
BRANCH PREDICTION: A CRITICISM AND A NOVEL SCHEME

Lucian N. VINTAN, Adrian FLOREA
“L. Blaga” University of Sibiu, Department of Computer Science, Str. E. Cioran, No. 4, Sibiu-2400, ROMANIA,

E-mail: vintan@vectra.sibiu.ro, aflorea@vectra.sibiu.ro

Abstract: The main aim of this work is to propose a
new Two Level Adaptive Branch Prediction scheme,
based on a new additional correlation information. We
prove that branch's history is insufficient for a good
branch correlation and as a consequence, for high
prediction accuracy. Also, we investigate comparatively,
through a trace driven simulation method, a classical
branch prediction scheme called GAp, firstly proposed
by Pan et al in 1992 and the proposed new scheme, both
of them integrated into a MII (Multiple Instruction
Issue) environment. We point out that our new proposed
branch prediction scheme performs better than a
classical GAp scheme, at the same level of hardware
complexity.

Key Words: MII Architectures, Branch Prediction, Two
Level Adaptive Branch Prediction, Trace Driven
Simulation.

1. INTRODUCTION

As the average instruction issue rate and depth of the
pipeline in multiple instruction issue (MII) processors
increase, the necessity of an efficient hardware branch
predictor becomes more and more essential. Very high
prediction accuracies are necessary, because taking into
account the MII processors characteristics as pipeline
depth or issue rates, even a prediction miss rate of a few
percent involves a substantial performance loss.

The main aim of this work is to propose a new Two
Level Adaptive Branch Prediction scheme, based on a
new additional prediction information, available during
the instruction fetch stage. We prove that branch's
history is insufficient for a good correlation and
therefore for a high prediction accuracy. Also, we
investigate comparatively, through a trace driven
simulation method, a classical branch prediction scheme
called GAp, firstly proposed by Pan et al [Pan92] and
the proposed new scheme, both of them integrated into a
MII environment. We used the traces obtained based on
the eight C Stanford integer benchmarks. These
benchmarks were compiled through the HSA (Hatfield
Superscalar Architecture) compiler, developed at the
University of Hertfordshire, Research Group of
Computer Architecture, UK. Further, the traces were
obtained using the HSA simulator, developed at the
same university [Ste96]. Based on these tools, we have
developed an original simulator to investigate some
branch prediction schemes.

The first efficient approach in hardware branch
prediction consists in Branch Target Buffer (BTB)

structures [Per93]. BTB is a small (associative)
memory, integrated on chip, that retains the addresses
of recently executed branches, their targets and
optionally other information (e.g. target opcode). Due to
some intrinsic limitations, BTB's accuracies are limited
on some benchmarks having unpropitious
characteristics (e.g. correlated branches).

In order to improve BTB's efficiency, Yeh and Patt
(1992) and independently Pan et al (1992), generalised
it through a new approach called Two Level Adaptive
Branch Prediction. According to [Yeh92], the Two
Level Adaptive Branch Prediction uses two distinct
levels of branch history information to make
predictions. The first level consists in the History
Register (HR), that contains the last k branches
encountered (taken/ not taken) or the last k occurrences
of the same branch instruction. The second level
consists in the branch behaviour of the last occurrences
of the specific pattern of these branches. A Pattern
History Table (PHT) that contains essentially the branch
prediction automaton (usually 2 - bit saturating
counters) implements it.

HR shifts left with a binary position when updated
according to the actual branch behaviour (taken=1/ not
taken=0). There is a corresponding entry in the PHT for
each of the 2k HR's patterns.

The prediction of the branch (P) is a function (f) of
the actual prediction automaton state St.

P = f(St) (1)

After the branch is resolved, HR is shifted left and
the prediction automaton state becomes St+1.

St+1 = g(St ,Bt) (2)

where g() represents the automaton's transition function
and Bt represents the behaviour of the last branch
encountered (taken/ not taken).

