
41

Appeared in the Proceedings of the Second Symposium "Extra Skills for Young Engineers"
(ESYE 2001)

ISBN: 86-435-0440-8, Maribor, Slovenia, October 2001

SIMULATING AN ADVANCED SUPERSCALAR ARCHITECTURE

Adrian FLOREA, Lucian N. VINTAN,

“Lucian Blaga” University of Sibiu, Computer Science Department, No. 4, E. Cioran Street, Sibiu-2400, ROMANIA,

E-mail: aflorea@vectra.ulbsibiu.ro, vintan@jupiter.ulbsibiu.ro

Abstract: There are two paradigms that contribute for

increasing the processor’s performance: one based on

software and the other one based on hardware. For

following the evolutionary path from the last 25 years in

computer architecture it is necessary to realize an

integrated approach based on a synergism between

technology and architecture, concepts, algorithms and

methods, hardware and software applications. This paper

wants to be a useful software guide dedicated to anyone

who should realize a simulator - a virtual machine that

evaluates and optimizes the performance of a parallel

architecture - and doesn't know how to start. The

simulator offers the user the opportunity to define the

parameters that govern many details of the machine

model’s behavior.

Key words: Software Simulation, Benchmarking,

Architecture, Instruction and Thread Level Parallelism,

Hardware and Software Resources.

1. Introduction

The design of next generation processors is based mainly

on software architecture design. Researchers

traditionally use simulation techniques, to evaluate

different processor pipeline configurations. First a

parameterized simulator is written for the processor

model; then a suite of benchmarks is executed to

evaluate the performance of different configurations.

Also, the processors should be designed together with

the compilers that are using them: the code generated by

the compiler must exploit the architectural features,

otherwise the code will be inefficient.

Improving processors performance could be realized

statically, helping by the compiler (through global

optimization scheduling techniques) or dynamically,

based on hardware methods (forwarding, combining).

The actual conclusions of computer architecture

researchers are that three phenomena (the clock speed,

integration on single chip and exploiting the instructions

and threads level parallelism - ILP and TLP) contribute

for increasing the overall processor performance. The

general purpose of any research about uniprocessor

architecture is to extract and realize higher degrees of

ILP from benchmarks compiled (optimized) for the

respective architecture.

The testing programs considered (Stanford, SPEC)

represent common applications computationally

intensive with higher dynamic instruction counts, some

of them pure recursively. These benchmarks reflect the

advances in chip technologies, compilers and

applications and include graphics, multimedia,

compilers, sorting problems, image and sound

compression, games. For example, one of the

applications that runs on the last commercial processors

Intel Pentium IV is the encoding of real time image

captured by a digital video camera. The Stanford

benchmarks were proposed by John Hennessy in 1981

and constitute one of the first generation of testing

programs (1 million dynamic assembly instructions). In

the last 12 years the Standard Performance Evaluation

Corporation (SPEC) released at every three years new

benchmarks reflecting the changes in technology (2,5

dynamic billion instructions).

The simulation methodology could be execution

driven or trace driven. The first methodology is

characterized by knowing, in every clock cycle, the

content architectural resources (registers, memory

location, reservation stations, functional units, etc). As

outputs from this simulator are considered hit ratios from

caches, processing rate, using degree of resources, or

even traces of instructions executed. The main aim of

trace driven simulation is to determine the optimal

instance of architecture – the processor – which will be

hardware implemented. In this sense, the instructions

from traces generated by execution driven simulator are

sequentially analyzed, helping to cache-processor’s

interface simulation, statically or dynamical branch

prediction.

Figure 1 shows the simulation, comparison and

establishing phases of an optimum computer

architecture, starting from high level languages source of

benchmarks until to architecture’s hardware

implementation (VHDL description, silicon

implementation). The original source code (C, C++,

Fortran 90, etc.) is first passed through a cross-compiler

(e.g. GnuCC) that produces the correct format of

assembler mnemonic code, together with assembler

mailto:aflorea@vectra.ulbsibiu.ro
mailto:vintan@cs.sibiu.ro

42

directives and data allocation commands. The assembler

code is relocatable, with branch targets and data

references being expressed as label rather than actual

addresses in memory. Optional, this code could be

rearranged using an instruction scheduler that packs the

instruction in independent groups. The resulting object

code represents an input parameter for the execution

driven simulator, highly parameterized, which generates

a lot of interesting results and the trace file.

