
C185

Appeared in the Proceedings of the International Symposium on System Theory (SINTES 10)

ISBN: 973-98836-6-4, Craiova, Romania, May 2000

A NEW BRANCH PREDICTION APPROACH USING NEURAL NETWORKS

Lucian N. VINTAN, Adrian FLOREA,

“L. Blaga” University of Sibiu, Department of Computer Science, Str. E. Cioran, No. 4, Sibiu-2400, ROMANIA,

E-mail: vintan@vectra.sibiu.ro, aflorea@vectra.sibiu.ro

Abstract: The main aim of this short paper is to propose

a new branch prediction approach called by us "neural

branch prediction". We developed a first neural predictor

model based on a simple neural learning algorithm,

known as backpropagation algorithm, using a multilayer

perceptron. Based on a trace driven simulation method

we investigated the influences of the training processes.

Also we compared the neural predictor with a powerful

classical predictor and we establish that the neural

predictor involves higher performances. Therefore, we

conclude that in the nearest future it might be necessary

to model and simulate other more powerful neural

adaptive predictors, based on more complex neural

networks architectures or even time series concepts, in

order to obtain better prediction accuracies compared

with the previous known classical schemes.

Key Words: MII Architectures, Branch Prediction, Trace

Driven Simulation, Neural Algorithms, Backpropagation

1. INTRODUCTION

As the average instruction issue rate and depth of the

pipeline in multiple instruction issue (MII) processors

increase, the necessity of an efficient hardware branch

predictor becomes essential. Very high prediction

accuracies are necessary, because taking into account the

MII processors characteristics as pipeline depth or issue

rates, even a prediction miss rate of a few percent

involves a substantial performance loss.

The main aim of this work is to propose a new

branch prediction approach called neural branch

prediction. Our work hypothesis will consider branch

prediction as a particular problem belonging to pattern

recognition class and therefore, we consider it is

desirable to use neural networks in order to predict

branches. Also, we investigate comparatively, through a

trace driven simulation method, a classical branch

prediction scheme proceeded from Professor Yale Patt's

Research Group [Yeh92, Pan92, Cha97, Eve96] with

some modifications and the proposed neural branch

predictor, both of them integrated into a MII

environment. We used the traces obtained based on the

eight C Stanford integer benchmarks. These benchmarks

were compiled through the HSA (Hatfield Superscalar

Architecture) compiler, developed at the University of

Hertfordshire, UK, by Dr. G.B. Steven's Research Group

in Computer Architecture. Further, the traces were

obtained using the HSA simulator, developed at the

same university [Ste96]. Based on these tools, we have

developed an original simulator to investigate

comparatively some branch prediction schemes.

The first efficient approach in hardware branch

prediction consists in Branch Target Buffer (BTB)

structures [Per93]. BTB is a small associative memory,

integrated on chip, that retains the addresses of recently

executed branches, their targets and optionally other

information (e.g. target opcode). Due to some intrinsic

limitations, BTB's accuracies are limited on some

benchmarks having unpropitious characteristics (e.g.

correlated branches).

In order to improve BTB's efficiency, Yeh and Patt

(1992) and independently Pan et al (1992) generalized it

through a new approach called Two Level Adaptive

Branch Prediction. According to [Yeh92], the Two Level

Adaptive Branch Prediction uses two distinct levels of

branch history information to make predictions. The first

level consists in the History Register (HR), that contains

the last k branches encountered (taken/ not taken) or the

last k occurrences of the same branch instruction. The

second level consists in the branch behavior of the last l

occurrences of the specific pattern of these branches. It is

implemented by a Pattern History Table (PHT), that

contains essentially the branch prediction automaton (

usually 2 bit saturating counters).

HR shifts left with a binary position when updated

according to the actual branch behavior (taken=1/ not

taken=0). There is a corresponding entry in the PHT for

each of the 2k HR's patterns. The prediction of the

branch (P) is a function (f) of the actual prediction

automaton state St.

