
Appeared in Proceedings of Thirteenth International Conference on Digital Information Management

(ICDIM 2018), pp. 18-23, 2018, Berlin, Germany, ISBN 978-1-5386-5244-2

Smart parking system - another way of sharing

economy provided by private institutions

Simona-Daniela Marcu, Adrian Florea

Computer Science and Electrical Engineering Department

“Lucian Blaga” University Sibiu

Sibiu, Romania

Email: marcu.simona95@yahoo.com, adrian.florea@ulbsibiu.ro

Abstract— This paper presents our smart parking solution

implemented at “Lucian Blaga” University of Sibiu (LBUS)

Romania, which consists in a hardware / software embedded

system for managing the institution’s parking lots, namely

sharing the parking places in excess for people who are in

traffic in neighbourhood of LBUS and are looking to park. Our

solution is flexible, universal, applicable to all faculties that

have car parks from Romania and not only, in university cities

where the crowd is bigger, but also to other private institutions

that own parking spaces inefficiently exploited. The advantages

introduced are primarily economic, then social and even

environmental. The first benefit is economic - for institutions

which exploit their free parking spaces during the year, at

different moments of time (holiday, afternoon, or time when

people left from work) offering for people who are searching

for. From a social point of view, ensuring the convenience of

drivers, reducing crowding especially at rush hours and

reducing the time spent in search of a parking space, is also an

important advantage. Reducing the cost of fuel required by

cars that are looking for a parking space contributes to

reducing pollution and improving air quality, having a positive

impact on the environment.

Keywords - parking spaces; embedded system; MQTT;

web application; smart parking

I. INTRODUCTION

An important goal of a smart city is to find intelligent
solutions that help improve the quality of services provided
to citizens. The lack of parking spaces and other
infrastructure problems are the consequence of city crowding
[1]. Moreover, in Sibiu, during the annual 25-year-old theatre
festival or other events, the authorities restrict parking places,
offering parking slots for guests from abroad or in the
country. This year the number of visitors and participants to
theatre festival was 525,000 people, around 3 times more
than the Sibiu city’s population that creates an additional
pressure on local drivers. Looking for a parking space has
become a routine for most drivers around the world. Some
statistics from Boston University [2] shows that more than
30% of the drivers spent about 8 minutes surrounding the
areas near their target to park their vehicle. Our experience,
into a small town like Sibiu, Romania, reveals that finding a
parking space (e.g. around the Engineering Faculty) involved
every morning losing at least 10 minutes of searching, as
well as fuel costs, or coming to Faculty with at least 20
minutes before the class starts. A smart parking system
would be the first step in the right direction. This helps to
reduce the time with searching a parking spot, reduce

pollution and helps to fluidizing traffic, and even reduces the
risk of fines for irregular parking.

In these days, the Internet and mobile devices can be
used by any person. Thus, implementation of a web
application is the best way to achieve this goal. A web
application has many advantages as portability, compatibility
between different platforms and accessibility. All this
advantages made us to reduce the problems mentioned
above, using a web application implemented in ASP .NET
and C#.

This solution was chosen due to the fact that finding a
parking space represents one of the biggest problems of a
driver. An urban smart mobility solution for congestion
control might be the use of parking charges, congestion time
pricing for downtown parking areas. However, this would be
apply by local public administration. Our proposal is
dedicated for private institutions who may share their
parking spaces with every driver at certain moments of time,
without affecting their own employees.

In our previous work [3] we forecasted the “the
occupancy rate of a building” based on embedded systems
that collected data from sensors and, using artificial
intelligence tools we have modelled the energy consumption
in buildings based on alternative data sources, such as the
number of vehicles in a parking lot. It was determined the
correlation between the number of vehicles over time and
time-related parameters, like day of week, hour of day, and
type of day, in order to validate the potential of using a
machine learning model of parking lot occupancy. This
paper presents our smart parking solution implemented at
LBUS. During one year, this parking space is occupied
around 40 weeks, the rest being holiday. There are around
120 parking spaces. The institution time scheduler shows that
after 17 o’clock are much less classes than during the
morning. In conclusion, there is a rather high degree of
vacancy in the parking which could generate additional
income for private institutions.

