
Appeared in Journal of Digital Information Management, Vol. 11, Issue 5, ISSN: 0972-7272, pp. 366-377, 2013 

Investigating a New Design Pattern for Efficient 
Implementation of Prediction Algorithms 

 
Arpad Gellert, Adrian Florea 

Computer Science and Electrical Engineering Department, “Lucian Blaga” University of Sibiu,  
Emil Cioran Street, No. 4, 550025 Sibiu, Romania 

{arpad.gellert, adrian.florea}@ulbsibiu.ro 
 
Abstract: In our previously published researches we used different prediction algorithms 
to solve several problems in computer architecture and ubiquitous computing. During the 
time, we observed what is common among different solutions and also what can 
differentiate these solutions. Therefore, due to our experience in designing predictors, we 
are able now to propose a simple and efficient general solution for any problem that 
implies prediction. Since prediction is a widely used technique in many fields, our 
proposed design pattern can be very useful for software developers. 
 
Keywords: design patterns, predictor, reusable object-oriented software, Markov chain, 
Multi-Layer Perceptron 

1. Introduction 

The general prediction mechanism consists in anticipating future contexts based on 
current and previous context information, recovering the correct context if the speculation 
fails and updating the predictor to improve future prediction accuracy. Prediction can be 
very useful if the availability of some data in advance allows to reduce waiting times, 
improving thus the efficiency. Obviously, the prediction must be accurate, because in 
some applications a misprediction has costs due to the necessity of correct state recovery. 
The quality of a prediction model is highly dependent on the quality of the available data. 
Especially the choice of the features to base the prediction on is important. In our 
previous works, we focused on prediction algorithms applied to solve several problems in 
computer architecture (branch prediction, register value prediction, load value prediction) 
and ubiquitous computing (person movement prediction). During the time, we have 
designed and used different high complexity prediction methods based on Markov chains, 
Hidden Markov Models (HMM), Neural Networks, and also some simple methods which 
are very efficient for hardware implementation like the Last Value Predictor and the Two 
Level Predictors. Prediction is a widely used technique in many fields and therefore we 
propose a useful implementation solution. Thus, the aim of this paper is to introduce the 
Predictor design pattern, to describe it and to illustrate an example of implementation. 
This design pattern is not only focused on microarchitecture and ubiquitous computing, 
on the contrary, is a solution for any subdomain of Computer Science which is using 
pattern recognition, classification methods, etc. As far as we know, we are the first 
researchers who define a design pattern for predictors. 

The organization of the rest of this paper is as follows. In Section 2 we review the 
related work in the fields of prediction and design patterns. Section 3 describes our 
proposed design pattern. In Section 4 we present and explain code fragments of the 
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Predictor implementation in Java and we also illustrate the experimental results. Section 
5 concludes the paper. 

2. Related Work 

Several works (Gamma et al., 1995; Vlissides, 1998; Freeman et al., 2004;  Kerievsky, 
2004) present simple and elegant solutions to specific problems in object-oriented 
software design. Design patterns are solutions that have been developed over time. These 
solutions are maximizing both the reuse and the flexibility in software. The idea of a 
Predictor design pattern is based on the fact that prediction mechanisms are used in many 
applications, some of them previously designed by us. 
 In previous works (Vintan et al., 2004; Gellert & Vintan, 2006) we designed 
neural-, Markov- and HMM-based predictors to anticipate the next movements of 
persons. The application predicts the next room based on the history of rooms, visited by 
a certain person moving within an office building. These predictors were evaluated by 
some movement sequences of real persons, acquired from the Smart Doorplates project 
developed at University of Augsburg (Petzold, 2004). The simulation results have shown 
accuracy in next location prediction reaching up to 92%. Other neural network 
approaches used in ubiquitous systems were presented by Aguilar et al. (2003) and Mozer 
(2004). 
 In other research papers (Vintan et al., 2006; Gellert et al., 2007) we used 
different prediction methods in order to anticipate the behavior of branch instructions 
which appear in high level program constructs like if, switch, for, while, etc., and are a 
major bottleneck in the instruction-level parallelism (ILP) exploitation of multiple 
instruction issue microprocessors. During the time, several prediction methods have been 
developed based on some well-known learning algorithms (Markovian, neural, Bayesian, 
decision trees, support vector machine, etc.) simplified for efficient hardware 
implementation. Through dynamic branch prediction, microprocessors are speculatively 
processing multiple basic blocks in parallel and therefore their ability to increase ILP is 
stronger. For the evaluations, the predictors were implemented in software simulators and 
tested on the SPEC 2000 benchmarks. We used (Vintan et al., 2008), among other 
metrics, a HMM-based prediction algorithm to evaluate the random degrees of some 
difficult to predict branches and we have shown that these branches have intrinsic random 
behavior, being generated by very complex program structures. 
 In other works (Vintan et al., 2005; Gellert et al., 2009, 2010, 2012) we proposed 
and implemented several value prediction methods in order to increase ILP in superscalar 
and simultaneous multithreading microarchitectures. The idea of all these methods was to 
unlock some dependent instructions by anticipating either the register values or the 
results of the long latency load instructions. All these predictors were implemented in 
software simulators in order to evaluate their prediction accuracy, but also the overall 
processing performance and energy consumption, two very useful metrics from computer 
architect viewpoint. Some of these predictors proved to be efficient regarding both 
objectives (Gellert et al., 2010). 
 All the predictors mentioned in this section fit the same general solution, being 
differentiated just by the way the prediction is performed, therefore we consider that 
presenting a design pattern for them could be very useful. 
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3. Describing the Predictor Design Pattern 

