
Appeared in Journal of Digital Information Management, Vol. 11, Issue 5, ISSN: 0972-7272, pp. 366-377, 2013

Investigating a New Design Pattern for Efficient
Implementation of Prediction Algorithms

Arpad Gellert, Adrian Florea

Computer Science and Electrical Engineering Department, “Lucian Blaga” University of Sibiu,
Emil Cioran Street, No. 4, 550025 Sibiu, Romania

{arpad.gellert, adrian.florea}@ulbsibiu.ro

Abstract: In our previously published researches we used different prediction algorithms
to solve several problems in computer architecture and ubiquitous computing. During the
time, we observed what is common among different solutions and also what can
differentiate these solutions. Therefore, due to our experience in designing predictors, we
are able now to propose a simple and efficient general solution for any problem that
implies prediction. Since prediction is a widely used technique in many fields, our
proposed design pattern can be very useful for software developers.

Keywords: design patterns, predictor, reusable object-oriented software, Markov chain,
Multi-Layer Perceptron

1. Introduction

The general prediction mechanism consists in anticipating future contexts based on
current and previous context information, recovering the correct context if the speculation
fails and updating the predictor to improve future prediction accuracy. Prediction can be
very useful if the availability of some data in advance allows to reduce waiting times,
improving thus the efficiency. Obviously, the prediction must be accurate, because in
some applications a misprediction has costs due to the necessity of correct state recovery.
The quality of a prediction model is highly dependent on the quality of the available data.
Especially the choice of the features to base the prediction on is important. In our
previous works, we focused on prediction algorithms applied to solve several problems in
computer architecture (branch prediction, register value prediction, load value prediction)
and ubiquitous computing (person movement prediction). During the time, we have
designed and used different high complexity prediction methods based on Markov chains,
Hidden Markov Models (HMM), Neural Networks, and also some simple methods which
are very efficient for hardware implementation like the Last Value Predictor and the Two
Level Predictors. Prediction is a widely used technique in many fields and therefore we
propose a useful implementation solution. Thus, the aim of this paper is to introduce the
Predictor design pattern, to describe it and to illustrate an example of implementation.
This design pattern is not only focused on microarchitecture and ubiquitous computing,
on the contrary, is a solution for any subdomain of Computer Science which is using
pattern recognition, classification methods, etc. As far as we know, we are the first
researchers who define a design pattern for predictors.

The organization of the rest of this paper is as follows. In Section 2 we review the
related work in the fields of prediction and design patterns. Section 3 describes our
proposed design pattern. In Section 4 we present and explain code fragments of the

 2

Predictor implementation in Java and we also illustrate the experimental results. Section
5 concludes the paper.

2. Related Work

Several works (Gamma et al., 1995; Vlissides, 1998; Freeman et al., 2004; Kerievsky,
2004) present simple and elegant solutions to specific problems in object-oriented
software design. Design patterns are solutions that have been developed over time. These
solutions are maximizing both the reuse and the flexibility in software. The idea of a
Predictor design pattern is based on the fact that prediction mechanisms are used in many
applications, some of them previously designed by us.
 In previous works (Vintan et al., 2004; Gellert & Vintan, 2006) we designed
neural-, Markov- and HMM-based predictors to anticipate the next movements of
persons. The application predicts the next room based on the history of rooms, visited by
a certain person moving within an office building. These predictors were evaluated by
some movement sequences of real persons, acquired from the Smart Doorplates project
developed at University of Augsburg (Petzold, 2004). The simulation results have shown
accuracy in next location prediction reaching up to 92%. Other neural network
approaches used in ubiquitous systems were presented by Aguilar et al. (2003) and Mozer
(2004).
 In other research papers (Vintan et al., 2006; Gellert et al., 2007) we used
different prediction methods in order to anticipate the behavior of branch instructions
which appear in high level program constructs like if, switch, for, while, etc., and are a
major bottleneck in the instruction-level parallelism (ILP) exploitation of multiple
instruction issue microprocessors. During the time, several prediction methods have been
developed based on some well-known learning algorithms (Markovian, neural, Bayesian,
decision trees, support vector machine, etc.) simplified for efficient hardware
implementation. Through dynamic branch prediction, microprocessors are speculatively
processing multiple basic blocks in parallel and therefore their ability to increase ILP is
stronger. For the evaluations, the predictors were implemented in software simulators and
tested on the SPEC 2000 benchmarks. We used (Vintan et al., 2008), among other
metrics, a HMM-based prediction algorithm to evaluate the random degrees of some
difficult to predict branches and we have shown that these branches have intrinsic random
behavior, being generated by very complex program structures.
 In other works (Vintan et al., 2005; Gellert et al., 2009, 2010, 2012) we proposed
and implemented several value prediction methods in order to increase ILP in superscalar
and simultaneous multithreading microarchitectures. The idea of all these methods was to
unlock some dependent instructions by anticipating either the register values or the
results of the long latency load instructions. All these predictors were implemented in
software simulators in order to evaluate their prediction accuracy, but also the overall
processing performance and energy consumption, two very useful metrics from computer
architect viewpoint. Some of these predictors proved to be efficient regarding both
objectives (Gellert et al., 2010).
 All the predictors mentioned in this section fit the same general solution, being
differentiated just by the way the prediction is performed, therefore we consider that
presenting a design pattern for them could be very useful.