This paper tries to help anyone who wants to write an

architecture software simulator, a trace driven in this

case [1]. As the complexity of superscalar architecture

increases, the underlying concepts of dynamic

scheduling and speculative execution become

increasingly difficult to explain without some form of

visualization. So, the simulator was developed using

Microsoft Visual C++, version 6.0, and could be run

under Windows 9x or NT operating systems. The choice

of authors relies on the fact that C++ language offers a

strong support for object oriented programming: multiple

inheritance, polymorphism, friend functions and classes.

All these concepts create the premises for future

development (extension) of actual simulation version.

The implementation should be realized in so manner,

that any change (adding) in hardware or software to be

made with a minimum effort. From the user point of

view it is very necessary a visual friendly interface,

based on menus, dialog boxes, graphical images,

although not every simulator provide some kind of

interface (e.g. Simplescalar Tool Set). The simulator

must be easy to use and the results must be efficiently

interpreted and processed (eventually transferred to some

utility application such Microsoft Graph, Excel,

PowerPoint, Internet).

Figure 1. The simulation and establishing phases of a computer architecture

2. Software Principles of Implementation

Besides the instruments for debugging, editing and

resource generating, Developer Studio environment from

Visual C++ provides to programmers three kind of

wizards used to simplify Windows programs

development.

 AppWizard is used to create the basis structure of a

Windows program.

 ClassWizard helps to define the classes inside a

program created with AppWizard and to manipulate

the controls or other resources from dialog boxes,

etc.

 OLEControlWizard is used to create the base

mainframe of an OLE Control.

The main stages in developing Visual C++ programs are:

 Creating the backbone of program using AppWizard.

 Creating the software resources required by program.

 Adding the classes and functions for treating the

messages using ClassWizard.

 Creating and developing the functional kernel of

program.

 Compiling and debugging the programs using the

Visual C++ Debugger.

Starting the simulator execution, (e.g. cache.exe –

simulator dedicated to cache memory integrated in a

superscalar architecture) on the host computer screen

appear a window main menu. The simulator (the

program application) relies on simple menus nested or

float, depending on operations executed on specific

architecture elements.

43

Figure 2. The simulator main menu
The File menu contains options like OpenTraces (for

selecting and reading the benchmark), ResetAll (reset the

architectural configuration), CancelBenchmark (close

the active benchmark) and Exit (close the simulator and

pass the control to operating systems). The

Configuration menu includes ExecutionUnits branch (for

setting the main input parameters except those related by

cache), Forwarding (for enabling respective disabling of

this mechanism), Load_Config respective Store_Config

(necessary for loading or storing an existing

configuration). The Run menu consists in the options:

Start_Processing, ShowResults (exhibit the statistical

results in edit boxes) and GraphicalResults (function by

executed simulation). Choosing Memory menu the user

should specify the type, size and architecture of caches.

Also, it should be set the cache block size, penalty due to

cache misses, writing cache strategy, using or not the

Data Write Buffer. The Breakpoint menu contains the

options Set, Reset and ResetAll, for establishing and

removing partially respective totally of interrupting

points. The Help option must contain explanation and

detailed references about architecture, hardware and

software resources, facilities offered by simulator, how it

works, and statistical results.

Another software resource, frequently used in

implementation of simulator is the dialog box. Their

lifetime is very short and they are used to present

information or to collect data from input devices. The

dialog boxes have different forms, varying from simple

messageboxes to very sophisticated dialog boxes that

contains controls such as: editboxes, buttons, listboxes or

comboboxes, listviews, OLEControls (grids and

graphics), progress bar controls. A very important

dialog box presented here illustrates the results under

graphical form (figure 3). The main component of this

dialog box is the ActiveX control (user interface element

build in ActiveX technology) that helps for representing

the graphical results of simulation without asking help

from other applications such Microsoft Excel, MS Word

Graph or MS Access. ActiveX represents a set of

technologies that enables software components to

interact with one another in a networked environment,

regardless of the language in which they were created.

ActiveX™ is built on the Component Object Model

(COM). Additionally, on pushing the Save button it is

created a text file containing the results simulated till

then, under the following format:

sort tree matrix bubble queens tower perm puzzle Hmin
FR=4 3.4333 6.0045 0.0506 0.0454 13.2642 0.0000 0.0267 7.6752 0.0000
FR=8 2.8733 8.1122 0.0572 0.0346 14.7214 0.0000 20.3828 7.7634 0.0000

FR=16 3.8167 9.3909 0.0630 0.0345 12.6638 0.0000 26.1302 6.9828 0.0000

The zero values suggested that respective benchmark

wasn’t simulated yet and implicit it wasn’t computed the

average performance value. Pushing the OK or Cancel

button the box will be close and the results will be store

in the used software structure. Selecting ResetAll option

from File menu will graphic reset the ActiveX object.