P = f(St) (1)

After the branch is resolved, HR is shifted left and

the prediction automaton state becomes St+1.

St+1 = g(St ,Bt) (2)

where g represents the automaton's transition function

and Bt represents the behavior of the last branch

encountered (taken/ not taken). A lot of interesting

implementations of these correlated branch prediction

schemes are known [Yeh92, Pan92, Ega98, Rec98].

These Two Level Adaptive Branch Prediction schemes

are very effective in predicting correlated branches with

high accuracy. It's well known that the average

prediction rate for these schemes, measured on nine of

the ten Spec benchmarks, is about 97%, while BTB

schemes achieved at most 94% on the same benchmarks

mailto:vintan@cs.sibiu.ro
mailto:aflorea@vectra.sibiu.ro

C186

[Yeh92]. An interesting generalization of these Two

Level Adaptive Branch Prediction schemes, based on the

universal compression/prediction algorithm called

"prediction by partial matching", is given in [Mud96].

Further, we'll try to propose a new distinct branch

prediction approach, based on some pattern recognition

concepts like neural networks, taking into account their

more adaptive behavior in other similar problems. We

suppose as a work hypothesis, that a neural network

implemented here as a simple multilayer perceptron

(MLP) together with the associated backpropagation

learning algorithm, could be a better predictor - taking

into account its adaptivity and “intelligence” - than a

classical branch predictor. Thus, through this new

approach, we'll look at branch prediction as a

particularly pattern recognition problem.

2. A NEURAL MLP BRANCH PREDICTOR

The simulation work has been centered on the Stanford

integer benchmark suite, a collection of eight C

programs designed by Professor John Hennessy, to be

representative of non - numeric code while at the same

time being compact. The benchmarks are

computationally intensive with higher dynamic

instruction counts. The HSA gnu C compiler that targets

the HSA instruction set compiled all these benchmarks.

A dedicated HSA simulator [Ste96] that generates the

corresponding traces simulated the resulted HSA object

code. Some characteristics of the used traces are given in

Table 1.

Benchmark Total instr. % Branches

(%Taken)

Short description

Puzzle 804.620 25(91) Solves a cube packing problem

Bubble 206.035 20(75) Bubble sorts an array

Matrix 231.814 9(97) Matrix multiplication

Permute 355.643 15(80) Recursive computation of permutations

Queens 206.420 19(50) Solves the eight queens problem

Sort 72.101 17(65) Quick sorts a randomized array

Towers 251.149 15(76) Solves Towers of Hanoi problem (recursive)

Tree 136.040 24(73) Performs a binary tree sort

Table 1. Characteristics of the HSA traces

The average instructions number is about 273.000 and

the average percentage of total instructions that are

branches is about 18%, with about 76% of them being

taken. Derived from HSA traces, special traces were

obtained, containing exclusively all the processed

branches. Each branch belonging to these modified HSA

traces is stored in the following format: branch's type,

the PC of the branch and it's target address.

As in the Two Level Adaptive Branch Prediction, in

this case the run-time prediction process is based on the

same three “orthogonal” information: the branch's PC

low (PCl, on i bits), the history of the k previous

branches named HRg (Global History Register on k bits)

and the branch's own history (taken/not taken). Also,

similarly to the Two Level Adaptive Branch Prediction,

the considered simple MLP predictor will use some of

these information (HRg, PC) in order to predict

branches. In contrast, this time it's not necessary to

implement the classical set of prediction automata stored

into the Prediction Table. These automata will be

replaced in our present approach with a single global

MLP (neural) prediction structure, as it will be described

further.

Therefore through this short paper we propose a new

branch prediction approach based on neural networks.