 3

3. Describing the Predictor Design Pattern

We provide in this section a description of the Predictor design pattern.

Intent: Provides an implementation template for any prediction mechanism. It can be
used to anticipate future states or symbols in a software application and it is useful when
speculatively knowing future states or symbols in advance unlocks some application-
specific dependencies involving thus an execution speedup.

Motivation: There are many situations when the behavior of a software process in a
certain context is always or mostly the same. In such cases, if we record the history of
contexts and the associated behaviors, when we identify those contexts in the future, we
can predict with high accuracy the corresponding behaviors. Obviously, it is possible to
encounter mispredictions, but a confidence mechanism can help to decide when to predict
or when to avoid prediction, increasing thus the overall accuracy.

Applicability: The Predictor design pattern can be used in applications which have
prediction processes. It helps to efficiently implement prediction mechanisms.

Structure: Figure 1 presents the class diagram of a system which is using the Predictor
design pattern.

Client
usesuses

AbstractConfidence

Trust(Object)
Untrust(Object)
IsPredictable(Object)

ConcreteConfidence

Trust(Object)
Untrust(Object)
IsPredictable(Object)

AbstractPredictor

Predict()
Update(Object)

ConcretePredictor

Predict()
Update(Object)

Client
usesuses

AbstractConfidence

Trust(Object)
Untrust(Object)
IsPredictable(Object)

AbstractConfidence

Trust(Object)
Untrust(Object)
IsPredictable(Object)

ConcreteConfidence

Trust(Object)
Untrust(Object)
IsPredictable(Object)

ConcreteConfidence

Trust(Object)
Untrust(Object)
IsPredictable(Object)

AbstractPredictor

Predict()
Update(Object)

AbstractPredictor

Predict()
Update(Object)

ConcretePredictor

Predict()
Update(Object)

ConcretePredictor

Predict()
Update(Object)

Figure 1. The structure of the Predictor design pattern

Participants:

• AbstractConfidence
• ConcreteConfidence
• AbstractPredictor
• ConcretePredictor
• Client

 4

Collaborations: AbstractConfidence relies on its subclass to define the Trust, Untrust
and IsPredictable methods. AbstractPredictor relies on ConcretePredictor to define the
Predict and Update methods. The prediction is performed as follows. The client checks if
the current context is predictable by calling the IsPredictable method of
ConcreteConfidence. Then the client calls the Predict method of ConcretePredictor and
the returned prediction is used in advance to unlock dependencies only if the current
context is predictable. When the real symbol is known, the client compares it with the
predicted one and correspondingly performs the update by calling the Update method of
ConcretePredictor, which introduces the new symbol to the recorded history of symbols,
and also by calling the Trust method of ConcreteConfidence in case of correct prediction
or the Untrust method in the misprediction case.

Consequences: The Predictor design pattern eliminates stalls by anticipating future states
based on current and previous context information. A potential disadvantage of using a
predictor can occur in some applications if the prediction accuracy is low due to the high
number of mispredictions and the recovery is time consuming.

