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Abstract: The main aim of this short paper is to propose 

a new branch prediction approach called by us "neural 

branch prediction". We developed a first neural predictor 

model based on a simple neural learning algorithm, 

known as backpropagation algorithm, using a multilayer 

perceptron. Based on a trace driven simulation method 

we investigated the influences of the training processes. 

Also we compared the neural predictor with a powerful 

classical predictor and we establish that the neural 

predictor involves higher performances. Therefore, we 

conclude that in the nearest future it might be necessary 

to model and simulate other more powerful neural 

adaptive predictors, based on more complex neural 

networks architectures or even time series concepts, in 

order to obtain better prediction accuracies compared 

with the previous known classical schemes. 
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1. INTRODUCTION 

 

As the average instruction issue rate and depth of the 

pipeline in multiple instruction issue (MII) processors 

increase, the necessity of an efficient hardware branch 

predictor becomes essential. Very high prediction 

accuracies are necessary, because taking into account the 

MII processors characteristics as pipeline depth or issue 

rates, even a prediction miss rate of a few percent 

involves a substantial performance loss. 

The main aim of this work is to propose a new 

branch prediction approach called neural branch 

prediction. Our work hypothesis will consider branch 

prediction as a particular problem belonging to pattern 

recognition class and therefore, we consider it is 

desirable to use neural networks in order to predict 

branches. Also, we investigate comparatively, through a 

trace driven simulation method, a classical branch 

prediction scheme proceeded from Professor Yale Patt's 

Research Group [Yeh92, Pan92, Cha97, Eve96] with 

some modifications and the proposed neural branch 

predictor, both of them integrated into a MII 

environment. We used the traces obtained based on the 

eight C Stanford integer benchmarks. These benchmarks 

were compiled through the HSA (Hatfield Superscalar 

Architecture) compiler, developed at the University of 

Hertfordshire, UK, by Dr. G.B. Steven's Research Group 

in Computer Architecture. Further, the traces were 

obtained using the HSA simulator, developed at the 

same university [Ste96]. Based on these tools, we have 

developed an original simulator to investigate 

comparatively some branch prediction schemes. 

The first efficient approach in hardware branch 

prediction consists in Branch Target Buffer (BTB) 

structures [Per93]. BTB is a small associative memory, 

integrated on chip, that retains the addresses of recently 

executed branches, their targets and optionally other 

information (e.g. target opcode). Due to some intrinsic 

limitations, BTB's accuracies are limited on some 

benchmarks having unpropitious characteristics (e.g. 

correlated branches).  

In order to improve BTB's efficiency, Yeh and Patt 

(1992) and independently Pan et al (1992) generalized it 

through a new approach called Two Level Adaptive 

Branch Prediction. According to [Yeh92], the Two Level 

Adaptive Branch Prediction uses two distinct levels of 

branch history information to make predictions. The first 

level consists in the History Register (HR), that contains 

the last k branches encountered (taken/ not taken) or the 

last k occurrences of the same branch instruction. The 

second level consists in the branch behavior of the last l 

occurrences of the specific pattern of these branches. It is 

implemented by a Pattern History Table (PHT), that 

contains essentially the branch prediction automaton ( 

usually 2 bit saturating counters). 

HR shifts left with a binary position when updated 

according to the actual branch behavior (taken=1/ not 

taken=0). There is a corresponding entry in the PHT for 

each of the 2k HR's patterns. The prediction of the 

branch (P) is a function (f) of the actual prediction 

automaton state St. 

 

P = f(St)   (1) 

 

After the branch is resolved, HR is shifted left and 

the prediction automaton state becomes St+1. 

 

St+1 = g( St ,Bt)  (2) 

 

where g represents the automaton's transition function 

and Bt represents the behavior of the last branch 

encountered (taken/ not taken). A lot of interesting 

implementations of these correlated branch prediction 

schemes are known [Yeh92, Pan92, Ega98, Rec98]. 

These Two Level Adaptive Branch Prediction schemes 

are very effective in predicting correlated branches with 

high accuracy. It's well known that the average 

prediction rate for these schemes, measured on nine of 

the ten Spec benchmarks, is about 97%, while BTB 

schemes achieved at most 94% on the same benchmarks 
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[Yeh92]. An interesting generalization of these Two 

Level Adaptive Branch Prediction schemes, based on the 

universal compression/prediction algorithm called 

"prediction by partial matching", is given in [Mud96]. 