The predictor consists of a multilayer perceptron having

one intermediate layer and using the well - known

backpropagation learning algorithm. As it is known,

backpropagation algorithm is dedicated for learning in

feedforward networks using mean squared error (MSE)

and gradient descent. It mainly consists in two steps:

forward propagation step and respectively backward

propagation step. The first step makes a bottom-up pass

through the network to computed weighted sums and

activations. The second step, starting with the outputs,

makes a top-down pass through the output and

intermediate cells computing gradients. Once we know

the gradient we can take a small step to update the

weights using a learning step. This process continues

until the MSE become sufficiently small. In this first

MLP predictor approach, the considered inputs are the

following: the branch global history information (HRg

content, on k bits) and respectively the branch’s PC,

considered on l bits length. Based on a lot of laborious

simulations we chose (l+k+4) intermediate cells

belonging to the hidden layer as an “optimal” structure.

The MLP produces a true (‘1’ – 0.9) output for a branch

predicted as taken respectively a false (‘0’ – 0.1) output

for a branch predicted as non taken. Figure 1 presents

intuitively the new MLP branch prediction scheme.

Also we developed an original efficient learning

method based on some laborious branch statistics. Thus,

each benchmark trace was processed in order to obtain

for each static branch and for each HRg pattern

belonging to that branch, how many times the branch

was taken respectively not taken. As an example, below

it is presented a short fragment from a such laborious

statistics (“bubble-sort" trace, branch’s PC = 68, for

different obtained HRg patterns).

BR HRg T NT [%]T [%]NT

68 4055 121 41 74.69 25.31

68 3935 127 30 80.89 19.11

68 3453 17 138 10.97 89.03

68 1525 124 107 53.68 46.32

68 3925 109 143 43.25 56.75

C187

68 1367 124 360 25.62 74.38

68 1373 210 234 47.30 52.70

68 765 4 3 57.14 42.86

68 3061 3 0 100.00 0.00

68 1399 72 200 26.47 73.53

68 1501 142 181 43.96 56.04

68 1909 126 196 39.13 60.87

68 3541 44 174 20.18 79.82

68 1213 4 1 80.00 20.00

Derived from these statistics we obtained the training

input vector set (HRg & PC) respectively the desired

output for each of these vectors (taken / not taken). More

precisely, we considered that the desired output is 1/0 if

the branch is respectively taken/not taken over 75%, for

a certain HRg pattern (therefore, the branch’s behaviour

in a certain HRg context is strongly polarized on “taken”

or “not taken”). If this condition isn’t fulfiled for a given

(HRg & PC) input vector we considered that vector

inadequated for training and therefore it is ignored.

Taking into account the statistics previous presented, the

corresponding fragment of training input vectors set

together with the desired (supervised) output are given

below.

BR T T/NT

68 3935 1

68 3453 0

68 3061 1

68 3541 0

68 1213 1

The training process was repeated succesively for all

the training vectors until each associated mean squared

error becomes smaller than 0.01. After this special

supervised training process, the MLP predictor will

process the whole benchmark’s trace. During the

simulations we investigated comparatively through a

trace driven simulation method, this new MLP branch

predictor with a classical so called GAp scheme in Patt’s

taxonomy, firstly proposed in [Pan92], implemented by

us as having an unlimited number of entries, with a

structure like that presented in figure 2. Conceptually, a

GAp scheme uses a separate Prediction Table for each

branch. We called our Prediction Table - GAp, just to

point out that it uses both HRg concatenated with PC

information to make predictions. Taking into account its

infinite capacity, our GAp scheme doesn’t need any

replacing algorithm (no interferences). The prediction

automata associated with each branch are implemented

using only one bit (taken / not taken).