Implementation: In this implementation the update of the predictor is performed by the
client and it consists in calling the Trust or Untrust method of the Confidence and the
Update method of the ConcretePredictor. If the number of possible observations is very
high we recommend the use of hash tables to keep prediction information.

Known uses: Markov- and HMM-based predictors (Gellert & Vintan, 2006; Vintan et
al., 2008) and Neural Networks (Vintan et al., 2004).

4. An Example of Predictor Implementation

To predict or anticipate a future situation, learning techniques as Markov Chains, Hidden
Markov Models, Bayesian Networks, Time Series or Neural Networks are obvious
candidates. The challenge is to adapt such algorithms to work with context information.
In this section we present a Markov chain used by Gellert & Vintan (2006) and also a
Multi-Layer Perceptron (MLP) used by Vintan et al. (2004), both implemented in Java to
predict the movements of employees within an office building. The goal of the research
was to design some smart doorplates that are able to direct visitors to the current location
of an office owner based on a location-tracking system and predict if the office owner is
soon coming back.

4.1. Person Movement Prediction

The application just generates statistics regarding person movement prediction and
reports the number of predictions, the number of correct predictions and also the
prediction accuracy. Figure 2 presents the class diagram of the application.

 5

Client1 usesuses

AbstractConfidence

Trust(Integer)
Untrust(Integer)
IsPredictable(Integer)

Confidence

Trust(Integer)
Untrust(Integer)
IsPredictable(Integer)

AbstractPredictor

Predict()
Update(Integer)

Markov

Predict()
Update(Integer)

Client2uses uses

MLP

Predict()
Update(Integer)

Client1 usesuses

AbstractConfidence

Trust(Integer)
Untrust(Integer)
IsPredictable(Integer)

Confidence

Trust(Integer)
Untrust(Integer)
IsPredictable(Integer)

AbstractPredictor

Predict()
Update(Integer)

Markov

Predict()
Update(Integer)

Client2uses uses

MLP

Predict()
Update(Integer)

Figure 2. The structure of the person movement predictor

AbstractPredictor is an interface which relies on a predictor class to define the predict
and update methods. The predict method anticipates the next observation based on the
history of observations. The update method must actualize the predictor by maximizing
the probability of correct predictions for the future. The AbstractPredictor is defined as
follows:

public interface AbstractPredictor {
 public abstract Integer predict();
 public abstract void update(Integer observation);
}

The Markov class is a concrete Markov-chain-based predictor which defines the predict
and update methods of the AbstractPredictor interface. The predict method identifies the
context consisting in the last R (input parameter) observation symbols, searches for it in
the observation sequence, determines which observation symbol followed the context
with the highest frequency and returns that symbol as the predicted next observation. A
transition-table-based implementation is also possible, but it is inefficient for a high
number of observation symbols. The update method adds the real observation symbol,
when it is available, to the observation sequence. More details about Markov predictors
were presented by Rabiner (1989). The Markov class is presented below:

public class Markov implements AbstractPredictor{
 int P[]; //the observation symbol probability distribution
 java.util.ArrayList Q = null; //the observation sequence
 int R = 0; //the order of the Markov Chain
 int N = 0; //number of observation symbols
 int T = 0; //length of observation sequence
 int context[]; //prediction context

 6

 public Markov(int nObservationSymbols, int order) {
 R = order; // the order of the Markov Chain
 context = new int[R];
 N = nObservationSymbols; // the number of distinct observation symbols
 Q = new java.util.ArrayList();
 }

 public Integer predict(){
 P = new int[N];
 T = Q.size();
 for(int k=0; k<R; k++)
 context[k] = ((Integer)Q.get(T-R+k)).intValue();
 for(int i=R; i<T; i++){
 boolean isContext = true;
 for(int k=0; k<R; k++)
 if(((Integer)Q.get(i-R+k)).intValue() != context[k]){
 isContext = false;
 break;
 }
 if(isContext)
 P[((Integer)Q.get(i)).intValue()]++;
 }
 int pred = 0;
 int max = P[0];
 for(int k=1; k<N; k++)
 if(P[k] > max){
 max = P[k];
 pred = k;
 }
 return new Integer(pred);
 }

 public void update(Integer observation){
 Q.add(observation);
 }
}

 The MLP class is another concrete predictor, a Multi-Layer Perceptron with one
hidden layer and is using the backpropagation learning algorithm. In general, the number
of neurons in the input and output layers depends on the representation of the problem. In
this application we chose binary encoding for the input layer and one-room-one-neuron
encoding for the output layer. The MLP class defines the predict and update methods of
the AbstractPredictor interface. Beside these methods, it contains some MLP-specific
methods like generateRandomWeights, F, dF, forward and backward, but also some
methods to codify the observation symbols to fit the input layer or the output layer,

