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REZUMAT: In modern superscalar micro architectures that speculatively execute a great quantity of code, without performing branch prediction, it won’t be possible to aggressively exploit program’s instruction level parallelism. Both the architectural and technological complexity of current processors emphasizes the negative impact on performance due to every miss predicted branch. Thus, branch prediction becomes a core topic in Computer Architecture curricula. The fast development of computer science and information technology domains, and of computer architecture especially, have determined that many software tools used not far ago in research, to be enhanced with an interactive graphical interface and to be taught in Introductory Computer Organization respectively Computer Architecture courses. The lack of simulators dedicated to branch prediction used in didactical purposes despite of plenty used in research goals, represents the starting point of this paper. The main aim of this work consists in identifying the difficult-to-predict branches, quantifying them at benchmarks level and finding the relevant information to reduce their numbers. Finally, we evaluate the impact of these branches on three commonly used prediction contexts (local, global and path) and their corresponding predictors ranging from classical two-level predictors to present-day state of the art neural predictors (Simple Perceptron and Fast Path-based Perceptron). The developed ABPS simulator provides a wide variety of configuration options. Beside statistics related to the number of difficult-to-predict branches, the simulator generates graphical results illustrating the influence of different simulation parameters (number of entries in prediction table, history length, etc.) on prediction accuracy, resources usage degree, etc., for every implemented predictor. Also important, ABPS permits the migration of some mature actual scientific problems to students’ understanding level.

· All present branch prediction techniques are limited in their accuracy. Our aim is to demonstrate that an important limitation cause is given by the used prediction contexts (global and local histories, path information). Using these dynamic contexts, some branches are unbiased and non-deterministically shuffled, thus unpredictable. The percentages of these branches represent a fundamental prediction limitation.
· It is well known that simulators have become an integral part of the computer architecture research and design process. The actual didactical simulators in Computer Architecture are focused on caches, Instruction Set Architecture and processor’s assembly language, out-of-order execution mechanism or even power consumption but neither of them is dedicated to branch prediction. In this work we implement the ABPS (Advanced Branch Prediction Simulator), an interactive graphical trace-driven simulator for teaching branch prediction on 25 programs (17 of them having 1 million of dynamic branch instructions each) from different versions of SPEC and Stanford benchmarks.
· From a pedagogical point of view, the proposed tool benefits the learning process because it helps students to observe the influence of each parameter on the simulation model.
· The Detector kernel of ABPS finds the unbiased branches and quantifies their number. The detection of unbiased branches can be made in two ways: cascaded mode or from beginning.

· The inputs for Detector are:
· global history length  – GH

· local history length  – LH

· a flag that shows if path information is correlated (concatenated)

· polarization degree  of each context instance

· The Predictor kernel includes the present-day branch prediction schemes:

· Two Level Predictors
· GAg

· GShare

· PAg

· PAp
· Neural Predictors
· Simple Perceptron

· Fast path-based Perceptron
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Prediction accuracy over SPEC 2000 benchmarks using a fast path-based perceptron predictor
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The following simulation illustrates detection of unbiased branches for FPERM benchmark.
1. Parameters: HRl = not selected, HRg on 3 bits, => Unbiased contexts: 25.0[%]

From the unbiased branches list we have selected just two branch instructions in two global contexts:

PC: 35 HRg: 101 T: 2520 NT: 1100 Bias: 0.696
PC: 58 HRg: 111 T: 1419 NT: 3620 Bias: 0.718
2. Parameters: HRl = not selected, HRg on 4 bits, => Unbiased contexts: 17.813[%]

PC: 35 HRg: 0101 T: 840 NT: 260 Bias: 0.763
PC: 35 HRg: 1101 T: 1680 NT: 840 Bias: 0.667
PC: 58 HRg: 0111 T: 1419 NT: 1100 Bias: 0.563
PC: 58 HRg: 1111 T: 0 NT: 2520 Bias: 1.000 => The branch with address PC: 58 in context HRg: 1111 became fully biased. Practically it didn’t appear in the unbiased branch list.
3. Parameters: HRl on 1 bit, HRg on 4 bits, => Unbiased contexts: 17.813[%]

PC: 35 HRg: 0101 HRl: 0 T: 840 NT: 260 Bias: 0.763
PC: 35 HRg: 0101 HRl: 1 – this context didn’t occur
PC: 35 HRg: 1101 HRl: 0 T: 1680 NT: 840 Bias: 0.667

PC: 35 HRg: 1101 HRl: 1 – this context didn’t occur
PC: 58 HRg: 0111 HRl: 0 T: 1419 NT: 1100 Bias: 0.563
PC: 58 HRg: 1111 HRl: 1 – this context didn’t occur
4. Parameters: HRl on 2 bits, HRg on 4 bits, => Unbiased contexts: 9.673[%]

PC: 35 HRg: 0101 HRl: 10 – this context didn’t occur
PC: 35 HRg: 0101 HRl: 00 T: 840 NT: 260 Bias: 0.763
PC: 35 HRg: 1101 HRl: 00 – this context didn’t occur
PC: 35 HRg: 1101 HRl: 10 T: 1680 NT: 840 Bias: 0.667
PC: 58 HRg: 0111 HRl: 00 T: 1419 NT: 260 Bias: 0.845
PC: 58 HRg: 0111 HRl: 10 T: 0 NT: 840 Bias: 1.000=> The branch with the address PC: 58 in context HRg: 0111 and HRl: 10 became fully biased. Practically it didn’t appear in the unbiased branch list.
Conclusion: As it can be observed, by increasing the context length, some branches in certain contexts became fully biased. However, a great percentage of them still remains unbiased.