Further, we'll try to propose a new distinct branch 

prediction approach, based on some pattern recognition 

concepts like neural networks, taking into account their 

more adaptive behavior in other similar problems. We 

suppose as a work hypothesis, that a neural network 

implemented here as a simple multilayer perceptron 

(MLP) together with the associated backpropagation 

learning algorithm, could be a better predictor - taking 

into account its adaptivity and “intelligence” - than a 

classical branch predictor. Thus, through this new 

approach, we'll look at branch prediction as a 

particularly pattern recognition problem. 

2. A NEURAL MLP BRANCH PREDICTOR 

 

The simulation work has been centered on the Stanford 

integer benchmark suite, a collection of eight C 

programs designed by Professor John Hennessy, to be 

representative of non - numeric code while at the same 

time being compact. The benchmarks are 

computationally intensive with higher dynamic 

instruction counts. The HSA gnu C compiler that targets 

the HSA instruction set compiled all these benchmarks. 

A dedicated HSA simulator [Ste96] that generates the 

corresponding traces simulated the resulted HSA object 

code. Some characteristics of the used traces are given in 

Table 1. 

 

 

Benchmark Total instr. % Branches 

(%Taken) 

Short description 

Puzzle 804.620 25(91) Solves a cube packing problem 

Bubble 206.035 20(75) Bubble sorts an array 

Matrix 231.814 9(97) Matrix multiplication 

Permute 355.643 15(80) Recursive computation of permutations 

Queens 206.420 19(50) Solves the eight queens problem 

Sort 72.101 17(65) Quick sorts a randomized array 

Towers 251.149 15(76) Solves Towers of Hanoi problem (recursive) 

Tree 136.040 24(73) Performs a binary tree sort 

Table 1. Characteristics of the HSA traces 

 

The average instructions number is about 273.000 and 

the average percentage of total instructions that are 

branches is about 18%, with about 76% of them being 

taken. Derived from HSA traces, special traces were 

obtained, containing exclusively all the processed 

branches. Each branch belonging to these modified HSA 

traces is stored in the following format: branch's type, 

the PC of the branch and it's target address.  

As in the Two Level Adaptive Branch Prediction, in 

this case the run-time prediction process is based on the 

same three “orthogonal” information: the branch's PC 

low (PCl, on i bits), the history of the k previous 

branches named HRg (Global History Register on k bits) 

and the branch's own history (taken/not taken). Also, 

similarly to the Two Level Adaptive Branch Prediction, 

the considered simple MLP predictor will use some of 

these information (HRg, PC) in order to predict 

branches. In contrast, this time it's not necessary to 

implement the classical set of prediction automata stored 

into the Prediction Table. These automata will be 

replaced in our present approach with a single global 

MLP (neural) prediction structure, as it will be described 

further. 

Therefore through this short paper we propose a new 

branch prediction approach based on neural networks. 

The predictor consists of a multilayer perceptron having 

one intermediate layer and using the well - known 

backpropagation learning algorithm. As it is known, 

backpropagation algorithm is dedicated for learning in 

feedforward networks using mean squared error (MSE) 

and gradient descent.  It mainly consists in two steps: 

forward propagation step and respectively backward 

propagation step. The first step makes a bottom-up pass 

through the network to computed weighted sums and 

activations. The second step, starting with the outputs, 

makes a top-down pass through the output and 

intermediate cells computing gradients.  Once we know 

the gradient we can take a small step to update the 

weights using a learning step.  This process continues 

until the MSE become sufficiently small. In this first 

MLP predictor approach, the considered inputs are the 

following: the branch global history information (HRg 

content, on k bits) and respectively the branch’s PC, 

considered on l bits length. Based on a lot of laborious 

simulations we chose (l+k+4) intermediate cells 

belonging to the hidden layer as an “optimal” structure. 

The MLP produces a true (‘1’ – 0.9) output for a branch 

predicted as taken respectively a false (‘0’ – 0.1) output 

for a branch predicted as non taken. Figure 1 presents 

intuitively the new MLP branch prediction scheme. 

Also we developed an original efficient learning 

method based on some laborious branch statistics. Thus, 

each benchmark trace was processed in order to obtain 

for each static branch and for each HRg pattern 

belonging to that branch, how many times the branch 

was taken respectively not taken. As an example, below 

it is presented a short fragment from a such laborious 

statistics (“bubble-sort" trace, branch’s PC = 68, for 

different obtained HRg patterns). 

