we previously pointed out, this type of search engines based on
keywords suffers from several deficiencies. One is because the topic can contain a huge number of
document entries returned by the search engine. Many of these pages can have low relevance with
what the user wants, or can contain a poor quality. Another deficiency is that many relevant pages
for the user’s search don’t contain the keywords defining term. This is referring to as the polysemy
problem, presented earlier in the text mining section. The web mining is the most challenging task
that searches for web access patterns, web structures and the regularity and dynamics of web
contents.

2.3.1 Automatic classification on Web documents

In the automatic classification of Web documents, each document is assigned to a class label from
a set of predefined topic categories, based on a set of examples of pre-classified documents. For
example Yahoo taxonomy from the net and its associated documents can be used as training and
test sets in order to construct a Web document classification scheme and this scheme can be used
after that for classifying new Web documents by assigning categories from the same taxonomy.
This method might be useful for supervised learning classification.

The method for classifying documents using words from the document can be used for classifying
Web documents. This scheme for classifying based on terms obtains good results for web
documents classifying. Because hyperlink contain a solution of good quality from the semantic
point of view in comparison with the topic of the page, it is better to use this semantic information
in order to achieve even better accuracy than pure keywords based classification. However, since
the hyperlink surrounding a document may be quite noisy, naive use of terms in a documents
hyperlink neighborhood can even degrade accuracy of classifying.

Web Information Retrieval

Page 25 of 51

2.3.2 Web mining categories

Data mining consist of three steps: preprocessing data, pattern discovery and pattern analysis.
Similarly, web mining has three parts which can contain the above three steps:

 Web content mining – text mining for the web page content (the real data from the Web
pages) and metadata given by tags in the html files.

 Web structure mining - data which describes the organization of the content and of the
site

 Web usage mining – data that describes the pattern of link usage on Web pages.
Alternatively, the structure mining of the Web can be treated like pieces of web’s content mining,
for this, mining the web can instead be simply classified in content mining and usage mining.

Web mining is the application of data mining techniques to the content, structure, and usage of
web resources. This can help to discover global, as well as local structure within and between web
pages. Like other data mining applications, web mining can profit from given structure of data, but
it can also be applied to semi-structured or unstructured data like free-form text. This means that
web mining is an invaluable help in the transformation from human understandable content to
machine understandable one.

2.3.2.1 Web content mining

Web content mining is a form of text mining. The primary resource of the web is the individual
page. Web content mining can take advantage of the semi or structured nature of web pages text.
For this there are more techniques for information retrieval from text documents, like methods for
indexing a text that were developed to work with unstructured (semi-structured) documents. Some
traditional techniques for information retrieval became inadequate for an extensive amount of data.
Without knowing what is in the document it is difficult to formulate querying for analyzing and
extracting interesting information. The user needs tools for comparing different documents. Some
important tools are rank and relevance of the document or finding patterns and direction for more
documents. Web content mining describes the discovery of useful information from the Web
contents/data/documents. Some of the web content data are hidden data, which cannot be indexed.
These data are either generated dynamically as a result of queries and reside in the database or are
private. The web already contains many kinds and types of data such as textual, image, audio,
video, metadata as well as hyperlinks. Thus we could consider multimedia data mining as an
instance of web content mining. The web content data consists of unstructured data such as free
texts, semi-structured data such as HTML documents, and more structured data such as data in the
tables or databases generated by HTML. According to [RayHen00], we could differentiate the
research done in web content mining from two different points of view: information retrieval and
database views.

The goal of web content mining from the information retrieval view is mainly to assist or to
improve the information finding or filtering through the users inferred or solicited profiles. Most of
the applications use sets of words (in literature referred as bags of words) to represent unstructured
documents. The bag of words or vector representation takes single words found in the training set
as features. This representation ignores the sequences in which the words occur and is based on the
statistics about single words isolation. The feature could be Boolean (a word either occurs or not in
a document), or frequency based (frequency of the word in a document). The features could be
reduced further by applying some other feature selection techniques, such as information gain,

Web Information Retrieval

Page 26 of 51

mutual information, cross entropy, odds ratio [MlaGro99], χ2 statistic or Term strength
[YanPed97].

Other preprocessing includes Latent Semantic Indexing as we briefly presented in paragraph
Latent semantic indexing [DeeDum90] [Hof99]. The preprocessing variations are useful for
reducing feature set size. In general they are highly effective over different domains for text
categorization. Other feature representations are also possible such as: using information about
word position in the document, using n-grams representation (word sequences of length up to n),
using phrases, using document concept categories, using terms, using hypernyms, etc. Currently
the term text mining has been used to describe different applications such as text categorization,
text clustering, empirical computational linguistic tasks, exploratory data analysis, finding patterns
in text databases, finding sequential patterns in texts, and association discovery. Information
retrieval for semi-structured documents is due to the additional structural (HTML) information in
the hypertext documents. Actually all of the works surveyed use the hyperlinks structure between
the documents for document representation. The methods that are used are common data mining
methods.

The database techniques on the web are related to the problems of managing and querying the
information on the web. This was presented in the data mining section.

2.3.2.2 Web structure mining

Web structure mining usually operates on the hyperlink structure of web pages. The primary web
resource that is being mined is the set of pages, ranging from a single web site to the web as a
whole. Web structure mining explores the additional information that is contained in the structure
of hypertext. An important application area is the identification of the relative relevance of
different pages that appear equally pertinent when analyzed with respect to their content in
isolation. The web structure mining can be used to find authoritative web pages and identify hubs
(presented summary further in section 2.3.2.2.3) or see details in [Cha03]. According to Cooley,
Mobasher and Srivastava [CooMob99] there are five types of web pages:

 head pages that are entry points to a site
 navigation pages that contain many links and pour content in information
 content pages that contain a small number of links but are rich in information
 look-up pages that have many incoming links, few outgoing ones and no significant

content, such as pages used to provide a definition or acronym expansion
 personal pages that have diverse characteristics and no significant traffic

Web structure mining tries to discover the model underlying the link structure of the web. The
model is based on the topology of the hyperlinks with or without the description of the links. The
model can be used to categorize web pages and is useful to generate information such as the
similarity and the relationship between different web sites. Web structure mining could be used to
discover authoritative sites regarding the subject and overview sites regarding the subject, sites
that point to many authoritative pages (hubs). This line of research is inspired by the study of
social networks and citations analysis. With social network analysis we could discover specified
types of pages (such hubs, authorities) based on the incoming and out coming links. Web structure
mining uses the hyperlinks structure of the web to apply social network analysis to model the
underlying links structure of the web itself. Some research uses the network analysis to model the
network of artificial intelligence research. They use the name of the entry data found in the close
proximity of any public web pages such as the hyperlinks from home pages, co-authorship and
citation of pages, exchange of information between individuals found in net-news archives, and

Web Information Retrieval

Page 27 of 51

organization charts. Some algorithms have been proposed to model the web topology such as
Hyperlink Induced Topic Search, and PageRank. These models are mainly applied as a method for
computing the quality rank or relevance of each Web page.

2.3.2.2.1 Mining the Web Links

This is done in order to identify the authoritative Web pages mining relevant and high quality
pages related to a given topic. The Web consists not only of pages, but also of hyperlinks pointing
from one page to another. These hyperlinks contain an enormous amount of latent human
annotation that can help us to automatically infer the notation of authoritative. When an author of a
Web page creates a hyperlink pointing to other Web pages, this can be considered the author’s
endorsement of the other page. The collective endorsement of a given page by different authors on
the Web may indicate the importance of the page and may naturally lead to the discovery of
authoritative Web pages. Therefore, the tremendous amount of Web linkage information provides
rich information about the relevance, the quality, and the structure of the Web’s contents, and thus
is a rich source for Web mining. The problem is that not every hyperlink represents the
endorsement we seek. Some links are creating for other purposes, such as for navigation or for
paid advertisement. Yet overall, if the majority of hyperlinks are for endorsement, the collective
opinion will still dominate. Other problem is commercial or competitive interests, one authority
will seldom have its Web page point to its rival authorities in the same field.