The proposed system consists of the hardware system
(camera, Raspberry Pi) for license plate recognition number,
the opening / closing the barrier, three led that form the
traffic light, and software application for determining the free
places, requesting (booking) a parking space for a time
interval through a web application, the communication
module between Raspberry Pi microprocessor and the WEB
application being made through the Node-RED program that

mailto:marcu.simona95@yahoo.com
mailto:adrian.florea@ulbsibiu.ro

use the MQTT services to transmit the real-time information
to the application without the need to refresh the webpage.

The remainder of paper is organized as follows: The
second part analyses the related works. The introduction of
our solution with its advantages follows in the third part. The
fourth part gives us the application architecture whilst the
tools and programming environments used are described in
fifth section. Some scalability issues and a possible solution
provided by our embedded system are tackled in sixth
section. Finally, conclusions and future work ideas are
presented in the last section.

II. RELATED WORK

In [4] the authors presented a reservation-based parking

system used at Nebraska University, Lincoln, USA. The

application is managing parking spaces and monitor real-

time the parking spaces. The proposed solution is a

reservation-based system, so the driver reserves the most

convenient parking space for him, depending on the walking

distance to the destination and the cost of the car park. This

paper further elaborates on one of the criteria for choosing

the parking space by the driver, namely the cost. The

disadvantage of this work is that, when more users apply for

a reservation in the same time, occur synchronization

problems, and there is a “bottleneck” within the system and

increases the update time because the system have to handle

serial each requests. In our work we solve this problem at

the session level of the OSI reference model [5] of

communications protocols. We are using a different name

for every session, and the messages are received and send

only on that session.

In [6] the authors describe an embedded system design

for a real-time parking. This work, implemented at

University of South Florida, has the main goal to inform the

drivers, using a mobile application, about availability of

parking spaces in real-time. An ultrasonic sensor is used to

detect free parking spaces. When a car is detected, reads the

ultrasonic sensor, and updates the counting of cars both on

the display at the entrance to the parking lot and on the

mobile application. The disadvantage is that the sensor

detects golf carts or people as cars. This is not a problem to

our solution because the entrance to the parking is based on

license plate number.

In [7] the authors present a smart parking system based

on embedded system implemented in Pune, India. The

solution consists of a smart parking system based on

reservation, QR code generation technology and a webcam

that reads at parking entrance the QR code and checks in

database if it is the one expected. Our hardware components

are newer (Raspberry Pi model 3B) than their solution and

we use license plate recognition algorithm instead QR

technology.

III. SOLUTION

A. Reservation

Fig. 1. Reservation form

This solution consists of a smart parking system based on

reservations. Anyone who is registered on application can

make a reservation. Reservation contains the name of

parking, parking space (can be choose by user), price, arrival

and departure estimated date and time.

B. Real time parking status view

Anyone can view in real time the parking status, how
many spaces are free, how many are busy and by which car
(the license plate number is placed on parking space chosen
from reservation page). The busy spaces are represented with
red color, and free spaces are represented with green color.

Fig. 2. Real time status parking view

C. License plate recognition

The entrance to the parking is based on license plate
number. When driver arrives in the front of the barrier, he
has to push the button from home page to send instruction to
camera for checking his license plate number. If the drivers
have a reservation that is +/- 15 minutes around estimated
arrived date and time he has access into the parking. If not,
we have to check if exist empty spaces, that are not reserved
in the next 4 hours. So, if there are still empty spaces, that car
has access in the parking, otherwise not.

IV. APPLICATION ARCHITECTURE

The purpose of this project is to create a hardware-
software application that resolve the parking problem
described above: booking a place and allowing the entrance

and of course the reverse problem – exiting and updating the
number of free places.

The database is essential. We designed a MySQL
database which contains few tables with foreign keys. We
keep in database all reservations, user information, prices,
history and the number of free parking spaces.

Fig. 3. Application architecture

In fig. 3 are presented all steps (14) of operations’ flow of
the project in order to allow a car to enter into a parking
space. The first step is making an online reservation. When
the driver arrives in front of the barrier, he has to push the
<I arrive> button from home page. After all this, the Node-
Red is sending using MQTT, messages and instructions
from/to application.