We provide in this section a description of the Predictor design pattern.  
 
Intent: Provides an implementation template for any prediction mechanism. It can be 
used to anticipate future states or symbols in a software application and it is useful when 
speculatively knowing future states or symbols in advance unlocks some application-
specific dependencies involving thus an execution speedup. 
  
Motivation: There are many situations when the behavior of a software process in a 
certain context is always or mostly the same. In such cases, if we record the history of 
contexts and the associated behaviors, when we identify those contexts in the future, we 
can predict with high accuracy the corresponding behaviors. Obviously, it is possible to 
encounter mispredictions, but a confidence mechanism can help to decide when to predict 
or when to avoid prediction, increasing thus the overall accuracy.  
 
Applicability: The Predictor design pattern can be used in applications which have 
prediction processes. It helps to efficiently implement prediction mechanisms. 
 
Structure: Figure 1 presents the class diagram of a system which is using the Predictor 
design pattern. 
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Figure 1. The structure of the Predictor design pattern 
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• AbstractConfidence 
• ConcreteConfidence 
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Collaborations: AbstractConfidence relies on its subclass to define the Trust, Untrust 
and IsPredictable methods. AbstractPredictor relies on ConcretePredictor to define the 
Predict and Update methods. The prediction is performed as follows. The client checks if 
the current context is predictable by calling the IsPredictable method of 
ConcreteConfidence. Then the client calls the Predict method of ConcretePredictor and 
the returned prediction is used in advance to unlock dependencies only if the current 
context is predictable. When the real symbol is known, the client compares it with the 
predicted one and correspondingly performs the update by calling the Update method of 
ConcretePredictor, which introduces the new symbol to the recorded history of symbols, 
and also by calling the Trust method of ConcreteConfidence in case of correct prediction 
or the Untrust method in the misprediction case.  
 
Consequences: The Predictor design pattern eliminates stalls by anticipating future states 
based on current and previous context information. A potential disadvantage of using a 
predictor can occur in some applications if the prediction accuracy is low due to the high 
number of mispredictions and the recovery is time consuming. 
 
Implementation: In this implementation the update of the predictor is performed by the 
client and it consists in calling the Trust or Untrust method of the Confidence and the 
Update method of the ConcretePredictor. If the number of possible observations is very 
high we recommend the use of hash tables to keep prediction information. 
 
Known uses: Markov- and HMM-based predictors (Gellert & Vintan, 2006; Vintan et 
al., 2008) and Neural Networks (Vintan et al., 2004). 

4. An Example of Predictor Implementation 

To predict or anticipate a future situation, learning techniques as Markov Chains, Hidden 
Markov Models, Bayesian Networks, Time Series or Neural Networks are obvious 
candidates. The challenge is to adapt such algorithms to work with context information. 
In this section we present a Markov chain used by Gellert & Vintan (2006) and also a 
Multi-Layer Perceptron (MLP) used by Vintan et al. (2004), both implemented in Java to 
predict the movements of employees within an office building. The goal of the research 
was to design some smart doorplates that are able to direct visitors to the current location 
of an office owner based on a location-tracking system and predict if the office owner is 
soon coming back. 