 7

decimalToBinary and decimalToCode, respectively. For binary coded inputs and outputs,
the uni-polar sigmoid activation function can be used:

xe

xF −+
=

1

1
)((1)

Since in the presented application the inputs and outputs are codified with -1 and 1, the
following bi-polar sigmoid activation function was considered:

x

x

e

e
xF −

−

+
−=

1

1
)((2)

The activation function is defined in the F method and its derivate in dF. The
generateRandomWeights method is used to randomly initialize the weights in the [-2/N,
2/N] interval, where N is the number of input layer neurons (Gallant, 1993). More details
about the backpropagation algorithm used in MLPs are given by Mitchell (1997). The
definition of the MLP class is presented below:

import java.lang.Math;
public class MLP implements AbstractPredictor{
 java.util.ArrayList Q = null; //the observation sequence
 private int history;
 private int nNeuronsForSymbol;
 int input[]; //array of input values
 private int nInputLayerNeurons;
 private int nHiddenLayerNeurons;
 private int nOutputLayerNeurons;
 private double neth[]; //the hidden layer values before activation
 private double whin[][]; //hidden-input weight matrix
 private double bhin[]; //hidden layer bias array
 private double hidd[]; //hidden layer values after activation
 private double neto[]; //the output values before activation
 private double wohi[][]; //output-hidden weight matrix
 private double bohi[]; //output layer bias array
 public double out[]; //the output values after activation
 private double deltaout[]; //the output layer error terms
 private double deltain[]; //the hidden layer error terms
 private double learningRate = 0.3;

 public MLP(int nNeuronsForSymbol, int m, int p, double learningRate, int history){
 Q = new java.util.ArrayList();
 this.nNeuronsForSymbol = nNeuronsForSymbol;
 this.history = history;
 input = new int[history*nNeuronsForSymbol];
 this.nInputLayerNeurons = nNeuronsForSymbol* history;
 this.nHiddenLayerNeurons = m;
 this.nOutputLayerNeurons = p;
 this.learningRate = learningRate;

 8

 neth = new double[nHiddenLayerNeurons];
 whin = new double[nHiddenLayerNeurons][nInputLayerNeurons];
 bhin = new double[nHiddenLayerNeurons];
 hidd = new double[nHiddenLayerNeurons];
 neto = new double[nOutputLayerNeurons];
 wohi = new double[nOutputLayerNeurons][nHiddenLayerNeurons];
 bohi = new double[nOutputLayerNeurons];
 out = new double[nOutputLayerNeurons];
 deltaout = new double[nOutputLayerNeurons];
 deltain = new double[nHiddenLayerNeurons];
 generateRandomWeights();
 }

 private void generateRandomWeights(){
 double wi = 4.0/nInputLayerNeurons; //weight interval
 double hwi = 2.0/nInputLayerNeurons; //half weight interval
 for(int j=0; j<nHiddenLayerNeurons; j++){
 bhin[j] = ((Math.random()*10000)%(Math.floor(wi*100)))/100.0-hwi;
 for(int k=0; k<nInputLayerNeurons; k++)
 whin[j][k] = ((Math.random()*10000)%(Math.floor(wi*100)))/100.0-hwi;
 }
 for(int j=0; j<nOutputLayerNeurons; j++){
 bohi[j] = ((Math.random()*10000)%(Math.floor(wi*100)))/100.0-hwi;
 for(int k=0; k<nHiddenLayerNeurons; k++)
 wohi[j][k] = ((Math.random()*10000)%(Math.floor(wi*100)))/100.0-hwi;
 }
 }

 private double F(double x){
 return (1 - Math.exp(-1 * x))/(1 + Math.exp(-1 * x));
 }

 private double dF(double x){
 return (1 - (F(x)*F(x)))/2;
 }

 public void forward(int in[]){
 /* hidd <- in */
 int j,l;
 for(j=0; j<nHiddenLayerNeurons; j++){
 neth[j] = bhin[j];
 for(l=0; l<nInputLayerNeurons; l++)
 neth[j] += whin[j][l] * in[l];
 hidd[j] = F(neth[j]);
 }
 /* out <- hidd */

