
REDUCING THE TECHNOLOGICAL GAP BETWEEN AN
ADVANCED PROCESSOR AND THE MEMORY HIERARCHY

SYSTEM

Adrian FLOREA*), Colin EGAN**)

*)“Lucian Blaga” University of Sibiu, Department of Computer Science, Str. E. Cioran, No. 4,
Sibiu-2400, ROMANIA, E-mail: aflorea@vectra.sibiu.ro

**) University of Hertfordshire, Department of Computer Science, Hatfield, College Lane,
AL10 9AB, UK, E-mail: C.1.Egan@herts.ac.uk

Abstract

This paper discusses dependence collapsing, instruction bypassing and ‘Multiple
Load’ issue as advanced mechanisms to improve processor performance in superscalar
architectures. We also quantify, by Trace Driven Simulations, the impact on processor
performance of associating a Victim Cache/Selective Victim Cache with a first-level cache,
both integrated into a parallel architecture.

1. INTRODUCTION

Exploiting and increasing instruction level parallelism (ILP) can be achieved by
several approaches:
Ø Sophisticated superscalar processors can extract parallelism dynamically by speculative

execution or by issuing instructions out-of-order.
Ø Instruction schedulers can achieve parallelism at compile time by reordering code, by

memory reference disambiguation, and by procedure in-lining, etc.
Ø By collapsing dependencies between instructions to resolve Read-After-Write (RAW)

hazards, which are alternatively termed true data dependencies, using ALU functional units
with more than two entries.

Ø By technological and architectural improvements to the memory hierarchy system.
This paper focuses on the last two ideas, the removal of RAW hazards and

improvement to the memory hierarchy system. In section 2, we discuss mechanisms by which
RAW hazards can be reduced. In section 3, we quantify the association of a Victim
Cache/Selective Victim Cache with a first-level cache. In the experimental aspects of our
study, we use the Hatfield Superscalar Architecture (HSA) that has been developed, as a
convenient architectural vehicle for research into ILP [3], at the University of Hertfordshire,
UK.

2. REDUCING RAW HAZARDS

RAW hazards occur when a destination operand of one instruction is required as a
source operand for a second instruction. RAW hazards can be removed by combining the data
dependencies between the two instructions, thus collapsing the dependence between the
instructions [7, 11, 12, 15]. Dependence collapsing was originally proposed as a hardware
technique, termed Interlock Collapsing by Vassiliadis at IBM [15]. Subsequently, a software
version of Interlock Collapsing, which has been termed Instruction Combining, was
developed at the University of Hertfordshire [12], using the Hatfield Superscalar Scheduler
(HSS). During the process of dependence collapsing a pair of dependent instructions, which
do not need to be adjacent to each other, are combined into a single complex instruction.

In a previous study [7] we implemented dynamic dependence collapsing with the use
of a prefetch buffer. In the case of a single-port Data Cache, processor performance was
improved by 11.19%, when a two-port Data Cache was used there was an 8.51%
improvement, reaching a maximum value of 26.34% on some benchmarks [7]. Additionally,
we showed that increasing the number of collapsible instructions from 2 to 3 improved
processor performance by approximately 22%. Further, increasing the number of collapsible
instructions to 4 resulted in a 20% increase in the number of combined instructions. However,
increasing the number of collapsible instructions to 6, only achieved marginal processor
performance improvement.

A small Data Write Buffer (DWB) [16] can also be used to resolve RAW hazards.
The main idea of a DWB buffer is to prevent processor stalls from occurring when there are
insufficient cache write ports available to service the requests for data writes. The DWB
works in parallel with the processor, releasing the processor from writing data to the Data
Cache. An entry in the DWB contains the virtual address of an instruction and the data that
must be written to the Data Cache. Consider the following case, assuming that the DWB has
sufficient ports for supporting the worst case situation, such as a multitude of Store
instructions. Also assume, that the Store instructions are independent, concurrent and stored
in an instruction window. Since, the DWB is a small fast cache adding sufficient virtual write
ports to satisfy peak demand is simple and cheap [16]. The Data Cache therefore only requires
sufficient write ports to satisfy the average number of writes per clock cycle. Consequently,
the Data Cache requires one or, at maximum, two read ports and a single write port. In our
previous studies [7, 12], we showed that increasing the latency of a DWB from 2 to 3 clock
cycles reduced processor performance by 11.63%. We concluded that writing from the DWB
to the Data Cache must be conducted quickly to minimise impact of latency. We also showed
that increasing the number of read ports to 2 improved processor performance by 5%.