4.1. Person Movement Prediction 

The application just generates statistics regarding person movement prediction and 
reports the number of predictions, the number of correct predictions and also the 
prediction accuracy. Figure 2 presents the class diagram of the application. 
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Figure 2. The structure of the person movement predictor 
 
AbstractPredictor is an interface which relies on a predictor class to define the predict 
and update methods. The predict method anticipates the next observation based on the 
history of observations. The update method must actualize the predictor by maximizing 
the probability of correct predictions for the future. The AbstractPredictor is defined as 
follows: 
 
public interface AbstractPredictor { 
  public abstract Integer predict(); 
  public abstract void update(Integer observation); 
} 

 
The Markov class is a concrete Markov-chain-based predictor which defines the predict 
and update methods of the AbstractPredictor interface. The predict method identifies the 
context consisting in the last R (input parameter) observation symbols, searches for it in 
the observation sequence, determines which observation symbol followed the context 
with the highest frequency and returns that symbol as the predicted next observation. A 
transition-table-based implementation is also possible, but it is inefficient for a high 
number of observation symbols. The update method adds the real observation symbol, 
when it is available, to the observation sequence. More details about Markov predictors 
were presented by Rabiner (1989). The Markov class is presented below: 
 
public class Markov implements AbstractPredictor{ 
  int P[];                //the observation symbol probability distribution 
  java.util.ArrayList Q = null; //the observation sequence 
  int R = 0;              //the order of the Markov Chain 
  int N = 0;              //number of observation symbols 
  int T = 0;              //length of observation sequence 
  int context[];          //prediction context 
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  public Markov(int nObservationSymbols, int order) { 
    R = order;     // the order of the Markov Chain 
    context = new int[R]; 
    N = nObservationSymbols; // the number of distinct observation symbols 
    Q = new java.util.ArrayList(); 
  } 
 
  public Integer predict(){ 
    P = new int[N]; 
    T = Q.size(); 
    for(int k=0; k<R; k++) 
      context[k] = ((Integer)Q.get(T-R+k)).intValue(); 
    for(int i=R; i<T; i++){ 
      boolean isContext = true; 
      for(int k=0; k<R; k++) 
        if(((Integer)Q.get(i-R+k)).intValue() != context[k]){ 
          isContext = false; 
          break; 
        } 
      if(isContext) 
        P[((Integer)Q.get(i)).intValue()]++; 
    } 
    int pred = 0; 
    int max = P[0]; 
    for(int k=1; k<N; k++) 
      if(P[k] > max){ 
        max = P[k]; 
        pred = k; 
      } 
    return new Integer(pred); 
  } 
 
  public void update(Integer observation){ 
    Q.add(observation); 
  }  
} 

 
 The MLP class is another concrete predictor, a Multi-Layer Perceptron with one 
hidden layer and is using the backpropagation learning algorithm. In general, the number 
of neurons in the input and output layers depends on the representation of the problem. In 
this application we chose binary encoding for the input layer and one-room-one-neuron 
encoding for the output layer. The MLP class defines the predict and update methods of 
the AbstractPredictor interface. Beside these methods, it contains some MLP-specific 
methods like generateRandomWeights, F, dF, forward and backward, but also some 
methods to codify the observation symbols to fit the input layer or the output layer, 
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decimalToBinary and decimalToCode, respectively. For binary coded inputs and outputs, 
the uni-polar sigmoid activation function can be used: 
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Since in the presented application the inputs and outputs are codified with -1 and 1, the 
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The activation function is defined in the F method and its derivate in dF. The 
generateRandomWeights method is used to randomly initialize the weights in the [-2/N, 
2/N] interval, where N is the number of input layer neurons (Gallant, 1993). More details 
about the backpropagation algorithm used in MLPs are given by Mitchell (1997). The 
definition of the MLP class is presented below: 
 