 

BR HRg T NT [%]T [%]NT 

68 4055 121 41 74.69 25.31 

68 3935 127 30 80.89 19.11 

68 3453 17 138 10.97 89.03 

68 1525 124 107 53.68 46.32 

68 3925 109 143 43.25 56.75 
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68 1367 124 360 25.62 74.38 

68 1373 210 234 47.30 52.70 

68 765 4 3 57.14 42.86 

68 3061 3 0 100.00 0.00 

68 1399 72 200 26.47 73.53 

68 1501 142 181 43.96 56.04 

68 1909 126 196 39.13 60.87 

68 3541 44 174 20.18 79.82 

68 1213 4 1 80.00 20.00 

 

Derived from these statistics we obtained the training 

input vector set (HRg & PC) respectively the desired 

output for each of these vectors (taken / not taken). More 

precisely, we considered that the desired output is 1/0 if 

the branch is respectively taken/not taken over 75%, for 

a certain HRg pattern (therefore, the branch’s behaviour 

in a certain HRg context is strongly polarized on “taken” 

or “not taken”). If this condition isn’t fulfiled for a given 

(HRg & PC) input vector we considered that vector 

inadequated for training and therefore it is ignored. 

Taking into account the statistics previous presented, the 

corresponding fragment of training input vectors set 

together with the desired (supervised) output are given 

below. 

 

BR T T/NT 

68 3935 1 

68 3453 0 

68 3061 1 

68 3541 0 

68 1213 1 

 

The training process was repeated succesively for all 

the training vectors until each associated mean squared 

error becomes smaller than 0.01. After this special 

supervised training process, the MLP predictor will 

process the whole benchmark’s trace. During the 

simulations we investigated comparatively through a 

trace driven simulation method, this new MLP branch 

predictor with a classical so called GAp scheme in Patt’s 

taxonomy, firstly proposed in [Pan92], implemented by 

us as having an unlimited number of entries, with a 

structure like that presented in figure 2. Conceptually, a 

GAp scheme uses a separate Prediction Table for each 

branch. We called our Prediction Table - GAp, just to 

point out that it uses both HRg concatenated with PC 

information to make predictions. Taking into account its 

infinite capacity, our GAp scheme doesn’t need any 

replacing algorithm (no interferences). The prediction 

automata associated with each branch are implemented 

using only one bit (taken / not taken). 

Based on the adaptive heuristic nature of the used 

neural prediction algorithm, the input (PC & HRg) 

vectors will tend dynamically to a “taken” respectively 

"not taken" pattern (class). The predictor will learn 

continuously, even after the dedicated supervised 

learning process, while the benchmark’s trace is 

processed, therefore the adequate class will "attract" with 

more and more accuracy the newly income vector, 

involving thus better predictions. During the first 

learning step (forward propagation) the prediction is 

done as a function of the obtained output value. The 

second step (backward propagation) is started after the 

branch’s result is known (taken or not taken) and the 

weights are modified correspondingly with this certain 

behavior. Through this method, we approach the branch 

prediction problem as a pattern recognition problem, 

where the input pattern (HRg & PC) must be 

dynamically recognized belonging exclusively to one of 

two possible classes (Taken / Not Taken). Therefore, 

through this approach we established a possible link 

between branch prediction problems and respectively 

pattern recognition problems solved through neural 

networks. Of course, it's possible to extend these ideas to 

other neural branch predictors also having an unique 

input vector and as output the prediction itself (one bit) 

Figure 3 presents prediction accuracies (Ap) for an 

infinite entries GAp scheme, considering different 

HRg’s lengths. The average prediction accuracy growths 

from 84.83% (HRg on 4 bits) to 85.95% (HRg on 10 

bits). Figures 4 and 5 shows the prediction accuracies for 

an untrained MLP branch predictor respectively for a 

trained MLP predictor, considering different lengths of 

HRg. In the first case the best average prediction 

accuracy is 88.47% obtained for a HRg on 4 bits in 

length and in the second case the best performance is 

89.48%, obtained for a HRg on 10 bits (using more 

correlation bits the statical training process takes too 

long). Important, on “quick-sort” benchmark, the trained 

MLP predictor obtaines a prediction accuracy of 75.07% 

(for a HRg on 6 bits). This is quite significant because it 

is well – known that “quick-sort” benchmark is very 

unpredictable and in [Mud96], 75% is considered the 

maximum theoretical limit of predictability on this 

program. We don’t know any paper that reports a 

prediction accuracy greater than 74% on this benchmark. 

Figure 6 presents comparatively the obtained average 

prediction accuracies for an untrained neural predictor 

respectively a trained neural predictor. As it can be 

observed, the trained neural predictor performs 

significantly better with about 1% to 7% gain in 

prediction accuracy. Interesting, for a trained MLP 

predictor the average prediction accuracy growths slowly 

correspondingly with growing HRg’s length. This is not 

true for the untrained MLP (correlation information is 

noisly in this case; perhaps better initial weights values – 

no purely random like in this approach - could be a 

better alternative implementation). Anyway, this 

observation points out clearly that we developed an 

efficient training algorithm. Using it, our MLP doesn’t 

forget so much some previous learned patterns. 