Bypassing, or forwarding, can be used to remove Load and Store hazards. In pipelined
processors, results obtained after the execution stage are returned to the register file.
However, in bypassing, a result may be forwarded directly to the execution stage of the
pipeline if the result is required as a source operand by an immediately following operation.
In our earlier studies [7, 12], when bypassing was included with a DWB we showed that
processor performance improved by 17.87%.

Reducing the cache miss penalty improves processor performance [14]. Assuming that
target addresses of Load and Store instructions in the Instruction Buffer are known, then
multiple Load instructions can be issued. The ‘Multiple Loads’ are read from the same Data
Cache block, providing there are no intermediate Stores. Issuing Multiple Loads can be
applied out-of-order, where reservation stations are provided for Load and Store instructions,
or in a Trace Processor [13]. The main advantage of Multiple Loads is an ability to execute

multiple loads in each cycle without fully replicating the cache read port. However, the size of
the Data Cache and the size of the Instruction Buffer directly influence the processing rate
when Multiple Loads is used. For example, with a small Data Cache that has few blocks,
there is a high possibility that the same block is accessed repeatedly. In the case of a large
Instruction Buffer, there is a high possibility that more Loads accessing the same Data Cache
block are retained. In our previous studies [7, 12], we showed that Multiple Loads only
improves processor performance by about 3%, and that any improvement is dependent on the
execution pattern of the instructions.

Throughout the 1990s, processor cycle time has been decreasing at a rate faster than
the time to access the memory system. Additionally, the architectural design of processors has
improved with the development of pipelined and multiple instruction issue architectures.
These factors have influenced the increasing technological gap between processor speed and
the speed of the underlying memory hierarchy, and have dramatically reduced the average
number of clock cycles per instruction (CPI) [14].

The memory access time is a critical factor in system design. A slow memory access
time can be a cause of a major bottleneck. Increasing memory access time and therefore
reducing the bottleneck can be achieved by organising the memory system in a hierarchy.
This hierarchy involves implementing a fast SRAM cache on the CPU chip, with a slower
main DRAM behind it. Access time to current state-of-the-art SRAM caches is between 1 and
7 ns. In this study we have chosen to use Harvard direct-mapped split Instruction and Data
Caches in preference to set-associative caches. We made this design decision for the
following five reasons. First, direct-mapped caches are simple to implement. Second, a direct-
mapped cache has a lower cost than a set-associative cache. Third, for large cache sizes a
direct-mapped cache has a quicker effective average access time than a set associative cache.
Fourth, it is possible to integrate a direct-mapped cache directly onto the CPU [1]. Finally,
small direct-mapped caches have a one clock cycle access time. However, one of the
disadvantages of direct-mapped caches is that they make parallel address translation more
difficult.

Researchers into multiple instruction issue (MII) usually assume that a processor has a
perfect memory hierarchy and that the caches have a perfect hit rate. Therefore there are no
cache misses. In our study, we do not make these assumptions; instead we assume that we
have a perfect processor model that has an imperfect memory system. With this system
design, we can now investigate the limits that caches have on the instruction issue. In a
previous study using trace driven simulations [8], we showed that the average issue rate of an
imperfect memory system and an imperfect cache hit rate was approximately 60% of the
average issue rate of a model with a perfect memory system and with a perfect cache hit rate.
We concluded that there is a reduction in processor performance due to miss reading or
writing processes in the cache.

