

HIERARCHICAL ARCHITECTURE IMPLYING FUZZY
AND NEURAL TECHNIQUES FOR ON-LINE

GEOMETRIC SHAPE RECOGNITION

Ioan Z. MIHU*, Arpad GELLERT*, Cosmin N. SUCIU**

* “Lucian Blaga” University of Sibiu, Computer Science Department, str. Emil Cioran, nr.
4, Sibiu, ROMANIA, E-mail: ioan.z.mihu@ulbsibiu.ro, arpad.gellert@ulbsibiu.ro

** “S.C. Polisano S.R.L.”, str. Moldoveanu, nr. 25, Sibiu, ROMANIA, E-mail:

suciu_nicu@yahoo.com

Abstract: This paper is focused on on-line geometric shape recognition (Ulgen, et al., 1999)
based on fuzzy techniques and backpropagation neural algorithm. We propose a new method
for geometric shape recognition that consists of a hierarchical architecture implying a fuzzy
classifier of angles and a multilayer neural network for training and classification of
geometric shapes. Before the effective classification an on-line feature extraction process is
applied. Our method examines the geometric shape as a whole in a way similar to the human
recognition process. In the recognition process we have to use information that is invariant in
terms of scaling, translation and rotation. The internal angles represent the relevant
information relatively to the geometric shape. The key concept is that the neural network
learns the internal angles of a shape. The optimal configuration of the neural network is
determined based on the criterion of the performances’ maximization. The optimal fuzzy
classifier is chosen based on the same criterion.

Keywords: Geometric Shape Recognition, Neural Networks, Neural Shape Classification,
Fuzzy Systems, Backpropagation Algorithm, Multi-Layer Perceptron

1. INTRODUCTION

The artificial neural networks are composed of a
multitude of neurons, simple processing elements that
operate in parallel. A great advantage of the artificial
neural networks is their capacity to learn on examples. In
order to solve a problem traditionally, we have to
elaborate its model, and after that we have to indicate a
succession of operations that represents the solving
algorithm of the problem. However there are practical
problems with a high level of complexity, and for this
kind of problems it is very hard or even impossible to
establish an algorithm.

In the connection models we are not forced to give a
solving algorithm of a problem to the neural network, we
have to offer him only a multitude of consistent
examples. The network extracts the information from the
training samples, in this way it is able to synthesize
implicitly a certain model of the problem. In other

words, the neural network builds up alone an algorithm
to solve a problem. The capacity of the neural network to
solve complex practical problems using a multitude of
samples gives them a highly large potential of
applicability. Building intelligent systems that can model
human behavior has captured the attention of the world
for years. So, it is not surprising that a technology such
as neural networks has generated great interest.

Ulgen, et al. (1999), in their work implemented a
geometric shape classifier and they have used a neural
network with binary synaptic weights (BSW). The BSW
algorithm, which was implemented on a three layer
network, determines the thresholds for the hidden and
output layer nodes and the weights of the synaptic links
between the layers, in addition to the number of hidden
layer nodes in one feed-forward pass. The main concept
of the algorithm can be explained as the separation of
globally intermingled patterns within an n-dimensional

space through the formation of hyperplanes that separate
different classes of patterns at a local region in the space.

In this work we use a multilayer feedforward neural
network to recognize the basic geometric shapes such as
circles, rectangles or triangles. We will choose the best
configuration of the neural network based on the results
obtained with our test images.

2. THE MULTILAYER FEEDFORWARD NEURAL
NETWORK

This section introduces the backpropagation learning
algorithm addressed by the architecture presented in this
paper. More detailed descriptions can be found in classic
introductory books (Hertz, et al., 1991). The typical
artificial neuron model represents a device with n inputs
and a single output. The output iy of the i-th neuron of
the network is computed as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅== ∑

=

n

j
jjiii xWpy

1
,)(σσ (1)

 for i = 1, 2, …, m;

where jiW , represents a coefficient or synaptic weight

associated with the j-th input jx and the i-th neuron.

The weighted sum ip is called potential. A typical node
is depicted in figure 1.