import java.lang.Math; 
public class MLP implements AbstractPredictor{ 
  java.util.ArrayList Q = null;  //the observation sequence 
  private int history; 
  private int nNeuronsForSymbol; 
  int input[];    //array of input values 
  private int nInputLayerNeurons; 
  private int nHiddenLayerNeurons; 
  private int nOutputLayerNeurons; 
  private double neth[];  //the hidden layer values before activation 
  private double whin[][];  //hidden-input weight matrix 
  private double bhin[];  //hidden layer bias array  
  private double hidd[];  //hidden layer values after activation 
  private double neto[];  //the output values before activation 
  private double wohi[][];  //output-hidden weight matrix 
  private double bohi[];  //output layer bias array 
  public double out[];   //the output values after activation 
  private double deltaout[];  //the output layer error terms 
  private double deltain[];  //the hidden layer error terms 
  private double learningRate = 0.3; 
 
  public MLP(int nNeuronsForSymbol, int m, int p, double learningRate, int history){ 
    Q = new java.util.ArrayList(); 
    this.nNeuronsForSymbol = nNeuronsForSymbol; 
    this.history = history; 
    input = new int[history*nNeuronsForSymbol]; 
    this.nInputLayerNeurons = nNeuronsForSymbol* history; 
    this.nHiddenLayerNeurons = m; 
    this.nOutputLayerNeurons = p; 
    this.learningRate = learningRate; 
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    neth = new double[nHiddenLayerNeurons]; 
    whin = new double[nHiddenLayerNeurons][nInputLayerNeurons]; 
    bhin = new double[nHiddenLayerNeurons]; 
    hidd = new double[nHiddenLayerNeurons]; 
    neto = new double[nOutputLayerNeurons]; 
    wohi = new double[nOutputLayerNeurons][nHiddenLayerNeurons]; 
    bohi = new double[nOutputLayerNeurons]; 
    out = new double[nOutputLayerNeurons]; 
    deltaout = new double[nOutputLayerNeurons]; 
    deltain = new double[nHiddenLayerNeurons]; 
    generateRandomWeights(); 
  } 
 
  private void generateRandomWeights(){ 
    double wi = 4.0/nInputLayerNeurons; //weight interval 
    double hwi = 2.0/nInputLayerNeurons; //half weight interval 
    for(int j=0; j<nHiddenLayerNeurons; j++){ 
      bhin[j] = ((Math.random()*10000)%(Math.floor(wi*100)))/100.0-hwi; 
      for(int k=0; k<nInputLayerNeurons; k++) 
        whin[j][k] = ((Math.random()*10000)%(Math.floor(wi*100)))/100.0-hwi; 
    } 
    for(int j=0; j<nOutputLayerNeurons; j++){ 
      bohi[j] = ((Math.random()*10000)%(Math.floor(wi*100)))/100.0-hwi; 
      for(int k=0; k<nHiddenLayerNeurons; k++) 
        wohi[j][k] = ((Math.random()*10000)%(Math.floor(wi*100)))/100.0-hwi; 
    } 
  } 
 
  private double F(double x){ 
    return (1 - Math.exp(-1 * x))/(1 + Math.exp(-1 * x)); 
  } 
 
  private double dF(double x){ 
    return (1 - (F(x)*F(x)))/2; 
  } 
 
  public void forward(int in[]){ 
    /* hidd <- in */ 
    int j,l; 
    for(j=0; j<nHiddenLayerNeurons; j++){ 
      neth[j] = bhin[j]; 
      for(l=0; l<nInputLayerNeurons; l++) 
        neth[j] += whin[j][l] * in[l]; 
      hidd[j] = F(neth[j]); 
    } 
    /* out <- hidd */ 
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    for(j=0; j<nOutputLayerNeurons; j++){ 
      neto[j] = bohi[j]; 
      for(l=0; l<nHiddenLayerNeurons; l++) 
        neto[j] += wohi[j][l] * hidd[l]; 
      out[j] = F(neto[j]); 
    } 
  } 
 