 9

 for(j=0; j<nOutputLayerNeurons; j++){
 neto[j] = bohi[j];
 for(l=0; l<nHiddenLayerNeurons; l++)
 neto[j] += wohi[j][l] * hidd[l];
 out[j] = F(neto[j]);
 }
 }

 public void backward(int tp[], int in[]){
 /* out -> hidd */
 for(int j=0; j<nOutputLayerNeurons; j++)
 for(int l=0; l<nHiddenLayerNeurons; l++){
 deltaout[j] = (tp[j] - out[j]) * dF(neto[j]);
 wohi[j][l] += learningRate*deltaout[j]*hidd[l];
 bohi[j] += learningRate*deltaout[j];
 }
 /* hidd -> in */
 for(int j=0; j<nHiddenLayerNeurons; j++)
 for(int l=0; l<nInputLayerNeurons; l++){
 deltain[j] = 0;
 for(int k=0; k<nOutputLayerNeurons; k++)
 deltain[j] += deltaout[k]*wohi[k][j]*dF(neth[j]);
 whin[j][l] += learningRate*deltain[j]*in[l];
 bhin[j] += learningRate*deltain[j];
 }
 }

 public void decimalToBinary(int dec, int bin[], int n){
 int k = 0, r=0, q = dec;
 while(q != 0){
 r = q%2;
 if(r == 0)
 r = -1;
 bin[k++] = r;
 q=q/2;
 }
 for(; k<n; k++)
 bin[k] = -1;
 }

 public void decimalToCode(int dec, int bin[], int n){
 for(int i=0; i<n; i++)
 bin[i] = -1;
 if(dec < n)
 bin[dec] = 1;
 }

 10

 public Integer predict(){
 int bin[] = new int[nNeuronsForSymbol];
 for(int i=0; i<history; i++){
 decimalToBinary(((Integer)Q.get(i)).intValue(), bin, nNeuronsForSymbol);
 for(int j=0; j<nNeuronsForSymbol; j++)
 input[i*nNeuronsForSymbol+j] = bin[j];
 }
 forward(input);
 // finding the position of the maximum output which will be predicted
 int maxOutputPos = 0;
 for(int i=1; i<nOutputLayerNeurons; i++)
 if(out[i] > out[maxOutputPos])
 maxOutputPos = i;
 return new Integer(maxOutputPos);
 }

 public void update(Integer observation){
 int tp[] = new int[nOutputLayerNeurons];
 Q.add(observation);
 if(Q.size()>history){
 Q.remove(0);
 decimalToCode(observation.intValue(), tp, nOutputLayerNeurons);
 backward(tp, input);
 }
 }
}

As it can be observed, the predict method codifies the input data (consisting in a certain
history of observations) from decimal to binary, propagates the input forward through the
network by calling the forward method and after that the index of the maximum output is
considered as being the predicted observation. The update method adds the real
observation symbol (when it is available) to the observation sequence, computes the
errors existing between the real observation symbol and the predicted one and after that
propagates these error terms backward through the network by calling the backward
method. The goal of the backward step is to adjust the weights in order to minimize the
error.

AbstractConfidence is another interface which relies on a concrete confidence
class to define the trust, untrust and isPredictable methods. The goal of the confidence
mechanism is to decide, based on the current observation symbol or context and its
attached confidence counter, if a potential prediction statistically likes to be correct or
not. It dynamically classifies observation symbols or contexts into predictable and
unpredictable and provides this classification through the isPredictable boolean method.
The goal of the trust and untrust methods is to increase or decrease the confidence in a
certain observation symbol or context when the prediction turns out to be correct or
wrong, respectively.

 11

public interface AbstractConfidence {
 public abstract void trust(Integer observation);
 public abstract void untrust(Integer observation);
 public abstract boolean isPredictable(Integer observation);
}

The Confidence class provides definitions for the trust, untrust and isPredictable
methods. In this example the confidence mechanism is implemented based on a set of
saturating counters, each one being associated to a distinct observation symbol. Figure 3
depicts a 4-state confidence counter with two predictable and two unpredictable states,
but other variants are also possible.