Based on the adaptive heuristic nature of the used

neural prediction algorithm, the input (PC & HRg)

vectors will tend dynamically to a “taken” respectively

"not taken" pattern (class). The predictor will learn

continuously, even after the dedicated supervised

learning process, while the benchmark’s trace is

processed, therefore the adequate class will "attract" with

more and more accuracy the newly income vector,

involving thus better predictions. During the first

learning step (forward propagation) the prediction is

done as a function of the obtained output value. The

second step (backward propagation) is started after the

branch’s result is known (taken or not taken) and the

weights are modified correspondingly with this certain

behavior. Through this method, we approach the branch

prediction problem as a pattern recognition problem,

where the input pattern (HRg & PC) must be

dynamically recognized belonging exclusively to one of

two possible classes (Taken / Not Taken). Therefore,

through this approach we established a possible link

between branch prediction problems and respectively

pattern recognition problems solved through neural

networks. Of course, it's possible to extend these ideas to

other neural branch predictors also having an unique

input vector and as output the prediction itself (one bit)

Figure 3 presents prediction accuracies (Ap) for an

infinite entries GAp scheme, considering different

HRg’s lengths. The average prediction accuracy growths

from 84.83% (HRg on 4 bits) to 85.95% (HRg on 10

bits). Figures 4 and 5 shows the prediction accuracies for

an untrained MLP branch predictor respectively for a

trained MLP predictor, considering different lengths of

HRg. In the first case the best average prediction

accuracy is 88.47% obtained for a HRg on 4 bits in

length and in the second case the best performance is

89.48%, obtained for a HRg on 10 bits (using more

correlation bits the statical training process takes too

long). Important, on “quick-sort” benchmark, the trained

MLP predictor obtaines a prediction accuracy of 75.07%

(for a HRg on 6 bits). This is quite significant because it

is well – known that “quick-sort” benchmark is very

unpredictable and in [Mud96], 75% is considered the

maximum theoretical limit of predictability on this

program. We don’t know any paper that reports a

prediction accuracy greater than 74% on this benchmark.

Figure 6 presents comparatively the obtained average

prediction accuracies for an untrained neural predictor

respectively a trained neural predictor. As it can be

observed, the trained neural predictor performs

significantly better with about 1% to 7% gain in

prediction accuracy. Interesting, for a trained MLP

predictor the average prediction accuracy growths slowly

correspondingly with growing HRg’s length. This is not

true for the untrained MLP (correlation information is

noisly in this case; perhaps better initial weights values –

no purely random like in this approach - could be a

better alternative implementation). Anyway, this

observation points out clearly that we developed an

efficient training algorithm. Using it, our MLP doesn’t

forget so much some previous learned patterns.

Forgetting process is significant when we use a MLP

that process directly the trace, without a previous statical

controlled training. Figure 7 shows comparatively the

average prediction accuracies for the considered classical

GAp scheme and respectively the MLP predictor. Note

that both these predictors are using the same prediction

information, available during the instruction fetch stage

(HRg & PC). As it can be seen, the neural branch

predictor outperforms obviously the classical one with

about 4% gain in prediction accuracy. Finally, figure 8

presents the influence of the learning step (a) for a

trained MLP predictor. For a=0.1, 0.5 and 1 we are

obtained respectively prediction accuracies (Ap) of

C188

91.20%, 90.70% and 90.83%. During the all the previous

simulation, we used a=1 due to some learning time

limitations (for small values of “a”and certain small

values of the mean squared error, the learning process is

too long). Other interesting results are presented in

[Vin00].

Because of the additional warm up time our models

are likely to perform less succesfully with relatively

small benchmarks like Stanford. Anyway, the obtained

prediction accuracies are in a perfect concordance with

those obtained by other researchers that used Stanford

benchmarks in evaluating branch prediction [Ega98]. We

would expect to show some improvement in prediction

accuracy using larger benchmarks like Spec.

Unfortunately, from financial reasons, at this moment we

aren’t able to use Spec or other larger benchmarks.

3. CONCLUSIONS AND FURTHER WORK

Therefore our work hipothesis was proved, the neural

branch predictor is more adaptive and efficient than a

corresponding classical branch predictor. This is not a

surprise taking into account that a neural network is a

more complex and inteligent structure comparing with a

“classical” branch prediction scheme based on a set of

prediction automata (saturating counters).

