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Abstract: This paper is focused on on-line geometric shape recognition (Ulgen, et al., 1999) 
based on fuzzy techniques and backpropagation neural algorithm. We propose a new method 
for geometric shape recognition that consists of a hierarchical architecture implying a fuzzy 
classifier of angles and a multilayer neural network for training and classification of 
geometric shapes. Before the effective classification an on-line feature extraction process is 
applied. Our method examines the geometric shape as a whole in a way similar to the human 
recognition process. In the recognition process we have to use information that is invariant in 
terms of scaling, translation and rotation. The internal angles represent the relevant 
information relatively to the geometric shape. The key concept is that the neural network 
learns the internal angles of a shape. The optimal configuration of the neural network is 
determined based on the criterion of the performances’ maximization. The optimal fuzzy 
classifier is chosen based on the same criterion. 
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1. INTRODUCTION 
 
The artificial neural networks are composed of a 
multitude of neurons, simple processing elements that 
operate in parallel. A great advantage of the artificial 
neural networks is their capacity to learn on examples. In 
order to solve a problem traditionally, we have to 
elaborate its model, and after that we have to indicate a 
succession of operations that represents the solving 
algorithm of the problem. However there are practical 
problems with a high level of complexity, and for this 
kind of problems it is very hard or even impossible to 
establish an algorithm.  

In the connection models we are not forced to give a 
solving algorithm of a problem to the neural network, we 
have to offer him only a multitude of consistent 
examples. The network extracts the information from the 
training samples, in this way it is able to synthesize 
implicitly a certain model of the problem. In other 

words, the neural network builds up alone an algorithm 
to solve a problem. The capacity of the neural network to 
solve complex practical problems using a multitude of 
samples gives them a highly large potential of 
applicability. Building intelligent systems that can model 
human behavior has captured the attention of the world 
for years. So, it is not surprising that a technology such 
as neural networks has generated great interest. 

Ulgen, et al. (1999), in their work implemented a 
geometric shape classifier and they have used a neural 
network with binary synaptic weights (BSW). The BSW 
algorithm, which was implemented on a three layer 
network, determines the thresholds for the hidden and 
output layer nodes and the weights of the synaptic links 
between the layers, in addition to the number of hidden 
layer nodes in one feed-forward pass. The main concept 
of the algorithm can be explained as the separation of 
globally intermingled patterns within an n-dimensional 



space through the formation of hyperplanes that separate 
different classes of patterns at a local region in the space. 

In this work we use a multilayer feedforward neural 
network to recognize the basic geometric shapes such as 
circles, rectangles or triangles. We will choose the best 
configuration of the neural network based on the results 
obtained with our test images. 

 
 

2. THE MULTILAYER FEEDFORWARD NEURAL 
NETWORK 

 
This section introduces the backpropagation learning 
algorithm addressed by the architecture presented in this 
paper. More detailed descriptions can be found in classic 
introductory books (Hertz, et al., 1991). The typical 
artificial neuron model represents a device with n inputs 
and a single output. The output iy  of the i-th neuron of 
the network is computed as: 
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 for  i = 1, 2, …, m; 

 
where jiW ,  represents a coefficient or synaptic weight 

associated with the j-th input jx  and the i-th neuron. 

The weighted sum ip  is called potential. A typical node 
is depicted in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 1. A Perceptron node 
 
 
The nonlinear activation function σ in this case is the 
sigmoid, and the network is trained using the gradient 
descent method known as backpropagation. 
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Equation (1) can be rewritten in a matrix form as  
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Usually, the activation function σ  represents some 
saturating non-linear function. Neurons are often 
organized in layers, all neurons in a layer sharing the 
same inputs and having their outputs connected to the 
inputs of the next layer. The weight matrixes are then 
shown as ][qW , where q is the layer number. 

Neural networks usually undergo a learning process. 
The synaptic-weight matrixes are iteratively updated 
according to a learning rule. One of the simplest one is 
the Hebb rule: 
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where α is a learning factor. Though this rule is seldom 
used as stated, most of the commonly used learning rules 
are slight modifications of equation (4). 

Multilayer neural networks are used for pattern 
classification, pattern matching, and function 
approximation. By adding a continuously differentiable 
function, such as Gaussian or sigmoid function, it is 
possible for the network to learn practically any 
nonlinear mapping to any desired degree of accuracy. 
There are several ways that multilayer neural networks 
can have their connection weights adjusted to learn 
mappings. The most popular technique is the 
backpropagation algorithm and its many variants. 
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Figure 2. A multilayer perceptron with 2 active layers 

(one hidden layer). 
 