Unpredictable Unpredictable Predictable Predictable

Misprediction Misprediction Misprediction

Misprediction

Correct PredictionCorrect PredictionCorrect Prediction

Correct Prediction

UnpredictableUnpredictable UnpredictableUnpredictable PredictablePredictable PredictablePredictable

Misprediction Misprediction Misprediction

Misprediction

Correct PredictionCorrect PredictionCorrect Prediction

Correct Prediction

Figure 3. The confidence counter mechanism

The definition of the Confidence class is given below:

public class Confidence implements AbstractConfidence{
 int nStates;
 int threshold;
 int confidence[];

 public Confidence(int nObservationSymbols, int nStates, int threshold) {
 this.nStates = nStates;
 this.threshold = threshold;
 confidence = new int[nObservationSymbols];
 }

 public void trust(Integer observation){
 if (confidence[observation.intValue()] < nStates-1)
 confidence[observation.intValue()] ++;
 }

 public void untrust(Integer observation){
 if (confidence[observation.intValue()] > 0)
 confidence[observation.intValue()] --;
 }

 12

 public boolean isPredictable(Integer observation){
 if (confidence[observation.intValue()] >= threshold) return true;
 return false;
 }
}

The Confidence constructor receives as parameters the maximum number of distinct
observations, the number of states and a threshold which is used by the isPredictable
method. The current observation is classified as predictable only if its attached
confidence is in a state higher or equal to the threshold’s value.

The next code is a sequence from a client which generates statistics within a
certain prediction process regarding the number of predictions, the number of correct
predictions and also the prediction accuracy (computed as the report between the number
of correct predictions and the total number of predictions). First, it instantiates a Markov
predictor and a Confidence. The observations are then read from a file called in this
example benchmark.txt. For each current observation is determined if its attached
confidence is in a predictable state or not, a prediction being performed or not,
consequently. The predictor is updated with each new observation symbol. Thus, the
predictionProcess method represents the kernel of the application which creates a bridge
between the participant classes.

void predictionProcess() throws java.io.IOException{
 Markov markov = new Markov(nObservationSymbols, order);
 Confidence confTable = new Confidence(nObservationSymbols, 4, 2);
 Integer current = null;
 String line = null;
 Integer next = null;
 int numberOfCorrectPredictions = 0;
 int numberOfPredictions = 0;
 double predictionAccuracy = 0.0;
 java.io.BufferedReader in = null;
 try{
 in = new java.io.BufferedReader(new java.io.FileReader("benchmark.txt"));
 }
 catch(java.io.FileNotFoundException fnfe){
 fnfe.printStackTrace();
 }
 line = in.readLine(); //reading the first observation
 markov.update(new Integer(line));
 current = new Integer(line);
 while((line = in.readLine()) != null){
 next = new Integer(line);
 //checking predictability
 if(confTable.isPredictable(current))
 numberOfPredictions++; //total number of predictions
 //prediction of the next observation

 13

 if(markov.predict().equals(next)){ //correct prediction
 if(confTable.isPredictable(current))
 numberOfCorrectPredictions++;
 confTable.trust(current);
 }
 else confTable.untrust(current); //misprediction
 markov.update(next);
 current = next;
 }
 in.close();
 //computing prediction accuracy
 predictionAccuracy = numberOfCorrectPredictions / numberOfPredictions;
}

In the above example we used 4-state confidence counters with a threshold of 2 (meaning
two unpredictable and two predictable states. Obviously, the confidence mechanism can
be more selective, for example, having only one predictable state. In this case the
threshold parameter of the Confidence constructor is 3 instead of 2.

A client which is using the MLP predictor is similar, but instead of a Markov
object it instantiates a MLP object. It is also possible to attach a confidence counter to
combinations of two (Gellert & Vintan, 2006) or more observation symbols instead of
only one (as we did here).