2.3.2.2.2 Page Rank

Page rank is used to discover the most “important” pages on the Web. In PageRank, each page on
the Web has a measure of prestige that is independent of any information need or query. Roughly
speaking, the prestige of a page is proportional to the sum of the prestige scores of pages linking to
it. In this method all measures are defined recursively: the prestige of a node depends on the
prestige of other nodes, and the measure of being a good hub depends on how good neighboring
nodes are as authorities (and vice versa). This procedure involves computing eigenvectors for the
adjacency matrix, or a matrix derived thereof, of the web or a suitably relevant subgraph of the
web.
Let’s assume for the moment that the web graph is strongly connected – that is, from any node u
there is a directed path to a node v (ergodic graph). If one wanders on the Web for infinite time,
following a random link out of each page with probability 1-p and jumps to a random Web page
with probability p, then different pages will be visited at different rates; popular pages with many
in-links (link to that page) will tend to be visited more often. This measure of popularity is called
PageRank, defined recursively as:

∑
→

−+=
vu uOutDegree

uPageRankp
N
pvPageRank

)(
)()1()(, (2.13)

where ‘→’ means “link to” and N is the total number of nodes in the Web graph and OutDegree(u)
is the numbers of out-links from page u (links to other pages). The Google search engine simulates
such a random walk on the web graph in order to estimate PageRank, which is used as a score in
pre-computed independent of the query. Hence Google can be potentially as fast as any relevance
ranking search engine. Note that the PageRank is independent of any query or textual content.
When a query is submitted, a text index is used to first make a selection of possible response
pages. Then an undisclosed ranking scheme that combines PageRank with textual match is used to
produce a final ordering of response URLs (Uniform Resource Locator). The strongest criticism of

Web Information Retrieval

Page 28 of 51

PageRank is that it defines prestige via a single random walk uninfluenced by a specific query or
by a current user’s profile. A related criticism is of the artificial decoupling between relevance and
quality, and the ad hoc manner in which the two are brought together at query time, for the sake of
efficiency.

To illustrate this, suppose the Web has only four web pages denoted Page1, Page2, Page3 and
Page4. The links among these pages are shown in Figure 2.3.

Page1

Page2 Page3

Page4

Figure 2.3 An abridge Web graph

Let [p1,p2,p3,p4] be the importance vector for those pages, in that order. We can now create a
stochastic matrix (sum of each column is 1) of the web where each page i corresponds to a row i
and column i of the matrix. If the page i has n successors (links), then the ijth entry is 1/n if the
page i is one of these n successors of page j and 0 otherwise. The resulting matrix is:

=

4

3

2

1

4

3

2

1

2/14/103/1
2/14/12/10

04/103/1
04/12/13/1

p
p
p
p

p
p
p
p

The estimate after three iterations is obtained as follow. First we initialize each page with same
unit of importance (let it be 1). At each round, each page shares whatever importance it has among
its successors, and receives new importance from its predecessors. Eventually, the importance of
each page reaches a limit, which happens to be its component in the principal eigenvector of this
matrix. That importance is also the probability that a web surfer, starting at a random page, and
following random links from each page will be at the page in question after a long series of links.
The first three iterations give the following estimates:

2275.1212.108.11
1857.1142.125.11
6055.0672.058.01
9415.0962.008.11

4

3

2

1

=
=
=
=

p
p
p
p

Note that we can never get absolute values of [p1,p2,p3,p4], just their rations, since the initial
assumption that they were each 1 was arbitrary. Since the matrix is stochastic, the above relaxation
process converges to the principal eigenvector.

Web Information Retrieval

Page 29 of 51

2.3.2.2.3 Hubs

A hub is one page or a set of Web pages that provides selections of links to authorities. Hub pages
may not be prominent themselves, or there may be few links pointing to them; however, they
provide links to a collection of prominent sites on a common topic. Such pages could be lists of
recommended links on individual home pages, such as recommended reference sites from a course
home page, or professionally assembled resource list on commercial sites. In general, a good hub
is a page that points to many good authorities; a good authority is a page pointed to by many good
hubs. To find the authoritative pages there is an algorithm about how to use hubs, called HITS
(Hyperlink-Induced Topic Search) which is presented below.

First it collects a starting set of, say, 200 pages from an index-based search engine. These pages
form the root set. Since many of these pages are presumably relevant to the searched topic, some
of them should contain links to most of the prominent authorities. Therefore, the root set can be
expanded into a base set which includes all of the pages that the root-set pages link to, and all of
the pages that link to a page in the root set, up to a designates size cutoff, such as 1000 to 5000
pages (to be included in the base set). After that a weight-propagation phase is initiated. This is an
iterative process that determines numerical estimators of a hub and authority weights. Here the
links between two pages with the same Web domain (e.g. sharing the same first level in their
URLs) often serves as a navigation function and thus does not confer authority, such links are
excluded from the weight-propagation analysis.

We first associate a nonnegative authority weight ap and a nonnegative hub weight hp with each
page p in the base set, and initialize all a and h values with a uniform constant. The weight is
normalized and an invariant is maintained that the squares of all weights sum to 1. The authority
and hub weights are updated based on the following equations:

∑
→

=
p)q such that (q

qp ha ∑
←

=
p)q such that (q

qp ah (2.14)

where “→” means “link to”.
The first equation implies that if a page is pointed to by many good hubs, its authority weight
should increase. The second equation implies that if a page is pointing to many good authorities,
its hub weight should increase. We write these equations in matrix form as follows. Let us number
the pages {1, 2… n} and define their adjacency matrix A to be an n×n matrix where A(i,j) is 1 if
page i links to page j, or 0 otherwise. Similarly, we define the authority weight vector a=(a1,
a2,…,an) and the hub weight vector h=(h1, h2, …, hn). Thus we have:

h = A · a (2.15)

a = AT · h
where AT is the transposition of matrix A. Unfolding these two equations k times, we have

hAAhAAhAAhAAaAh kTTTT)(...)()(2 =====⋅= (2.16)

aAAaAAaAAAaAhAa kTTTTT)(...)()(2 =====⋅=

According to linear algebra, these two sequences of iterations, when normalized, converge to the
main eigenvectors of AAT and ATA, respectively. This also proves that the authority and hub
weights are intrinsic features of linked pages collected, and are not influenced by the initial weight
settings.

The Hyperlink Induced Topic Search (HITS) algorithm generates a list of pages with large hub
weights and also of pages with large authority weights for a given search topic. Many experiments

Web Information Retrieval

Page 30 of 51

have shown that Hyperlink Induced Topic Search provides surprisingly good search results for a
wide range of queries. Some problems occur when hubs contain multiple topics, because this
algorithm ignores textual contexts. Or also cause “topic hijacking” when many pages from a single
Web site point to the same single popular site, giving the site too large a share of the authority
weight. Such problems can be overcome by replacing the sum from the first equations with
weighted sums, scaling down the weights of multiple links from within the same site. This is done
using anchor text (the text surrounding hyperlink definition in web pages).

To illustrate this we use the example presented above in Figure 2.3. The relevant matrixes are:

=

=

=

=

2222
2312
2122
2223

2211
2423
1221
1312

1101
1110
0101
0111

1100
1111
0101
1011

AAAAAA TTT

Assume that the vector [] []43214321 ,,, and,,, aaaaahhhhh ==
rr

 are each initially with [1,1,1,1] the

first three iterations using the formulas for ha
rr and are:

5166481
5096581
4515671
5897391

4

3

2

1

=
=
=
=

a
a
a
a

3844761
733389111
3905361
4855971

4

3

2

1

=
=
=
=

h
h
h
h

For instance, the vector a, properly scaled, will converge to a vector where a3≈a4, and each of those
are greater than a2 and lees than a1.

2.3.2.3 Web usage mining

Web usage mining [SriCoo00] mines the data derived from users’ interaction with the web. The
web usage data includes the data from web server access logs, proxi server logs, browser logs, user
profiles, registration data, user sessions or transactions, cookies, user queries, bookmark data,
mouse clicks and scrolls, and any other data as the results of interactions. Web usage mining
focused on techniques that could predict user behavior while the user interacts with the web,
mining the log files (IP address), cookies or path analysis. In web usage mining resources that are
mined are records of the requests made by visitors to a web site, most often collected in web server
logs. The content and structure of web pages, and in particular those of one web site, reflect the
intentions of those who have authored and designed those pages, and their underlying information
architecture. The idea is to find a relationship that can be induced by usage where no particular
structure was designed. Mining the visitors to that site, however, one may find that most of those
users who were interested in product A were also interested in product B. Here “interested” may
be measured by request for product description pages. The idea is to identify association rules
between products (web pages in this case). When a new user shows interest in product “A”, he will
receive a recommendation for product “B”.

The web usage mining process could be classified into two commonly used approaches. The first
approach maps the usage data of the web server into relational tables before an adapted data
mining technique is performed. The second approach uses the log data directly by using special
pre-processing techniques. As this is true for typical data mining applications, here the issues of
data quality and preprocessing are also very important. The typical problem is distinguishing

Web Information Retrieval

Page 31 of 51

among unique users and server sessions. In general typical data mining methods could be used to
mine the log data after the data has been preprocessed to the desired form.

The applications of web usage mining could be classified into two main categories: learning a user
profile or user modeling in adaptive interfaces and learning user navigation patterns. Web usage
mining would be interested in techniques that could learn necessary information about the needs
and preferences. These are used to model the user profile and combine it with web content mining.
On the other hand, information providers would be interested in techniques that could improve the
effectiveness of the information on their web sites by adapting the web site design or by biasing
the user’s behavior towards satisfying the goals of the site. In other words, they are interested in
learning user navigation patterns. Then the learned knowledge could be used for applications such
as personalization (at a web site level), system improvement, site modification, business
intelligence and usage characterization.