3. ASSOCIATING A VICTIM CACHE/SELECTIVE VICTIM CACHE

Jouppi [2] proposed the use of a Victim Cache to reduce the miss rate of direct-
mapped caches. A Victim Cache is a small fully associative cache that is positioned between
the first-level cache and the main memory. The Victim Cache does not affect the first-level
cache hit rate or its miss penalty. The Victim Cache stores blocks that are displaced from the
first-level cache. If a block is referenced again before being replaced from the Victim Cache,

it can be fetched directly from the Victim Cache. This results in a far lower penalty than a
block that is brought in from main memory [2].

To minimise the number of interchanges between the first-level cache and the Victim
Cache, Stiliadis [4] proposed the use of a Selective Victim Cache, see figure 1. Incoming
blocks from main memory are either placed in the first-level cache or in the Selective Victim
Cache. The placing of a block in either the first-level cache or in the Selective Victim Cache
is by a prediction mechanism that depends on the previous use history of the block. The
prediction algorithm is also used in the case of a first-level cache miss to determine if an
interchange of conflicting blocks is appropriate. The main idea of the prediction algorithm is
to place blocks that are likely to be referenced again in the first-level cache, and those that are
not likely to be referenced again in the Selective Victim Cache.

Figure 1 Memory hierarchy for the Selective Victim Cache.

Every cache block has two state bits, a hit-bit and a sticky-bit. The prediction
algorithm uses these state bits to determine where a block is to be placed. Previous history
information is contained in the hit-bit, which is only set if a cache block has previously been
in the first-level cache and that block has been accessed. In the case of a block being present
in the first-level cache but not accessed the hit-bit is not set. When a block is replaced from
the first-level cache, the state of the corresponding hit-bit is also updated in main memory.
When a block is fetched into the first-level cache, its sticky-bit is set. On a reference to a
conflicting block, if the block is not replaced from the first-level cache then the sticky-bit is
reset. On subsequent first-level cache accesses, if a conflict reoccurs with the same block then
it is replaced [4].

A Selective Victim Cache is implemented by increasing the size of the first-level
cache by one block, which is termed the ‘transitory block’. The prediction algorithm uses the
transitory block for sequential references of the same block. For example, when a hit occurs
in the Selective Victim Cache and the prediction algorithm selects not to perform an
interchange, then the corresponding block is copied from the Selective Victim Cache into the
transitory block. In this case, the transitory block acts as a buffer so that sequential references
to the block can be served. Sequential references to a block are repeated accesses to the block
without any intervening references to other blocks. Sequential references are recognised by

using a Sequential Access signal, which is activated by the CPU whenever the current
memory reference accesses the same block as the previous memory reference.

In figure 2, case 1 and case 2 are two different examples of the Selective Victim Cache
prediction algorithm. The bold text, of lines 1.1 and 2.1, highlights the modifications that we
suggest could be used to improve the prediction algorithm. With our modifications there is no
reason to set the hit-bit of a new block until a true-hit has occurred. A true-hit occurs after
there has been a first-level cache hit. Another modification would be to consider hit and sticky
vectors instead of these simple hit/sticky-bits.

Case 1: Access to block B, hit in selective victim cache
 A is the conflicting block in main cache

if sticky[A] == 0 then
interchange A and B

1.1 sticky[B] ← 1; hit[B] ← 1 (hit[B] ← 0)
copy B to transitory block

else
if hit[B]= = 0 then

1.2 sticky[A] ← 0;
copy B to transitory block

else
1.3 interchange A and B

sticky[B] ← 1; hit[B] ← 0;

Case 2: Access to block B, miss in both main and selective victim caches
 A is the conflicting block in main cache

if sticky[A] == 0 then
move A to victim cache
transfer B to main cache

2.1 sticky[B] ← 1; hit[B] ← 1 (hit[B] ← 0), etc.

Figure 2 The Selective Victim Cache prediction algorithm.