4.2. Experimental results

The main goal of this work is to propose a design pattern for prediction algorithms, the
evaluations provided in this section being just a validation example of the predictor
design concept. The benchmark set used for the evaluations contains movement
sequences of 4 employees in 14 rooms, acquired from the Smart Doorplates project
developed at University of Augsburg (Petzold, 2004). Each file contains the location data
of a single test person. The benchmarks are text files generated by recording the
movements of the test persons through the offices located at the fourth floor in the
building of the Computer Science Institute at the University of Augsburg. Table 1 shows
the contents of a benchmark before and after the room codification process.

Original benchmark Benchmark after

room codification
2003.10.27 10:26:29;corridor;A;1067246789004 -
2003.10.27 10:26:35;402;A;1067246795003 0
2003.10.27 10:27:15;corridor;A;1067246835004 -
2003.10.27 10:27:20;412;A;1067246840003 1
2003.10.27 10:27:48;corridor;A;1067246868003 -
2003.10.27 10:27:51;402;A;1067246871659 0

Table 1. The first movements of person A before and after the room codification process

 14

Each line from the original benchmarks represents a person’s movement, containing the
movement’s date and hour, the room’s name, the person’s name and a timestamp. After
the codification process the benchmarks contain only the room codes (0÷13), because in
this starting stage of our work only this information is used for prediction. In the
codification process we have also eliminated from the benchmarks the common corridor,
because it could behave as noise. There are two benchmark types: some short
benchmarks containing about 300-400 movements and some long benchmarks containing
about 1000 movements. Our evaluations are based on the long benchmarks.

For the experiments we used the best Markov predictor configuration obtained by
Gellert & Vintan (2006) having order 2 and also the best MLP configuration obtained by
Vintan et al. (2004) having a learning rate of 0.1 a history of 2 rooms, N=8 neurons in the
input layer (4 neurons per room, enough to binary codify a maximum of 16 rooms) and 9
hidden layer neurons. The output layer contains one neuron for each room (14 neurons),
the position of the highest output being considered the predicted room.

In this work we are interested to predict the next room from all rooms excepting
the own office. Figure 4 presents comparatively the prediction accuracy (the report
between the number of correct predictions and the total number of predictions, expressed
as percentage) obtained using the Markov and MLP predictors without confidence and
also with 4-state confidence counters having 1 predictable state (denoted C1) or 2
predictable states (denoted C2):

84.04 84.50
89.04

73.28

93.58

0

10

20

30

40

50

60

70

80

90

100

A B C D Average

Benchmarks

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 [
%

]

Markov

Markov & C1

Markov & C2

MLP

MLP & C1

MLP & C2

Figure 4. The prediction accuracies obtained using the Markov and MLP predictors, with
and without confidence

The best results were obtained using the MLP predictor with the C1 confidence.

This method provided an average prediction accuracy of 84.5%, with a maximum of
93.58%. As Figure 4 shows, the confidence mechanism can increase the accuracy by
avoiding prediction when the confidence in a certain context is low. Obviously, the
confidence mechanism can missing from a predictor design, especially in applications
where mispredictions do not affect the general performance, but is necessary in
applications whose performances are decreased by mispredictions.

 15

Benchmark Markov & C1 Markov & C2 MLP & C1 MLP & C2
A 70.27% 81.08% 70.27% 80.18%
B 61.05% 79.78% 60.67% 79.40%
C 50.57% 73.58% 49.43% 71.70%
D 60.67% 74.06% 61.09% 74.06%
Average 60.64% 77.12% 60.37% 76.33%

Table 2. The prediction rates obtained using the Markov and MLP predictors with C1 and
C2 confidences

Table 2 shows how the prediction rate (the report between the number of

predictions and the total number of movements, expressed as percentage) is influenced by
the selectivity (threshold) of the confidence mechanisms for both predictors. The
prediction rate of the predictors without confidence is 100% because a prediction is
always performed. It can be observed that as more selective confidence mechanism we
used as higher accuracy and lower prediction rate we obtained.

5. Conclusions

In this study, we have presented the Predictor design pattern. We described this new
design pattern and provided an example which generates statistics regarding the
prediction accuracy. Obviously, a client can provide timing measurements, too, such as
we did for microarchitectural value predictors (Gellert et al., 2009, 2010, 2012). It is also
possible for a certain client application to use hybrid predictors such as cascaded
predictors or metapredictors, since usually a single predictor cannot capture all the types
of predictability patterns. In the cascaded prediction approach multiple predictors are
used in different stages, in a statically predefined order (fixed prioritization). A
metapredictor uses multiple predictors in one stage and dynamically selects the best
predictor (adaptive prioritization). A hybrid approach is motivated by the fact that even
the MLP predictor provided the highest average prediction accuracy, on the B benchmark
the Markov predictor was better.