2.3.2.3.1 Mining log files

This type of mining processes log records for extracting user’s accessing pattern to web pages. By
analyzing and exploring regularity web log records one can identify potential customers for e-
commerce, increase quality and deliver information services to end users and increase performance
of server system from the web. Web server usually records every login (weblog), for each access
to web pages. This contains URL, original IP from user log and request. This weblog provides rich
information about the dynamic of web. This is important to develop new sophisticated techniques
for mining the weblog.
To develop techniques for mining the web, we can consider the following. Firstly, it is very
encouraging and exciting to imagine various applicable possibilities of weblog file analysis. It is
important to know if the success of each application depends on how much knowledge is
discovered from the data log. Data logs need to be preprocessed and transformed in order to
recover and analyze significant and useful information. Secondly, besides available URL’s, time
and user’s IP, the information about web pages content is important. A multidimensional
visualization can be built using weblog and multidimensional analysis. On-Line Analytical
Processing (OLAP) can be performed to find the most accessed N pages, the latest most frequently
accessed and anything else to help us discover relevant data. Thirdly, data mining can be used in
weblog records to find association patterns or sequential and oriented access to web. Analyzing
detailed weblogs offers us the opportunity to take the necessary measures to obtain additional
information from users. This additional information can include sequences about web pages visited
by the user from the buffer. Data weblog provides us information about what user groups access
what page groups. Weblog can be grouped with web contents mining and link structure mining to
help us mine the web, classify web documents, and build a multi-level structure of basic
information.

An interesting problem from the producer’s point of view is trying to replace nowadays Internet
advertising with a new one, addressed only to users interested in these commercials and with low
costs. This onset is already applied in advertising where the specific catalogue is created centered
by a specific field that is sent only to interested people. For example if a user buys a software
package from a company, he will receive new proposals from that company afterwards. Thus the
problem for the entrepreneurs is to identify interested customer for their products. The products
can be in these cases a very general item (a new job, software, merchandise). There are some ways
to approach this problem. One way is to search on the Internet to find user’s presentation pages
and analyze those pages from the semantic point of view to identify if the user that could be
interested in that product. In case that the user could be interested he can be informed by sending

Web Information Retrieval

Page 32 of 51

the commercial for that product. However this approach is limited because in this moment there
are not so many people that have complete personal pages on the net, and usually these pages are
not updated. Another approach is trying to identify users based on what they do on the web
(inspecting queries, cookies, and server log files). Thus analyzing queries can give us information
about categories of interest, at the moment, for the user. Analyzing server log files can give us the
information about the IP of the users, pages visited on the server, and interests in those pages (by
analyzing the time spent on the pages). This information can be mined to identify users that are
now interested in the product.

Web Information Retrieval

Page 33 of 51

3 Resource discovery systems

Even though interface and web content designers [AndBuz04] included user behavior and some
skills in some search engines users may still have difficulties performing web searches:

 The user is unable to formulate the right query and restrict the result set. Using phrases
with many words often produces no result. Users then prefer to specify only one or two
words, which generates large sets of results.

 The user interface can be difficult to use or inaccessible for the unskilled or disabled
user.

 The ranking function is applied statically; the user is not able to select the criteria most
appropriated to him. Some options are present in advances searches, but are rarely
applied by users.

 The information on the Internet is rarely structured and organized for fast retrieval by
search engines. Web “designers” don’t apply meta-tags such as description of keywords
correctly and don’t use meaningful filenames, titles, link descriptions and alternative
texts. In addition, an inappropriate use of metadata produces the phenomena called
“search engine spam”, aimed at deviating search engine results. For this reason most
search engine ignore or only partially use metadata.

Besides the results of search engines, another important aspect is the usefulness of search tools.
This aspect is often neglected. It is important to make this very accessible and usable by anyone,
regardless of their physical condition or environments. Accessibility guarantees use to all,
understandable and navigable content. Usability renders a more efficient and satisfactory Internet
navigation. Many factories compose the user interface, like presented in [AndBuz04]:

 Arrangement of components. This point is very relevant because value-enhancing
features are more “visible” when positioned in an area rapidly encountered by eye
movement and do not require page scrolling. For example, the refinement functions of
Google [Goo], which allows searching into results, it is not very obvious thanks to its
position and font (size and color): it is found at the end of the results page, so
inexperienced users may not benefit from them.

 Number of elements. Simplicity helps unskilled users navigate the interface easily.
Web directories are organized according to categories of goods and services offered.
Depending on the type of search it may be more appropriate to use a search engine or
directory. On the other hand, their interface is quite full and can create confusion in an
unskilled user who wishes to formulate a search query.

 Expressive power. A graphical representation can communicate certain kinds of
information much more rapidly and effectively than other methods.

 Functions. A user typically performs a simple search and specifies one or more words,
obtaining a large set of results. Further criteria selection can be specified to restrict
search in the results. Preference and commands, although very powerful, are rarely
used, even by skilled persons.

 Clustering of results allows users to explore results grouped by categories, in this way
users can navigate a single branch of results more efficiently.

In the system presented earlier the search engine indexes web pages into a very large database, and
returns as response all matching links found in the database for a user query. This is a viable
solution and it is used by most search engines, but it is not such a good solution because it needs,
from the user’s point of view, more time and more searching effort. This is due to the fact that the
results to the query are hundreds or thousands of pages and it becomes very difficult for the user to

Web Information Retrieval

Page 34 of 51

search and find relevant information in the enormous amounts of information available. Another
disadvantage for this type of search is that the results are ordered using page ranking that is applied
statically, without any influence from the current user, and these criteria usually may not reflect
the needs of the user. This situation occurs when a new, interesting and relevant document for the
current user is not placed in among the most interesting documents because it has a poor page
rating. This situation makes it too difficult for the user to find it, or too time consuming for the
user to find it. Another disadvantage is due to the fact that these types of search don’t provide any
information about the influence the keyword has in the query results and how does this keyword
influence the joining of documents.

All search engines have some capability to customize search, something like “Advanced search”,
“Preferences”. For example the possibility to select the language for the searched pages, to specify
exactly the words that need to be in the documents and the words that should not be in the
documents, documents format and the date when it was created. The disadvantage is that it has a
rigid structure and has a fixed number of possibilities.

To solve the problems presented earlier this field of research has grown rapidly in areas such as
algorithms, strategies and architecture. Hundreds of ideas were tried, some were implemented and
some are only prototypes. Some of these ideas are:

1. Organizing documents in predetermined categories. Usually these are named web
directories and have a static structure that is very difficult to update. (e.g. yahoo [Yah], aol
[Aol], and excite [Exc])

2. An upgrade of the existing search engines was tried by improving the way the results are
presented. This was done by different methods of organizing the results:

 hierarchical representation obtained by performing one or two levels on-fly clustering
of the results returned by a classical search engine (e.g. webcrawler [WebCr] for one-
level representation and vivisimo [VivS] for two-level representation)

 graphical representation by a sequence of interactive maps of the results obtained from
the classical search engine (e.g. kartoo [Kart], and surfwax [SuW])

3. Programs (agents) that allow monitoring a specified page from web and report when
changes occur (e.g. DICA, Syskill & Weber and others).

4. Programs (agents) that silently observe the user’s browser behavior during the day and
then use these training examples to learn user’s profiles, and during the night searches for
new pages that are likely to fit the learnt profile.

5. Search engines that help users by suggesting synonyms or idioms of the words presented in
the query and try to develop a more refined query to obtain better results. Literature calls
this “Query refinement”.

6. Creating programs (agents) that work between the results of the search engine and the user
by filtering the results presented by the former using the user profile learnt from the latter.

3.1 Web directories

We can easily see that hyperlinks don’t create a topic-oriented structure on the web. To solve this
problem and group the documents in some way there were created topic-structured directories
which are called topic directories. Some of these are Open Directory Project [dmoz] and Yahoo
[Yah]. This structure has been constructed through human effort, and resulted in a giant taxonomy
of topic directories. Each directory contains a collection of hyperlinks relevant to the topic that are
often the most popular or authoritative sites related to this specific topic. One may model such
tree-structured hierarchies which are considering the relations between topics and their generality

Web Information Retrieval

Page 35 of 51

such as specific topics or general topic. Following this idea a page is assigned to the best fitting
topic for the content of that page. Although topic taxonomies are a special case of semi-structured
data, they are important and frequent enough to be mentioned separately. For example, the dmoz
[dmoz] directory that categorizes Web sites is created manually by about 52 thousand editors,
according to Kummamuru [KumLot04], and unfortunately covers less than 5% of the Web.

These directories are created by users and have a fixed structure and the new documents are fitted
in this structure. This is a good idea because the structure of these directories is very eloquent and
intuitive for human users but it is very difficult to implement. Another disadvantage is that these
types contain a limited number of pages in directories because the process of assigning new pages
is difficult. This type of server accepts requests from users to put new pages in its structure. These
pages can be put only into the existing hierarchical structure. This is based on the users registering
a page address and a short description of this page and the server catalogues and puts this page
somewhere in its hierarchical structure. Users can search in those directories or can open specific
categories from this structure and they can see what is in this structure.