4. THE SIMULATION METHOD

We use trace driven simulations to evaluate the impact of our cache organisation on
processor performance. We quantify issue rate, first level cache hit/miss rate and Selective
Victim Cache usage on a range of cache organisations. We also investigate the impact that a
Victim Cache and a Selective Victim Cache has on processor performance. We use the
Stanford Integer benchmarks that are a suite of eight ‘C’ programs representing general-
purpose programs. These benchmarks are computationally intensive with high dynamic
instruction counts, and are heavily recursive. The dynamic instruction distribution of the
benchmarks is fairly typical: 53% are Arithmetical, Logical, Shifts or Relational, 18% are
Loads, 12% are Stores and 17% are Branches [7, 8]. The benchmarks were compiled by the

HSA Gnu C compiler, which targets the HSA instruction set. A dedicated HSA instruction
level simulator [3] executed the resultant HSA object code, which in turn was used to
generate the corresponding trace files that we used in our simulations. We have developed a
trace driven simulator that uses these trace files. Our trace driven simulator permits different
run time configurations to test various model parameters:

♦ FR: is the fetch rate. This is a variable number of instructions that are fetched from
Instruction Cache, up to a maximum of 16 instructions per cycle (IPC).

♦ IBS: is the Instruction Buffer size that can contain up to 64 instructions.
♦ Size of Main Cache Memories: provides up to 16K locations. In our study we use a

direct-mapped split Instruction and Data Cache structure. The size of the caches is
measured by location. The Instruction Cache stores instructions, and the Data Cache
stores memory addresses.

♦ Victim Cache: can contain up to 64 locations.
♦ Selective Victim Cache: can contain up to 64 locations.
♦ IRmax: is the maximum number of instructions that can be issued in parallel. The

number of instructions that can be dispatched from the Instruction Buffer is up to 8
IPC.

♦ MP: is the miss penalty. The number of clock cycles required to load a block from
main memory can be varied up to 20-clock cycles.

♦ VC_delay: is the penalty for reading from Victim Cache if there is no interchange.
This can be varied up to 3 cycles and is dependent on the size of the Victim Cache.

♦ Interchange Ticks: this is the penalty for interchanging a block. It is fixed at 3 cycles.

Although, the first-level cache is direct-mapped, the Victim Cache/Selective Victim
Cache is fully associative. We have implemented two replacement algorithms: the Least
Recently Used (LRU) and Random Replacement algorithm. We have also implemented a
single port Data Cache that can be accessed by only one Load/Store instruction.

In our simulations, there is latency of 3 cycles for every interchange operation between
the first-level cache and the Victim Cache/Selective Victim Cache. There is also an additional
access penalty of 1 cycle for every reference serviced by the Victim Cache. This additional
penalty is realistic when a Memory Management Unit (MMU), to translate virtual and
physical addresses, is considered. For example, a hit serviced by the Victim Cache requires 2
cycles, one for the MMU address translation, virtual address to physical address, and one to
access the Victim Cache. Furthermore, copying a block from the Selective Victim Cache to
the transitory block involves an additional penalty.

The main metric we use in our simulations is the average instruction issue rate. This
encapsulates all simulated processes and generates a realist performance indicator. We also
quantify cache hit/miss rates and the number of interchanges between first-level cache and
Victim Cache. We therefore quantify a more comprehensive range of statistics than Stiliadis
[4], who only quantified the miss rate. We have used these statistics to compute average
memory access times.

5. OBTAINED RESULTS

We simulated a Harvard Superscalar Architecture that has a split Instruction Cache
and Data Cache. The direct-mapped Instruction Cache was set to have a latency of 2 cycles,
and the Data Cache to 3 cycles. We set the miss penalty to 15 cycles. We also used the

following parameters: a fetch rate (FR) of 8 instructions, an Instruction Buffer (IBS) to hold a
maximum of 32 instructions, and an instruction issue rate to 4 IPC. Our processor model also
had one Load/Store execution unit. The fully associative Victim Cache had 32 locations or the
alternative Selective Victim Cache had 8 locations.

Figure 3 shows the harmonic mean issue rates, of the Stanford benchmarks, as a
function of Data Cache size. The issue rate speedup, with and without the 8 location Selective
Victim Cache varies from 2.15 for a 256 entry Data Cache to 1.83 for a 4096 entry Data
Cache. Similarly, the first level Instruction Cache sustains an issue rate speedup, with and
without 8 locations in the Selective Victim Caches, varies from 2.45 for a 32 location
Instruction Cache to 1.64 for a 128 entry Instruction Cache.

