
55 

 

Appeared in the Acta Universitatis Cibiniensis, Vol. XXXVIII, Technical Series. Computer Science and Automatic Control, 

ISSN 1221-4949 

(Issued for the International Conference Beyond 2000: Engineering Research Strategies) 

Sibiu, Romania, November 25-27, 1999 

SIMULATING SOME ADVANCED PROCESSING TECHNIQUES  

INTO A SUPERSCALAR ARCHITECTURE 

 
Adrian FLOREA, Lucian N. VINTAN, 

University “L. Blaga”, Department of Computer Science, Str. E. Cioran, No. 4, Sibiu-2400, ROMANIA,  

E-mail: vintan@cs.sibiu.ro, 

 

Abstract: The main aim of this short paper is to 

investigate multiple-instruction-issue in a high-

performance superscalar architecture, illustrating the 

limits of some well-known technique (like dependence 

collapsing and instruction bypassing) or the best solution 

in that concern the cache architecture strategy. Also we 

propose a new technique, named Multiple – Load for 

improving processor performance in a superscalar 

architecture. Our research use trace driven simulation 

techniques to evaluate the processor performance. 

 
Key words: Trace driven simulation, Superscalar, Cache, 

Write Back, Write Through, Instructions Collapsing 

 
1. INTRODUCTION 

 
The main simulation techniques used to evaluate and 

establish from a suite, the best processor pipeline 

configuration. The entering parameter for these 

techniques are benchmark programs (traces). We used 

the traces obtained based on the eight C Stanford integer 

benchmarks. These benchmarks were compiled through 

the HSA (Hatfield Superscalar Architecture) compiler, 

developed at the University of Hertfordshire, UK, by Dr. 

G.B. Steven's Research Group. Further, the traces were 

obtained using the HSA simulator, developed at the 

same university [Ste96]. Based on these tools, we have 

developed a trace driven simulator to investigate the 

limits of some well-known techniques (like dependence 

collapsing, instruction bypass using DWB – data write 

buffer) or the potential of some new developed 

techniques (like Multiple – Load) for improving 

processor’s performance into a superscalar pipeline 

architecture (with four stages: IF, ID, ALU/MEM, 

WB). This technique called Multiple – Loads is based on 

an additional information (memory addresses of 

Load/Store instructions), available during the instruction 

decode stage. 

 
2. SIMULATION WORK 

2.1. BENCHMARK PROGRAMS 

 

The simulation work has been centred on the Stanford 

integer benchmark suite, a collection of eight C 

programs designed by Professor John Hennessy, to be 

representative of non - numeric code while at the same 

time being compact. The benchmarks are 

computationally intensive with higher dynamic 

instruction counts (the cube packing problem, the eight 

queens problem, bubble sorts an array, quick sorts a 

randomised array, the binary tree sort, matrix 

multiplication,  recursive computation of permutations, 

Towers of Hanoi - recursive problem). Although, many 

applications are not represented by the benchmarks, 

including graphics, multimedia, critical hand-coded 

operating system routines. All these benchmarks were 

compiled by the HSA Gnu C compiler, which targets the 

HSA instruction set. The resulted HSA object code was 

simulated by a dedicated HSA simulator [Ste96], which 

generates the corresponding traces. 

The average instruction number is about 273.000. 

The average percentage of total instructions that are 

branches is about 13%, that are Load is still 18%, that 

are Store is about 12% and that are arithmetic is about 

57% [Flo98]. 

 
2.2. THE SIMULATION METHOD 

 
Following our aims, we developed a dedicated trace 

driven simulator [Vin99] that uses the above mentioned 

traces. The most important input parameters for this 

simulator are: 

 FR – fetch rate – the instructions number that is 

fetched from Instruction Cache: up to 16 IPC 

(Instruction Per Cycle) 

 IBS – instruction buffer size: up to 64 instructions 

 Type and Size of Cache Memories (size of caches is 

measured in location; a location of Instruction Cache 

stores an instruction and a location from Data Cache 

stores memory addresses) 

 BLOC_SIZE – the size of the data cache block: up to 

32 location 

 IRmax – parallel issue capability – the maximum 

number of instructions that can be dispatched 

concurrently from the Instruction Buffer: up to 8 IPC 

mailto:vintan@cs.sibiu.ro


56 

 

 Instruction Latencies (measured in cycles): up to 20 

cycles 

 Type and Number of Functional Units  

During this research we use a direct-mapped split 

(Instruction & Data) cache structure. Where not 

specified, the results were obtained using an optimal 

superscalar architecture [Flo98], with FR = 8, IBS = 16, 

IRmax = 4, BLOC_SIZE = 8, N_PEN  = 10 cycles 

(N_PEN - cycles required to load a block from main 

memory). We have also used a two-port data cache that 

can be accessed simultaneously by two non-aliasing 

Load/Store instructions. 