Fig. 4. Checking access

In fig.4 is present the checking access in parking. So, if
the car witch arrives in the front of barrier has a valid
reservation, the green led is turning on, and the barrier opens.
Otherwise, we check for the empty spaces with the following
formula. Difference between final number of spaces for
parking available, busy spaces at that time, reservations for
the next 4 hours and 2 spaces used for safety. Applying this
formula, if there are still empty spaces, led green is on and
the barrier opens, otherwise the red led is turning on.

In this project are used some new tools for IOT
programming. The application flow is the following:

A. Online Reservation

The first step is making an online reservation from web
application. For this, we have to register into the application
and access the Reservation page.

B. Arrival Home button

 When driver arrives in the front of barrier, he has to push
the arrival button from Home page. This button sends the
instruction to camera to take a picture, get license plate
number from that and check in database if exist a reservation
with that license plate number.

Fig. 5. The arrival button

C. Barrier and traffic lights

After that license plate number is checked, web
application sends instructions to turn on / off the lights and
open the barrier or not.

While all this checks are made, yellow light is on. At the
end, if that car has access in the parking, green light is
turning on, and the barrier opens. Otherwise, red light is
turning on, and the barrier does not open.

V. TOOLS AND PROGRAMMING ENVIRONMENTS USED

This project is divided into two parts. First part contains
hardware components used, while the second contains
software programming environment used.

A. Hardware components

The main component used is a Raspberry Pi model 3B
microcontroller witch has a Linux Raspbian operating
system. Together with it, we used the following compatible
components:

1) Pi camera: Is a small camera that has 5MP. We use a

cost-effective camera with reasonable performance (around

90%) taking into account that some commercial and

professional camera cost around 10000 dollars but with

accuracies between 93-95% [2].

2) Leds: Together form the traffic light.

a) Yellow: Waiting

For turning on / off the leds we used some Python

scripts which are executed as follow:

$sudo python xLedOn.py

$sudo python xLedOff.py

Where xLedOn.py / xLedOff.py represents the Python file

that contains the script. We made 2 files for each led (1 for

turning on and another for turning off the led). So, there are

totally 6 python files to act the leds.

Fig. 6. Waiting

b) Green: Access

Fig. 7. Access in the parking

c) Red: No Access

Fig. 8. No access

3) Stepper motor: Open and close the barrier.

To operate the barrier we use a stepper motor along with

a python script.

$sudo python motor.py 1 60 cw – open the barrier (spinning

clockwise with 60)

$sudo python motor.py 1 60 ccw – close the barrier

(spinning counter

clockwise with 60)

Where motor.py is the file that contains python script for

operating the barrier, 1 represents the speed of spinning, 60

represents with how many degrees is spinning, cw and ccw

means the direction in which it moves.

B. Software

1) OpenALPR: is an open source library writen in C++,

Java, Node.js, and Python that analyzes video images and

streams to identify the license plate numbers [8]. The

computer vision algorithm is in Python implemented. The

output returned is the text represented by the characters of

the license plate. This library can be compiled and run on

Linux, Mac and Windows. OpenALPR requires the

following additional libraries:

 Tesseract OCR: it is one of the most accurate optical

character recognition (OCR) engine for various

operating systems.

 OpenCV: it is a library dedicated to computer vision

applications enhanced with machine learning algorithms.

 Leptonica: contains useful software, generally for image

processing and analysis applications. The license plate

region detector uses the Local Binary Pattern (LBP)

algorithm [9]. LBP is a simple but effective texture

operator that labels the pixels of an image by comparing

it with neighboring pixels, and considers the result to be

a binary number. The most important property of the

LBP operator in real-world applications is its robustness

to monotonic changes in gray level, especially caused by

lighting variations.

We simply call the algorithm on the picture created

when the button is pressed, and the algorithm returns the

car’s number. To access the camera to take a picture we use

the following command, where cam.jpg represents the

image name.

$raspistill -o cam.jpg

To apply the ALPR algorithm to a picture, we use the

following command:

$alpr -c eu cam.jpg

This command can be used only on the cars with

European license plate number, that’s why the first

parameter is “eu”. If we want to apply on American license

plate numbers, we change the “eu” parameter with “us”.

Fig. 9. ALPR algorithm

2) MySQL: Is used for database. The database

architecture can be viewed on fig. 10.

