
ESCAPE : Environment for the Simulation of Computer
Architectures for the Purpose of Education

Peter Verplaetse Jan Van Campenhout Henk Neefs
Department of Electronics and Information Systems

University of Ghent, Belgium
fpvrplaetjneefsjjvcg@elis.rug.ac.be

Abstract| We have developed ESCAPE , an easy-to-use,
highly interactive portable PC-based simulation environ-
ment aimed at the support of computer architecture ed-
ucation. The environment can simulate both a micropro-
grammed architecture and a pipelined architecture with
single pipeline. Both architectures are custom-made, with
a certain amount of con�gurability. Other tools, such as
a memory monitor, assembler/disassembler and analysis
tools, such as on-the-
y generation of pipeline activity and
usage diagrams, are integrated with the environment.
Based upon our limited experience with the material so far,
we can state that the results are excellent. Students invari-
antly respond very positively, and the evaluations indicate
a far deeper understanding than was previously attainable
by using only the traditional textbook-and-paper-problems
approach.

I. Introduction

T
HE complexity of computer architectures has in-
creased signi�cantly over the past decades. It is our

experience that many students fail to understand even the
basic concepts, such as microprogrammed architectures or
pipelined execution with simple pipeline, making it impos-
sible to fully understand the operation of a contemporary
processor|typically superscalar with out-of-order execu-
tion, branch prediction and possible speculative execution.

One way to clarify these simple concepts is by the use of
simulation tools. There are many simulators for computer
architectures available, but most of them are unsuitable
for inexperienced users. Most simulators are designed with
accurate modeling as a main feature, as a result these sim-
ulators have a complexity similar to today's processors.

This paper describes ESCAPE , a computer architecture
simulation environment used extensively in an undergradu-
ate level course on computer architecture at the University
of Ghent. This environment was created to increase the ef-
fectiveness of the course, i.e. to increase the level of insight
in and understanding of computer architectures achieved
by the students.

The paper is organized as follows. We brie
y describe
the architectural aspects of both machines. Details of the
simulation software and possible uses for the environment
are described in the next sections. We then brie
y evalu-
ate the preliminary results obtained, and conclude with an
outlook on future work.

P. Verplaetse is a Research Assistant of the Fund for Scienti�c Re-
search { Flanders (Belgium)(F.W.O.)

II. Architectural details

The ESCAPE environment consists of two simulators.
The instruction set architectures of both machines are es-
sentially identical, even though the microarchitectural as-
pects are very di�erent (a microprogrammed processor ver-
sus a pipelined processor with simple pipeline). The in-
struction set architecture is inspired by Hennessy and Pat-
terson's DLX [1]. Contrary to the DLX architecture the
size of the bit�elds in the instruction encoding is not �xed,
but depends on the maximum number of instructions and
the size of the register �le. R-type instructions can have up
to 6 formals, which can be useful for implementing more
advanced operations in the microprogrammed architecture,
a popular homework assignment.

A. Microprogrammed architecture

The architecture consists of a control unit and a data-
path. A screenshot of the architecture as it appears in the
simulator is shown in �gure 1. The datapath consists of a

Fig. 1. Screenshot of the microprogrammed architecture.

register �le, a set of organizational registers and an ALU
which can perform a number of basic operations in a single
cycle. A built-in comparator does zero and sign detection
on the result.
The control unit is microcoded. Each cycle the mi-

crocode address is either incremented or replaced by an
absolute value. This jump address resides either in the
microcode or is read from a jump table (indexed by the
opcode �eld). The latter is useful for instruction decoding.



The number of jump tables is adjustable from 1 to 4.
The memory interface can load and store bytes, half-

words (16 bit) or words (32 bit), with adjustable access
time. Both instructions and data are stored in the same
memory (von Neumann architecture).
The microprogrammed architecture (both control unit

and datapath) have deliberately been kept simple. There
is no microcode pipelining register, it only has basic single-
cycled operations, and virtually no microcoding tricks have
been used [4]. The datapath is very lean, and could be im-
proved on several counts. This deliberate simplicity leaves
ample room for the students to suggest improvements for
the architecture.

B. Pipelined architecture

A screenshot of the pipelined architecture is shown in �g-
ure 2. Both the control unit and the datapath are pipelined

Fig. 2. Screenshot of the pipelined architecture.

into the �ve traditional stages: IF (instruction fetch), ID
(instruction decode), EX (execute and e�ective address
calculation), MEM (memory) and WB (write back). A
forwarding mechanism is implemented to prevent the pipe
from unnecessary stalling. The register �le is read in the
ID stage, but written during the WB stage. Write through
is explicit by the use of multiplexers.
The EX stage consists of an ALU and a comparator.

During the execution of a branch the comparator evaluates
the branch condition while the ALU calculates the e�ective
address. Depending on the settings of the simulator the
two instructions following the branch can be executed (i.e.,
a double delay slot), nulli�ed (no delay slot), or only the
instruction in the IF stage is nulli�ed (single delay slot).
There are two separate memory interfaces: one for in-

structions and one for data (Harvard architecture). Access
to the data memory occurs during the MEM stage. The
data memory access time is adjustable.