Forgetting process is significant when we use a MLP 

that process directly the trace, without a previous statical 

controlled training. Figure 7 shows comparatively the 

average prediction accuracies for the considered classical 

GAp scheme and respectively the MLP predictor. Note 

that both these predictors are using the same prediction 

information, available during the instruction fetch stage 

(HRg & PC). As it can be seen, the neural branch 

predictor outperforms obviously the classical one with 

about 4% gain in prediction accuracy. Finally, figure 8 

presents the influence of the learning step (a) for a 

trained MLP predictor. For a=0.1, 0.5 and 1 we are 

obtained respectively prediction accuracies (Ap) of 
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91.20%, 90.70% and 90.83%. During the all the previous 

simulation, we used a=1 due to some learning time 

limitations (for small values of “a”and certain small 

values of the mean squared error, the learning process is 

too long). Other interesting results are presented in 

[Vin00]. 

Because of the additional warm up time our models 

are likely to perform less succesfully with relatively 

small benchmarks like Stanford. Anyway, the obtained 

prediction accuracies are in a perfect concordance with 

those obtained by other researchers that used Stanford 

benchmarks in evaluating branch prediction [Ega98]. We 

would expect to show some improvement in prediction 

accuracy using larger benchmarks like Spec. 

Unfortunately, from financial reasons, at this moment we 

aren’t able to use Spec or other larger benchmarks. 

 

 

3. CONCLUSIONS AND FURTHER WORK 

 

Therefore our work hipothesis was proved, the neural 

branch predictor is more adaptive and efficient than a 

corresponding classical branch predictor. This is not a 

surprise taking into account that a neural network is a 

more complex and inteligent structure comparing with a 

“classical” branch prediction scheme based on a set of 

prediction automata (saturating counters). 

An interesting neural predictor feature could be 

related to the target prediction for indirect jumps. Taking 

into account that the target of an indirect branch can 

change with every dynamic instance of that branch, 

predicting its target is really difficult. There are few 

solutions to this problem and all of them involve a great 

deal of further work. One of the most recent valuable 

approaches in this sense, improves the indirect jumps 

prediction accuracy by choosing its target from the most 

recent targets of the indirect jump that have already been 

encountered [Cha97], based on a simply heuristic. In 

contrast, our new approach proposes that the neural 

network that predicts the branch direction also predict 

the target effective address, for indirect jumps only, 

based on the same prediction information: PC, HRg (a 

global history) and possibly the branch’s own history 

(HRl – local history). Therefore, this approach is based 

on a supposed correspondence between the indirect 

jump's dynamic patterns (PC, HRg, HRl) and its 

dynamic target addresses. In the nearest future, based on 

a trace driven simulation method, we'll quantitatively 

investigate this approach related to target prediction for 

indirect jumps. 

The difficult problem related to these neural predictors is 

to establish whether they can be implemented on a chip, 

taking into account the run-time prediction request. More 

precisely, that means the prediction must be done during 

the instruction fetch phase for an efficient approach. 

Based on the present technological progresses, that allow 

performant neural networks hardware implementations, 

in our opinion the neural predictor idea could be feasible 

and, therefore, new investigations in this research area 

are warranted. At this time, our intuition is that a 

simplified neural predictor could be designed within the 

timing restraints of a superscalar. We also suspect that 

the cost would be less than one of Two Level Adaptive 

Predictors and it may even be possible to implement 

multiple cut-down neural predictors, associated which 

each static cached branch. In fact, our neural predictor 

replaces the prediction automata that are stored into the 

Prediction Tables with one global neural prediction 

structure as we described above. Anyway, and most 

important at this point of our research, neural predictors 

could be a useful approach in establishing, estimating 

and understanding better, the processes of branch 

predictability. Also this concept could be used as a 

performance measurement of the predictability of 

branches and it is useful to compare its performance with 

the performance obtained through other prediction 

schemes. Thus a complex structure like a MLP together 

with its learning algorithm can serve as a diagnostic tool 

to measure some upper values of predictability. 
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Figure 1. A Simple Neural Branch Predictor 
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Figure 2. A modified GAp scheme (unlimited no. of entries) 
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Figure 3. Prediction accuracies for the unlimited GAp scheme 
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Figure 4. Prediction accuracies for an “only dynamic” trained MLP predictor 
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Figure 5. Prediction accuracies for static trained MLP predictor 

 

 

 
Figure 6. A trained MLP vs. an untrained MLP 

 

 

 
Figure 7.The MLP predictor vs. the GAp predictor 
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Figure 8.The influence of the learning step value (a) 
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