Prediction is a widely used technique in computer science and engineering and
thus, in our opinion, the proposed design pattern can be very useful for software
developers but also for hardware architects, especially in designing the software
simulators of microprocessors – an important stage of computer architecture research and
design process (Yi & Lilja, 2006).

References

Aguilar, M., Barniv, Y., Garrett, A., 2003. Prediction of Pitch and Yaw Head Movements
via Recurrent Neural Networks, International Joint Conference on Neural Networks, Vol.
4, 2813-2818.

Freeman, E., Robson, E., Bates, B., Sierra, K., 2004. Head First Design Patterns,
O’Reilly Media, USA.

Gallant, S.I., 1993. Neural Networks and Expert Systems, MIT Press., USA.

 16

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, USA.

Gellert, A., Vintan, L., 2006. Person Movement Prediction Using Hidden Markov
Models. Studies in Informatics and Control, Vol. 15, No. 1, National Institute for
Research and Development in Informatics, 17-30.

Gellert, A., Florea, A., Vintan, M., Egan, C., Vintan, L., 2007. Unbiased Branches: An
Open Problem. Twelfth Asia-Pacific Computer Systems Architecture Conference
(ACSAC’07), 16-27.

Gellert, A., Florea, A., Vintan, L., 2009. Exploiting Selective Instruction Reuse and
Value Prediction in a Superscalar Architecture. Journal of Systems Architecture,
Elsevier, Vol. 55, Issue 3, 188-195.

Gellert, A., Palermo, G., Zaccaria, V., Florea, A., Vintan, L., Silvano, C., 2010. Energy-
Performance Design Space Exploration in SMT Architectures Exploiting Selective Load
Value Predictions. International Conference on Design, Automation and Test in Europe
(DATE 2010), 271-274.

Gellert, A., Calborean, H., Vintan, L., Florea, A., 2012. Multi-Objective Optimizations
for a Superscalar Architecture with Selective Value Prediction. IET Computers & Digital
Techniques, Vol. 6, No. 4 (July), 205-213.

Kerievsky, J., 2004. Refactoring to Patterns, Addison-Wesley, USA.

Mitchell, T., 1997. Machine Learning, McGraw-Hill, USA.

Mozer, M. C., 2004. Lessons from an adaptive house, Smart Environments: Technology,
Protocols, and Applications, J. Wiley & Sons, USA.

Petzold, J., 2004. Augsburg Indoor Location Tracking Benchmarks. Technical Report
2004-9, Institute of Computer Science, University of Augsburg, Germany.

Rabiner, L.R., 1989. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition, Proceedings of the IEEE, Vol 77, No. 2, 257-286.

Vintan, L., Gellert, A., Petzold, J., Ungerer, T., 2004. Person Movement Prediction Using
Neural Networks. Proceedings of the KI2004 International Workshop on Modeling and
Retrieval of Context (MRC 2004), Vol. 114, 618-623.

Vintan, L., Florea, A., Gellert, A., 2005. Focalising Dynamic Value Prediction to CPU’s
Context. IEE Proceedings – Computers & Digital Techniques, Vol. 152, No. 4, 457-536.

Vintan, L., Gellert, A., Florea, A., Oancea, M., Egan, C., 2006. Understanding Prediction
Limits through Unbiased Branches. Eleventh Asia-Pacific Computer Systems
Architecture Conference (ACSAC’06), 483-489.

Vintan, L., Florea, A., Gellert, A., 2008. Random Degrees of Unbiased Branches.
Proceedings of the Romanian Academy, Series A, No. 3, 259-268.

Vlissides, J., 1998. Pattern Hatching: Design Patterns Applied, Addison-Wesley, USA.

Yi, J.J., Lilja, D.J., 2006. Simulation of Computer Architectures: Simulators,
Benchmarks, Methodologies and Recommendations. IEEE Transactions on Computers,
Vol. 55, No. 3, 268-280.