0
0.2
0.4
0.6
0.8

1
1.2

256 512 1024 2048 4096

D-Cache Size

IR

Main Cache
Simple Victim
Selective Victim

Figure 3 Issue Rate as a function of the Data Cache capacity.

Figure 4 shows the hit rate of the Data Cache. Also, our results show that a Selective
Victim Cache improves the hit rate of Instruction-Caches with up to 64 locations. An
Instruction Cache with 64 locations without a Victim Cache has a hit rate of 62%; when a
Selective Victim Cache is implemented the hit rate improves to 94%.

0
20

40
60

80
100

256 512 1024 2048 4096
D-Cache Size

D
H

IT

Direct Mapped
Simple Victim
Selective Victim

Figure 4 Data Cache hit rate with increasing capacity.

Figure 5 compares the number of interchanges between the Data Cache and the Victim
Cache/Selective Victim Cache. The plot shows that the Selective Victim Cache has fewer
interchanges than the Victim Cache for Data Caches with less than 4096 locations. For
example, with a 256 location Data Cache there are 7,426 interchanges with the Victim Cache,
which is reduced when the Victim Cache is replaced with a Selective Victim Cache to 4,227
interchanges. When the number of locations in the Data Cache is increased to 2,048, there are
987 interchanges with the Victim Cache and only 680 interchanges with the Selective Victim
Cache. The reduction in the number of interchanges reflects the increase in size of the Data
Cache and the increased hit rate. When the number of locations in the Data Cache is increased
to 4,096, the number of interchanges between Data Cache and the Victim Cache/Selective

Victim Cache is approximately the same. Again this is reflected by the hit rate of the Data
Cache.

0

2000

4000

6000

8000

256 512 1024 2048 4096

D-Cache Size

in
te

rc
hg

s

Simple Victim
Selective Victim

Figure 5 The number of interchanges between the Victim Cache/Selective Victim Cache
and increasing Data Cache size.

We also quantified the utilisation rate of the caches. The results showed that the
utilisation rate of a Data Cache with 256 locations is almost 100%, and the utilisation rate of
its associated Victim Cache/Selective Victim Cache is 88.67%. These results suggest that an
optimal Data Cache has 2,048 locations. In our study an optimal 2K Data Cache has an
utilisation rate of 63.82%, and the utilisation rate of its Victim Cache/Selective Victim Cache
is 49.2%. A similar quantitative analysis shows us that the optimal I-Cache size is about 128
entries (associated with a 8 entries victim cache), at an utilisation level of over 97% for main
cache and about 60% for the attached (selective) victim cache. For a 32 I-Cache size we
obtained (arithmetic means) 12647 vs. 5701 interchanges and for a 128 I-Cache size 3927 vs.
1200 interchanges. During all the following analysis we will use the optimal values that we
have found.

For the remaining experiments we have used the optimal Data and Instruction Caches
to quantify the optimal Victim and Selective Victim Cache sizes. Figure 6 shows the issue
rates as a function of the Victim Cache and Selective Victim Cache sizes. The plot shows that
the issue rate fluctuates at around 0.8 when a Victim Cache is associated with the Data Cache
irrespective of the Victim Cache size. Similarly, the issue rate fluctuates around 0.85 when a
Selective Victim Cache is associated with the Data Cache irrespective of the size of the
Selective Victim Cache.

0,7

0,75

0,8

0,85

0,9

4 8 16 32 64

Victim DCache

Simple Victim
Selective Victim

Figure 6 Processor performance for different Data (Selective) Victim Cache's capacities.

Figure 7 shows that the number of interchanges between the optimal Data Cache and the
Victim Cache increases as a function of Victim Cache size. For example, when there are only
4 locations in the Victim Cache the number of interchanges with the Data Cache is about

1,000. When the number of locations in the Victim Cache is increased to 64, the number of
interchanges is about 2,800. A similar pattern emerges when the Selective Victim Cache
replaces the Victim Cache but, as with figure 5, there are a reduced number of interchanges
compared to the Victim Cache.