Figure 1. A Perceptron node

The nonlinear activation function σ in this case is the
sigmoid, and the network is trained using the gradient
descent method known as backpropagation.

 xe
x −+

=
1

1)(σ (2)

Equation (1) can be rewritten in a matrix form as

)()(xWpy rrr
⋅== σσ (3)

Usually, the activation function σ represents some
saturating non-linear function. Neurons are often
organized in layers, all neurons in a layer sharing the
same inputs and having their outputs connected to the
inputs of the next layer. The weight matrixes are then
shown as][qW , where q is the layer number.

Neural networks usually undergo a learning process.
The synaptic-weight matrixes are iteratively updated
according to a learning rule. One of the simplest one is
the Hebb rule:

);(TxyWW rr

⋅⋅+= α (4)

where α is a learning factor. Though this rule is seldom
used as stated, most of the commonly used learning rules
are slight modifications of equation (4).

Multilayer neural networks are used for pattern
classification, pattern matching, and function
approximation. By adding a continuously differentiable
function, such as Gaussian or sigmoid function, it is
possible for the network to learn practically any
nonlinear mapping to any desired degree of accuracy.
There are several ways that multilayer neural networks
can have their connection weights adjusted to learn
mappings. The most popular technique is the
backpropagation algorithm and its many variants.

VIN
VHID

VOUTx0

xN

y0

yR

Figure 2. A multilayer perceptron with 2 active layers

(one hidden layer).

Multilayer networks make it possible to implement
any arbitrary function)(xy rr

Φ= , xr being the input of

the first layer and][Lyy rr
= representing the output of

the last layer L. Often the activation function σ is a
hyperbolic tangent. The function Φ is learned by
repeated presentation of input-output pairs { }dx

rr, ,
called prototypes. The backpropagation(BP) learning
rule is a gradient-descent algorithm that updates the

L
jW 0,

L
jW 1,

L
ijW ,

L
Nj L

W
1, −

∑ σ
L
jx

1
0

−Lx

1
1

−Lx

1−L
ix

1
1

−
−

L
NL

x

weights to minimize the square-error on the learning
prototypes. For that purpose an error signal is computed
for each layer (Zurada 1992):

() ()][][][L

i
L

ii
L

i pyd σδ ′⋅−= (5)

()][

1

]1[]1[
,

][
1

q
i

m

k

q
k

q
ik

q
i pW

q

σδδ ′⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅= ∑

+

=

++ (6)

for q = 1, 2, …, L-1;

where () ()
dv

vdv σσ =′ .

The equations (5) and (6) are valid for all the i
neurons (i = 1, 2, …, mq) of layer q. Once the errors have
been back-propagated, the weights are updated as:

Tqqqq yWW]1[][][][−⋅⋅+=
rr

δα (7)

 for q = 1, 2, …, L, where xy rr

=]0[.

3. GEOMETRIC SHAPE RECOGNITION

The classical techniques based on shape partitioning into
segments, followed by a syntactical analysis to match
with a predefined shape, are strongly affected by noise
and are weak in terms of generalization. In order to
eliminate these limitations of the classical methods, our
method examines the geometric shape as a whole in a
way similar to the human recognition process. Human
beings recognize such basic shapes regardless of the
variations in size, noise on the shape border, translation,
rotation, and in the case of triangles, regardless of the
type of the triangle. That means that not the segments are
important in the recognition process but the angles,
which represent the relevant information relatively to the
geometric shape. The key concept is that the neural
network learns the internal angles of a shape (the angles
between any two consecutive tangent vectors). As a
consequence, the neural network training process will be
simplified, therefore only a few training samples that
represent a class of shapes (i.e. triangles, rectangles and
elliptic shapes) are sufficient. Our application’s aim is to
recognize the basic geometric shapes (elliptic,
rectangular and triangular).

3.1. Feature Extraction

The purpose of preprocessing is to create an
intermediate representation of the input data and it is
performed on-line (prior to the application of recognition
task). The preprocessing step can be defined as a feature
extraction process that is important since it prepares
input data that is invariant in terms of scaling, translation
and rotation. The feature extraction is performed on the
captured points along the boundary of the shape.

Since the geometric shapes are hand-drawn using
the mouse, the information could include noise due to
the variations in capture speed of the mouse and erratic
hand motion while drawing. We have to extract the
features of the shape and to eliminate the noise appeared
while drawing, keeping only the essential characteristics.
Also the hand-drawn shape may contain interruptions
that must be eliminated unifying the segments. The
feature extraction process is composed of a number of
steps, and the first of them is the calculation of the
shape’s weight center.