Fig. 10. Database architecture

The users table contains all information about users,

including user type which can be “User”, “Visitor” or

“Admin”. Reservations table contains all reservations made

using the online reservation, while history table contains

only the cars that actually entered in the parking. Prices

table contains the cost/hour for every parking. The parking

lots table contains the number of parking spaces from the

application because those are made dynamically. We choose

to do that because those numbers can be changed

occasionally, from example during a certain event, some

places can be reserved by institution or other parking spaces

are built.

This number of parking spaces changed can be made

only by admins, from configuration page.

3) Node-Red: represents a programming tool used in

general for IOT programming that connects hardware

components with API’s and online services in new and

interesting ways.

Fig. 11. Access in the parking actions

 In fig. 11 is presented the whole flow of Node-Red.

The purple nodes are MQTT nodes. “MQTT in” is waiting

for messages from web application while “MQTT out” is

sending messages to web application. The nodes with an “f”

are functions, the yellow node is a switch node, the nodes

with an arrow are execution nodes, delay nodes represent a

delay of 5 seconds, and the blue node represents a text

output that displays the final message that has to be sent.

 When a message arrives, using function nodes we get

the session and instruction from message. If instruction is

“new Car” we go on the first value of switch. This value

determine the execution on few commands such as turn

yellow led on, take a picture, get the license plate number

from picture, concatenate with session and send message.

The second value of switch determine the fact that the car

has access in parking and send the commands to turn off

yellow led, turn on the green one, open the barrier, wait 5

seconds, close the barrier and turn off the green led. Last

value of switch represents the fact that the car doesn’t have

access and turns off yellow led, turn on red led, wait 5

second and turn off the red led.

4) DevExpress: Is software developing company which,

in present has very much ASP .NET controls and more

others.

The web application was divided into several modules

presented as finite functionalities to have a good

functionality, an easy user understanding, but also to

achieve ultimate goal.

This web application is hosted on a free host (gear.host),

and the link where this application can be seen is:

http://sibiuparking.gear.host/Pages/Home

We implemented the 3 menu types that can be seen in the

following figure.

Fig. 12. Menu type depending of the user type

http://sibiuparking.gear.host/Pages/Home

Fig. 13. Register form

The Register form from web applications is completely

made from DevExpress controls. This form can be viewed

on fig. 13.

5) MQTT: (Message Queuing Telemetry Transport) is a

connectivity protocol M2M (machine-to-machine).

The messages are sent and received using an online

MQTT broker. For this thing we need two topics which will

be used with MQTT. A topic is used for sending messages

such as “testSibiuSend” and the other one

“testSibiuReceived” is a topic where we have to subscribe to

receive messages. So, on driver action to push the arrive

button, a message will be sent using MQTT to a topic. The

Node-Red receives the message using the MQTT in node.

After all executions from fig. 11, a final message that

contains license plate number is sent to another topic. The

web application is subscribing to this topic and the message

will be received to further operations.

As trial session for this project, we used the same

camera to update the parking spaces in the moment when

the car leave the parking. So, if a car want to leave the

parking is applying the same ALPR algorithm. In the web

application we check if that license plate number is inside

the parking or not. If it is, we update the parking spaces and

open the barrier along with green led. Otherwise, means that

the car wants to get in the parking. Another solution for this

would be using ultrasonic sensors that detects present or

absence of the car in front of those. When the car leaves,

sensors detects this thing and update the database.

We choose the first option for this project because is

simpler, following to adopt the second option witch is safer.

VI. SCALABILITY ISSUES

Even we designed a prototype tested for Sibiu case study
(a city with less a million inhabitants) we consider that our
embedded system solution is scalable at least to a medium
level. First, our idea aims private institutions (generally
universities but also others which would share excessive
parking places) and in such cases even the city is bigger the
number of parking place is no more than few thousands.

According to [10] the top 10 biggest parking lots in the
world (most of them belonging to airports) have between
8000 and 20000 places with maximum 60 entry points. The

solution is not applying to airports parking lots because they
are always open not like previously mentioned institutions
which have periods of time during the day / month / year
when would share their exceeding parking space.

From hardware viewpoint a scalable solution means
multiplication of all resources required by one entry with the
number of entries in the park. Also, we propose using a
camera that embedded the license plate recognition algorithm
and works regardless of the weather conditions. If there are,
e.g. 10000 parking spaces, we would need a web server that
offers a higher storage capability and RAM. Also, we will
need a larger storage capacity for the database as well. The
database could be modified, it can be adapted to the linear
database for a higher speed of the web application.