These Two Level Adaptive Branch Prediction
schemes are very effective in predicting correlated
branches with high accuracy. It's well known that the
average prediction rate for these schemes, neglecting
the bad target addresses, measured on nine of the ten
Spec benchmarks, is about 97%, while BTB schemes
achieved at most 94% on the same benchmarks
[Yeh92]. An excellent generalisation of these Two
Level Adaptive Branch Prediction schemes, based on
the universal compression/prediction algorithm called
"prediction by partial matching" (PPM), is given in
[Mud96].

2. AN IMPROVED BRANCH PREDICTION
PRINCIPLE

In our opinion, a common criticism for all the present
Two Level Adaptive Branch Prediction schemes
consists in the fact that they used an insufficient global
correlation information (HRg). So, as our statistics
clearly point out, for the same static branch and in the
same HRg (containing the last k branches encountered
as taken or not taken) and HRl (containing the last l
occurrences of the same branch) context pattern, it's
possible to find different ("alternative") branch's
behaviours (for example about 50% taken and
respectively 50% not taken), making that branch
difficult to predict even through adaptive schemes.
Otherwise, as it can be seen in [Sec95], "the role of
adaptivity at the second level of two level branch
prediction schemes is more limited than has been
thought". In other words, it's difficult correctly to
predict a branch that has randomly behaviour in the
same prediction context (HRg, HRl). If each bit
belonging to HRg (on k bits) will be associated during
the prediction process with its corresponding PC, the
correlation information will be more complete and
therefore the prediction accuracy would be better. In this
way it will be not only known if the previous k
encountered branches were taken or not (through HRg
content), but it will be exactly known which branches
they were, through their labels (PC1 PC2 ... PCk).
Therefore, instead of using only HRg, it could be used a
more complex and complete prediction context,
consisting of HRg together with its corresponding labels
of branches with better performances. For each different
pattern of this context, we'll have a corresponding
prediction automaton. Based on this principle, we
propose a new prediction scheme like that presented in
figure 2.

As it can be observed in figure 2, we implement the
Prediction Table (PT) as fully associative. Also we
implemented a MPP (Minimum Performance Potential)
replacing algorithm, similar with that presented in
[Per93]. This algorithm replaces that entry having the
minimum product of the probability of reference (LRU
bits) and the probability of branch taken (derived from
prediction automata's two bits - HRl). It's well known
that discarding a branch that is not likely to be taken
has little penalty. The prediction automaton
implemented is the optimal known: a two bit saturating
counter [Nai95]. As we already mentioned, PCi
represents the PC associated with the i-th branch
belonging to HRg register.

Figure 1 presents a classical full associative GAp
branch prediction scheme [Pan92], in order to be
compared with our new modified GAp scheme (MGAp)
presented in figure 2 and having the same
characteristics. In GAp scheme the PC and the HRg are
concatenated before being used to index into the
Prediction Table. Therefore, GAp used a separate PT for
each branch. Certainly, the comparisons between GAp

and MGAp will be made, considering equivalent
schemes from the complexity/cost point of view.

3. SIMULATION WORK
3.1. BENCHMARKS PROGRAMS

The simulation work has been centred on the Stanford
integer benchmark suite, a collection of eight C
programs designed by Professor John Hennessy
(Stanford University), to be representative of non -
numeric code while at the same time being compact.
The benchmarks are computationally intensive with
higher dynamic instruction counts. All these
benchmarks were compiled by the HSA gnu C compiler,
which targets the HSA instruction set. A dedicated HSA
simulator [Ste96] that generates the corresponding
traces simulated the resulted HSA object code.

The average instruction number is about 273.000
and the average percentage of total instructions that are
branches is about 18%, with about 76% of them being
taken. Derived from HSA traces, special traces were
obtained, containing exclusively all the processed
branches. Each branch belonging to these modified
HSA traces is stored in the following format: branch's
type the PC of the branch and it's target address. Some
of these benchmarks are well known as very difficult to
be predicted. For example, as Mudge et al proved very
clearly [Mud96], 75% accuracy could be an ultimate
limit on "quick-sort" benchmark.
Following our aims, we developed a dedicated trace
driven simulator that uses the above mentioned traces.
The most important input parameters for this simulator
are the number of HRg bits (k) and HRl bits (l). As
outputs, the simulator generates prediction accuracy,
number of bad target addresses and other useful
statistics (see table 1).