The search engines use agents to find new web sites or web sites that were modified. Web
directories will list a site only if this site was registered by the webmaster. Web directories are
generally manually created by analyzing the received addresses of sites and than evaluates and
catalogues these sites in their structure. Because the descriptions have a limited dimension, in
almost all cases these contain only a short description of the content.

In comparison with agents of the search engines that analyze the title, META tags, head and
content of the site, web directories evaluate only the title, short description and categories
proposed for a site and don’t take into account the content of the site and its META tags.

Web directories are divided in categories and subcategories, ordered alphabetically for an easy
scan. However the update of new sites is too difficult and needs much time for evaluating the
structure and categorize it.

Many sites are based on web directories. Some special sites, very used, are Yahoo (but this also
has a search engine) and “search.aol” [Aol] that has many categories and subcategories and many
pages indexed in those category. Another interesting site is surfmind [surfM], even if it has only a
small number of registered documents (2610 documents) it has a different type of representation of
the search results. Thus it can have a list with new sites and a list with most popular sites, or a list
with all categories. For a specified category you can see all the articles and a short description for
each document. You can also open the article directly in its own web page with differed
dimensions of representation without being necessary to open a new web page.

3.2 Representing of search results

On important problem for almost all search engines is the presentation of the results. Usually when
search engines return results they return more pages that contain links to the results. Some of these
links are interesting for the user and some are not. It is very difficult for the user to rapidly
distinguish between the useful and the irrelevant pages. Another disadvantage is that the search
engine returns a ranked list of web pages as response to the user’s search request. These web pages
with different topics and different aspects are mixed together in the returned list. The user has to
shift through a long list to locate pages of interest. This method is highly inefficient since the
number of retrieved search results can be in the thousands for typical queries. Most users just view

Web Information Retrieval

Page 36 of 51

the top results and therefore might miss relevant information. Moreover, the criteria used for
ranking may not reflect the needs of the user. It is not specified in the returned list why this
document is relevant to the user’s query and what is the relationship between the returned
documents. Because web directory creation, as presented earlier, is very difficult and very time
consuming from a human point of view, it is better to create and populate categories dynamically.
After receiving results from the search engines, another program (agent) tries to analyze all the
results and tries to classify them in dynamically generated categories. Then it presents this result to
the user. Organizing web search results into a hierarchy of topics and subtopics facilitates
browsing the collection and locating more easily the interesting results. Almost all sites from this
category do this automatically or “on-the-fly”. These systems contain two main components: a text
classifier that categorizes web pages and a user interface that presents the web pages within the
category structure and allows the user to manipulate the structure view. These systems differ in the
algorithms used for text classification and the types of user interfaces.

As far as the results are represented there are two main methods: hierarchical representation and
graphical representation.

3.2.1 Hierarchical representation of search result

There are systems that create a hierarchical structure for classifying a large, heterogeneous
collection of web content. Organizing search results in this format allows users to have a general
image of the document categories and focuses on items in categories of interests rather than having
to browse through all the results sequentially. This is one of the most used methods for
representing the results of the search engine. In this category there are some sites already
implemented (e.g. Vivisimo [VivS], WebCrawler [WebCr]) and some are still in research because
of the problem of text categorization is very difficult and very time consuming.

S. Dumais et al in [DumChe00] present an algorithm for automatic representation of the search
engine results in two-level categories. This method wants to supplement human effort in creating
structured knowledge for web directories. The basic idea in their work is to use classification
techniques to automatically organize search results into existing hierarchical structures. The model
for classification was learned offline using a training set of human-labeled documents and web
categories. For classification the authors work with just short summary descriptions of the web
pages. This short description is generated automatically for each page and is used for evaluating
the classification algorithm. The summaries consist of title, keyword and the description tag if it
exists or the first 40 words from the body otherwise. With this technique the authors create a
binary vector for each page that indicates whether or not a term appears in the page. For the
training and tasting part of text classification the authors use Support Vector Machine [SchSmo02]
algorithm because it is very fast and effective for text classification problems. The authors used
pre-classified web pages, taken from “LookSmart”[look] web directory, for training. Because
SVM algorithm solves the problem for two class classification, for multi-class classification the
authors implement one versus the rest algorithm. For each test example, the authors compute the
probability of being in each of the 13 first level categories and then in each of the 150 second level
categories. To solve this problem the authors use a hierarchical decomposition of a classification
problem that allows an efficient learning and representation data. For the training part the authors
used a set of pre-classified web pages that can be classified in one ore more classes. Once the
categories are learned, the results from any user query can be classified. At query time, each page
summary returned by the search engine is compared to the 13 first level category models. A page
is placed into one or more categories, if it exceeds a pre-determined threshold for category

Web Information Retrieval

Page 37 of 51

membership. Pages are classified into second-level categories only for the first level categories
that they belong to. This is done using the same procedure.
In another article Hao Chen et. al. [CheDum00] present the application implemented using the
algorithm presented earlier and studies the influence of representing the results of the search
engine hierarchically versus typically ranked list interface. This study is done using predefined
categories from LookSmart web directory. In the training part the authors make an offline text
classification with representative labeled samples of Web pages. At query time, new search results
are quickly classified on the fly into the learned category structure.

The categories can be ordered either in a static alphabetical order, or dynamically according to
some importance score. The advantage of dynamic ranking is to present the most likely category
first. The disadvantage is that it prevents the user from establishing a mental model of the relative
position of each category in the browser window. In the dynamical experiment the importance was
determined by the number of pages in the category. The category with the most items in it was
shown first, and so on. Into the category the pages are sorted by the probability that this page is in
this category. The categories used in their experiment were designed to cover the full range of web
content. Nonetheless, not all user queries will match the category structure to the same extent,
some query may fall entirely. In this case the category interface is like in the list interface and has
a “NotCategorized” group. The study showed that the category interface is superior both
objectively and subjectively. Users liked the category interface much better than the list interface
and they were 50% faster at finding information that was organized into categories. Organizing
search results allows users to focus on items in categories of interest rather than having to browse
through all the results sequentially.

Kummamuru et. al. [KumLot04] present an idea to build a hierarchical topic for a collection of
search results retrieved as response to a query. At each level of the hierarchy the algorithm, named
“DisCover”, progressively identified topics in a way that maximized the coverage while
maintaining distinctiveness of the topics. For evaluating the quality of the topic the authors used
some objective measures like “coverage” and “reach time”. The authors used this like a method for
comparing this algorithm with another two monothetic algorithms for clustering. Automatic
taxonomy generation (ATG) algorithm based on how the documents are assigned to different
cluster can be categorized into two classes:

 Monothetic algorithms in which a document is assigned to a cluster based on a single
feature

 Polythetic algorithms in which a document is assigned to the cluster based on multiple
features

The authors used monothetic algorithms because each cluster is described by a single feature or
concept and all the documents presented in a cluster contain this feature. This leads to easier
understanding of the cluster by users. The algorithm progressively identifies clusters and it tries to
maximize the distinctiveness of the monothetic features describing the cluster while at the same
time it maximizes the number of documents that can be described or covered by the monothetic
features.

In this article the authors proposed some properties of taxonomies generated from a corpus of
documents:

 Document coverage – ideally all the documents in the collection should be covered by
the taxonomy. A document is said to be covered by taxonomy if it lies in at last one of
the clusters in the top level of the taxonomy. This implies that the top level clusters
should be chosen in such a way that they cover most of the documents in the corpus. It

Web Information Retrieval

Page 38 of 51

will be considered a good taxonomy generation algorithm the algorithm that covers the
most number of documents.

 Compactness – because the main purpose of the taxonomy is to summarize and provide
a better browser experience, the taxonomy needs to be as compact as possible. The
taxonomy can be too wide or too deep because the basic purpose may not be served.

 Sibling cluster distinctiveness – each of the nodes, especially those at the top level,
represent a concept presented in the search results. At any level of the hierarchy this
should be as different as possible from each other to maximize generality while
browsing the documents in the hierarchy.

 Node Label Productiveness – a good taxonomy should help the user to find documents
of interest with minimum effort. The labels of the node guide the user in locating a
document in the taxonomy. Thus the node labels should be chosen such that they are
good indicators of the documents they contain.

 Reach time – is the average time needed to locate interesting search results. It is an
important criterion for taxonomies that need to be quickly able to locate search results
of interest within the hierarchy.

 General to specific - the node labels in the hierarchy are actually the concepts associated
with the query. In the hierarchy, the most general concept should be associated with the
root, and the node label of any node should be more specific (less general) than that of
its parent and at the same time it should be less specific than those of its children. The
generality or specificity of the node labels needs to be considered within the context of
the query.