At the software level, the parking number can be changed
at any time. The problem is that we use an online mqtt broker
that supports maximum 1024 connections. Within the
reservation process the client chooses the parking space in
case someone keeps booking faster, when the other person
wants to select that parking space, a message can be
displayed to choose another location and is updated with the
remaining parking spaces. The mqtt broker is used only on
the main page where, when the driver reaches the barrier,
press the button to start the camera to read the registration
number (which means there is no need for more than one
connection). In the real-time parking viewing page, parking
spaces should be made smaller, spaced as many as possible
(about 20-25 per row, with more than one row), but this
means that this page will have many parking places, their
viewing will be done with a scroll and its loading will be a
bit harder.

VII. CONCLUSIONS AND FURTHER WORK

Our developed smart parking system is functional,
scalable and presents many advantages. It will also extended
to other institutions.

ALPR algorithm can be applied for any picture that has a
license plate, even those with US license plate numbers.
Usually, this algorithm returns 10 results, but first, which has
the biggest confidence percentage is more often the right
one.

As momentary limitations is that camera used is not a
professional one and the license plate numbers are not
always correct because this depends of many conditions such
as brightness. Another problem that we need to tackle is that
we have no certainty that the driver is parking on the right
parking space.

As a further work we intend to implement the payment
system using the application. Differentiated pricing
according to the number of parking hours or even days.
Thus, if a car is parked for a long time, the price will be
lower than the product of the number of hours and the hourly
cost.

Implementing the concept of “Gamification” is one of the
most important because by awarding the user with bonus
points for reservations made as accurately as possible, also
determine the correct management of the parking spaces.

Another further work is to view real-time parking spaces
with a camera and an algorithm of cars detection to see of
which parking space every car is parking.

REFERENCES

[1] Tomaszewska E.J., Florea A., “Urban smart mobility in the scientific
literature - bibliometric analysis”, Engineering Management in
Production and Services, Volume 10, Issue 2, 2018, ISSN 2543-6597,
Poland, DOI: 10.2478/emj-2018-0010.

[2] Y. Geng and C.G. Cassandras. “A new smart parking system
infrastructure and implementation”. Procedia-Social and Behavioral
Sciences, 54:1278–1287, 2012.

[3] Oliveira-Lima, J. A., Morais, R., Martins, J. F., Florea, A., Lima, C.
(2016). “Load forecast on intelligent buildings based on temporary
occupancy monitoring”. Energy and Buildings, 116, 512-521.

[4] Hongwei Wang, “A reservation-based Smart Parking System”
University of Nebraska-Lincoln, July 2011.

[5] International Telecommunication Union ITU-T X.200, “Information
technology – Open Systems Interconnection – Basic Reference
Model: The basic model”, July 1994.

[6] Omkar Dokur, “Embedded System Design of a Real-time Parking
Guidance System”, University of South Florida, October 2015.

[7] Falz Ibrahlm Shaikh, Pratlk Nirnay Jadhav, Saldeep Pradeep
Bandarkar, Omkar Pradip Kulkarni, Nikhilkumar B. Shardoor, “Smart
Parking System Based on Embedded System and Sensor Network”
JSPM’s Jayantrao of Sqwant College of Engineering, Pune, India,
April 2016.

[8] https://github.com/openalpr/openalpr, Retrieved at 05.07.2018.

[9] DC. He and L. Wang (1990), "Texture Unit, Texture Spectrum, and
Texture Analysis", Geoscience and Remote Sensing, IEEE
Transactions on, vol. 28, pp. 509 - 512.

[10] Rajkamal Narayanan, “Top 10 Biggest Parking Lots In The World”, 6
April 2015, https://www.drivespark.com/off-beat/top-10-biggest-car-
parking-in-the-world/articlecontent-pf18346-010286.html, Retrieved
at 19.08.2018.

https://github.com/openalpr/openalpr
https://www.drivespark.com/off-beat/top-10-biggest-car-parking-in-the-world/articlecontent-pf18346-010286.html
https://www.drivespark.com/off-beat/top-10-biggest-car-parking-in-the-world/articlecontent-pf18346-010286.html