Calculation of the shape weight center. For the
calculation of the weight center of a given geometric
shape the next formulas are used:

,,

1

0

1

0

n

y
y

n

x
x

n

i
i

C

n

i
i

C

∑∑
−

=

−

= == (8)

where xc is the horizontal position of the shape’s weight
center, yc is the vertical position of the shape’s weight
center, n is the number of captured points while drawing,
xi is the horizontal position of each captured point, and yi
is the vertical position of each captured point.

Extraction of significant points. The next step in the
feature extraction process is the determination of the
sample points. There are calculated n angularly
equispaced vectors that start from the shape’s weight
center; n is the number of sample points. The
intersection of these vectors with the boundary of the
shape represents the sample points of that shape. The
next step consists in the calculation and the tracing out of
the tangent vectors to the shape in these points. In our
application the tangent vectors are obtained by the union
of the sample points; unifying two successive sample
points a tangent vector is obtained.

(xC, yC)

Figure 3. Extraction of sample points (the intersections
of the vectors with the shape’s boundary).

As we can see in figure 3, a very important
parameter in the recognizing process is the number of
sample points. For an efficient extraction of the relevant
information necessary for the recognition process of the
geometric shape, we have to use a sufficient number of
sample points.

3.2. On-line Data Acquisition and Processing

When we want to create a new geometric shape to
be processed by the recognition system, we have to draw
it with the mouse on the application’s frame. The
drawing process can be interrupted anytime and resumed
to complete the shape (that is the shape can be built by
drawing multiple segments).

The on-line data acquisition and processing
consists of the following steps:

• capturing successive points on the shape’s

boundary;
• extracting significant points;
• calculating the angles between consecutive

segments.

Capturing successive points on the shape’s boundary.
The first stage in obtaining the points from the shape’s
boundary is very simple because the positions of the
mouse during the drawing process are memorized. When
the positions of the captured points are memorized, the
shape’s weight center is on-line calculated, too (see
chapter 3.1.). The capturing process is based on the drag
and drop event handled by the operating system. The
event generation frequency is constant on a certain
computer but dependent on hardware platform. On the
other hand, the drawing speed is different from user to
user or even from instance to instance of the same user.
On the drag and drop event there are captured a number
of points that are not neighbors in the real shape’s
boundary and that depends on the drawing speed (the
number of points is greater if the drawing speed is low,
and it is smaller in the case of a higher drawing speed).
When the application was running on a modest PC
computer (P200/64MB RAM), the user had to draw with
a low speed for a sufficient number of points to be
captured. In the case of a high drawing speed, using such
a computer, the small number of captured points drove
sometimes to major differences between the shapes
obtained by the capturing process and the real shapes.

Thus, if on the application’s frame are painted only
the captured points obtained on the drag and drop event,
a discontinuous copy of the real shape results. Visually
the problem was solved tracing segments between any
two consecutive captured points. Only the visual
interface of the application was solved in this way. The
second problem to be solved consists of finding the
intersection points between the shape’s boundary and the
angularly equispaced vectors starting from the shape’s
weight center (see chapter 3.2.). There is the possibility
that some of the angularly equispaced vectors don’t
intersect with any of the captured points. In this case the
extraction of significant points cannot be made and also
the geometric shape cannot be approximated.

To solve this problem we used an algorithm, which
calculates and stores all the points between any two
consecutive captured points obtained on the drag and
drop event (figure 4).

 There are two cases:

• If the angle between the segment and the
horizontal axes is greater than 45 degrees, the
straight line’s equation is the following:

for i=1 to 12 yy −

 iyy += (9)

12

12
11 yy

xx
yyxx

−
−

⋅−+= (10)

• If the angle between the segment and the

horizontal axes is less or equal to 45 degrees, the
straight line’s equation becomes:

for i=1 to 12 xx −

 ixx += (11)

12

12
11 xx

yy
xxyy

−

−
⋅−+= (12)

x2, y2

x1, y1

x, y

Figure 4. Calculating of the intermediate points between

two consecutive captured points.

After all the points between any two consecutive
captured points are calculated, they are stored in a list.
This list contains all the points of the geometric shape’s
boundary in their drawing order.