An interesting neural predictor feature could be

related to the target prediction for indirect jumps. Taking

into account that the target of an indirect branch can

change with every dynamic instance of that branch,

predicting its target is really difficult. There are few

solutions to this problem and all of them involve a great

deal of further work. One of the most recent valuable

approaches in this sense, improves the indirect jumps

prediction accuracy by choosing its target from the most

recent targets of the indirect jump that have already been

encountered [Cha97], based on a simply heuristic. In

contrast, our new approach proposes that the neural

network that predicts the branch direction also predict

the target effective address, for indirect jumps only,

based on the same prediction information: PC, HRg (a

global history) and possibly the branch’s own history

(HRl – local history). Therefore, this approach is based

on a supposed correspondence between the indirect

jump's dynamic patterns (PC, HRg, HRl) and its

dynamic target addresses. In the nearest future, based on

a trace driven simulation method, we'll quantitatively

investigate this approach related to target prediction for

indirect jumps.

The difficult problem related to these neural predictors is

to establish whether they can be implemented on a chip,

taking into account the run-time prediction request. More

precisely, that means the prediction must be done during

the instruction fetch phase for an efficient approach.

Based on the present technological progresses, that allow

performant neural networks hardware implementations,

in our opinion the neural predictor idea could be feasible

and, therefore, new investigations in this research area

are warranted. At this time, our intuition is that a

simplified neural predictor could be designed within the

timing restraints of a superscalar. We also suspect that

the cost would be less than one of Two Level Adaptive

Predictors and it may even be possible to implement

multiple cut-down neural predictors, associated which

each static cached branch. In fact, our neural predictor

replaces the prediction automata that are stored into the

Prediction Tables with one global neural prediction

structure as we described above. Anyway, and most

important at this point of our research, neural predictors

could be a useful approach in establishing, estimating

and understanding better, the processes of branch

predictability. Also this concept could be used as a

performance measurement of the predictability of

branches and it is useful to compare its performance with

the performance obtained through other prediction

schemes. Thus a complex structure like a MLP together

with its learning algorithm can serve as a diagnostic tool

to measure some upper values of predictability.

ACKNOWLEDGMENTS

This work was supported in part by the Romanian

National Agency for Science, Technology and

Innovation (ANSTI) grants MCT No. 4086/1998,1999

respectively by the Romanian National Council of

Academic Research grants CNCSU No. 391/1998 and

CNCSU No. 489/1999. We like to thank Mr. Marius

Sbera for his work in our neural predictor research group

and for his help in obtaining some quantitative results.

Also our gratitude to Professor Gordon B. Steven from

the University of Hertfordshire, UK, for providing HSA

Stanford traces and for his very useful concrete

suggestions and encouragement related to our MII

architectures research.

Figure 1. A Simple Neural Branch Predictor

C189

Figure 2. A modified GAp scheme (unlimited no. of entries)

0

10

20

30

40

50

60

70

80

90

100

Ap

p
u

z
z
le

b
u

b
b

le

m
a
tr

ix

p
e
rm

q
u

e
e
n

s

s
o

rt

to
w

e
r

tr
e
e

a
v
e
ra

g
e

HRg=4

HRg=6

HRg=8

HRg=10

Figure 3. Prediction accuracies for the unlimited GAp scheme

0

10

20

30

40

50

60

70

80

90

100

Ap

p
u

z
z
le

b
u

b
b

le

m
a

tr
ix

p
e

rm

q
u

e
e

n
s

s
o

rt

to
w

e
r

tr
e

e

a
v

e
ra

g
e

HRg=4

HRg=6

HRg=8

HRg=10

Figure 4. Prediction accuracies for an “only dynamic” trained MLP predictor

C190

0

10

20

30

40

50

60

70

80

90

100

Ap

p
u

z
z
le

b
u

b
b

le

m
a

tr
ix

p
e

rm

q
u

e
e

n
s

s
o

rt

to
w

e
r

tr
e

e

a
v

e
ra

g
e

HRg=4

HRg=6

HRg=8

HRg=10

Figure 5. Prediction accuracies for static trained MLP predictor

Figure 6. A trained MLP vs. an untrained MLP

Figure 7.The MLP predictor vs. the GAp predictor

C191

70

75

80

85

90

95

100

Ap

b
u

b
b

le

m
a

tr
ix

p
e

rm

q
u

e
e

n
s

to
w

e
r

tr
e

e

a
v
.