0
400
800

1200
1600
2000
2400
2800

4 8 16 32 64

Victim DCache

Simple Victim
Selective Victim

Figure 7 Number of interchanges between D-Cache and (S) VC

The SVC's main "force" consists in a serious decrement of block interchanges between
main direct mapped cache and SVC itself. So, for the optimum values that we found, a 32-
entry size of data victim cache together with a 2k entries direct mapped D-Cache, the
interchange’s number is reduced with 72 percent, that’s significant. Also, for the same size of
(S) VC, the utilisation rate is about 81%.

Because it's impractical to store the hit bit associated with each block in main memory
like in a perfect implementation [4], we considered an alternate approach that maintain the hit
bits within the processor itself, alongside the L1 cache. So, we are using a hashing hit-array
scheme for storing hit bits that involve write interferences. The results obtained using ideal
implementation vs. a hit array scheme are presented in the next table, pointing out that the
performances are quite similar in both cases, according to [4]. Therefore interferences have
little impact that permits an elegant feasible implementation of the SVC concept.

ICache
Usage

IVictim
Usage

ICache
interchg

IHIT
%

DCache
Usage

DVictim
Usage

DCache
interchg

DHIT
%

IR

I FBubble 100% 87.5% 9 99.97 79.69% 37.50% 2 100 1.340
D FMatrix 100% 100% 10 99.96 100% 100% 1887 82.80 0.695
E Fperm 100% 75% 5681 99.98 21.88% 9.38% 1 100 1.026
A Fpuzzle 100% 100% 6006 98.46 100% 100% 1914 71.83 0.733
L Fqueens 100% 100% 2137 99.67 50.78% 100% 2748 99.82 1.044

Fsort 100% 100% 340 99.86 100% 100% 387 95.60 1.179
Ftower 100% 100% 9223 70.54 32.81% 100% 658 97.95 0.576
FTree 100% 100% 18 99.93 100% 100% 2528 83.77 0.746

MEAN 100% 95.31% 2928 94.79 73.14% 80.86% 1265 90.26 0.85
H Fbubble 100% 87.5% 9 99.97 79.69% 37.50% 2 100 1.340
A FMatrix 100% 100% 10 99.96 100% 100% 779 82.82 0.699
S FPerm 100% 75% 5681 99.98 21.88% 9.38% 1 100 1.026
H Fpuzzle 100% 100% 6107 98.44 100% 100% 3230 71.13 0.723
I Fqueens 100% 100% 2135 99.67 50.78% 100% 2800 99.82 1.051
N FSort 100% 100% 339 99.86 100% 100% 366 95.62 1.182
G Ftower 100% 100% 8712 70.54 32.81% 100% 1362 98.33 0.587

FTree 100% 100% 17 99.93 100% 100% 2455 83.42 0.742
MEAN 100% 95.31% 2876 94.78 73.14% 80.86% 1374 90.12 0.85

Table 1. Comparative Study about ideal implementation vs. a hashing hit array scheme

Finally we generalised the original algorithm proposed by Stiliadis and Varma and
presented shortly by us in Section 3, by considering binary vectors instead of a simple bit, for
"hit" and "sticky" states, for a better tracking of block history. We believe that a hit vector
will indicate more gradually the utilisation rate to the block occurred while it was in main
cache the last time. When a new block is brought in main cache, its corresponding hit vector
will be initialised to zero. It will be incremented during each hit involved by that block its
current value meaning the utilisation rate. Analogously, a sticky vector is associated with each
block in the main cache (level one). On a reference to a conflicting block, if the prediction
algorithm decides not to replace the corresponding block in the main cache, its sticky vector
will be incremented by one, meaning a new access conflict related to that block (the block
became more conflicting). Therefore, our algorithm will replace decisions like "if sticky
[block]=0" or "if hit [block]=0" from the original algorithm presented by us in Section 3, to
more gradually decisions like "if sticky [block]>half" or "if hit [block]<half", where "half"
means half of the maximum hit/ sticky vectors values.