The simulation results are presented in terms of 

instructions per cycle (IPC) and we summarised them by 

taking the harmonic mean over the benchmark set. 

During the simulation we have used as a main metric the 

average issue rate which encloses all simulated processes 

and generates a synthetic and realist performance 

indicator. 
 
3. SOME RESULTS 

 
A. Using write back strategy in Data Cache 

 
There are two basic options when writing to the cache: 

write back and write through. Both of them have their 

own advantages. With write back, writes occur at the 

speed of the cache memory, and multiple write within a 

block require only one write to the lower level memory. 

With write through, read misses never resuit in writes to 

the lower level, and write through is easier to implement 

than write back. Write through also has the advantage 

that the next lower level has the most current copy of the 

data. Therefore, I/O and multiprocessors are fickle: they 

want write back for processor caches to reduce the 

memory traffic and write through to keep the cache 

consistent with lower levels of the memory hierarchy.  

The simulation results show that write back strategy 

is with 44.69% more performant than write through. In 

our opinion, write back has a net advantage, eclipsed just 

by a harder implementation, especially related to cache 

coherence mechanisms into multiprocessor systems 

[Hen96]. Thus,  following our aims, the simulations used 

the write back strategy. 

 

 

SIZE_IC=128; SIZE_DC=2048;IBS=16; FR=8; IRmax=4;

N_PEN=10; NR_REG_GEN=4; BLOC_SIZE=8;

Two port Data Cache

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

fb
u
b
b
le

fs
o
rt

fp
e
rm

fp
u
z
z
le

fq
u
e
e
n
s

fm
a
tr

ix

ft
re

e

ft
o
w

e
r

m
e
d
ia

Issue Rate

WRITE BACK

WRITE

THROUGH

 
Figure 1 Comparative study about processor performance depending on cache write strategy  

 
B. Multiple Loads – a new technique for 

improving processor performance 

 
We are introducing now a new method for reducing the 

cache miss penalty, called “multiple loads”. It is well 

known [Hen96] that reducing the cache miss penalty 

improves the processor’s performance. Assuming that 

the target address of Load/Store instructions belonging 

to the instruction buffer are known, it could be issued 

multiple Load instructions, which are reading from the 

same fetched data cache block if there are a no 

intercalated Store instructions between these Loads. This 

method could be applied in an Out of Order mechanism 

with reservation stations for Load and Store instructions 

or even in a Trace Processor[Vin99b].   

Using this technique, the processing rate could be 

involved by two factors: Size of Data Cache Memory 

(SIZE_DC parameter – see Figure 2) and Instruction 

Buffer Size (IBS parameter – see Figure 3). In a small 

Data Cache, sumarised by fewer data cache blocks, is 

likely to access the same block for several times; also, a 

bigger instruction buffer is likely to retain more Load 

instructions that access the same data cache block. 

After simulation we got that the raising of SIZE_DC 

parameter improves processor’s performance (Figure 2). 

 

 

 



57 

 

FR=8;IBS=32;SIZE_IC=128;BLOC_SIZE=8;

IRmax=4;NR_REG_GEN=4;

Cache Biport

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

fb
u

bb
le

fs
or

t

fp
e

rm

fp
u

zz
le

fq
u

ee
n

s

fm
at

ri
x

ft
re

e

ft
ow

er

m
ed

ia

Issue 

Rate

SIZE_DC=64

SIZE_DC=128

SIZE_DC=512

SIZE_DC=1024

SIZE_DC=2048

 
 

Figure 2 Multi-Loads technique impact’s about processor performance depending on Size_DC parameter varying 

 

FR=8;SIZE_IC=128;SIZE_DC=2048;BLOC_SIZE=8;

IRmax=4;NR_REG_GEN=4;N_PEN=10;

Cache Biport

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

fb
u

bb
le

fs
or

t

fp
e

rm

fp
u

zz
le

fq
u

ee
n

s

fm
at

ri
x

ft
re

e

ft
ow

er

m
ed

ia

Issue 

Rate

IBS=16

IBS=32

 
 

Figure 3 Multi-Load technique impact’s about processor performance depending on Instruction Buffer Size  

(IBS parameter) varying 

 
The raises of Instruction Buffer Size from 16 to 32 

locations, combined with Multi - Loads technique 

involves a processor performance improvement with 

only about 3% percents (Figure 3). 