Extracting significant point. As it was described in
chapter 3.1, there are calculated n angularly equispaced
vectors starting from the shape’s weight center (n being
the number of significant points – a parameter which
will be chosen in order to maximize the application’s
performance). The angular distance between any two
consecutive vectors is:

n
dist 360

= (13)

The intersection of these vectors with the shape’s
boundary represents the significant points of that shape
(for n vectors there will be n significant points). By
tracing line segments between any two significant points
an approximation of the geometric shape is obtained
(figure 5).

x c , y c

Figure 5. Approximation of a circle using 8 significant

points.

Calculating the angles between consecutive segments.
The angle between two consecutive segments is
determined by calculating the angles between each
segment and the horizontal axes (figure 6). The angles
between segments belong to the [0, 360) interval, it is so
large because of the erratic hand motion during the
drawing process. So, the angle is calculated depending
on the quadrant (0-90, 90-270,270-360) it belongs to.

In figure 6 for example, the angles between the two
consecutive segments and the horizontal axes belong to
the first quadrant:

2121 180)90,0[, ααααα −−=⇒∈ (14)

where 1α , 2α are the angles between the segments and
the horizontal axes, and α is the angle between the two
segments (one of the interior angles of the geometric
shape).

1α

2αα

Figure 6. Calculation of the angle between two
consecutive segments, with)90,0[, 21 ∈αα .

3.3. Fuzzy Classification

To generate the input data for the neural network,
after the feature extraction process follows the adaptation
of the obtained information. The internal angles of a
geometric shape offer the relevant information necessary
to the classification process. The angles between the
consecutive tangent vectors are calculated and we obtain
n angles, which will be classified into four categories
(fuzzy). Each angle will receive a membership value
depending on the category to which it belongs, as it
follows:

• 2 for the angles less than 75 degrees;
• 3 for angles between 75 and 135 degrees;
• 1 for angles between 135 and 150 degrees;
• 0 for the angles greater than 150 degrees;

The membership values must be given in such a way
that, after the addition of the membership values
according to the n angles, to obtain different sums for
each class of geometric shape (i. e. triangle, rectangle,
circle). We have considered that the important angles are
the angles less than 150 degrees.

In the case of a rectangle or a triangle, along the
sides we will have angles near to 180 degrees; because
these angles are not significant, they receive 0 as
membership value, in other words these angles will not
contribute to the sum. Since the number of angles less
than 150 degrees offers the relevant information
necessary to the recognition process of the basic
geometric shapes, only these angles, through their
consistent membership values, will contribute to this
sum, which will be a value from the interval [0, 3n].
Using the sum of the angles’ membership values the
dimensions of the shape don’t matter (there is no
difference between a little triangle and a big one), and
not even the dimensions of the sides (there is no
difference between a square and a rectangle), only the
internal angles matter.

3.4. Neural Recognition of the Shape

The neural network’s architecture and the learning
algorithm used were presented in section 2. The input
vector for the neural network will be obtained after the
serial coding of the sum of the membership values
according to the internal angles of a given geometric
shape. In this way, the sum’s value determines the
number of bits on “1” in the serial code, and the rest of
bits are “0”.

The neural network is statically trained before its
effective use. That means that the network will be
trained using a set of prototypes (a number of
representative learning shapes). Before starting the
training process the weights are randomly initialized.
During the training process, if the shape is correctly
classified, only a backward step is made. If the shape is
incorrectly classified, the backward step will be repeated
until the classification becomes correct and one more
time after that.

For its effective use, the neural network is
initialized with the weights generated by the static
training process. During the effective run-time
classification process only the forward step is performed.

The dimension of the neural network’s input vector
must be calculated taking into consideration the most
disadvantageous case that appears when all the angles
takes part of the category 3 (angles between 75 and 135
degrees). In this case the calculated sum will have the
maximum value (3n), and therefore we need 3n neurons
in the input layer of the neural network. Consequently
the neural network’s input vectors are sequences of 3n
binary values.

Since the neural network must recognize three
categories of shapes (rectangles, triangles and circles), in
the output layer we will have three neurons, one for each
category. The neuron with the highest output value will
win, specifying the category in which the shape takes
part. Since the neural network used in this work has
three layers, the dimension of the hidden layer represents
a parameter and it’s value will be established based on
the criterion of the performances’ maximization. We will
vary in the next chapter the number of neurons from this
layer; we want to obtain in this way the best
configuration of the neural network.