IHIT (%) DHIT (%) IR
1 BIT Fbubble 99.97 100 1.3408

Fmatrix 99.96 82.80 0.7176
Fperm 99.98 100 1.0353

Fpuzzle 99.16 71.83 0.7708
Fqueens 99.95 99.82 1.0878

Fsort 99.88 95.60 1.2029
Ftower 92.81 97.95 0.8339
Ftree 99.94 84.77 0.7883

MEAN 98.83 90.41 0.927
2 BITS Fbubble 99.97 100 1.3409

Fmatrix 99.96 82.77 0.7184
Fperm 99.98 100 1.0353

Fpuzzle 99.21 71.65 0.7686
Fqueens 99.95 99.26 1.0805

Fsort 99.88 95.71 1.2073
Ftower 94.57 98.10 0.8823
Ftree 99.94 83.60 0.7854

MEAN 99.15 90.17 0.934
4 BITS FBubble 99.97 100 1.0349

fMatrix 99.96 82.36 0.7116
fPerm 99.98 100 1.0353

fPuzzle 99.21 70.50 0.7535
fQueens 99.95 99.63 1.0913

fSort 99.87 95.11 1.1875
fTower 94.57 98.81 0.9087
fTree 99.94 80.67 0.7437

MEAN 99.14 90.88 0.925
8 BITS fBubble 99.97 100 1.3409

fMatrix 99.96 82.77 0.7184
fPerm 99.98 100 1.0353

fPuzzle 99.21 70.99 0.7592
fQueens 99.95 99.37 1.0846

fSort 99.88 95.72 1.2081
fTower 94.57 99.77 0.9298
fTree 99.94 83.87 0.7896

MEAN 99.15 90.26 0.939

Table 2. Tracking the block history using binary vectors

Some obtained results for different vector lengths are presented in the table 2, for I-
Cache =128 with SVC=4 respectively D-Cache=1024 with SVC=32. As it can be observed,
the conclusion is that 2 bits hit and sticky vectors are optimal, involving a global speedup
about 1% over the 1 bit states. Taking into account some hit-array schemes based on hashing,
we consider feasible to implement these 2 bit arrays.

4. CONCLUSIONS

In this paper we investigated multiple-instruction-issue in a high-performance
superscalar architecture, illustrating both the improvements and the limits of some well-
known techniques (like dependence collapsing and instruction bypassing). Through trace
driven simulation we quantify the impact of the victim cache and selective victim-caching
scheme on the performance of an in-order superscalar processor, illustrating the optimum
values for some processing parameters. We have also presented some modifications in the
prediction algorithm that in our opinion can improve the effectiveness of the selective victim
cache architecture.

As a reply to victim cache concept, proposed by Jouppi (1990), for improving the hit
ratio of direct-mapped caches without affecting the access time, Stiliadis (1994) introduced
Selective Victim Cache method. The method selectively places data in the main cache or the
victim cache based on a prediction algorithm that determine how likely they are to be
accessed in the future. Using Selective Victim Cache, the simulation results show significant
improvements in terms of both issue rate and hit rate. Also, the performance improvements
are highly determinate by the prediction algorithm impact over the number of interchanges
between direct-mapped cache and victim cache. The algorithm may also contribute to a better
placements of block in the cache, reducing the number of accesses in victim cache and
generating higher hit rates in the direct-mapped cache.

Stiliadis concludes [4] that, for data caches, the effectiveness of the prediction
algorithm employed in selective victim caching was reduced considerably due to the more
random patterns of data references, making it much less attractive rather than implementing
the selective victim cache concept for an instruction cache. However, he considers that a fully
associative victim cache may still be attractive when used in a data cache. Starting by these
conclusions we implemented a selective victim cache fully associative. Although the results
are very encouraging – significant improvements of imposed performance metrics – they are
perfectly concordance with Stiliadis conclusions (the significant improvements appear using
small caches, static allocation of data and regular data structures). We think the explanation
consists of following two aspects:

Ú The optimum data cache size, except puzzle (about 24K data space), for Stanford’s
benchmark is 2K location (=8K bytes) [8] – pretty small.