In the presented article the authors take into consideration only the first three proprieties. It is
assumed that each document in the collection can be represented by a set of words. Each node in
the hierarchy is associated with a concept and all documents under a node contain that concept. Of
course each of these documents will contain several other concepts as well. Monothetic clustering
algorithm involves selecting a subset of concepts from all the concepts, optimal in some sense, and
associating a child node with each of them. Thus the authors create a compact hierarchy that
initially has a limited number of child nodes, but provides to the user the ability to progressively
increase the number of child nodes of any node of interest.

For comparing and evaluating this hierarchy the authors performed a users study. This can
demonstrate whether the hierarchies generated are actually helpful to real users for browsing. The
authors performed the study using 17 volunteers, who were both technical and non-technical
employees of the IBM Indian Research Laboratory, and 50 queries (25 ambiguous queries and 25
popular queries). Each volunteer needed to evaluate 3 queries except for one volunteer who
evaluated 2 queries. The voluntaries needed to give 5 responses to each query, with a total of 25
responses for ambiguous queries and 25 responses for popular queries. Users were provided with a
very short introduction to ATG and the motivation behind creating taxonomy from a document
collection. The users were not specified which hierarchy corresponded to which algorithm. Each
user needed to fill up an online questionnaire for each query. The questionnaire contained 6
questions, for each the user needed to evaluate each hierarchy on a scale of 1 to 10. These 6
questions were broadly divided into 3 groups. The first groups of 3 questions pertain to the top
level nodes of the hierarchy. The second group of 2 questions pertains to the second level nodes,
and in the final question the user needed to give an overall rating to the hierarchy. For
comparisons, the authors used the proposed algorithm “DisCover” and two others algorithms for
hierarchical representations CAARD (Clustering Algorithm for Asymmetrically Related Data
[KumKri01]) and DSP (Dominating Set Problem [LawCro01]). For evaluation the authors used
only 4 properties: document coverage, compactness, reach time and computational complexity.
The results obtained show that “DisCover” is superior to DSP in almost every aspect and in

Web Information Retrieval

Page 39 of 51

comparison with CAARD is better in terms of summarizations for both popular and ambiguous
queries.

3.2.2 Interactive map for representing the search result

A new approach in the representation of the search results is graphical user interface that allows
easier navigation and exploring of these results. Kunz et al present in [ChrBot02] an interactive
matrix for showing the hyperlinks of retrieved sites. In this representation the user can see the
results using one category resulting in a List Browser and two categories at the same time with the
so called Matrix Browser. To represent search results the authors use a familiar and well known
interactive tree widget. The tree widget provides the ability to display multiple items in a tabular
format. The tree widget is used to display hierarchically organized data. It is a vertical container
for widgets of tree type items. The tree widget provides geometry management of arbitrary
widgets arranged in a directed, acyclic graph.

In general visualization and exploring search results structure still constitutes a major problem for
user interface design, in terms of minimizing search results viewing and supporting user’s
understanding and providing efficient interaction for exploring the search results. In the presented
paper the authors combine the two ways of searching and exploring in the information space in a
new graphical user interface for the search engine. Thus the results of the search engine are
displayed in one interactive category tree or in an adjacency like system with two interactive trees
as axis of a matrix. The first overview generated for the graphical user interface shows how many
hits are found in the hierarchically ordered categories. In the List Browser representation the
results set is listed in a window, like a tree widget which allows the user to expand and collapse
the categories and subcategories by clicking on the interactive symbols in front of the bar and the
category name. The size of the bar represents the consolidated amount of search hits in the
category and all subcategories. So the user gets an overview in which categories the search results
are located, and thus can explore the results in a flexible manner. In the Matrix Browser the users
have the possibility to navigate within these trees and explore the structured search results. They
have different kinds of interactive symbols inside the matrix visualization. Circles represent how
many sites are found in two categories and squares represent the site references itself. In the
hierarchical categories system the users can increase or reduce the displayed amount of
information and refine their query without input of any text data and they have the opportunity to
view more details of the metadata structure together with the local sites.

Another type of representation of the search results is a graphical representation where all
information is placed intro tree structure with connections between documents. For example the
site www.kartoo.com is very interesting because of the way it represents the search results, and
because all other things have total graphic representation. As many search engines it uses other
search engines from the web. It only graphically represents all the results. It allows the user to
choose what search engine he wishes to be used for the search. The disadvantage is that they
provide only 30 results at the same time (in the graphical representation). The interesting part is
that the authors represent the names of the documents and their connections together with the
keywords that connect them. It has a separate section for monitoring specified sites (this part is
explained in the next section). This site is interesting as a representation mode of the search results
but information was not available regarding the techniques used for implementation.

In [WizWal04] Wiza et. al. preset an innovating system for building the visualization of the search
results in a 3D representation. The authors use for representation the X-VRML system (X - Virtual
Realities Modeling Language). The authors use an interface selection which receives the search

Web Information Retrieval

Page 40 of 51

results from the most popular search engine and selects the best representation for those results.
This idea is interesting as it can model the results in the most appropriate manner. This idea has
not been found in the works presented above. The system, called Periscope [Per], can choose to
represent the data into a 2D or 3D space; because some 2D maps representation can provide
reasonable good results. The 2D representation is presented with a flat panel, limited in size, where
information can be presented in patch forms. Sometimes it uses different textures and it is used
when the number of object presented is low. For creating the 3D representation the authors take in
consideration 3 elements:

 user interaction - navigation in the space and interaction with its contents;
 user cognition - the spatial representation data is closer manner to the humans perceive

the surrounding world and permit the user to change the viewpoint to improve
perception and understanding of observed data;

 information capacity - the system can provide information in different shapes, colors,
textures, positions, sizes, orientations and even behavior;

In comparison with 2D representation the 3D representation is not limited in size and space but
only in user perception.

3.3 Monitor specified pages

There are situations when users find the right place where the interesting information is placed but
the information is not available for the moment and they need to revisit the site periodically to find
new information. According to this in [Ack97] and [AckSta97] is presented an agent that uses
machine learning for detecting “interesting” changes in Web pages previously marked by the user
to be relevant. Because this agent is based on the changes on known pages rather than finding new
pages, it increases the likelihood that the found information will be interesting. The authors called
this agent DICA (Do I Care Agent). This agent has some major functions:

 Periodically it visits a user defined list of target pages
 Identifies any changes since the last time it was visited
 Analyzes pages and decides if the changes are interesting
 Notifies the user if the changes are interesting
 Accepts relevance feedback on the interestingness of the change
 Facilitates information sharing and collaboration between individuals and groups.

Because the user provides feedback on whether change reasons are interesting or not and there is a
limited list of web pages the precision is greatly improved. For this the author use two features for
improving the precision: percentage of retrieved items that are “interesting” and the percentage of
potentially interesting items that are actually retrieved. The analysis of changes in the monitored
pages is based on the fact that changes are usually incremental and new things are usually added in
ways that are consistent with what has been done in the past. In order to detect whether a change is
interesting or not the authors use Bayesian classification process and extract a set of compatible
attributes and compute the probability that the object belongs to each of the known set of
categories. The agent notifies the user when the computed probability exceeds a configurable
threshold. For classification the authors create a classification profile that is a list of feature values
and the corresponding probability that documents having those value belong to one or more
classes.

All interesting changes are sent to the user by e-mail and all changes are also listed in the agent’s
associated web pages which users can browse at their leisure. Such as in these pages attribute
values that define an interesting change are listed. These pages are also used for relevance

Web Information Retrieval

Page 41 of 51

feedback. In these pages the changes found by the agent in the monitored pages are sorted
according to how interesting they are likely to be, with more interesting changes on top. All
changes are initially marked “Unrated” and the user can change this to “I Care” or “I don’t Care”
and after that the agent learns again.

Because different pages may be interesting for different reasons, users may maintain multiple
DICA agents specialized on particular topics or kinds of Web pages. For example, the criteria for
an interesting journal announcement may be different from a news item. An agent can receive
changes from another agent and can decide if those changes are interesting or no from its point of
view. For more details on Agent’s Paradigm and detailed information on Agents see [Bar02].

Other two agents that learn user profiles are presented in [AckBil97]. First “Syskill & Webert” is
an agent that is designed to help users with long term information seeking goals, such as finding
previously unvisited web sites on a particular technical topic. The authors use a simple Bayesian
classifier to create a user profile from the user’s preferences. The profile is used afterwards to
compute the probability that a web page is interesting to the user or not. For learning the user
profile the authors use feedback on the interestingness and usefulness of the web pages. The
authors developed an interface where they present the results and the user can click on “Hot” or
“Cold” buttons to specify if he is or isn’t interested in this document. When creating a query for
the search engine the agent uses two types of words. The first query contains the words that occur
in the most number of pages that have been rated “hot” and the second contains words whose
presence helps discriminate pages that are rather hot then cold using mutual information. Because
the authors use a Lycos search engine that doesn’t accept a very long query they use the seven
most informative words that are found in a higher proportion of hot pages and the seven most
commonly words occurring as cold. The agent retrieves each returned page and analyzes the
HTML files to produce its recommendations. The agent displays its recommendations by
annotating links that indicate whether the user is likely to be interested in the page and a number
indicating the probability that a page is interesting.