a=0.1

a=0.5

a=1

Figure 8.The influence of the learning step value (a)

REFERENCES

[Cha97] Chang P.Y., Hao E., Patt Y.N. - Target

Prediction for Indirect Jumps, ISCA '97 - Ann. Int.'l

Symp. Computer Architecture

(http://www.eecs.umich.edu/HPS)

[Ega98] Egan C. - Branch Predictor Report, University

of Hertfordshire, Department of Computer Science, UK,

November, 1998

[Eve96] Evers M., Chang P.Y., Patt Y.N. - Using

Hybrid Branch Predictors to Improve Branch Prediction

Accuracy in the Presence of Context Switches, ISCA '96

(Ann. Int.'l Symp. on Computer Architecture)

[Gal93] Gallant S.I. - Neural networks learning and

expert systems, The MIT Press, 1993

[Koh95] Kohonen T., et al - Learning Vector

Quantization (MLP). Program Package Ver. 3.1,

Helsinki University of Technology, SF-02150 Espoo,

Finland, 1995

[Mud96] Mudge T.N., Chen I., Coffey J. - Limits of

Branch prediction, Technical Report, Electrical

Engineering and Computer Science Department, The

University of Michigan, Ann Arbor, Michigan, USA,

January, 1996

[Pan92] Pan S.T., So K., Rahmeh J.T. - Improving the

Accuracy of Dynamic Branch Prediction Using Branch

Correlation, ASPLOS V Conference, Boston, October,

1992

[Per93] Perleberg C., Smith A. J. - Branch Target

Buffer Design and Optimization, IEEE Transactions on

Computers, No. 4, 1993

[Rec98] Reches S., Weiss S. – Implementation and

Analysis of path History in Dynamic Branch Prediction

Schemes, IEEE Transactions on Computers, No. 8, 1998

[Ste96] Steven G. B. et al. - A Superscalar Architecture

to Exploit Instruction Level Parallelism, Proceedings of

the Euromicro Conference, 2-5 September, Prague,

1996.

[Vin99] Vintan L., Armat C., Steven G. - The Impact

of Cache Organisation on the Instruction Issue Rate of a

Superscalar Processor, Proceedings of Euromicro 7th

Workshop on Parallel and Distributed Systems

(http://www.elet.polimi.it/pdp99/), Funchal, Portugal,

3rd -5th February, 1999

[Vin99b] Vintan L. – Predicting Branches through

Neural Networks: A LVQ and a MLP Approach,

University “L. Blaga” of Sibiu, Faculty of Engineering,

Dept. of Comp. Sc., Technical Report, February, 1999

[Vin99c] Vintan L. - Towards a High Performance

Neural Branch Predictor, International Joint Conference

on Neural Networks (IJCNN CD-ROM, ISBN 0-7803-

5532-6), Washington DC, USA, 10-16 July, 1999

[Vin99d] Egan C., Steven G., Vintan L., - A Cost

Effective Cached Correlated Two Level Adaptive Branch

Predictor, Eighteenth IASTED International Conference,

AI ‘2000, February 14-17, Innsbruck, Austria, 2000

[Vin00] Vintan, L. Towards a Powerful Dynamic

Branch Predictor, Romanian Journal of Information

Science and Technology, Romanian Academy

Publishing House, 2000.

[Yeh92] Yeh T., Patt Y. N. - Alternative

Implementations of Two Level Adaptive Branch

Prediction, 19 th Ann. International Symp. Computer

Architecture, 1992