Taking into account Stanford benchmark's
characteristics together with the present technological
on-chip integration level, during the simulation PHT
tables up to 256 entries were considered.

3.2. RESULTS

For both schemes we considered PT capacity of 100
entries. Table 1 presents for a MGAp scheme, some
branch prediction statistics, considering different
lengths of HRg (on k bits) concatenated with its
corresponding branches (PC1 PC2 ... PC k). As it can
be observed in table 1, these lengths are considered
successively of 9, 18, 27, 36 and 45 bits, corresponding
respectively to HRg on 1, 2, 3, 4 and 5 bits. Generally
speaking, considering HRg register on k bits and PC's
length on 8 bits (sufficient for HSA Stanford integer
benchmarks), the corresponding PT's tag length is n=9k
(see figure 2). Last column in table 1 represents the
number of replacing (NR), countered after PT's filling.
From one point of view, NR indicator represents a good
metric of branch interferences to PT. Branches with

associated "rich" contexts (great k value), involve
rapidly filling of the PT table and thus, a large number
of replacing with a bad influence on prediction's
accuracy.

Table 2 is coming from table 1 and points out for
each of the eight benchmarks the best MGAp scheme
(the optimal n, see figure 2). Finally, table 3 shows the
same statistics as the previous tables for a GAp
prediction scheme, considering HRg's length of 1 bit
respectively 9 bits.

Based on table 2, the average prediction accuracy
(Ap) for the best MGAp scheme is 87.12% (neglecting
bad targets it growths to about 90%). Interesting, with
three exceptions, the best schemes are obtained for a one
bit HRg register (k=1). As an exception, for "permute"
benchmark the best MGAp scheme involves a HRg on 5
bits. The explanation of this behaviour could involve
two antagonist aspects. Firstly, a "rich" branch context
(great k value) could involve better performances
because essentially each branch context has its own
prediction automata stored in PT. Secondly, as we
already mentioned, "rich" contexts could determine
NR's growth and therefore poor performances due to
interferences. The best trade-off between these two
aspects - great k values and thus "rich" contexts but few
different context patterns (from 29k possible) and
therefore few replacing process - offers the optimal
performance.

According to this, from table 1 (MGAp scheme)
results at average NR(k=1)=1.62 evacuations and
NR(k=5)=3646 evacuations. Analogously, from table 3
(GAp scheme) results at average NR(k=1)=0 and
NR(k=9)=3575. From table 1 (MGAp scheme) results at
average Ap(k=1)=85.19%, better than the
corresponding GAp scheme involving at average
Ap(k=9)=81.43% (see table 3). Analogously, further
simulations show us that for a MGAp scheme,
Ap(k=2)=86.03% and Ap(k=3)=85.39%, while for a
simple equivalent GAp scheme we obtained at average
Ap(k=18)=74.43% and Ap(k=27)=66.15%. These last
comparisons show obviously that at the same structural
complexity, a MGAp scheme performs better than a
classical GAp scheme. (Surprisingly, a GAp scheme
having k=1 obtains at average an Ap=83.74%, better
than a GAp having k=9!)

Figures 3 to 9 present comparatively, prediction
accuracies for a MGAp scheme respectively a GAp
scheme, only for those branches belonging to HSA
Stanford benchmarks, considered by us being “difficult
to be predicted”. We considered a branch difficult
predictable, if it is taken for example up to about 70%,
in the same (HRg, HRl) associated context, indifferent
of HRg’s length. As an example, in “bubble-sort” trace,
from 41.200 processed branches, 39.800 are difficult to
be predicted from this point of view. “Matrix”
benchmark doesn’t contain “difficult” branches.
Prediction accuracies are presented in figures 3 to 9
comparatively, for both MGAp respectively GAp
scheme, for different k values. For example if k=3, that
means a MGAp scheme having 3 bits of global history

concatenated with the associated PCs, each PC on 8 bit
length, and respectively a GAp scheme having 24 bits
global history; therefore equivalent schemes from the
hardware complexity point of view. The average
prediction accuracy (Ap) for all the difficult to predict N
branches belonging to a trace is given by the following
formula:

∑
∑

=

== N

i

N

i

Ki

BiApKi
Ap

1

1

)(*
(3)

Ap(Bi) represents the prediction accuracy for the branch
Bi and Ki represents the number of instances during the
trace, for a certain branch (Bi). As it can be observed,
MGAp scheme performs significantly better than the
corresponding GAp for these special branches. That
means, our new MGAp scheme proposed in paragraph
2, involves better results especially for those branches
difficult to be predicted. In other words, all these results
point out the fact that the associated PC that each HRg
bit, could be an efficient prediction information.

As another example, table 4 presents only a branch
(labelled 35) belonging to “Permute” HSA benchmark,
having a strange behaviour for HRg=xxxxx101 and
HRl=10, indifferent if HRg is on 3 bits or on 8 bits
length. Correspondingly, figure 10 presents
comparatively prediction accuracies only for this
branch, considering different k length, for both
prediction schemes.

4. CONCLUSIONS AND FURTHER WORK

We proposed a new branch prediction approach based
on an additional prediction information available to be
used during the instruction fetch stage in the pipeline.
This information consists of history register together
with its corresponding PCs of branches. Using this new
information together with the global history register, the
current branch's context becomes more precisely and
therefore its prediction accuracy could be better. Our
first simulation results are encouraging, we show that a
scheme based on this principle performs better than a
classical GAp scheme, at the same level of complexity.

As it can be observed, the obtained prediction
accuracies are smaller than those reported by other
researchers that used in simulation the Spec
benchmarks. Because of the additional warm up time
our models are likely to perform less successfully with
relatively small benchmarks like Stanford. We would
expect to show some substantial improvement in
prediction accuracy with longer benchmarks like Spec
95 for example. Anyway, the obtained prediction
accuracies are perfect comparable with those obtained
by other researchers that used Stanford benchmarks
[Ega98].

As a next step, it will be interesting and useful to
analyse a MGAp scheme that compress through hashing

some of the used prediction information, in order to
minimise scheme's costs and complexity.

ACKNOWLEDGMENTS

This work was supported in part by the Romanian
National Agency for Science, Technology and

Innovation (ANSTI) grants No. 4086/1998, 1999 and
respectively by the Romanian National Council of
Academic Research grants CNCSU No. 391/1998 and
CNCSU 489/1999. Also our gratitude to Professor
Gordon B. Steven from the University of Hertfordshire,
UK, for providing HSA Stanford traces and for his
encouragement related to our Instruction Level
Parallelism research.

Figure 1. A full associative GAp scheme

Figure 2. A full associative modified GAp (MGAp) scheme

TABLE 1. History with associated PCs (MGAp scheme - 100 entries)
Bench HRg Br.no. Pr. Accuracy Incorrect pr. Bad target NT branches No repl.

fsort.tra 9 12601 9441(74.92%) 2929(23.24%) 231(1.83%) 4414(35.03%) 0
fsort.tra 18 12601 9031(71.67%) 3325(26.39%) 245(1.94%) 4414(35.03%) 862
fsort.tra 27 12601 8590(68.17%) 3849(30.55%) 162(1.29%) 4414(35.03%) 2493
fsort.tra 36 12601 8234(65.34%) 4277(33.94%) 90(0.71%) 4414(35.03%) 3380
fsort.tra 45 12601 7935(62.97%) 4619(36.66%) 47(0.37%) 4414(35.03%) 3989

fbubble.tra 9 41216 35174(85.34%) 6042(14.66%) 0(0.00%) 10140(24.60%) 0
fbubble.tra 18 41216 35109(85.18%) 6107(14.82%) 0(0.00%) 10140(24.60%) 0
fbubble.tra 27 41216 35107(85.16%) 6116(14.84%) 0(0.00%) 10140(24.60%) 0
fbubble.tra 36 41216 34520(83.75%) 6696(16.25%) 0(0.00%) 10140(24.60%) 0
fbubble.tra 45 41216 34478(83.65%) 6738(16.35%) 0(0.00%) 10140(24.60%) 44