 

 IR=4; IBS=16; N_PEN=10; NR_REG_GEN=4; 

FR=8;SIZE_IC=128;SIZE_DC=2048;BLOC_SIZE=8;

Cache biport pe date

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

fb
u

b
b
le

fs
o

rt

fp
e

rm

fp
u

zz
le

fq
u

e
e
n

s

fm
a

tr
ix

ftr
e

e

fto
w

e
r

m
e

d
ia

Issue Rate   

FARA MULTI - LOAD

CU MULTI - LOAD

 
 

Figure 4 Comparative study about processor performance depending on using or not of Multi-Load technique 

  

Biported Data Cache 

Biported Data Cache 

Biported Data Cache 

Without 

Multi-Load 

With 

Multi-Load 



58 

 

Surprisingly, this technique involves only a 2% percents 

growth about processing rate at average (very short). The 

anomaly appeared is due to bubble’s benchmark (see 

Figure 4). The explanation we got through NR_RAW 

parameter statistics – computed in program, parameter 

that represents the total number of Read After Write 

hazards. After trace driven simulation, on all 

benchmarks, except bubble, this parameter and implicit 

the total number of execution cycles is getting down 

using the Multi – Loads technique, but on bubble it 

raises approximately with 10000 hazards. Considering 

additionally at each RAW hazard at least one cycle 

penalty it gets for processing rate a diminution value 

than the case in which it doesn’t use the Multi – Loads 

technique. Finally, this will have a negative effect about 

processing performance at average. It must notice that 

with this technique it doesn’t gain much time because all 

Load instructions (sometimes except first) would execute 

with hit in Data Cache as they access same block, and no 

Store instruction doesn’t write in this block, additionally 

appearing more RAW hazards. Although, the Multi – 

Loads advantage is the possibility to execute in a cycle 

more than IRmax instructions so that the total number of 

execution cycles will get down. 

 
C. The limitation of instruction number that 

could be collapsed 

 
Dependence collapsing represents a technique that 

resolves execution data Read After Write hazards for 

instructions requiring ALU operation. Dependence 

collapsing can reduce the latency eliminating data 

dependencies by combining dependencies among 

multiple instructions into one complex instruction. This 

technique improves the processor performance by 

“restructuring” the data dependence graph. A general 

scheme capable of collapsing involves arithmetic and 

logical instructions. Instructions that will be collapsed 

can be non-consecutive. The distance separating the 

collapsed instructions is nearly always less than 8. There 

are at least two possible implementation strategies 

[Vas93]: the first run-time strategy, based on a 

combining hardware mechanism of instructions from 

prefetch buffer, and second static strategy, a software 

combining realised by an instruction scheduler. Into a 

previous work [Vin99], we implement run-time this 

technique: in instruction buffer there are detected 

possibly data dependencies and if it is possible then the 

collapse is done under some certain rules (the 

dependence is generate by an arithmetic instruction). In 

the same paper [Vin99] we proved through trace driven 

simulation method that dependence collapsing and 

raising of instruction number that could be collapsed 

(Comb_Instr - parameter) from 2 to 3 improves the 

processor performance with about 22%. Although, this 

growth of Comb_Instr from 3 to 6 is significantly limited 

(under 3% – see Figure 6). 

 

 

 

 

FR=8; IR=4; IBS=16;NR_REG_GEN=4; N_PEN=10;

SIZE_IC=128;SIZE_DC=2048; 

Cache biport

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fb
u
bb

le

fs
o
rt

fp
e
rm

fp
u
zz

le

fq
u
ee

n
s

fm
a
tr

ix

ft
re

e

ft
ow

e
r

m
ed

ia

Issue Rate

Fara combining

Cu combining

 

 
Figure 5 Processing rate on a two-port data cache using or not dependence collapsing 

 
In the two-port data cache, dependence collapsing 

improves processor’s performance with 8.51% at 

average. The maximum rise is 26.34% on queens 

benchmark (Figure 5). 

Without 

Combining 

With 

Combining 

Biported Data Cache 



59 

 

S I Z E _ I C = 1 2 8 ;  S I Z E _ D C = 2 0 4 8 ; I B S = 1 6 ;  F R = 8 ;  I R m a x = 8 ;

N _ P E N = 1 0 ;  N R _ R E G _ G E N = 8 ;  B L O C _ S I Z E = 8 ;

T w o  p o r t  D a ta  C a c h e

0 . 0

0 . 8

1 . 6

2 . 4

3 . 2

f
s
o
r
t

f
t
r
e
e

f
b
u
b

b
le

f
m

a
t
r
ix

f
q
u
e

e
n
s

f
t
o
w

e
r

f
p
e
r
m

f
p
u
z

z
le

m
e
d

ia

I s s u e

 R a te

C o m b _ I n s t r = 3

C o m b _ I n s t r = 4

C o m b _ I n s t r = 5

C o m b _ I n s t r = 6

 

 
Figure 6 Impact of the Comb_Instr parameter raising about processor performance 

 
D. Instruction bypass using DWB – data 

write buffer  

 
DWB is a small write buffer, which contains the virtual 

address and data that must be written in Data Cache. 