 

Multilayer networks make it possible to implement 
any arbitrary function )(xy rr

Φ= , xr  being the input of 

the first layer and ][Lyy rr
=  representing the output of 

the last layer L. Often the activation function σ  is a 
hyperbolic tangent. The function Φ  is learned by 
repeated presentation of input-output pairs { }dx

rr, , 
called prototypes. The backpropagation(BP) learning 
rule is a gradient-descent algorithm that updates the 
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weights to minimize the square-error on the learning 
prototypes. For that purpose an error signal is computed 
for each layer (Zurada 1992): 
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for q = 1, 2, …, L-1;    

 

where ( ) ( )
dv

vdv σσ =′ .  

The equations (5) and (6) are valid for all the i 
neurons (i = 1, 2, …, mq) of layer q. Once the errors have 
been back-propagated, the weights are updated as: 
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 for q = 1, 2, …, L,   where xy rr

=]0[ . 
 
 
3. GEOMETRIC SHAPE RECOGNITION 
 
The classical techniques based on shape partitioning into 
segments, followed by a syntactical analysis to match 
with a predefined shape, are strongly affected by noise 
and are weak in terms of generalization. In order to 
eliminate these limitations of the classical methods, our 
method examines the geometric shape as a whole in a 
way similar to the human recognition process. Human 
beings recognize such basic shapes regardless of the 
variations in size, noise on the shape border, translation, 
rotation, and in the case of triangles, regardless of the 
type of the triangle. That means that not the segments are 
important in the recognition process but the angles, 
which represent the relevant information relatively to the 
geometric shape. The key concept is that the neural 
network learns the internal angles of a shape (the angles 
between any two consecutive tangent vectors). As a 
consequence, the neural network training process will be 
simplified, therefore only a few training samples that 
represent a class of shapes (i.e. triangles, rectangles and 
elliptic shapes) are sufficient. Our application’s aim is to 
recognize the basic geometric shapes (elliptic, 
rectangular and triangular). 
 
 
3.1. Feature Extraction 
 

The purpose of preprocessing is to create an 
intermediate representation of the input data and it is 
performed on-line (prior to the application of recognition 
task). The preprocessing step can be defined as a feature 
extraction process that is important since it prepares 
input data that is invariant in terms of scaling, translation 
and rotation. The feature extraction is performed on the 
captured points along the boundary of the shape.  

Since the geometric shapes are hand-drawn using 
the mouse, the information could include noise due to 
the variations in capture speed of the mouse and erratic 
hand motion while drawing. We have to extract the 
features of the shape and to eliminate the noise appeared 
while drawing, keeping only the essential characteristics. 
Also the hand-drawn shape may contain interruptions 
that must be eliminated unifying the segments. The 
feature extraction process is composed of a number of 
steps, and the first of them is the calculation of the 
shape’s weight center. 
 
Calculation of the shape weight center. For the 
calculation of the weight center of a given geometric 
shape the next formulas are used: 
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where xc is the horizontal position of the shape’s weight 
center, yc is the vertical position of the shape’s weight 
center, n is the number of captured points while drawing, 
xi is the horizontal position of each captured point, and yi 
is the vertical position of each captured point. 
 
Extraction of significant points. The next step in the 
feature extraction process is the determination of the 
sample points. There are calculated n angularly 
equispaced vectors that start from the shape’s weight 
center; n is the number of sample points. The 
intersection of these vectors with the boundary of the 
shape represents the sample points of that shape. The 
next step consists in the calculation and the tracing out of 
the tangent vectors to the shape in these points. In our 
application the tangent vectors are obtained by the union 
of the sample points; unifying two successive sample 
points a tangent vector is obtained. 
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Figure 3.  Extraction of sample points (the intersections 
of the vectors with the shape’s boundary). 

 
 

As we can see in figure 3, a very important 
parameter in the recognizing process is the number of 
sample points. For an efficient extraction of the relevant 
information necessary for the recognition process of the 
geometric shape, we have to use a sufficient number of 
sample points. 



 
3.2. On-line Data Acquisition and Processing 
 

When we want to create a new geometric shape to 
be processed by the recognition system, we have to draw 
it with the mouse on the application’s frame. The 
drawing process can be interrupted anytime and resumed 
to complete the shape (that is the shape can be built by 
drawing multiple segments).  

The on-line data acquisition and processing 
consists of the following steps: 

 
• capturing successive points on the shape’s 

boundary; 
• extracting significant points; 
• calculating the angles between consecutive 

segments. 
 