III. Features of the simulation environment

The ESCAPE environment has been implemented in
Borlandr's Delphir. Because the code is compatible with
Delphi 1.0, we have both 16- and 32-bit versions, which

makes the application run on every Windowsrbased oper-
ating system. A copy of the latest version, further docu-
mentation as well as sample exercises can be downloaded
from the web:

http://www.elis.rug.ac.be/~pvrplaet/escape.html

After starting the simulator an architecture speci�c form
appears. The layout of this form is based on the structural
representation of the architecture, as shown in �gures 1 and
2. Having all the key elements of the architecture on one
single form makes it possible to understand the processor
operation without having to swap back and forth between
windows. The forms have been designed to be displayable
with a 640 � 480 resolution, for classroom use.
A few other forms exist. The memory can be viewed

and/or edited in two ways. The data form acts as a mem-
ory monitor/editor that allows you to examine or edit the
memory content in groups of bytes, halfwords or words,
and di�erent number bases (unsigned hexadecimal and un-
signed or signed decimal). The code form behaves as an
assembler/disassembler that allows easy writing of assem-
bly code.
For the microprogrammed architecture a form similar

to the code form exists to edit the microinstructions and
jump tables. This is the so-called microcode form. Another
important form is the con�guration form, that allows one
to con�gure the two architectures.
Key features of the simulation environment are:

� easy-to-use interface;
� partially con�gurable, easy-to-understand custom-made
architectures;
� cycle-per-cycle simulation, or multi-cycle simulationwith
breakpoints;
� clock rewind, can be disabled to increase simulation
speed;
� memory monitor and assembler/disassembler;
� microcode editor;
� on-the-
y trace generation;
� on-the-
y generation of pipeline activity and pipeline us-
age diagrams;
� all �les are in ASCII format, which allows them to be
altered with external editors.

IV. Possible uses of ESCAPE

Studying the microprogrammed architecture will allow
the student to
� become acquainted with the basic synchronous operation
at the register transfer level of a datapath and its micro-
programmed control;
� learn the basics of microprogramming;
� learn about microprogram optimization techniques,
which is quite relevant with respect to contemporary VLIW
architectures;
� obtain quantitative data on speed and code size, the in-

uence of memory speed on microcode e�ciency, etc.
By using ESCAPE for simulating the pipelined architec-

ture, the student can
� become acquainted with pipelined operation, hazards
and their solutions;



� experiment with traditional code optimization tech-
niques such as code motion, register renaming, loop un-
folding, software pipelining, etc;
� perform small-scale quantitative measurements on
benchmark programs, which will result in better insight
on the power and main limitations of pipelined execution.

V. Results

A provisional version of the ESCAPE environment has
been used for two di�erent o�erings of the course: once in
a post-graduate version, addressed to students that gradu-
ated 5{10 years ago (class size: 15), and once in the regular
engineering curriculum of the University of Ghent (class
size: 120). From the experience gathered from homework
assignments, signi�cant improvement has been observed
both in the understanding of the architectural issues, as
in the ability to e�ectively deploy such architectures. The
comparison is based on the performance on similar assign-
ments during previous years.

VI. Conclusions and future work

In this paper, an interactive graphical simulation en-
vironment has been presented, aimed at the support of
computer architecture education. The environment allows
simulation of simple custom-made microprogrammed or
pipelined architectures. First experiments have revealed
signi�cant improvements of the teaching e�ectiveness. Stu-
dents invariantly respond very positively, and the evalua-
tions indicate a far deeper understanding than was pre-
viously attainable by using only the traditional textbook-
and-paper-problems approach.
At this point the environment simulates either a micro-

programmed or a pipelined machine with limited con�g-
urability. Several extensions and additions are being for-
mulated. We plan to extend the simulation model with
caches (which will result in variable instruction memory
access), out-of-order write back, multiple cycle ALU oper-
ations, multiple execution units, and possibly superscalar
pipelines with scoreboarding and branch prediction. This
will allow the use of a single environment for teaching a
wide range, from basic concepts to more advanced topics
in contemporary computer architecture.

References

[1] Hennessy, J.L, Patterson, D.A, \Computer Architecture A Quan-
titative Approach", Morgan Kaufmann Publishers, 1990 & 1996.

[2] Patterson,D.A, Hennesy, J.L, \ComputerOrganization& Design.
The Hardware/Software Interface", Morgan Kaufmann Publish-
ers, 1998.

[3] Flynn, M.J, \Computer Architecture Pipelined and parallel pro-
cessor design", Jones and Barlett Publishers, 1995.

[4] Rauscher, T.G., Adams, P.M., \Microprogramming: A Tutorial
and Survey of RecentDevelopments", IEEE transactions on Com-
puters, Vol. C-29, No. 1, pp 2{20, 1980.

[5] Sima, D., Fountain, T., and Kacsuk, P, \Advanced Computer Ar-
chitectures A Design Space Approach", Allison Wesley Longman,
1997.

[6] Heuring, V.P., and Jordan, H.F, \Computer Systems Design and
Architecture", Allison Wesley Longman, 1997.