fmatrix.tra 9 21341 20607(96.56%) 733(3.43%) 1(0.00%) 703(3.29%) 0
fmatrix.tra 18 21341 20601(96.53%) 739(3.46%) 1(0.00%) 703(3.29%) 0
fmatrix.tra 27 21341 20595(96.50%) 745(3.49%) 1(0.00%) 703(3.29%) 0
fmatrix.tra 36 21341 20589(96.48%) 751(3.52%) 1(0.00%) 703(3.29%) 0
fmatrix.tra 45 21341 20583(96.45%) 757(3.55%) 1(0.00%) 703(3.29%) 0

fperm.tra 9 54819 42828(78.13%) 5272(9.62%) 6719(2.26%) 10862(9.81%) 0
fperm.tra 8 54819 47857(87.30%) 5282(9.64%) 1680(3.06%) 10862(19.81%) 0
fperm.tra 27 54819 48010(87.58%) 5129(9.36%) 1680(3.06%) 10862(19.81%) 0
fperm.tra 36 54819 49303(89.94%) 3417(6.23%) 2099(3.83%) 10862(19.81%) 0
fperm.tra 45 54819 50321(91.79%) 2316(4.22%) 2182(3.98%) 10862(9.81%) 0

ftower.tra 9 37930 33043(87.12%) 1305(3.44%) 3582(9.44%) 9153(24.13%) 0
ftower.tra 18 37930 32778(86.42%) 1315(3.47%) 3837(10.12%) 9153(24.13%) 0
ftower.tra 27 37930 32701(86.21%) 1265(3.34%) 3964(10.45%) 9153(24.13%) 0
ftower.tra 36 37930 32622(86.01%) 1280(3.37%) 4028(10.62%) 9153(24.13%) 0
ftower.tra 45 37930 32694(86.20%) 1302(3.43%) 3934(10.37%) 9153(24.13%) 44

fqueens.tra 9 38462 30511(79.33%) 7932(20.62%) 19(0.05%) 19181(49.87%) 0
fqueens.tra 18 38462 31074(80.79%) 7369(19.16%) 19(0.05%) 19181(49.87%) 0
fqueens.tra 27 38462 31075(80.79%) 7368(19.16%) 19 (0.05%) 19181(49.87%) 158
fqueens.tra 36 38462 29061(75.56%) 9391(24.42%) 10(0.03%) 19181(49.87%) 4612
fqueens.tra 45 38462 26521(68.95%) 11931(31.02%) 10(0.03%) 19181(49.87%) 8709

ftree.tra 9 32887 28122(85.51%) 3510(10.67%) 1255(3.82%) 8721(26.52%) 0
ftree.tra 18 32887 28188(85.71%) 3477(10.57%) 1222(3.72%) 8721(26.52%) 0
ftree.tra 27 32887 28216(85.80%) 3547(10.79%) 1124(3.42%) 8721(26.52%) 37
ftree.tra 36 32887 27922(84.90%) 3876(11.79%) 1089(3.31%) 8721(26.52%) 548
ftree.tra 45 32887 26016(79.11%) 5848(17.78%) 1023(3.11%) 8721(26.52%) 3309

fpuzzle.tra 9 204527 193579(94.65%) 10946(5.35%) 2(0.00%) 18576(9.08%) 13
fpuzzle.tra 18 204527 193183(94.45%) 11342(5.55%) 2(0.00%) 18576(9.08%) 3322
fpuzzle.tra 27 204527 190037(92.92%) 14488(7.08%) 2(0.00%) 18576(9.08%) 7349
fpuzzle.tra 36 204527 187417(91.63%) 17109(8.37%) 1(0.00%) 18576(9.08%) 10576
fpuzzle.tra 45 204527 185285(90.59%) 19241(9.41%) 1(0.00%) 18576(9.08%) 13074