The second agent presented by Ackerman [Ack97,AckBil97] is named “GrantLearner” that is an
agent that notifies an individual of new research grant opportunities that meet the learned profile of
the individual’s research interests. This agent learns to distinguish between interesting and
uninteresting funding opportunities based a user’s rating of these descriptions. This agent is
connected to a grant database maintained at UCI (University of California, Irvine) and provides a
user interface to browse it. The system displays a list with all grant subjects and a description of
the grant. Using “hot” and “cold” buttons the user can indicate whether a grant is related to his
interests. After that when the user provides information about 10 interesting grants the agent
creates the profile of the user interests and then processes all database using this profile providing
a new list sorted by relevance for the user. For this the agent uses the same Bayesian classification
method as for learning the user probabilistic profile.

3.4 User’s browser behavior

In the last years a common idea used for increasing the quality of the search results is creating a
user’s profile based on user’s interests. Then, this profile is used to improve search results or to
develop the query to obtain better results. In this sense Goecks and Shavilk in [GoeSha99] present
an agent that learns a user browser behavior and tries to establish a user profile using this
information. Almost all of this type of research was focused on learning a user profile based on
observing the hyperlinks clicked or the amount of scrolling performed. The authors present here an

Web Information Retrieval

Page 42 of 51

agent that combines more techniques. Thus when the user navigates on a new page, the agent
records (a) the text of the HTML file; (b) the number of hyperlinks the user clicked; (c) the amount
of user scrolling activity; and (d) the amount of user mouse activity. Of these, (a) creates the input
and (b)-(d) constitute the outputs of its training examples. When the agent observes that the user
performs a large number of actions on the page, it can label that page as a positive instance of the
user’s interests. The agent sums the actions of the user on each page visited over a finite period of
time. It represents the information recorded (HTML text) like a vector of word frequencies and
uses a neural network (back-propagation algorithm) to learn the user’s profile. The authors use the
HTML markup tags to distinguish the context of the word and for different places of the word it
gives different weights for that word. The experiment shows that the error for predicting mouse
activity was much larger than the error of the other output units. These results could indicate that
the user’s mouse activity on a page does not correlate with the user’s interest in a page.

This idea can be used to define an agent that silently observe the user’s browsing behavior and
then uses these training examples to learn different functions and gather pages that are likely to be
of interest to the user.

3.5 User refined search

Single keywords are usually ambiguous, or to general for the search engine. Moreover, they can
occur in vast quantities of documents, thus making the search return hundreds of results, most of
them being irrelevant. Giving additional keywords can refine the search and provide considerable
improvement in the retrieved results. Good refinement words must have meaning that helps
disambiguate or make more specific the original search word. Providing the refinement words
would help a search engine to prune out documents where the word is used with any of its other
meanings. There are three ways to expand the query: manual query expansion, semi-manual query
expansion, and automatic query expansion. In manual query expansion, the user knows the
intended meaning of the keywords he used. In semi-manual query expansion the system provides
some synonyms for the keywords and the user selects relevant synonyms. In the automatic query
expansion agents are used to find and use best extra keywords using the user’s profile to obtain
better results.

Intelligent software agents are being developed to deal with these issues. One of these agents
called “WebMate” is presented in [CheSye98] and can be found at [WebM]. It is a personal agent
for browsing and searching the web. It does roughly two things: (1) learning user interests
incrementally, with continuous update and automatically providing documents that match the user
interests (e.g. a personalized newspaper), and (2) helping the user to refine search so as to increase
retrieval of relevant documents. The agent is composed of a stand-alone proxy that monitors user’s
actions to provide information for learning and refinement of the search, and an interface used for
interaction with the user. In the filtering task the agent judges whether an article is relevant or
irrelevant to the user, based on the user’s profile, in a probabilistic environment. In contrast with
other systems that learn a user’s profile and after that use it statically to determine relevant
documents, WebMate learns the user profile incrementally and continuously. The system extracts
and combines relevant keywords from the relevant pages provided by the user and uses them for
keyword refinement. In WebMate agent, the context of the searched keywords in the “relevant”
pages is used to refine the search because they think that the context of the search keywords is
more informative than the content of the pages. They do this by considering what pages were
marked by the user as relevant.

Web Information Retrieval

Page 43 of 51

3.6 User profile

There are at least two methods of specifying the user profile. In the first method the profile is
specified explicitly as the users provides information about him (her) self. Usually users don’t
update and don’t modify over time their profile, and the profile is almost always out of date. In the
second method the profile is specified implicitly as the profile is created based on the users’
actions observation.

Albanese et al in [AlbPic04] presented an algorithm for customizing the content and the structure
of web sites in order to provide users with the information they are interested in. As far as
personalizing the content of web site is concerned, the novelty of the structure is that they use a
two phase classification approach rather than a single phase approach. The authors take into
account both users provided data and browsing patterns and they classify both users and contents.

The algorithm has two phases. In the first phase a pattern analysis and classification is performed
by means of an unsupervised clustering algorithm, using the registration information provided by
the users. In the second phases a reclassification is iteratively repeated until a suitable convergence
is reached. Also the authors use reclassification to overcome the inaccuracy of the registration
information and they use observations based on users’ navigation behavior. The authors use a
clustering procedure for partitioning the feature space built upon the user provided data into a
certain number of clusters that group together users appearing to be similar. The reclassification
phase is based on the interaction (query, navigation, searching among directories) of each user
with the web site.

Barbu and Marin in [BarMar03] present a new algorithm for learning the user’s profile. Because
search engines return many pages for a given query there are various methods to prune irrelevant
documents. Some methods proposed in recent years use the user’s profile for filtering the
information from search engines. This user’s profile can be used to filter the documents returned
from search engines or can be used to reformulate the query based on the interests of the user. The
authors try to keep track of the user’s interests by building an individual user’s profile and modify
this profile over time. The authors want to identify what part of the user’s profile is relevant with
the current search. Thus the authors proposed a scheme that learns the user’s profile continuously
and incrementally using the initial user’s profile, actions of the user and a semantic interpretation
of the query. The authors take into account the user’s current interests and their decay in time if the
interests change. From this result a model called time-word vector hyperspace that computes the
dynamics of the user’s profile. Thus is created a vector that has word component computed using
TD-IDF (Terms Documents – Inverse Document Frequency) technique and the temporal
dimension set to zero. Queries are represented as features vectors but in addition to the TF-IDF
weights and the temporal dimension set to an initial value that decays in time. This allows that
some specific user interests could decrease with time or if the user is interested in that category it
can be maintained / increased. For the semantic analysis of the query the authors used WordNet.
WordNet [WNet] is an online lexical system developed by the Cognitive Science Laboratory at
Princeton University and it is inspired by current psycholinguistic theories of human lexical
memory. Each is organized into synonym sets, each representing one underlying lexical concept.
The WordNet provides various meanings for a given word.

The user can either input an explicit query or he can narrow his search process when he clicks on
the links of the displayed web pages. Contextual relevant information improves the search
performance by filtering the retrieved documents by a relevance score computed as the cosine
similarity between the User’s Recent Profile feature vector and the feature vectors of the
documents retrieved by a classical search engine. The preliminary result shows that the quality of

Web Information Retrieval

Page 44 of 51

the search result is improved. Thus the authors show that for a classical search engine, from the
results of a query only 6 documents from the first 10 are relevant with what the user wants. When
they use a standard profile filtering this number is increased to 8 out of 10 and when they use a
dynamic profile filtering all presented articles (10 out of 10) are relevant with what the user wants.

Another interesting algorithm to improve the user’s profile used for filtering the result of the
classical search engines is presented by Tresp and Kai in [KaiSch02] where the authors combine
collaborative filtering and content based filtering into probabilistic framework called by them
Collaborative Ensemble Learning. Content Based Filter (CBF) represents a system that analyzes
the content of a set of items together with a rating provided by the individual user from which it
deduces unseen items that may be interesting for the current user. In contrast Collaborative Filter
(CF) creates a database of ratings of items taken from a large set of users. The prediction for the
current user is based on the rating provided by all other users. The difficulty problem for CBF
systems is the gap between low level content features and high level user interface (human
perception can’t be formalized just based on the content analysis). Human understanding can be
formalized when discussing text analysis but formalizing human perception of an image or a sound
would only lead to irrelevant details regarding the ensemble. The CF systems memorize the user’s
preferences without incorporating the actual context of items. This system can not recommend a
new page for which there isn’t a previous rating given by a user. The algorithm uses a probabilistic
model of Support Vector Machine to represent each user’s profiles (like CBF) and in the
prediction phase, it is combined with user’s profile groups (from CF).