  public void backward(int tp[], int in[]){ 
    /* out -> hidd */ 
    for(int j=0; j<nOutputLayerNeurons; j++) 
      for(int l=0; l<nHiddenLayerNeurons; l++){ 
        deltaout[j] = (tp[j] - out[j]) * dF(neto[j]); 
        wohi[j][l] += learningRate*deltaout[j]*hidd[l]; 
        bohi[j] += learningRate*deltaout[j]; 
      } 
    /* hidd -> in */ 
    for(int j=0; j<nHiddenLayerNeurons; j++) 
      for(int l=0; l<nInputLayerNeurons; l++){ 
        deltain[j] = 0; 
        for(int k=0; k<nOutputLayerNeurons; k++) 
          deltain[j] += deltaout[k]*wohi[k][j]*dF(neth[j]); 
        whin[j][l] += learningRate*deltain[j]*in[l]; 
        bhin[j] += learningRate*deltain[j]; 
      } 
  } 
 
  public void decimalToBinary(int dec, int bin[], int n){ 
    int k = 0, r=0, q = dec; 
    while(q != 0){ 
      r = q%2; 
      if(r == 0) 
        r = -1; 
      bin[k++] = r; 
      q=q/2; 
    } 
    for(; k<n; k++) 
      bin[k] = -1; 
  } 
 
  public void decimalToCode(int dec, int bin[], int n){ 
    for(int i=0; i<n; i++) 
      bin[i] = -1; 
    if(dec < n) 
      bin[dec] = 1; 
  } 
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  public Integer predict(){ 
    int bin[] = new int[nNeuronsForSymbol]; 
    for(int i=0; i<history; i++){ 
      decimalToBinary(((Integer)Q.get(i)).intValue(), bin, nNeuronsForSymbol); 
      for(int j=0; j<nNeuronsForSymbol; j++) 
        input[i*nNeuronsForSymbol+j] = bin[j]; 
    } 
    forward(input); 
    // finding the position of the maximum output which will be predicted 
    int maxOutputPos = 0; 
    for(int i=1; i<nOutputLayerNeurons; i++) 
      if(out[i] > out[maxOutputPos]) 
        maxOutputPos = i; 
    return new Integer(maxOutputPos); 
  } 
 
  public void update(Integer observation){ 
    int tp[] = new int[nOutputLayerNeurons]; 
    Q.add(observation); 
    if(Q.size()>history){ 
      Q.remove(0); 
      decimalToCode(observation.intValue(), tp, nOutputLayerNeurons); 
      backward(tp, input); 
    } 
  } 
} 

 
As it can be observed, the predict method codifies the input data (consisting in a certain 
history of observations) from decimal to binary, propagates the input forward through the 
network by calling the forward method and after that the index of the maximum output is 
considered as being the predicted observation. The update method adds the real 
observation symbol (when it is available) to the observation sequence, computes the 
errors existing between the real observation symbol and the predicted one and after that 
propagates these error terms backward through the network by calling the backward 
method. The goal of the backward step is to adjust the weights in order to minimize the 
error. 

AbstractConfidence is another interface which relies on a concrete confidence 
class to define the trust, untrust and isPredictable methods. The goal of the confidence 
mechanism is to decide, based on the current observation symbol or context and its 
attached confidence counter, if a potential prediction statistically likes to be correct or 
not. It dynamically classifies observation symbols or contexts into predictable and 
unpredictable and provides this classification through the isPredictable boolean method. 
The goal of the trust and untrust methods is to increase or decrease the confidence in a 
certain observation symbol or context when the prediction turns out to be correct or 
wrong, respectively. 
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public interface AbstractConfidence { 
  public abstract void trust(Integer observation); 
  public abstract void untrust(Integer observation); 
  public abstract boolean isPredictable(Integer observation); 
} 

 
The Confidence class provides definitions for the trust, untrust and isPredictable 
methods. In this example the confidence mechanism is implemented based on a set of 
saturating counters, each one being associated to a distinct observation symbol. Figure 3 
depicts a 4-state confidence counter with two predictable and two unpredictable states, 
but other variants are also possible. 
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Misprediction Misprediction Misprediction

Misprediction

Correct PredictionCorrect PredictionCorrect Prediction

Correct Prediction

UnpredictableUnpredictable UnpredictableUnpredictable PredictablePredictable PredictablePredictable
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Correct PredictionCorrect PredictionCorrect Prediction

