ESCAPE: Environment for the Simulation of Computer
Architectures for the Purpose of Education

Peter Verplaetse

Jan Van Campenhout

Henk Neefs

Department of Electronics and Information Systems
University of Ghent, Belgium
{pvrplaet|neefs|jvc}@elis.rug.ac.be

Abstract— We have developed ESCAPE, an easy-to-use,
highly interactive portable PC-based simulation environ-
ment aimed at the support of computer architecture ed-
ucation. The environment can simulate both a micropro-
grammed architecture and a pipelined architecture with
single pipeline. Both architectures are custom-made, with
a certain amount of configurability. Other tools, such as
a memory monitor, assembler/disassembler and analysis
tools, such as on-the-fly generation of pipeline activity and
usage diagrams, are integrated with the environment.
Based upon our limited experience with the material so far,
we can state that the results are excellent. Students invari-
antly respond very positively, and the evaluations indicate
a far deeper understanding than was previously attainable
by using only the traditional textbook-and-paper-problems
approach.

I. INTRODUCTION

HE complexity of computer architectures has in-

creased significantly over the past decades. It is our
experience that many students fail to understand even the
basic concepts, such as microprogrammed architectures or
pipelined execution with simple pipeline, making it impos-
sible to fully understand the operation of a contemporary
processor—typically superscalar with out-of-order execu-
tion, branch prediction and possible speculative execution.

One way to clarify these simple concepts is by the use of
simulation tools. There are many simulators for computer
architectures available, but most of them are unsuitable
for inexperienced users. Most simulators are designed with
accurate modeling as a main feature, as a result these sim-
ulators have a complexity similar to today’s processors.

This paper describes ESCAPE, a computer architecture
simulation environment used extensively in an undergradu-
ate level course on computer architecture at the University
of Ghent. This environment was created to increase the ef-
fectiveness of the course, 1.e. to increase the level of insight
in and understanding of computer architectures achieved
by the students.

The paper is organized as follows. We briefly describe
the architectural aspects of both machines. Details of the
simulation software and possible uses for the environment
are described in the next sections. We then briefly evalu-
ate the preliminary results obtained, and conclude with an
outlook on future work.

P. Verplaetse is a Research Assistant of the Fund for Scientific Re-
search — Flanders (Belgium)(F.W.0.)

II. ARCHITECTURAL DETAILS

The ESCAPE environment consists of two simulators.
The instruction set architectures of both machines are es-
sentially identical, even though the microarchitectural as-
pects are very different (a microprogrammed processor ver-
sus a pipelined processor with simple pipeline). The in-
struction set architecture is inspired by Hennessy and Pat-
terson’s DLX [1]. Contrary to the DLX architecture the
size of the bitfields in the instruction encoding is not fixed,
but depends on the maximum number of instructions and
the size of the register file. R-type instructions can have up
to 6 formals, which can be useful for implementing more
advanced operations in the microprogrammed architecture,
a popular homework assignment.

A. Microprogrammed architecture

The architecture consists of a control unit and a data-
path. A screenshot of the architecture as it appears in the
simulator is shown in figure 1. The datapath consists of a

& Microprogrammed Architecture - Example mpr o =]]
File View DOptions Help
Control Datapath

Q RO: 00000000

AR ADD R1: 00000004

00000001 |—

i 7ESZ0AE4

A
— 00000000 I— R3:
R

5 4: 9ESLCLIF
—CZAZEZEC'— RS
Rf: TZC3ADZF
: BOCFEFil

B73352CE

ED7BABS53

UUUUUUUA'—!

Reset

™ multiple cycles

‘v—[» : BLOBASL8
THP
- oooooo} Time

1AR ‘ | [
00ooo0
PC [
000004
1T — [Ciock
= MR 0 |
Memory LRl Rewind
MDR [— =
0o0ooon |
| | g1 "B 518 mi. naozone) }:'
Fig. 1. Screenshot of the microprogrammed architecture.

register file; a set of organizational registers and an ALU
which can perform a number of basic operations in a single
cycle. A built-in comparator does zero and sign detection
on the result.