For modeling the profile of the user it is used the Support Vector Machine (SVM) [Nel00]. SVM
is a classification technique that was applied with great success in many classification problems.
The authors extend the standard SVM, that doesn’t have a measure of confidence, with a
probabilistic extension suggested by Platt [Pla99] (called PSV) where the authors associate a
probability of class membership to each user. In the collaborative ensemble learning the authors
combine current user’s preferences, described by the user’s model using PSVM, and other users’
preferences, described by PSVM, and does the prediction for current user.

Unseen items are described by their feature vectors. To estimate these items the authors use the
user’s rating (if a user likes or dislikes this item). The authors put all items into a probabilistic
framework under four assumptions. The first assumption is that every user is described by a profile
that is generated from apriori distribution. The second is that the distribution of the actual items x
is independent of the user’s profiles. Thirdly, the user has a given rating based on his profile, and
fourthly, given a user profile the opinions for individual items are mutually independent. The
authors interpreted the results of predicting a current user preference as a combination of user’s
profiles society.

For modeling the user’s profile using support vector machines the authors used a linear kernel for
the part of text retrieval problem and a radial basis function kernel for the part of art image
retrieval problem. The authors assume that each user is interested in exactly one category.

In another article [KaiTre03] Tresp and Kai improve the above algorithm by using a hierarchical
Bayes framework for information filtering. The authors model the user’s profile using content
based probabilistic filtering that are combined with a user’s preference society (like in
collaborative filtering). The combination scheme can be interpreted as a hierarchical Bayesian
approach in which a common apriori distribution is learned from related experiments. In
hierarchical Bayes framework the authors assume that preference model for each user has been
generated as a simple form of an apriori distribution.

Web Information Retrieval

Page 45 of 51

In the experimental part collaborative ensemble learning is compared with two methods of
information filtering, (1) one pure collaborative filtering using Pearson correlation, and (2) a pure
content based filtering using SVM with a linear kernel. The results were reported based on two
data sets, the Reuters text data set (that has 36 categories covering 10034 articles) and a data base
of user opinions on art images (642 images).

For text data experiment the authors assumed that each user is interested in exactly one category,
and presented results for 360 users by choosing a random set of examples. The authors presented
results for two scenarios: first with only 5 examples for each user (insufficient information about
users) and second with 30 examples for each user. Collaborative filtering performs worst in both
cases, content based filtering using SVM provides reasonable good results and collaborative
ensemble learning outperforms both other methods.

For the data base of user’s opinions on art images the authors collected user’s preferences for art
images in a web-based survey, choosing a total of 642 images and asked for their opinions (like/
dislike/ not sure). The authors collected data from 190 users, at average each of them had rated 89
images. To describe the images content they used 256 features, 10 features based on wavelet
texture and 9 features on color moment, obtaining a 275 dimensional feature vector for each
image. The authors evaluated the performance for 2, 5, 10, 20, 50 and 100 rated images, chosen at
random from the collected data for this particular user. Content based filtering gave a very poor
performance, since the low level image features are not indicative of the image content.
Collaborative filtering performs well, once the number of rated images for the text user is suitably
large. Collaborative ensemble learning achieved excellent performance when very few examples
are given for a text user.

Web Information Retrieval

Page 46 of 51

4 Conclusions and further work

At the beginning of the year 2000 the web had over 800 million pages covering most areas of
human endeavor, and had six terabytes of data stored in almost three million servers. Nearly a
million pages are added daily, and a typical page is changed every few months, and each month
several hundred gigabytes are changed. These characteristics grow continually. Thus the World
Wide Web has become an opportunity and a great challenge for researchers in computer sciences.

Some so-called organizers suggest invariably that the users need to organize the information
during the creation time, using some preordered rules. This is pointless because most people will
not respect it. This is considered a characteristic for unordered egalitarianism of Internet [Der00].
Any attempt to apply the same organizing rules will determine the users to leave. The result for the
time being is that most information needs to be organized after it was generated, and searching
tools and organizing tools need to work together tightly.

In this technical report I am tried to present a short perspective of the research in this fertile
domain and the tendencies in research. Because the web grows continually the volume of
unstructured data (text and hypertext) exceeds that of structured data, and the research of machine
learning techniques has changed its trend. Thus in the last years research in this field was focused
on four areas such as strategies, algorithms, architecture and user interface to find a way to search
more easily and in a more personal way for the user.

For a user that wants to find something on the web, searching can become a frustrating activity
when search engines return thousands of documents for a given search. Thus many researches are
focused on organizing the search results, finding new strategies in implementing search engines
and representing architectures of the search results, without taking into account the user. In the last
years the web has more types of inexperienced users from different domains of activities and the
new challenge is to make the search more simple and easy to understand for the user. Due to this
the research has split into three directions: (1) finding relevant information, (2) representing the
results and (3) guiding the user in finding information.

In finding relevant information the research focuses on trying to combine the existing search
engines with information about the user. Most search engines nowadays find relevant information
using static methods (like Page Ranks, et.al.) that take in consideration only information about
structure and content of the web, without taking into consideration information about the user that
it is interested in that information. The challenge of this field is to build the user profile. There are
presented methods that build a profile of the user using information taken from the user and some
documents that are interesting to the user and then trying to use this user profile in finding relevant
information. The problem is that users change their interests fairly frequent and almost in all cases
they can not specify what their interests in a very specific way are. A solution to this problem is
using an actual user profile for filtering new documents and based on new filtered documents
taken into consideration updating the user’s profile.

Studies regarding representing the results demonstrated that an interface based on categories is
superior to the list interface both in a subjective and objective way. There are many directions for
future research. One issue is to explore how the results generalize into domains. Another issue is a
better representation of search results in concise views. In this field there have been constructed
more types of representation of the search results: hierarchical and graphical representations. From
this point of view the hierarchical representation is intuitively, easier to use and understand by the

Web Information Retrieval

Page 47 of 51

user but the main problem is that of choosing the categories. Thus a fixed category structure has
been created and it is used to group the search results. The problem arises due to their fixed
structure. Ideas have been proposed that represent the search results in dynamical hierarchical
structure but there is a problem regarding the characteristics of classified documents that are
relevant to the user. In this type of representation usually only a small portion of the most
important and representative information is displayed in the initial screen, and overlay techniques
are used to cover more details. New methods of representing the search results have been tried,
one of this being 3D perspective representation. Viewing and exploring search results into this
perspective still constitutes a major problem for the designers of the user interface in terms of
minimizing the visual search, supporting user understanding and providing efficient interaction for
exploring the network.

Guiding users in finding information is actually trying to ease their quest for information. In most
of the cases the users don’t know exactly what is interesting for them. Research is being focused
on suggesting synonyms for words that appear in the query or fields in which the words appear so
that only interesting results can be retrieved. An interesting idea is trying to take words from the
relevant documents in order to create a new and better query. Another field of research is trying to
include the user in a group of users considering the momentary interests of the user and to suggest
parallel fields with what the user specified in the query and to open new perspectives for the user.

The perspective presented in this PhD report is oriented on trying to dynamically reorganize the
view of the web (interface of the web) from the user’s point of view, without modifying the basic
structure of the Web. Thus the researchers try to personalize the interface of the web for every
user, making it easier and more accessible for everyone, and presenting the information in an
enjoyable interface. This perspective in a small part from the grater domain of research that is
oriented on finding a better representation and organization of information on the web, increasing
the communication and collaboration between users and applications. This direction is trying to
transform the Web’s orientation from documents to relevant data, from the user perspective to the
machine perspective. Thus the researchers in this domain try to reorganize data on the Web, give
them a meaning, and making possible the automatic processing of data. This new representation is
called Semantic Web and it wants to assure that it is organizing the data and the information into a
natural mode, from the user’s point of view, and, at the same time, easy to use (understand) for
automated processing.

The definition of Semantic Web according to Tim Berners-Lee, the inventor of World Wide Web
is: “The extension of the current web in which information is given well-defined meaning, better
enabling computer and human to work in cooperation”. It can be considered that two programs can
put together their knowledge by changing the ontology that provides necessary vocabulary for
discussion. The Semantic Web is the abstract representation of data on the Web, based on the RDF
(Resource Description Framework) standards and other standards to be defined. The data can be
defined and linked in such a way that there is more effective discovery, automation, integration,
and reuse across different applications. This idea is not quite easy implemented at the moment due
to the web’s size and because it is difficult to create a general idea for representing the web,
considering its content [FenHen03].

For my second PhD report I plan to do text classification using a Support Vector Machine method.
Thus, for the first step, using techniques of text mining a set of vectors that represents the signature
of each document in the set of documents is being created. For this I use keyword based retrieval
method presented in section 2.2.1.2. Based on these vectors I will try to classify a set of documents
using a new interesting algorithm based to statistical learning called Support Vector Machine. In
its standard formulation SVM doesn’t have as an output any measure of confidence for their

Web Information Retrieval

Page 48 of 51

prediction, thus we need to associate a probabilistic extension to its outputs. A major problem in
text classification is the high dimension of the feature space. Another onset is to try different
methods of eliminating non-informative terms (elements in vectors) according to existing
statistics, and the construction of new features that combine lower level features with higher level
orthogonal dimension features.