Capturing successive points on the shape’s boundary. 
The first stage in obtaining the points from the shape’s 
boundary is very simple because the positions of the 
mouse during the drawing process are memorized. When 
the positions of the captured points are memorized, the 
shape’s weight center is on-line calculated, too (see 
chapter 3.1.). The capturing process is based on the drag 
and drop event handled by the operating system. The 
event generation frequency is constant on a certain 
computer but dependent on hardware platform. On the 
other hand, the drawing speed is different from user to 
user or even from instance to instance of the same user. 
On the drag and drop event there are captured a number 
of points that are not neighbors in the real shape’s 
boundary and that depends on the drawing speed (the 
number of points is greater if the drawing speed is low, 
and it is smaller in the case of a higher drawing speed). 
When the application was running on a modest PC 
computer (P200/64MB RAM), the user had to draw with 
a low speed for a sufficient number of points to be 
captured. In the case of a high drawing speed, using such 
a computer, the small number of captured points drove 
sometimes to major differences between the shapes 
obtained by the capturing process and the real shapes.  

Thus, if on the application’s frame are painted only 
the captured points obtained on the drag and drop event, 
a discontinuous copy of the real shape results. Visually 
the problem was solved tracing segments between any 
two consecutive captured points. Only the visual 
interface of the application was solved in this way. The 
second problem to be solved consists of finding the 
intersection points between the shape’s boundary and the 
angularly equispaced vectors starting from the shape’s 
weight center (see chapter 3.2.). There is the possibility 
that some of the angularly equispaced vectors don’t 
intersect with any of the captured points. In this case the 
extraction of significant points cannot be made and also 
the geometric shape cannot be approximated. 

To solve this problem we used an algorithm, which 
calculates and stores all the points between any two 
consecutive captured points obtained on the drag and 
drop event (figure 4). 

 There are two cases: 
 

• If the angle between the segment and the 
horizontal axes is greater than 45 degrees, the 
straight line’s equation is the following: 
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• If the angle between the segment and the 

horizontal axes is less or equal to 45 degrees, the 
straight line’s equation becomes: 
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Figure 4.  Calculating of the intermediate points between 

two consecutive captured points.  
 
After all the points between any two consecutive 
captured points are calculated, they are stored in a list. 
This list contains all the points of the geometric shape’s 
boundary in their drawing order. 
 
Extracting significant point. As it was described in 
chapter 3.1, there are calculated n angularly equispaced 
vectors starting from the shape’s weight center (n being 
the number of significant points – a parameter which 
will be chosen in order to maximize the application’s 
performance). The angular distance between any two 
consecutive vectors is:  

n
dist 360

=  (13) 

 
The intersection of these vectors with the shape’s 
boundary represents the significant points of that shape 
(for n vectors there will be n significant points). By 
tracing line segments between any two significant points 
an approximation of the geometric shape is obtained 
(figure 5). 
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Figure 5.  Approximation of a circle using 8 significant 

points. 
 
Calculating the angles between consecutive segments. 
The angle between two consecutive segments is 
determined by calculating the angles between each 
segment and the horizontal axes (figure 6). The angles 
between segments belong to the [0, 360) interval, it is so 
large because of the erratic hand motion during the 
drawing process. So, the angle is calculated depending 
on the quadrant (0-90, 90-270,270-360) it belongs to. 

In figure 6 for example, the angles between the two 
consecutive segments and the horizontal axes belong to 
the first quadrant:  
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where 1α , 2α  are the angles between the segments and 
the horizontal axes, and α is the angle between the two 
segments (one of the interior angles of the geometric 
shape). 
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Figure 6. Calculation of the angle between two 
consecutive segments, with )90,0[, 21 ∈αα . 

 
 
3.3. Fuzzy Classification 
 

To generate the input data for the neural network, 
after the feature extraction process follows the adaptation 
of the obtained information. The internal angles of a 
geometric shape offer the relevant information necessary 
to the classification process. The angles between the 
consecutive tangent vectors are calculated and we obtain 
n angles, which will be classified into four categories 
(fuzzy). Each angle will receive a membership value 
depending on the category to which it belongs, as it 
follows: 

 

• 2 for the angles less than 75 degrees;  
• 3 for angles between 75 and 135 degrees;  
• 1 for angles between 135 and 150 degrees;  
• 0 for the angles greater than 150 degrees;  
 

The membership values must be given in such a way 
that, after the addition of the membership values 
according to the n angles, to obtain different sums for 
each class of geometric shape (i. e. triangle, rectangle, 
circle). We have considered that the important angles are 
the angles less than 150 degrees.  