4. EXPERIMENTAL RESULTS

The neural network was statically trained with 10
learning shapes for each shape category. After the
learning process the recognition system was evaluated
using 30 test shapes for each category. In this chapter a
number of architectural parameters are varied and the
obtained results are presented.

As we specified in chapter 3.1, in the feature
extraction process we have to use a number of sample
points as great as possible and in this way we can extract
efficiently the relevant information necessary for the
recognition process of the geometric shape. But if we use
too many sample points there is a risk of appearance of
the noise in the extracted information. Usually the noise
appears because of the undesirable hand movements
while drawing with the mouse. Therefore, the number of
sample points represents another parameter that must be
chosen based on the criterion of the performances’
maximization. We synthesize in the table 1 the influence
of this parameter on the performances of the geometric
shape recognition system:

Table 1. The influence of the number of sample points
on the shape classification.

Shape [%] 16 32 48 64
Circles 63,33 100 96,66 96,66
Triangles 56,66 60 60 80
Rectangles 86,66 70 63,33 26,66
All shapes 68,88 76,66 73,33 67,77

We can see that the best number of sample points is 32.
 The internal angles of the shapes are classified into
four categories in the fuzzyfication stage. We showed at
3.3 that the little angles are the most important in the
classification process. In chapter 3.3 we have also
presented a variant of fuzzyfication. The method of
according the membership values represents the third
parameter that influences the performances of the
recognition system. We studied four methods of
fuzzyfication and, depending on the results, we chose the
best solution in order to maximize the application
performance. In the same time we have decreased the
training time of the neural network from 10000 iterations
to 1000. In table 2 are presented the obtained results.

Table 2. Different methods of fuzzyfication of the
internal angles

Shape [%] I II III IV
Circles 100 96,66 100 100
Triangles 23,33 0 76,66 73,33
Rectangles 96,66 100 90 100
All shapes 73,33 65,55 88,88 91,11

The four fuzzyfication methods used in this work have
accorded membership values to the internal angles as
follows:

Method I:

• 2 for the angles less than 75 degrees;
• 3 for angles between 75 and 135 degrees;
• 1 for angles between 135 and 150 degrees;
• 0 for the angles greater than 150 degrees.

Method II:
• 3 for angles less than 90 degrees;
• 2 for angles between 90 and 120 degrees;
• 1 for angles between 120 and 150 degrees;
• 0 for the angles greater than 150 degrees.

Method III:
• 4 for angles less then 90 degrees;
• 2 for angles between 90 and 120 degrees;
• 1 for angles between 120 and 150 degrees;
• 0 for the angles greater than 150 degrees.

Method IV:
• 5 for angles less then 90 degrees;
• 2 for angles between 90 and 120 degrees;
• 1 for angles between 120 and 150 degrees;
• 0 for the angles greater than 150 degrees.

The obtained results show that the fourth method of
fuzzyfication represents the best solution.
 We have continued our work by studying the
influence of the neural network’s architecture on the
performances of the recognition system. We varied the
number of neurons in the hidden layer (the first
parameter) and we evaluated the recognizing rate for
three different dimensions of the hidden layer: 5, 10 and
20 neurons. The obtained results are presented in table 3.

Table 3. The influence of the number of neurons from
the hidden layer on the efficiency of the recognition

system.

Shape [%] 5 10 20
Circles 96.66 100 100
Triangles 23.33 73.33 73.33
Rectangles 100 100 100
All shapes 73.33 91.11 91.11

 We can observe that the best solution is to use ten
neurons in the hidden layer. If we increase the number of

neurons in this layer over ten, the efficiency of the neural
network doesn’t change, but the training time grows up
exponentially.

5. CONCLUSION

In this work we presented a method of recognizing
the basic geometric shapes. Both training and
recognition process are made by extracting the features
from the training (test) samples, and by classifying the
internal angles of the shape. The information obtained
after the fuzzyfication process is used as inputs for the
multilayer feedforward neural network. The network
learns the three classes of geometric shapes by their
internal angles; the values of the internal angles are
invariant in terms of scaling, translation and rotation.

We studied the influence of the number of
significant points used in the feature extraction process
on the efficiency of the recognition system. A small
number of significant points (less than 32) is not
sufficient for a correct recognition of the geometric
shapes. In this case the information obtained in the
feature extraction process is not sufficiently consistent to
assure the desired performances of the recognition
system. On the other hand if we use too many significant
points (over 32), there is a risk of appearance of the
noise in the extracted information. The noise, which
usually appears because of the undesirable hand
movements while drawing with the mouse, overlaps the
relevant information and in this way it degrades the
performances of the recognition system. The evaluations
drove us to the conclusion that the optimal number of
significant points is 32.