The control unit is microcoded. FEach cycle the mi-
crocode address is either incremented or replaced by an
absolute value. This jump address resides either in the
microcode or is read from a jump table (indexed by the
opcode field). The latter is useful for instruction decoding.

The number of jump tables is adjustable from 1 to 4.

The memory interface can load and store bytes, half-
words (16 bit) or words (32 bit), with adjustable access
time. Both instructions and data are stored in the same
memory (von Neumann architecture).

The microprogrammed architecture (both control unit
and datapath) have deliberately been kept simple. There
1s no microcode pipelining register, 1t only has basic single-
cycled operations, and virtually no microcoding tricks have
been used [4]. The datapath is very lean, and could be im-
proved on several counts. This deliberate simplicity leaves
ample room for the students to suggest improvements for
the architecture.

B. Pipelined architecture

A screenshot of the pipelined architecture is shown in fig-
ure 2. Both the control unit and the datapath are pipelined

& Pipelined Architecture - Example.ppr -ol x|

e Miew Dptions Help

Datapath

LT 00000008 CUND |
PC RO: 00000000, ey
Rl: 34FD3818
RZ: GEDOFAFF SMDH Data
R3: 626EH46DD 34FD3O18 Memory
Rd: DZZG4EAT
RS: 467DDSZE, MAH
Ré: SDEGIDLE uuuuuum :
R7: FTEOL42ZE|
RS: 1ABLO0AS LMDR
= | R9: 45CCODIE k FFFFFFTF
RL0: BLEGB17D,
Rll: 8361340 H RES1 RES2
Rlz: 532F3546 H- 00000004 |——— FFFFFITF
Rl3: CEZDAEGE,
Rl4: B0F492ED) I
1" Control Unit——
Instruction| |1 g5 51, gsa0f 1R1 578 A1, muz}—‘i'nz ADDI RO, u:«uuli'm NOP
Memory
RW J— RALJ+RREM J— HA[0]+HHB[1|_J_ LLL
[~ multiple cycles Sizei
Reset |1nn g 3 | Rewind

Fig. 2. Screenshot of the pipelined architecture.

into the five traditional stages: IF (instruction fetch), 1D
(instruction decode), EX (execute and effective address
calculation), MEM (memory) and WB (write back). A
forwarding mechanism is implemented to prevent the pipe
from unnecessary stalling. The register file is read in the
ID stage, but written during the WB stage. Write through
is explicit by the use of multiplexers.

The EX stage consists of an ALU and a comparator.
During the execution of a branch the comparator evaluates
the branch condition while the ALU calculates the effective
address. Depending on the settings of the simulator the
two instructions following the branch can be executed (i.e.,
a double delay slot), nullified (no delay slot), or only the
instruction in the IF stage is nullified (single delay slot).

There are two separate memory interfaces: one for in-
structions and one for data (Harvard architecture). Access
to the data memory occurs during the MEM stage. The
data memory access time is adjustable.

I11. FEATURES OF THE SIMULATION ENVIRONMENT

The ESCAPE environment has been implemented in
Borland®’s Delphi®. Because the code is compatible with
Delphi 1.0, we have both 16- and 32-bit versions, which

makes the application run on every Windows®based oper-
ating system. A copy of the latest version, further docu-
mentation as well as sample exercises can be downloaded
from the web:

http://wuw.elis.rug.ac.be/ "pvrplaet/escape.html

After starting the simulator an architecture specific form
appears. The layout of this form is based on the structural
representation of the architecture, as shown in figures 1 and
2. Having all the key elements of the architecture on one
single form makes it possible to understand the processor
operation without having to swap back and forth between
windows. The forms have been designed to be displayable
with a 640 x 480 resolution, for classroom use.

A few other forms exist. The memory can be viewed
and/or edited in two ways. The data form acts as a mem-
ory monitor/editor that allows you to examine or edit the
memory content in groups of bytes, halfwords or words,
and different number bases (unsigned hexadecimal and un-
signed or signed decimal). The code form behaves as an
assembler /disassembler that allows easy writing of assem-
bly code.