TABLE 2. History with associated PCs - best predictions (MGAp scheme - 100 entries)
Bench HRg Br.no. Pr. Accuracy Incorrect pr. Bad target NT branches No of ev.

fsort.tra 9 12601 9441(74.92%) 2929(23.24%) 231(1.83%) 4414(35.03%) 0
fbubble.tra 9 41216 35174(85.34%) 6042(14.66%) 0(0.00%) 10140(24.60%) 0
fmatrix.tra 9 21341 20607(96.56%) 733(3.43%) 1(0.00%) 703(3.29%) 0
fperm.tra 45 54819 50321(91.79%) 2316(4.22%) 2182(3.98%) 10862(9.81%) 0
ftower.tra 9 37930 33043(87.12%) 1305(3.44%) 3582(9.44%) 9153(24.13%) 0
fqueens.tra 18 38462 31074(80.79%) 7369(19.16%) 19(0.05%) 19181(49.87%) 0
ftree.tra 27 32887 28216(85.80%) 3547(10.79%) 1124(3.42%) 8721(26.52%) 37
fpuzzle.tra 9 204527 193579(94.65%) 10946(5.35%) 2(0.00%) 18576(9.08%) 13

TABLE 3. History without associated PCs (GAp scheme) - 100 entries
Bench HRg Br.no. Pr. Accuracy Incorrect pr. Bad target NT branches No of ev.

fsort.tra 1 12601 9354(74.23%) 3027(24.02%) 220(1.75%) 4414(35.03%) 0
fsort.tra 9 12601 7924(62.88%) 4569(36.26%) 108(0.86%) 4414(35.03%) 3390

fbubble.tra 1 41216 35166(85.32%) 6047(14.67%) 3(0.01%) 10140(24.60%) 0
fbubble.tra 9 41216 33499(81.28%) 7717(18.72%) 0(0.00%) 10140(24.60%) 2640

fmatrix.tra 1 21341 20613(96.59%) 725(3.40%) 3(0.01%) 703(3.29%) 0
fmatrix.tra 9 21341 20577(96.42%) 763(3.58%) 1(0.00%) 703(3.29%) 0

fperm.tra 1 54819 36998(67.49%) 6060(11.05%) 11761(21.45%) 10862(19.81%) 0
fperm.tra 9 54819 48188(87.90%) 2331(4.25%) 4300(7.84%) 10862(19.81%) 0

ftower.tra 1 37930 33432(88.14%) 1419(3.74%) 3079 (8.12%) 9153(24.13%) 0

ftower.tra 9 37930 32923(86.80%) 1348(3.55%) 3659 (9.65%) 9153(24.13%) 0

fqueens.tra 1 38462 3033(78.88%) 8101(21.06%) 22(0.06%) 19181(49.87%) 0
fqueens.tra 9 38462 26903(69.95%) 11546(30.02%) 13(0.03%) 19181(49.87%) 7508

ftree.tra 1 32887 28027(85.22%) 3617(11.00%) 1243(3.78%) 8721(26.52%) 0
ftree.tra 9 32887 25308(76.95%) 6400(19.46%) 1179(3.59%) 8721(26.52%) 3890

fpuzzle.tra 1 204527 192455(94.10%) 12070(5.90%) 2(0.00%) 18576(9.08%) 0
fpuzzle.tra 9 204527 182695(89.33%) 21832(10.67%) 0(0.00%) 18576(9.08%) 15059
TABLE 4. The behaviour of branch 35 belonging to “perm” benchmark

HRg HRl Taken (%) Not taken (%)
101 10 1680 (67%) 839 (33%)

