A simple analytical model [1]
High prediction accuracy is vital especially in the case of multiple instruction issue processors. In this section we assume the analytical model proposed in [2] related to a superscalar processor that ignores stalls like cache misses and bus conflicts focalizing only about the penalty introduced by branch miss-prediction. Considering Branch Penalty (BP) as the average number of wasted cycles due to a branch miss-prediction for each dynamic instruction, it can be written the following relation:

BP= C·(1-Ap)·b·IR
[wasted clock / instruction]

(4)

Where we denoted:

C = number of penalty cycles wasted due to a branch miss-prediction;

Ap = prediction accuracy;

b = the ratio of the number of branches reported to the number of total instructions;

IR = the average number of instructions that are executed per cycle.

Now we compute how many cycles take the execution of each instruction for a real superscalar processor that includes a branch predictor:

CPIreal = CPIideal + BP
[clock cycle / instruction]

(5)

Where:

CPIideal = represents the average number of cycles per instruction considering a perfect branch prediction (Ap=100% (BP=0). It is obviously that CPIideal < 1.

CPIreal = represents the average number of cycles per instruction considering a real branch prediction (Ap<100% (BP>0 (CPIreal > CPIideal).

Therefore, the real processing rate (the average number of instructions executed per cycle) results immediately from formula:

IRreal =
[image: image1.wmf]BP

CPI

1

CPI

1

ideal

real

+

=

 [instruction / clock cycle]
(6)
The relation (6) proves the non-linearly correlation between processing rate (IR) and prediction accuracy (Ap). With these metrics, we adapted the model to our results presented during this paragraph. Further, we use the following notations:

x = the ratio of biased context instances

1 - x = the ratio of unbiased context instances

In our simulations [3] we obtained using the Gshare predictor the global prediction accuracy Apglobal = 93.60% (prediction applied to all branches) and respectively the unbiased prediction accuracy Apunbiased = 72.2% (only unbiased branches were predicted). Since Apglobal represents a weighted mean among predictions accuracies applied both to bias and unbiased branches, it can be determined the biased prediction accuracy Apbiased.

Apglobal = X * Apbiased + (1-x) * Apunbiased

(7)

Considering Apglobal = 0.936 = 0.8253*Abiased + 0.1747*0.722, it results that Apbiased = 0.9813. Obviously, if we would predict the unbiased branches with a more powerful branch predictor having, for example, 95% prediction accuracy, involves an accuracy gain: Accuracy_gain =(0.95-0.722)*(1-x). More than that, this accuracy gain involves a processing rate speed-up according to (4) and (6) formulas. This gain justifies the importance and the necessity of finding and solving the difficult predictable branches. However, finding of predictor that obtains so high prediction accuracy was beyond the scope of our work.

Therefore, further we determined how much is influenced the branch penalty (BP) by the increasing of context length and what is the speed-up in these conditions. For this, we softly modified the initial model proposed by Chang [2] by substituting Ap with our Apglobal, according to formula (7). Thus, it is considered a penalty introduced for miss-prediction of biased branches – the term (1-Apbiased)*x, respectively for considered wrong prediction of all unbiased branches (Apunbiased=0) – the term (1-x).

	Model proposed by Chang
	Our “modified” model

	BP= C·(1-Ap)·b·IR
	BP = C·b·IR·[1– x Apbiased] (8)

In our previous research [3] we proved a decrease of unbiased branches (1-x) by extending the context length that leads to a reduction of branch penalty (BP) according to (8), and implicitly to a greater IR according to (6). It can be written the followings relations ((means a growth):

Context (Features Set) Length (=> x (=> BP (=> IR (=> (Relative Speedup>0

Next, we computed the IR relative speedup when varying the context length. Starting from the well-known metric
[image: image2.wmf]1

)

16

(

)

(

³

=

IR

L

IR

Speedup

, where L is the feature’s length, L ({20, 24, and 28}, we obtained the relative speedup: Relative Speedup
[image: image3.wmf]0

)

16

(

)

16

(

)

(

³

-

=

IR

IR

L

IR

. Figure 1 illustrates the IR relative speedup obtained when varying the context length. The baseline processor model has an IRideal of 4 [instruction / clock cycle] and incorporates a branch predictor with 98.13% prediction accuracy for biased branches. The number of penalty cycles wasted due to a branch miss-prediction considered in our model is 7. The ratio of the number of simulated branches over the number of total simulated instructions is b=8% (generated by our previous simulations [3]).

[image: image4.emf]IR Relative Speedup when varying the Context length

 19.61

 49.35

 57.94

0

10

20

30

40

50

60

70

20 24 28

Context Length

Relative Speedup [%]

IR Relative Speedup

[%] over the IR

obtained having

Context length of 16

Figure 1. The IR relative speedup obtained growing the context length

Figure 1 illustrates not only the necessity of a greater number of prediction features to improve the processor’s performance, but also the necessity of new performing branch predictors that could consider a larger amount of information in generating predictions (but without scaling exponentially with input features set length).

References

[1] Vintan L., Prediction Techniques in Advanced Computing Architectures (in english), MatrixRom Publishing House, Bucharest, ISBN 978-973-755-137-5, 2007.
[2] Chang P.-Y., Hao E., Yeh T.-Y., Patt Y. N., Branch Classification: A New Mechanism for Improving Branch Predictor Performance, Proceedings of the 27th International Symposium on Microarchitecture, San Jose, California, 1994.
[3] Vinţan L, Gellert A., Florea A., Oancea M., Egan C., Understanding Prediction Limits through Unbiased Branches, Eleventh Asia-Pacific Computer Systems Architecture Conference, Shanghai 6-8th, September, 2006 (“Lecture Notes in Computer Science” vol. 4186, pp. 480-487, Springer-Verlag, Berlin / Heidelberg, 2006)

_1200063885.unknown

_1200063892.unknown

_1200064166.xls
Diagramă1

		20

		24

		28

IR Relative Speedup [%] over the IR obtained having Context length of 16

Context Length

Relative Speedup [%]

IR Relative Speedup when varying the Context length

19.61

49.35

57.94

Foaie1

		

				IR Relative Speedup [%] over the IR obtained having Context length of 16

		20		19.61

		24		49.35

		28		57.94

		BP=C*IR*b*[1-x*Apbias]

		C=7

		b=0.08

		IR=4

		Apbias=0.9813

		x - variaza de la 16 la 28 din 4 in 4

		IRreal=1/(1/IR+BP)

Foaie1

		0

		0

		0

IR Relative Speedup [%] over the IR obtained having Context length of 16

Context Length

Speed-up [%]

IR Relative Speedup when varying the Context length

0

0

0

Foaie2

		

Foaie3

		

_1200063860.unknown