For the microprogrammed architecture a form similar
to the code form exists to edit the microinstructions and
jump tables. This is the so-called microcode form. Another
important form is the configuration form, that allows one
to configure the two architectures.

Key features of the simulation environment are:

o easy-to-use interface;

+ partially configurable, easy-to-understand custom-made
architectures;

o cycle-per-cycle simulation, or multi-cycle simulation with
breakpoints;

o clock rewind,
speed;

o memory monitor and assembler/disassembler;

¢ microcode editor;

¢ on-the-fly trace generation;

o on-the-fly generation of pipeline activity and pipeline us-
age diagrams;

o all files are in ASCII format, which allows them to be
altered with external editors.

can be disabled to increase simulation

IV. PoOSSIBLE USES OF ESCAPE

Studying the microprogrammed architecture will allow
the student to
o become acquainted with the basic synchronous operation
at the register transfer level of a datapath and its micro-
programmed control;
o learn the basics of microprogramming;
¢ learn about microprogram optimization techniques,
which is quite relevant with respect to contemporary VLIW
architectures;
¢ obtain quantitative data on speed and code size, the in-
fluence of memory speed on microcode efficiency, etc.

By using ESCAPE for simulating the pipelined architec-
ture, the student can
o become acquainted with pipelined operation, hazards
and their solutions;

o experiment with traditional code optimization tech-
niques such as code motion, register renaming, loop un-
folding, software pipelining, etc;

o perform small-scale quantitative measurements on
benchmark programs, which will result in better insight
on the power and main limitations of pipelined execution.

V. RESULTS

A provisional version of the ESCAPE environment has
been used for two different offerings of the course: once in
a post-graduate version, addressed to students that gradu-
ated 5-10 years ago (class size: 15), and once in the regular
engineering curriculum of the University of Ghent (class
size: 120). From the experience gathered from homework
assignments, significant improvement has been observed
both in the understanding of the architectural issues, as
in the ability to effectively deploy such architectures. The
comparison is based on the performance on similar assign-
ments during previous years.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an interactive graphical simulation en-
vironment has been presented, aimed at the support of
computer architecture education. The environment allows
simulation of simple custom-made microprogrammed or
pipelined architectures. First experiments have revealed
significant improvements of the teaching effectiveness. Stu-
dents invariantly respond very positively, and the evalua-
tions indicate a far deeper understanding than was pre-
viously attainable by using only the traditional textbook-
and-paper-problems approach.

At this point the environment simulates either a micro-
programmed or a pipelined machine with limited config-
urability. Several extensions and additions are being for-
mulated. We plan to extend the simulation model with
caches (which will result in variable instruction memory
access), out-of-order write back, multiple cycle ALU oper-
ations, multiple execution units, and possibly superscalar
pipelines with scoreboarding and branch prediction. This
will allow the use of a single environment for teaching a
wide range, from basic concepts to more advanced topics
in contemporary computer architecture.

REFERENCES

[1] Hennessy, J.L, Patterson, D.A, “Computer Architecture A Quan-
titative Approach”, Morgan Kaufmann Publishers, 1990 & 1996.

[2] Patterson,D.A, Hennesy, J.L., “Computer Organization & Design.
The Hardware/Software Interface”, Morgan Kaufmann Publish-
ers, 1998.

[3] Flynn, M.J, “Computer Architecture Pipelined and parallel pro-
cessor design”, Jones and Barlett Publishers, 1995.

[4] Rauscher, T.G., Adams, P.M., “Microprogramming: A Tutorial
and Survey of Recent Developments”, IEEE transactions on Com-
puters, Vol. C-29, No. 1, pp 2-20, 1980.

[5] Sima,D., Fountain, T., and Kacsuk, P, “Advanced Computer Ar-
chitectures A Design Space Approach”, Allison Wesley Longman,
1997.

[6] Heuring, V.P., and Jordan, H.F, “Computer Systems Design and
Architecture”, Allison Wesley Longman, 1997.