Web Information Retrieval

Page 49 of 51

References

[Sou00] Soumen Chakrabarti.- Data mining for hypertext: A tutorial survey, Newsletter of the
Special Interest Group (SIG) on Knowledge Discovery & Data Mining, ACM
Explorations 1(2), pages. 1-11,2000

[JaiMic01] Jiawei Han, Micheline Kamber - Data Mining. Concepts and techniques, Morgan
Kaufmann Press, 2001

[Ian00] Ian H. Witten, Eibe Frank – Data Mining, Practical Machine Learning Tools and
Techniques with Java implementation, Morgan Kaufmann Press, 2000

[Mit97] Tom Mitchell – Machine Learning, McGraw Hill Publishers, 1997

[Der00] Dertouzos, Michael – What will be: How the New World of Information Will Change Our
Lives, Technical Publisher, Bucharest, 2000 (Translation in Romanian by I. Moisil, B.
Barbat et. al.)

[cs.utk] www.cs.utk.edu/~dongarra/etemplates/node372.html - representing implementation of
sparse matrixes and vectors

[LawGil99] S. Lawrence and C. L. Giles. - Accessibility of information on the web,Nature,400,
pages 107-109, 1999

[RayHen00] Raymond Kosala and Hendrik Blockeel – Web mining research: A survey, In
SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge
Discovery & Data Mining, ACM Press, pages 1-15,2000

[MlaGro99] D. Mladenic and M. Grobelnik – Feature selection for unbalanced class distribution
and naïve bayes, In Proceedings of the 16th International Conference on Machine
Learning ICML, p.258-267,1999

[YanPed97] Y. Yang, J.O. Pedersan – A Comparative Study on Feature Selection in Text
Categorization, Proceedings of ICML, 14th International Conference of Machine
Learning, pages 412-420, 1997

[DeeDum90] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman – Indexing by
latent semantic analysis, Journal of the American Society for Information Science, 41,
pages. 391-407, 1990

[Hof99] Thomas Hofmann – Probabilistic Latent Semantic Analysis, In Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, pages. 289-
296, UAI 1999

[Cha03] Soumen Chakrabarti, Mining the Web. Discovering Knowledge from Hypertext Data,
Morgan Kaufmann Publishers, USA, 2003

[CooMob99] R. Cooley, B. Mobasher and J. Srivastava – Data preparation for mining World Wide
Web browsing patterns, Journal of Knowledge and Information Systems 1(1), pages 5-32,
1999

[SriCoo00] J. Srivastava, R. Cooley, M. Deshpande, P.Tan – Web Usage Mining: Discovery and
Applications of Usage Patterns from web Data, ACM SIGKDD Explorations, pages 12-
23, 2000

[AndBuz04] P. Andronico, M. Buzzi, B. Leporini – Can I Find What I’m Looking For?, In
Proceedings of the World Wide Web Conference 2004, New York, pp. 430-431, 2004

Web Information Retrieval

Page 50 of 51

[Goo] www.google.com (search engine)

[Yah] www.yahoo.com (search engine and web directory)

[Aol] search.aol.com (web directories)

[Exc] www.excite.com (web directories)

[WebCr] www.webcrawler.com (one level hierarchical representation of the search results)

[VivS] www.vivisimo.com (2 levels hierarchical representation of the search results)

[Kart] www.kartoo.com (graphical representation of search results and monitoring a specific site)

[SuW] www.surfwax.com (help user to find different synonyms grouped after domain for every
search word)

[dmoz] www.dmoz.org (Open Directory Project - web directories)

[surfM] www.surfmind.com (web directories and searching into a specific domain)

[DumChe00] S. Dumais, Hao Chen – Hierarchical Classification of Web Content, Proceedings of
the 23rd international ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 256-263, 2000

[SchSmo02] Bernhard Schoslkopf, Alexander Smola – Learning with Kernels, Support Vector
Machine, MIT Press, London, 2002

[look] http://www.looksmart.com/ (web directories with preclasified web pages)

[CheDum00] Hao Chen, S. Dumais – Bringing Order to the Web: Automatically Categorizing
Search Results, In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 145-152, 2000

[KumLot04] Kummamuru K., Lotilikar R., Roy S., Singal K., Krishnapuram R. – A Hierarchical
Monothetic Document Clustering Algorithm for Sumarization and Browsing Search
Results, In Proceedings of the Thirteenth International World Wide Web Conference,
pages 658-665, 2004

[KumKri01] Kummamuru K. and Krishnapuram – A clustering algorithm for asymmetrically
related data with its applications to text mining, In Proceedings of CIKM, pages 571-573,
2001

[LawCro01] Lawrie D., Croft W. B. and Rosenberg A. – Finding topic words for hierarchical
summarization, In proceedings of SIGIR, pages 349-357, 2001

[ChrBot02] Christoph Kunz, Veit Botsh – Visual Representation and Contextualization of Search
Results, List and Matrix Browser – In Proceedings of International Conference on Dublin
Core and Metadata for e-Communities, pp. 229-234, 2002

[WizWal04] Wojciech Wiza, Krzysztof Walczak, Wolciech Cellary - Periscope – A System for
Adaptive 3D Visualization of Search Results, Association for Computing Machinery ,
p.29-40, 2004

[Per] http://periscope.kti.ae.poznan.pl/ (graphical representation of the search results)

[Ack97] Ackerman Mark – The DO-I-Care Agent: Effective Social Discovery and Filtering on the
Web, Proceedings of RIAO'97: Computer-Assisted Information Searching on the Internet,
pages 17-31, 1997

Web Information Retrieval

Page 51 of 51

[AckSta97] Ackerman Mark, Brain Starr, Michael Pazzani - DO I Care? – Tell Me What’s Change

on the Web, In Proceedings of the American Association for Artificial Intelligence Spring
Symposium on Machine Learning, 1997

[Bar02] Barbat, Boldur - Agent - oriented intelligent systems, Romania Academy Publisher,
Bucharest, 467 pages, 2002 (in Romanian).

[AckBil97] Ackerman M, D. Billsus, S. Gaffney, S. Hettich, G. Khoo, D. Kim, R. Klefstad, C.
Lowe, A. Ludeman, J. Muramatsu, K. Omori, M. Pazzani, D. Semler, B. Starr, P. Yap -
Learning Probabilistic User Profiles: Applications to Filtering Interesting Web Sites,
Notifying Users of Relevant Changes to Web Pages, and Locating Grant Opportunities -
AI Magazine 18(2) pages 47-56, 1997

[GoeSha99] Jeremy Goecks, Jude Shavilk – Automatically Labeling Web Pages Based on Normal
User Action, Proceedings of the International Joint Conference on Artificial Intelligence.
Workshop on Machine Learning for Information Filtering, pages 573-580, 1999

[CheSye98] L. Chen, K. Sycara – WebMate: A Personal Agent for Browsing and Searching,
Proceedings of the 2nd International Conference on Autonomous Agents, pages 132-139,
1998

[WebM] www.cs.cmu.edu/softagents/webmate (the proactive agent that learn the user profile to
increase the quality of the search results)

[AlbPic04] M. Albanese, A. Picariello, C. Sansone, and L. Sansone – A Web Personalization
System based on Web Usage Mining Techniques, In Proceedings of the World Wide Web
Conference 2004, New York pp. 288-289, 2004

[BarMar03] Barbu Costin, Simina Marin – Information Filtering Using the Dynamics of the User
Profile, In Proceedings of The 16th International FLAIRS Conference, 2003

[WNet] http://www.cogsci.princeton.edu/wn2.0 (online lexical system)

[KaiSch02] Kai Yu, Anton Schwaighofer, Volker Tresp, Wei-Ying Ma, HongJing Zhang -
Collaborative Ensemble Learning: Combining Collaborative and Content Based
Information Filtering, Technical Report Siemens, 2002

[Nel00] Nello Cristianini, John Swawe-Taylor – An introduction to Support Vector Machines,
Cambridge University Press, 2000

[Pla99] Platt John C. – Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods, In Advances in Large Margin Classifiers, A. Smola, P.
Bartlett, B. Scholkopf, D. Schuurmans, eds., MIT Press, Cambridge, pages 61-74, 1999

[KaiTre03] Kai Yu, Anton Schwaighofer, Volker Tresp, Wei-Ying Ma, HongJing Zhang -
Collaborative Ensemble Learning: Combining Collaborative and Content Based
Information Filtering via Hierarchical Bayes, Proceeding of the 19th Conference,
Uncertainty in Artificial Intelligence, pages 616-623, 2003

[FenHen03] Fensel D, Hendler J., Liberman H., Wahlster W. – Spinning the Semantic Web –
Bringing the World Wide Web to its Full Potential – MIT Press, 2003