In the case of a rectangle or a triangle, along the 
sides we will have angles near to 180 degrees; because 
these angles are not significant, they receive 0 as 
membership value, in other words these angles will not 
contribute to the sum. Since the number of angles less 
than 150 degrees offers the relevant information 
necessary to the recognition process of the basic 
geometric shapes, only these angles, through their 
consistent membership values, will contribute to this 
sum, which will be a value from the interval [0, 3n]. 
Using the sum of the angles’ membership values the 
dimensions of the shape don’t matter (there is no 
difference between a little triangle and a big one), and 
not even the dimensions of the sides (there is no 
difference between a square and a rectangle), only the 
internal angles matter.  
 
 
3.4. Neural Recognition of the Shape 
 

The neural network’s architecture and the learning 
algorithm used were presented in section 2. The input 
vector for the neural network will be obtained after the 
serial coding of the sum of the membership values 
according to the internal angles of a given geometric 
shape. In this way, the sum’s value determines the 
number of bits on “1” in the serial code, and the rest of 
bits are “0”.  

The neural network is statically trained before its 
effective use. That means that the network will be 
trained using a set of prototypes (a number of 
representative learning shapes). Before starting the 
training process the weights are randomly initialized. 
During the training process, if the shape is correctly 
classified, only a backward step is made. If the shape is 
incorrectly classified, the backward step will be repeated 
until the classification becomes correct and one more 
time after that. 

For its effective use, the neural network is 
initialized with the weights generated by the static 
training process. During the effective run-time 
classification process only the forward step is performed. 

The dimension of the neural network’s input vector 
must be calculated taking into consideration the most 
disadvantageous case that appears when all the angles 
takes part of the category 3 (angles between 75 and 135 
degrees). In this case the calculated sum will have the 
maximum value (3n), and therefore we need 3n neurons 
in the input layer of the neural network. Consequently 
the neural network’s input vectors are sequences of 3n 
binary values. 



Since the neural network must recognize three 
categories of shapes (rectangles, triangles and circles), in 
the output layer we will have three neurons, one for each 
category. The neuron with the highest output value will 
win, specifying the category in which the shape takes 
part. Since the neural network used in this work has 
three layers, the dimension of the hidden layer represents 
a parameter and it’s value will be established based on 
the criterion of the performances’ maximization. We will 
vary in the next chapter the number of neurons from this 
layer; we want to obtain in this way the best 
configuration of the neural network. 

 
 

4. EXPERIMENTAL RESULTS 
 
The neural network was statically trained with 10 
learning shapes for each shape category. After the 
learning process the recognition system was evaluated 
using 30 test shapes for each category. In this chapter a 
number of architectural parameters are varied and the 
obtained results are presented. 

As we specified in chapter 3.1, in the feature 
extraction process we have to use a number of sample 
points as great as possible and in this way we can extract 
efficiently the relevant information necessary for the 
recognition process of the geometric shape. But if we use 
too many sample points there is a risk of appearance of 
the noise in the extracted information. Usually the noise 
appears because of the undesirable hand movements 
while drawing with the mouse. Therefore, the number of 
sample points represents another parameter that must be 
chosen based on the criterion of the performances’ 
maximization. We synthesize in the table 1 the influence 
of this parameter on the performances of the geometric 
shape recognition system: 
 
 

Table 1. The influence of the number of sample points 
on the shape classification. 

 
Shape [%] 16 32 48 64 
Circles  63,33 100 96,66 96,66 
Triangles  56,66 60 60 80 
Rectangles 86,66 70 63,33 26,66 
All shapes 68,88 76,66 73,33 67,77 
 

 
We can see that the best number of sample points is 32.  
 The internal angles of the shapes are classified into 
four categories in the fuzzyfication stage. We showed at 
3.3 that the little angles are the most important in the 
classification process. In chapter 3.3 we have also 
presented a variant of fuzzyfication. The method of 
according the membership values represents the third 
parameter that influences the performances of the 
recognition system. We studied four methods of 
fuzzyfication and, depending on the results, we chose the 
best solution in order to maximize the application 
performance. In the same time we have decreased the 
training time of the neural network from 10000 iterations 
to 1000. In table 2 are presented the obtained results. 
 

Table 2. Different methods of fuzzyfication of the 
internal angles 

 
Shape [%] I II III IV 
Circles  100 96,66 100 100 
Triangles  23,33 0 76,66 73,33 
Rectangles 96,66 100 90 100 
All shapes 73,33 65,55 88,88 91,11 

 
The four fuzzyfication methods used in this work have 
accorded membership values to the internal angles as 
follows:  
 
Method I: 

• 2 for the angles less than 75 degrees;  
• 3 for angles between 75 and 135 degrees;  
• 1 for angles between 135 and 150 degrees; 
• 0 for the angles greater than 150 degrees. 
 