Correct Prediction

 
Figure 3. The confidence counter mechanism 

 
The definition of the Confidence class is given below: 
 
public class Confidence implements AbstractConfidence{ 
  int nStates; 
  int threshold; 
  int confidence[]; 
 
  public Confidence(int nObservationSymbols, int nStates, int threshold) { 
    this.nStates = nStates; 
    this.threshold = threshold; 
    confidence = new int[nObservationSymbols]; 
  } 
 
  public void trust(Integer observation){ 
    if ( confidence[observation.intValue()] < nStates-1 ) 
      confidence[observation.intValue()] ++; 
  } 
 
  public void untrust(Integer observation){ 
    if ( confidence[observation.intValue()] > 0 ) 
      confidence[observation.intValue()] --; 
  } 
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  public boolean isPredictable(Integer observation){ 
    if (confidence[observation.intValue()] >= threshold) return true; 
    return false; 
  } 
} 

 
The Confidence constructor receives as parameters the maximum number of distinct 
observations, the number of states and a threshold which is used by the isPredictable 
method. The current observation is classified as predictable only if its attached 
confidence is in a state higher or equal to the threshold’s value.  

The next code is a sequence from a client which generates statistics within a 
certain prediction process regarding the number of predictions, the number of correct 
predictions and also the prediction accuracy (computed as the report between the number 
of correct predictions and the total number of predictions). First, it instantiates a Markov 
predictor and a Confidence. The observations are then read from a file called in this 
example benchmark.txt. For each current observation is determined if its attached 
confidence is in a predictable state or not, a prediction being performed or not, 
consequently. The predictor is updated with each new observation symbol. Thus, the 
predictionProcess method represents the kernel of the application which creates a bridge 
between the participant classes.  
 
void predictionProcess() throws java.io.IOException{ 
    Markov markov = new Markov(nObservationSymbols, order); 
    Confidence confTable = new Confidence(nObservationSymbols, 4, 2); 
    Integer current = null; 
    String line = null; 
    Integer next = null; 
    int numberOfCorrectPredictions = 0; 
    int numberOfPredictions = 0; 
    double predictionAccuracy = 0.0; 
    java.io.BufferedReader in = null; 
    try{ 
      in = new java.io.BufferedReader(new java.io.FileReader("benchmark.txt")); 
    } 
    catch(java.io.FileNotFoundException fnfe){ 
      fnfe.printStackTrace(); 
    } 
    line = in.readLine();   //reading the first observation 
    markov.update(new Integer(line)); 
    current = new Integer(line); 
    while((line = in.readLine()) != null){ 
        next = new Integer(line); 
        //checking predictability 
        if(confTable.isPredictable(current)) 
          numberOfPredictions++;  //total number of predictions 
        //prediction of the next observation 
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        if(markov.predict().equals(next)){   //correct prediction 
          if(confTable.isPredictable(current)) 
            numberOfCorrectPredictions++; 
          confTable.trust(current); 
        } 
        else confTable.untrust(current);    //misprediction 
        markov.update(next); 
        current = next; 
    } 
    in.close(); 
    //computing prediction accuracy 
    predictionAccuracy = numberOfCorrectPredictions / numberOfPredictions; 
} 

 
In the above example we used 4-state confidence counters with a threshold of 2 (meaning 
two unpredictable and two predictable states. Obviously, the confidence mechanism can 
be more selective, for example, having only one predictable state. In this case the 
threshold parameter of the Confidence constructor is 3 instead of 2. 

A client which is using the MLP predictor is similar, but instead of a Markov 
object it instantiates a MLP object. It is also possible to attach a confidence counter to 
combinations of two (Gellert & Vintan, 2006) or more observation symbols instead of 
only one (as we did here).  

4.2. Experimental results 

The main goal of this work is to propose a design pattern for prediction algorithms, the 
evaluations provided in this section being just a validation example of the predictor 
design concept. The benchmark set used for the evaluations contains movement 
sequences of 4 employees in 14 rooms, acquired from the Smart Doorplates project 
developed at University of Augsburg (Petzold, 2004). Each file contains the location data 
of a single test person. The benchmarks are text files generated by recording the 
movements of the test persons through the offices located at the fourth floor in the 
building of the Computer Science Institute at the University of Augsburg. Table 1 shows 
the contents of a benchmark before and after the room codification process. 