Figure 3. Graphical representation of results using ActiveX objects

From among other used software resources we mention:

 Very flexible button controls used to close dialog

boxes, starting search process, asking for help.

 Edit control (singleline and multipleline) for

introducing/showing data from/to I/O devices.

 Listboxes that allows the user to select from many

options (simple or multiple selection). Multiple

selection may be choosing when it wants to simulate

simultaneous on more than one benchmark

(multithreading).

 A “progress bar control” is a window that an

application can use to indicate the progress of a

lengthy operation. It consists of a rectangle that is

gradually filled, from left to right, with the system

highlight color as an operation progresses.

 The listview control displays items using one of four

different views. The user can arrange items into

columns with or without column headings as well as

display accompanying icons and text.

3. The User Interface. The Functional

Kernel of Simulator

High performance superscalar processors organizations

divide naturally into an instruction fetch mechanism and

an execution mechanism (Figure 4). These two

44

mechanism are decoupled by an instruction issue buffer

(queues, reservation stations, etc). Conceptually, the

instruction fetch mechanism acts as a "producer" which

fetches, decodes, and places instructions into the buffer.

The instruction execution engine is the "consumer"

which removes instructions from the buffer and executes

them. The branch instructions and their hardware

predictors provide the feedback mechanism between the

producer and consumer. So, in a missprediction case, the

buffer must be emptied at least partial and the access

address to the Instruction Cache must be modified

accordingly with the target address of branch.

Figure 4. The Simulated Superscalar Architecture

The main parameters of the architecture, choose

accordingly with the latest technology are [2]:

 FR – fetch rate – the instructions number that is

fetched from Instruction Cache

 IBS – instruction buffer size

 IRmax – parallel issue capability – the maximum

number of instructions that can be dispatched

concurrently from the Instruction Buffer

 Instruction Latencies (measured in CPU cycles)

 Type and Number of Functional Units

 Type and Size of Cache Memories

 Using or not the Data Write Buffer (DWB). DWB is a

small write buffer, which contains the virtual address

and data that must be written in Data Cache, offering

then multiple virtual writing ports. Using DWB it is

eliminated the need of serializing Store instructions with

afferent penalties and besides, through bypassing will be

eliminated many “Load after Store” hazards.

 Cache writing strategy in Data Cache. There are two

basic options when writing to the cache: write back and

write through, both of them having advantages. I/O

devices and multiprocessors are fickle: they want write

back for processor caches to reduce the memory traffic

and write through to keep the cache consistent with

lower levels of the memory hierarchy.

The machine model should be “fine-tuned” to remove

redundant or little hardware features and to investigate

possible tradeoffs of performance against the

functionality provided. The realized simulator must

remove the bottlenecks that limit the processor

performance and search for possible changes

(architectural or optimization techniques) for improving

it. Providing a highly parameterized model for every

processor instance, the performance obtained by

simulation will represent a quick feedback mechanism

related to proposed changes. The simulator execution

consists in the following sequential steps:

1. Configuring the microarchitecture with the input

parameters (FR, IR, IBS, etc) and selecting the

benchmark that will be simulate through the

graphical interface described before.

2. Initialization phase (caches, Program Counter

register, and clock counter).

3. Starting the trace processing: FR instructions are

extracted from cache/memory and copied into the top

of the Instruction Buffer, if there is room for them.

IRmax instructions from the bottom of the Instruction

Buffer are selected for in-order dispatch to the

Functional Units. Successfully dispatched

instructions are marked as “squashed” in the

Instruction Buffer and contiguous squashed

instructions are removed from the bottom of the

buffer at the end of each cycle. The unsquashed

instructions can only be dispatched at the same time

if there are no data dependencies between members

of the group that is formed. The clock counter is

incremented accordingly with the maximum time

consumed by each mechanism: fetch and issue. The

simulator generates a large amount of statistical data

about program profiles or the way in which the

machine’s resources have been utilized. Also, one of

the outputs could be the performance gain obtained

by implementing of different advance techniques

(selective victim cache, dynamic instruction reuse,

value prediction, trace cache, etc).

References

[1] L. Vintan, A. Florea – Microarchitectures for

Processing the Information (in Romanian), Technical

Publishing House, Bucharest, 2001.

[2] R. Collins – Exploiting Instruction Level Parallelism

in a Superscalar Architecture, PhD Thesis, University of

Hertfordshire, October 1995.