Method II: 
• 3 for angles less than 90 degrees;  
• 2 for angles between 90 and 120 degrees;  
• 1 for angles between 120 and 150 degrees;  
• 0 for the angles greater than 150 degrees. 
 

Method III: 
• 4 for angles less then 90 degrees;  
• 2 for angles between 90 and 120 degrees;  
• 1 for angles between 120 and 150 degrees; 
• 0 for the angles greater than 150 degrees. 
 

Method IV: 
• 5 for angles less then 90 degrees; 
• 2 for angles between 90 and 120 degrees; 
• 1 for angles between 120 and 150 degrees; 
• 0 for the angles greater than 150 degrees. 

 
The obtained results show that the fourth method of 
fuzzyfication represents the best solution. 
 We have continued our work by studying the 
influence of the neural network’s architecture on the 
performances of the recognition system. We varied the 
number of neurons in the hidden layer (the first 
parameter) and we evaluated the recognizing rate for 
three different dimensions of the hidden layer: 5, 10 and 
20 neurons. The obtained results are presented in table 3. 
 
 

Table 3. The influence of the number of neurons from 
the hidden layer on the efficiency of the recognition 

system. 
 

Shape [%] 5 10 20 
Circles  96.66 100 100 
Triangles  23.33 73.33 73.33 
Rectangles 100 100 100 
All shapes 73.33 91.11 91.11 
 

 
 We can observe that the best solution is to use ten 
neurons in the hidden layer. If we increase the number of 



neurons in this layer over ten, the efficiency of the neural 
network doesn’t change, but the training time grows up 
exponentially. 
 
 
5. CONCLUSION 
 

In this work we presented a method of recognizing 
the basic geometric shapes. Both training and 
recognition process are made by extracting the features 
from the training (test) samples, and by classifying the 
internal angles of the shape. The information obtained 
after the fuzzyfication process is used as inputs for the 
multilayer feedforward neural network. The network 
learns the three classes of geometric shapes by their 
internal angles; the values of the internal angles are 
invariant in terms of scaling, translation and rotation. 

We studied the influence of the number of 
significant points used in the feature extraction process 
on the efficiency of the recognition system. A small 
number of significant points (less than 32) is not 
sufficient for a correct recognition of the geometric 
shapes. In this case the information obtained in the 
feature extraction process is not sufficiently consistent to 
assure the desired performances of the recognition 
system. On the other hand if we use too many significant 
points (over 32), there is a risk of appearance of the 
noise in the extracted information. The noise, which 
usually appears because of the undesirable hand 
movements while drawing with the mouse, overlaps the 
relevant information and in this way it degrades the 
performances of the recognition system. The evaluations 
drove us to the conclusion that the optimal number of 
significant points is 32.  

After that, we studied different fuzzyfication 
methods of the internal angles. The effected tests drove 
us to the conclusion that the little angles (less than 90 
degrees) are very important, because the number of these 
angles offers the relevant information necessary to the 
recognition system.  

Finally we studied the influence of the neurons’ 
number from the hidden layer on the efficiency of the 
neural network used in the recognition process. The tests 
show that the best solution for the number of neurons in 
this layer is ten. In our opinion the results show 
acceptable classification accuracy of 91.11% obtained on 
our test images. This means that 91.11% of the hand-
drawn shapes (test images) were correctly classified. 

An unsolved problem appeared in the feature 
extraction process. If the obtained significant points 
avoid the corners of the shape, a relevant internal angle 
is lost and it is replaced by other two successive angles.  

As you can see in figure 7, one corner of the triangle 
was replaced by two other corners and in this way, 
because the shape has four significant internal angles, it 
is possible that the recognition system will classify it as 
rectangle. In the same way, in figure 8, each significant 
angle is replaced with other two greater angles and the 
recognition system could classify the rectangle as being 
a circle.  
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Figure 7. Extraction of sample points. One corner of the 
triangle is missed. 
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Figure 8. Extraction of sample points. All the corners of 
the shape are missed. 

 
 

In other words a part of the relevant information is 
lost and in addition other information (noise) appears, 
which can lead to wrong classification of the shapes. To 
eliminate these deficiencies, the sample points must 
include also the corners of the shape (if the shape has 
corners). This is one of the development directions of the 
recognition system presented in this work. Another 
development direction consists on increasing the variety 
of geometric shapes, which the system can recognize. 
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