 
Original benchmark Benchmark after 

room codification 
2003.10.27 10:26:29;corridor;A;1067246789004 - 
2003.10.27 10:26:35;402;A;1067246795003 0 
2003.10.27 10:27:15;corridor;A;1067246835004 - 
2003.10.27 10:27:20;412;A;1067246840003 1 
2003.10.27 10:27:48;corridor;A;1067246868003 - 
2003.10.27 10:27:51;402;A;1067246871659 0 

Table 1. The first movements of person A before and after the room codification process 
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Each line from the original benchmarks represents a person’s movement, containing the 
movement’s date and hour, the room’s name, the person’s name and a timestamp. After 
the codification process the benchmarks contain only the room codes (0÷13), because in 
this starting stage of our work only this information is used for prediction. In the 
codification process we have also eliminated from the benchmarks the common corridor, 
because it could behave as noise. There are two benchmark types: some short 
benchmarks containing about 300-400 movements and some long benchmarks containing 
about 1000 movements. Our evaluations are based on the long benchmarks. 

For the experiments we used the best Markov predictor configuration obtained by 
Gellert & Vintan (2006) having order 2 and also the best MLP configuration obtained by 
Vintan et al. (2004) having a learning rate of 0.1 a history of 2 rooms, N=8 neurons in the 
input layer (4 neurons per room, enough to binary codify a maximum of 16 rooms) and 9 
hidden layer neurons. The output layer contains one neuron for each room (14 neurons),  
the position of the highest output being considered the predicted room.  

In this work we are interested to predict the next room from all rooms excepting 
the own office. Figure 4 presents comparatively the prediction accuracy (the report 
between the number of correct predictions and the total number of predictions, expressed 
as percentage) obtained using the Markov and MLP predictors without confidence and 
also with 4-state confidence counters having 1 predictable state (denoted C1) or 2 
predictable states (denoted C2): 
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Figure 4. The prediction accuracies obtained using the Markov and MLP predictors, with 
and without confidence 

 
The best results were obtained using the MLP predictor with the C1 confidence. 

This method provided an average prediction accuracy of 84.5%, with a maximum of 
93.58%. As Figure 4 shows, the confidence mechanism can increase the accuracy by 
avoiding prediction when the confidence in a certain context is low. Obviously, the 
confidence mechanism can missing from a predictor design, especially in applications 
where mispredictions do not affect the general performance, but is necessary in 
applications whose performances are decreased by mispredictions. 
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Benchmark Markov & C1 Markov & C2 MLP & C1  MLP & C2 
A 70.27% 81.08% 70.27% 80.18% 
B 61.05% 79.78% 60.67% 79.40% 
C 50.57% 73.58% 49.43% 71.70% 
D 60.67% 74.06% 61.09% 74.06% 
Average 60.64% 77.12% 60.37% 76.33% 

Table 2. The prediction rates obtained using the Markov and MLP predictors with C1 and 
C2 confidences 

 
Table 2 shows how the prediction rate (the report between the number of 

predictions and the total number of movements, expressed as percentage) is influenced by 
the selectivity (threshold) of the confidence mechanisms for both predictors. The 
prediction rate of the predictors without confidence is 100% because a prediction is 
always performed. It can be observed that as more selective confidence mechanism we 
used as higher accuracy and lower prediction rate we obtained. 

5. Conclusions 

In this study, we have presented the Predictor design pattern. We described this new 
design pattern and provided an example which generates statistics regarding the 
prediction accuracy. Obviously, a client can provide timing measurements, too, such as 
we did for microarchitectural value predictors (Gellert et al., 2009, 2010, 2012). It is also 
possible for a certain client application to use hybrid predictors such as cascaded 
predictors or metapredictors, since usually a single predictor cannot capture all the types 
of predictability patterns. In the cascaded prediction approach multiple predictors are 
used in different stages, in a statically predefined order (fixed prioritization). A 
metapredictor uses multiple predictors in one stage and dynamically selects the best 
predictor (adaptive prioritization). A hybrid approach is motivated by the fact that even 
the MLP predictor provided the highest average prediction accuracy, on the B benchmark 
the Markov predictor was better.  

Prediction is a widely used technique in computer science and engineering and 
thus, in our opinion, the proposed design pattern can be very useful for software 
developers but also for hardware architects, especially in designing the software 
simulators of microprocessors – an important stage of computer architecture research and 
design process (Yi & Lilja, 2006). 
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