11101 10 1680 (67%) 839 (33%)
11111101 10 840 (59%) 579 (41%)
01011101 10 840 (76%) 260 (24%)

bubble

75
80
85
90
95

1 2 3 4 5 6

K

MGAp
Gap

Figure 3. MGAp vs. GAp

perm

0

50

100

150

1 2 3 4 5 6

K

MGAp
Gap

Figure 4. MGAp vs. GAp

Sort

50
55
60
65
70

1 2 3 4 5 6

K

MGAp
Gap

Figure 5. MGAp vs. GAp

queens

0
20
40
60
80

1 2 3 4 5 6

K

MGAp
Gap

Figure 6. MGAp vs. GAp

tower

70

80

90

100

1 2 3 4 5 6

K

MGAp
Gap

Figure 7. MGAp vs. Gap

tree

60
65
70
75
80

1 2 3 4 5 6

K

MGAp
Gap

Figure 8. MGAp vs. GAp

puzzle

0

50

100

1 2 3 4 5 6

K

MGAp
Gap

Figure 9. MGAp vs. Gap

perm-35

0

50

100

150

1 2 3 4 5 6

K

MGAp
Gapp

Figure 10. MGAp vs. GAp

REFERENCES

[Cha97] Chang P.Y., Hao E., Patt Y.N. - Target
Prediction for Indirect Jumps, ISCA '97 - Ann. Int.'L
Symp. Computer Architecture
(http://www.eecs.umich.edu/HPS)

[Ega98] Egan C. - Branch Predictor Report, University
of Hertfordshire, Department of Computer Science, UK,
November, 1998

[Eve96] Evers M., Chang P.Y., Patt Y.N. - Using
Hybrid Branch Predictors to Improve Branch
Prediction Accuracy in the Presence of Context
Switches, ISCA '96 (Ann. Int.'L Symp. Computer
Architecture)
[Kim98] Kim S.P., Tyson G.S. – Analyzing the
Working Set Characteristics of Branch Execution, 31st

Annual ACM/IEEE Int’l Symp. On Microarchitecture,
Dallas, USA, 30 Nov.- 2 Dec., 1998

[Mud96] Mudge T.N., et al - Limits of Branch
prediction, Technical Report, Electrical Engineering
and Computer Science Department, The University of
Michigan, Ann Arbor, Michigan, USA, 1996

[Pan92] Pan S.T., So K., Rahmeh J.T. - Improving the
Accuracy of Dynamic Branch Prediction Using Branch
Correlation, ASPLOS V Conference, Boston, October
1992

[Per93] Perleberg C., Smith A. J. - Branch Target
Buffer Design and Optimisation, IEEE Transactions on
Computers, No. 4, 1993

[Rec98] Reches S., Weiss S. – Implementation and
Analysis of path History in Dynamic Branch Prediction

Schemes, IEEE Transactions on Computers, No. 8,
1998

[Sec95] Sechrest S., Lee C., Mudge T. - The Role of
Adaptivity in Two-Level Adaptive Branch Prediction,
Proceedings of MICRO-28, 1995

[Ste96] Steven G. B. et al - A Superscalar Architecture
to Exploit Instruction Level Parallelism, Proceedings of
the Euromicro Conference, 2-5 September, Prague,
1996.

[Vin99] Vintan L., Armat C., Steven G. - The Impact
of Cache Organisation on the Instruction Issue Rate of
a Superscalar Processor, Proceedings of Euromicro 7th
Workshop on Parallel and Distributed Systems
(http://www.elet.polimi.it/pdp99/), pg. 58-65, ISBN 0-
7695-0059-5, Funchal, Portugal, 3rd -5th February,
1999

[Vin99a] Egan C., Steven G., Vintan L., - A Cost
Effective Cached Correlated Two Level Adaptive
Branch Predictor, Eighteenth IASTED International
Conference, AI ‘2000, February 14-17, Innsbruck,
Austria, 2000

[Vin99b] Steven G., Egan C., Quick P., Vintan L. –
Reducing Cold Start Mispredictions in Two Level
Adaptive Branch Predictors, Proceedings of The 12th

International Conference on Control Systems and
Computer Science (CSCS 12), vol.2, ISBN 973-96609-
5-9, Bucharest, Romania, May 26-29, 1999

[Yeh92] Yeh T., Patt Y. - Alternative Implementations
of Two Level Adaptive Branch Prediction, 19 th Ann.
Int.'L Symp. on Computer Architecture, 1992.