Ú All Stanford programs employ static allocation of data and regular data structures
(arrays) the prediction algorithm being able to resolve a large number of conflicts in
these cases.

Probably, in the case of programs with dynamic memory allocation and extensive use
of pointers (only the tree benchmark combines static with dynamic allocation of data), the
conflicts are much harder to resolve by the prediction algorithm. Anyway, we think the
problem is still open, the solution consisting in finding an independent algorithm by random
patterns of data references.

REFERENCES

[1] Hill M. – A Case for Direct-Mapped Caches, IEEE Computer, December 1988.
[2] Jouppi N. – Improving Direct-Mapped Cache Performance by the addition of a Small
Fully Associative Cache and Prefetch Buffers, Proc. 17th International Symposium On
Computer Architecture, 1990.
[3] Steven G. – A Superscalar Architecture to Exploit Instruction Level Parallelism,
Microprocessors and Microsystems”, No 7, 1997.
[4] Stiliadis D., Varma A. – Selective Victim Caching: A Method to Improve the
Performance of Direct-Mapped Caches, TR UCSC-CRL-93-41, University of California,
1994 (republished in a shorter version in IEEE Trans. on Computers, May 1997).
[5] Steven G., Vintan L. – Modelling Superscalar Pipelines With Finite State Machines,
Proceedings of the Euromicro ’96 Conference, IEEE Computer Society Press, California,
1996.
[6] Vintan L., Steven G. – Memory Hierarchy Limitations in Multiple Instruction-Issue
Processor Design, Proc. Euromicro ’97, IEEE Computer Society Press, California, 1997.
[7] Florea A., Vintan L. – Advanced Techniques for Improving Processor Performance in a
Superscalar Architecture - Proceedings of The 12th International Conference on Control
Systems and Computer Science (CSCS 12), vol.2, Bucharest, Romania.
[8] Florea A. – Optimizarea proceselor de scriere într-o arhitecture RISC superscalara de tip
Harvard, Master Thesis, Sibiu, 1998 (coordinator L. Vintan), in Romanian.
[9] Florea A. – Simulator pentru o arhitecture superscalar parametrizabile de tip Princeton,
BEng Thesis, Sibiu, 1997 (coordinator L. Vintan), in Romanian.
[10] Florea A., Vintan L. – Simulating Some Advanced Processing Techniques into a
Superscalar Architecture – Proceedings of The 12th International Conference Beyond 2000:
Engineering Research Strategies, Sibiu, 1999.
[11] Sazeides Y., Vassiliades S. and Smith J. E. – The Performance Potential of Data
Dependence Speculation & Collapsing, IEEE Transactions Computers, Proceedings of the
29th Annual ACM/IEEE International Symposium on Microarchitecture, Paris 1996.
[12] Steven F. – An Introduction to the Hatfield Superscalar Scheduler, Technical Report
Number 316, Computer Science, University of Hertfordshire, June 1998.
[13] Vintan L. – Architectura procesoarelor cu paralelism la nivelul instructiunilor, Editura
Academiei Române, Bucuresti, 2000, in Romanian.
[14] Hennessy J., Patterson D. – Computer Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers, Second Edition, 1996.
[15] Vassiliadis S., Phillips J., Blaner B. – Interlock Collapsing ALUs, IEEE Transactions
on Computers, Vol. 42, No. 7, 1993, pp. 825 – 839.
[16] Tate D., Steven G. - Adding a Cache Simulator to the Hatfield Superscalar Project,
University of Hertfordshire, Technical Report, 1998.
[17] Vintan L., Armat C., Steven G.- The Impact of Cache Organisation on the Instruction
Issue Rate of a Superscalar Processor, Proceedings of Euromicro 7th Workshop on Parallel
and Distributed Systems pg. 58-65, ISBN 0-7695-0059-5, Funchal, Portugal, 3-rd -5th
February, 1999