Assuming that DWB has enough ports for supporting the 

worst situation (a lot of Store instructions, independent 

and concurrent stored in instruction window), offering 

then multiple virtual writing ports [Tat98] although, Data 

Cache has one or maximum two reading ports and just a 

single writing port. We set the writing latency in DWB 

to 1 cycle and the number of cycles needed for writing 

data from DWB to Data Cache to 2 or 3 cycles 

(variable). Using DWB we eliminate the need of 

serialising Store instructions with afferent penalties and 

besides, through bypassing we can eliminate many 

“Load after Store” hazards. 

Variation from 2 to 3 cycles of DWB-latency implies 

a diminution with 11.63% of processor performance. 

That means the data writing process from DWB in Data 

Cache must be hurried for improving processor 

performance. Also, if the reading ports number raises 

from 1 to 2 the processing rate is improved with 5%. The 

simulation results show that bypassing technique at 

average favouring by DWB improves processing 

performance with 17.87% (Figure 7). 

 

FR=8;IBS=16;IRmax=4;SIZE_IC=128;SIZE_DC=2048;

     BLOC_SIZE=8;NR_REG_GEN=4;N_PEN=10;WB;

UNIT_LD=1;UNIT_ST=1;

0

0,4

0,8

1,2

1,6

2

2,4

fb
ub

b
le

fp
uz

zl
e

fp
er

m

fq
ue

e
ns

fm
a

tr
ix

ft
re

e

ft
o

w
er

fs
or

t

m
e

d
ia

Issue

Rate

Cu DWB

Fãrã DWB

 
Figure 7 Processor performance improved with bypassing technique in DWB 

 
 

 

 

 

 

 

 

 

Without DWB 

With DWB 



60 

 

 

 

4. CONCLUSIONS AND FURTHER 

WORK 

 
The previous results point out consistently that a 

substantial performance growth is possible by using 

dependence collapsing. We show that the raising of 

instruction number that may be combined (Comb_Instr) 

from 2 to 3, has a more significant impact on processor’s 

performance. Although, varying Comb_Instr parameter 

over 3, doesn’t improve significantly the obtained 

average issue rate. Regarding to write policy in data 

cache we proved that write back is more adequate. The 

new method for reducing the cache miss penalty, 

“multiple loads” improves the processor’s performance 

but this growth depends on execution pattern. Also, by 

hardware bypassing of instruction favouring by DWB 

the processing performance is increased at average with 

17.87%. 

In whole our simulations work we considered a 

perfect branch prediction (ideal). For further research we 

are concerned now to the necessity of an efficient 

hardware branch predictor. Very high prediction 

accuracy are necessary, because taking into account the 

multiple-instruction-issue processors characteristics as 

pipeline depth or issue rates, even a prediction miss rate 

of a few percent involves a substantial performance loss. 
 
ACKNOWLEDGMENTS 

 
This work was supported in part by the Romanian 

Ministry of Research and Technology grant MCT No. 

4086/1998 and respectively by the Romanian National 

Council of Academic Research grants CNCSU No. 

391/1998 and No. 489/1999. Also we like to thank Dr. 

Gordon Steven from University of Hertfordshire, UK, 

for providing the HSA Stanford traces. 

 
REFERENCES 

 
[1][Vin99] Vinţan L., Florea A., Steven G. – Advanced 

Techniques For Improving Processor Performance In A 

Superscalar Architecture, CSCS-12 Conference, 

Bucharest, May 1999. 
 
[2][Hen96] Hennesy J., Patterson D. – Computer 

Architecture, A Quantitative Approach, Morgan 

Kaufmann Publishers, Second Edition, 1996. 

 
[3][Flo98] Florea A. – Optimizarea proceselor de 

scriere într-o arhitectură RISC superscalară de tip 

Harvard, Teză de Masterat, Sibiu, 1998 (co-ordinator L. 

Vintan). 

 
[4][Ste96] Steven G. B. et al. – A Superscalar 

Architecture to Exploit Instruction Level Parallelism, 

Proceedings of the Euromicro Conference, 2-5 

September, Prague, 1996. 

 
[5][Vin99b] Vinţan L. – Architectura procesoarelor cu 

paralelism la nivelul instrucţiunilor.O abordare 

constructivă, Editura Academiei Române, Bucureşti, 

1999. 

 
[6][Vas93] Vassiliadis S., Phillips J., Blaner B. – 

Interlock Collapsing ALUs, IEEE Transaction on 

Computers, Vol. 42, No. 7, 1993, pp. 825 – 839. 

 
[7][Tat98] Tate D., Steven G. - Adding a Cache 

Simulator to the Hatfield Superscalar Project, 

University of Hertfordshire, Technical Report, 1998. 

 

 