After that, we studied different fuzzyfication
methods of the internal angles. The effected tests drove
us to the conclusion that the little angles (less than 90
degrees) are very important, because the number of these
angles offers the relevant information necessary to the
recognition system.

Finally we studied the influence of the neurons’
number from the hidden layer on the efficiency of the
neural network used in the recognition process. The tests
show that the best solution for the number of neurons in
this layer is ten. In our opinion the results show
acceptable classification accuracy of 91.11% obtained on
our test images. This means that 91.11% of the hand-
drawn shapes (test images) were correctly classified.

An unsolved problem appeared in the feature
extraction process. If the obtained significant points
avoid the corners of the shape, a relevant internal angle
is lost and it is replaced by other two successive angles.

As you can see in figure 7, one corner of the triangle
was replaced by two other corners and in this way,
because the shape has four significant internal angles, it
is possible that the recognition system will classify it as
rectangle. In the same way, in figure 8, each significant
angle is replaced with other two greater angles and the
recognition system could classify the rectangle as being
a circle.

(xC, yC)

Figure 7. Extraction of sample points. One corner of the
triangle is missed.

(xC, yC)

Figure 8. Extraction of sample points. All the corners of
the shape are missed.

In other words a part of the relevant information is
lost and in addition other information (noise) appears,
which can lead to wrong classification of the shapes. To
eliminate these deficiencies, the sample points must
include also the corners of the shape (if the shape has
corners). This is one of the development directions of the
recognition system presented in this work. Another
development direction consists on increasing the variety
of geometric shapes, which the system can recognize.

REFERENCES

Comon P., Voz J. L. and Verleysen M. (1994)

Estimation of performance bounds in supervised
classification, In M. Verleysen, editor, ESANN:
European Symposium on Artificial Neural
Networks, Bruxelles, pages. 37 - 42.

Davis L. S. (1977), Understanding shape: angles and
sides, IEEE Trans. on Computers, vol. C-26, pages
125-132.

Fukunuga K. (1986) Statistical pattern classification,
Handbook of Pattern Recognition and Image Proc.,
San Diego, CA: Academic Press, pages 3-32.

Funahashi K. I. (1989) On the approximate realization of
continuous mappings by neural networks, Neural
Networks, Vol. 2, pages 183-192.

Guyon I. (1990) Neural networks and applications,
Internal Report AT & T Bell Labs.

Hertz J., Krogh A., and Palmer R. (1991) Introduction to
the Theory of Neural Computation, Santa Fe
Institute Studies in Sciences of Complexity,
Addison-Wesley, Redwood City, California.

Hornik F. (1989) Multilayer feedforward networks are
universal approximators, Neural Networks, Vol. 2,
pages 359-363.

Khotanzad A., Lu J. (1990) Classification of invariant
image representations using a neural network, IEEE
Trans. on Acoustics, Speech and Signal Processing,
vol. 38, pages 214-222.

Kosko B. (1992) Neural networks and fuzzy systems: a
dynamical systems approach to machine
intelligence, Prentice Hall.

Mihu Z. I., Gellert A. and Suciu C. N. (2003) Geometric
shape recognition using fuzzy and neural
techniques, In Proceedings of the 11th International

Scientific Symposium SINTES 11, pages 354 – 358,
Craiova.

Montas J. (1987) Methodologies in pattern recognition
and image analysis - a brief survey, Pattern
Recognition, vol. 20, pages 1-6.

Perantonis S. J., Lisboa P. J. G. (1992) Translation,
rotation, scale invariant pattern recognition by
higher-order neural networks and moment
classifiers, IEEE Trans. on Neural Networks, vol. 3,
pages 243-251

Schalkoff R.J. (1997) Artificial Neural Networks,
McGraw-Hill.

Ulgen F., Akamatsu N. and Fukumi M. (1999) On-line
shape recognition with incremental training using a
neural network with binary synaptic weights,
Industrial Applications of NNs, CRC Press, pages
159-192;

Zurada J.M. (1992) Introduction to Artificial Neural
Systems, West Publishing Company, St. Paul.

